CONSTRUCTIBILITY AND GEOMETRIC FINITENESS OF KLEINIAN GROUPS

Hiro-o Yamamoto

(Received February 14, 1979, revised June 7, 1979)

1. Preliminaries. Let $g=(a, b ; c, d)(a d-b c=1)$ denote a Moebius transformation acting on $\bar{H}=\{(z, t) ; z \in C, t \geqq 0\} \cup\{\infty\}$ in the manner

$$
g:(z, t) \mapsto\left(\frac{a c\left(|z|^{2}+t^{2}\right)+a \bar{d} z+b \bar{c} \bar{z}+b \bar{d}}{|c z+d|^{2}+c^{2} t^{2}}, \frac{t}{|c z+d|^{2}+|c|^{2} t^{2}}\right) .
$$

Obviously g keeps the upper half space $H=\{(z, t) ; z \in \boldsymbol{C}, t>0\}$ and the boundary $\hat{\boldsymbol{C}}=\boldsymbol{C} \cup\{\infty\}$ of H invariant, that is, $\{g(\zeta) ; \zeta \in H\}=H$ and $\{g(\zeta) ; \zeta \in \widehat{\boldsymbol{C}}\}=\hat{\boldsymbol{C}}$. Let SL^{\prime} be the group of all such Moebius transformations. A Kleinian group G is a subgroup of SL^{\prime} which acts discontinuously at some point of $\widehat{\boldsymbol{C}}$. A Kleinian group acts discontinuously in H. The set of all points in $\hat{\boldsymbol{C}}$ at which G acts discontinuously is denoted by $\Omega(G)$, and $\Lambda(G)=\widehat{\boldsymbol{C}}-\Omega(G)$ is called the limit set of G.

An elementary group G is a Kleinian group such that $\Lambda(G)$ is a finite set. A finitely generated Kleinian group G is quasi-Fuchsian, if $\Omega(G)$ consists of two invariant components. A finitely generated Kleinian group G is a web group, if each component of $\Omega(G)$ is the image of an open disc under a quasi-conformal automorphism of $\widehat{\boldsymbol{C}}$. Quasi-Fuchsian groups give the simplest examples of web groups. A finitely generated Kleinian group is totally degenerate if $\Omega(G)$ is connected and simply connected. A finitely generated Kleinian group with an invariant component is a function group. For a set S in \bar{H}, we denote by \bar{S} the closure of S in \bar{H}. The points ζ and ζ^{\prime} in \bar{H} are equivalent under G if there exists an element $g \in G$ which transforms ζ into ζ^{\prime}. Let S be an invariant subset of $\bar{H}-\Lambda(G)$ under G. A subset D of S is a fundamental region for G in S, if no pair of distinct points in D are equivalent under G and if $G \bar{D}=\{g(\zeta) ; g \in G, \zeta \in \bar{D}\}$ covers S.

A set S in H is convex, if any two points in S can be joined by a part of a line or a circle in S orthogonal to C. A Kleinian group G is geometrically finite if there is a convex fundamental region for G in H surrounded by a finite number of hyperbolic planes, that is, hemispheres or half planes orthogonal to \boldsymbol{C}.

Beardon-Maskit [4] proved that any convex fundamental region for a geometrically finite group is surrounded by a finite number of hyperbolic planes. It is known that elementary groups and quasi-Fuchsian groups are geometrically finite and it is also known that totally degenerate groups are not (Greenberg [7]). In his paper [16], Maskit showed the existence of geometrically finite web groups and that of geometrically infinite web groups.

For $g=(a, b ; c, d) \in \mathrm{SL}^{\prime}, c \neq 0$, we define the isometric sphere $I(g)$ of g as $\left\{(z, t) \in \bar{H} ;|z-p(g)|^{2}+t^{2}=r(g)^{2}\right\}$, where $p(g)=g^{-1}(\infty)$ and $r(g)=$ $|c|^{-1}$. As is well known, g can be decomposed into a product $g=u_{3}$ 。 $u_{2} \circ u_{1}$ of motions, where u_{1} is the inversion in $I(g), u_{2}$ is the reflection about the plane $\left\{\zeta \in \bar{H} ;|\zeta-p(g)|=\left|\zeta-p\left(g^{-1}\right)\right|\right\}$ and u_{3} is the rotation with the line $\left\{(z, t) \in \bar{H} ; z=p\left(g^{-1}\right)\right\}$. Since u_{2} and u_{3} are Euclidean motions, the Jacobian $J_{g}(\zeta)$ of g at the point $\zeta \in \bar{H}$ is more than, equal to or less than 1 , respectively, if ζ is in the bounded component int $I(g)$ of $\bar{H}-I(g)$, on $I(g)$ or in the unbounded component ext $I(g)$ of $\bar{H}-I(g)$.

Let H be a subgroup of a Kleinian group G. A set S in $\hat{\boldsymbol{C}}$ is precisely invariant under H in G if $H S=S$ and if $(G-H) S \cap S=\varnothing$. For a cyclic subgroup H, a precisely invariant disc B for H is a Jordan subdomain of \widehat{C} such that $\bar{B}-\Lambda(H)$ is precisely invariant under H, and $(\bar{B}-\Lambda(H)) \subset \Omega(G)$. For later use we state Maskit's combination theorems in the following form.

Combination theorem I (Maskit [9], [10]). For $i=1,2$, let B_{i} be a precisely invariant disc for H, a finite or parabolic cyclic subgroup of both G_{1} and G_{2}. Assume that B_{1} and B_{2} have the common boundary γ and $B_{1} \cap B_{2}=\varnothing$. Let G be the group generated by G_{1} and G_{2}. Then
(1) G is Kleinian and $(\gamma-\Lambda(H)) \subset \Omega(G)$,
(2) G is the free product of G_{1} and G_{2} with the amalgamated subgroup H, and
(3) $\Omega(G) / G=\left(\Omega\left(G_{1}\right) / G_{1}-B_{1} / H\right) \cup\left(\Omega\left(G_{2}\right) / G_{2}-B_{2} / H\right)$, where $\left(\Omega\left(G_{1}\right) / G_{1}-\right.$ $\left.B_{1} / H\right) \cap\left(\Omega\left(G_{2}\right) / G_{2}-B_{2} / H\right)=(\gamma \cap \Omega(H)) / H$.

In this case, G is said to be constructed from G_{1} and G_{2} via Combination theorem I.

Combination theorem II (Maskit [9], [11]). Let G be a Kleinian group. For $i=1,2$, let B_{i} be a precisely invariant disc for a finite or parabolic cyclic subgroup H_{i} and let γ_{i} be the boundary of B_{i}. Assume that $G_{1}\left(\bar{B}_{1}-\Lambda\left(H_{1}\right)\right) \cap\left(\bar{B}_{2}-\Lambda\left(H_{2}\right)\right)=\varnothing$. Let F be a cyclic group generated by $f \in \mathrm{SL}^{\prime}$, where $f \gamma_{1}=\gamma_{2}, f B_{1} \cap B_{2}=\varnothing$, and $f H_{1} f^{-1}=H_{2}$. Let G be the group generated by G_{1} and F. Then
(1) G is Kleinian and $\left(\gamma_{i}-\Lambda\left(H_{i}\right)\right) \subset \Omega(G), i=1,2$,
(2) every relation in G is a consequence of the relations in G_{1} and the relation $f H_{1} f^{-1}=H_{2}$, and
(3) $\Omega(G) / G=\Omega\left(G_{1}\right) / G_{1}-\left(B_{1} / H_{1} \cup B_{2} / H_{2}\right)$, where $\left(\gamma_{1} \cap \Omega(G)\right) / H_{1} \quad$ is identified in $\Omega(G) / G$ with $\left(\gamma_{2} \cap \Omega(G)\right) / H_{2}$.

In this case, G is said to be constructed from G_{1} and f via Combination theorem II. The loops γ and γ_{1} appearing in Combination theorems are called structure loops.

Recently Abikoff and Maskit proved the following basic decomposition theorem of finitely generated Kleinian groups.

Theorem A (Maskit [13], [14], Abikoff-Maskit [2]). Every finitely generated Kleinian group can be constructed from elementary groups, totally degenerate groups and web groups by a finite number of applications of Combination theorems I and II.

Acknowledgement. The author expresses his hearty thanks to the referee who pointed out an ambiguity and errors in the original manuscript.
2. Statement of results. The main purpose of this paper is to prove the following.

TheOrem 1. A Kleinian group is geometrically finite if and only if it is constructed from elementary groups and geometrically finite web groups by a finite number of applications of Combination theorems I and II.

The following corollary to Theorem 1 was proved by Maskit, whose proof was different from ours.

Corollary (Maskit [15]). A function group is geometrically finite if and only if it is constructed from elementary groups and quasiFuchsian groups by a finite number of applications of Combination theorems I and II.

The proof of Theorem 1 is immediately obtained by Theorem A and Lemmas 3 through 7. We note that these lemmas are valid, even if the groups are not finitely generated.

Lemmas 3 through 7 together with (1) and (2) in Combination theorems I and II proved in Maskit [9], give a simpler proof of (3) in Combination theorems proved in Maskit [10], [11], if we regard the Kleinian groups as those acting only on $\hat{\boldsymbol{C}}$.

The following Theorem 2 is an immediate corollary to Theorem 1
and to the fact that totally degenerate groups are geometrically infinite. This theorem was proved originally by Abikoff, whose proof was based on instability of totally degenerate groups.

Theorem 2 (Abikoff [1]). Totally degenerate groups cannot be constructed from elementary groups by a finite number of applications of Combination theorems.

Finally, we can find a proof of the following generalization of a classical theorem on the method of constructing a fundamental region in Lemma 4 (see Ford [6, p. 45]).

Theorem 3. Let G be a Kleinian group such that $\infty \in \Omega(G)$ or such that ∞ is fixed by a parabolic element of G. Let P be a convex fundamental region for the stabilizer subgroup $G_{\infty}=\{g \in G ; g(\infty)=\infty\}$ of $\{\infty\}$ in G. Then $P \cap\left(\bigcap_{g \in G-G_{\infty}} \operatorname{ext} I(g)\right)$ is a fundamental region for G in $\bar{H}-\Omega(G)$.

Thus, in the remainder of this paper, we shall only give the proof of Theorem 1.
3. Reduction. Let $A \subset \hat{\boldsymbol{C}}$ be a domain whose boundary consists of more than two points. Then we can define the Poincare metric $\lambda_{A}(z)|d z|$ with the constant negative curvature -1 in A. We denote by $l(\alpha, A)$ the length of a curve α in A measured by $\lambda_{A}(z)|d z|$. As is well known, $l(g(\alpha), g(A))=l(\alpha, A)$ for each $g \in \mathrm{SL}^{\prime}$, and $l(\alpha, A) \leqq l\left(\alpha, A^{\prime}\right)$ for sets A and $A^{\prime}(\subset A)$. For a Kleinian group G, G^{\prime} denotes G with the identity removed. Set $\Omega^{\prime}(G)=\Omega(G)-\left\{z \in \hat{\boldsymbol{C}} ; g(z)=z\right.$ for some $\left.g \in G^{\prime}\right\}$ and $\Sigma(G)=$ $\widehat{\boldsymbol{C}}-\Omega^{\prime}(G)$.

A parabolic fixed point $\zeta \in \Lambda(G)$ is a cusped parabolic fixed point, if there is an open set which is precisely invariant under $G_{\zeta}=\{g \in G$; $g(\zeta)=\zeta\}$ in G and which consists of two disjoint nonempty dises, or if G_{ζ} is not a finite extension of a cyclic group. A point $\zeta \in \Lambda(G)$ is a point of approximation, if there is a point $z \in \Omega(G)$, a constant M_{1} and a sequence $\left\{g_{j}\right\}_{j=1}^{\infty} \subset G$ such that $\left|g_{j}(\zeta)-g_{j}(z)\right|>M_{1}$. The following lemma plays a central role in the proof of Theorem 1.

Lemma 1. Let w be a quasi-conformal automorphism of $\hat{\boldsymbol{C}}$ compatible with G, that is, $w G w^{-1}$ is again Kleinian. Then $w G w^{-1}$ is geometrically finite if and only if G is.

Proof. Without loss of generality we may assume that both $\Lambda(G)$ and $\Lambda\left(w G w^{-1}\right)$ are bounded. Note that $\Lambda\left(w G w^{-1}\right)=w \Lambda(G)$. If G is geometrically finite, then every point of $\Lambda(G)$ is either a cusped parabolic
fixed point or a point of approximation (Beardon-Maskit [4]). If $\zeta \in \Lambda(G)$ is the former, then clearly so is $w(\zeta) \in \Lambda\left(w G w^{-1}\right)$. If $\zeta \in \Lambda(G)$ is the latter, then there are a point $z \in \Omega(G)$, a constant M_{1} and a sequence $\left\{g_{j}\right\}_{j=1}^{\infty} \subset G$ such that $\left|g_{j}(\zeta)-g_{j}(z)\right|>M_{1}$. Therefore we have

$$
\begin{aligned}
& \left|w \circ g_{j} \circ w^{-1}(w(\zeta))-w \circ g_{j} \circ w^{-1}(w(z))\right|=\left|w\left(g_{j}(\zeta)\right)-w\left(g_{j}(z)\right)\right| \\
& \quad \geqq\left(\left(1 / M_{2}\right)\left|g_{j}(\zeta)-g_{j}(z)\right|\right)^{K} \geqq\left(M_{1} / M_{2}\right)^{K},
\end{aligned}
$$

where the first inequality is immediate from Ahlfors [3, p. 51] and K is a constant depending only on w. This means that $w(\zeta) \in \Lambda\left(w G w^{-1}\right)$ is a point of approximation and $w G w^{-1}$ is geometrically finite (BeardonMaskit [4]). We can prove the rest of the lemma in the same way as above.

We denote by $\hat{\gamma}$ (or $\hat{\gamma}_{1}$) a connected fundamental region for H (or H_{1}) in $\gamma-\Lambda(H)$ (or $\gamma_{1}-\Lambda\left(H_{1}\right)$), where γ and γ_{1} are structure loops appearing in Combination theorems. Bers [4] showed the existence of a quasi-conformal automorphism w of $\hat{\boldsymbol{C}}$ compatible with G such that $l\left(w(\hat{\gamma}), \Omega^{\prime}\left(w G w^{-1}\right)\right.$) (or $l\left(w\left(\hat{\gamma}_{1}\right), \Omega^{\prime}\left(w G w^{-1}\right)\right)$) is sufficiently small. By Lemma 1 quasi-conformal deformations preserve both the assumption and the conclusion of Theorem 1, so, from now on, we assume that $l\left(\hat{\gamma}, \Omega^{\prime}(G)\right.$) (or $l\left(\hat{\gamma}_{1}, \Omega^{\prime}(G)\right)$ is sufficiently small.

Next we give a simpler proof of the following lemma due to Maskit [10].

Lemma 2. Let $\gamma_{1}, \gamma_{2}, \cdots$ be translates of the structure loop γ under G constructed via Combination theorems. Then the spherical diameter of γ_{j} tends to zero.

Proof. If γ is contained in $\Omega(G)$, then this lemma was proved by Maskit [12]. Therefore we need only to consider the case that $\gamma \cap$ $\Lambda(G) \neq \varnothing$. In this case γ and the point $\xi=\gamma \cap \Lambda(G)$ are fixed by a parabolic cyclic group H. Without loss of generality, we may assume that $\infty \in \Omega(G)$, that $G_{\infty}=\{\mathrm{id}\}$ and that all γ_{j} 's are contained in a bounded domain.

Suppose that the conclusion in our lemma is false. Then there exists a subsequence, again denoted by $\left\{\gamma_{j}\right\}_{j=1}^{\infty}$, of $\left\{\gamma_{j}\right\}_{j=1}^{\infty}$ such that the Euclidean diameter dia γ_{j} of γ_{j} is greater than a constant. Let g_{j} be an element in G with $g_{j}(\gamma)=\gamma_{j}$. Set $\gamma_{j}=g_{j}(\gamma)$. Then two cases can occure; (i) there exist infinitely many distinct ξ_{j} 's, and (ii) otherwise.

First we consider the case (i). Let h_{j} be the element in $g_{j} H g_{j}^{-1}$ with $r\left(h_{j}\right) \geqq r(h)$ for each $h \in g_{j} H g_{j}^{-1}$. Since $r\left(h_{j}\right) \rightarrow 0$ (Ford [6, p. 41]), we see $\operatorname{dia} \gamma_{j} / r\left(h_{j}\right) \rightarrow \infty$. Let ζ_{j} be a point in $\Lambda(G)$ with $\left|\xi_{j}-\zeta_{j}\right| \geqq$
$\left|\xi_{j}-\zeta\right|$ for all $\zeta \in \Lambda(G)$. Let p_{j} be a linear transformation $\boldsymbol{C} \ni \rightarrow a_{j} z+$ $b_{j} \in C, a_{j}, b_{j} \in \boldsymbol{C}$, such that $p_{j}\left(\xi_{j}\right)=0$ and $p_{j}\left(I\left(h_{j}^{-1}\right) \cap C\right)=\{z \in C ;|z-1|=1\}$. Set $\hat{\gamma}_{j}=\gamma_{j} \cap \operatorname{ext} I\left(h_{j}\right) \cap \operatorname{ext} I\left(h_{j}^{-1}\right)$. Then we obtain $l\left(\hat{\gamma}_{j}, \Omega^{\prime}(G)\right) \geqq l\left(\hat{\gamma}_{j}, \hat{C}-\right.$ $\left.\left\{\xi_{j}, \zeta_{j}, h_{j}\left(\zeta_{j}\right)\right\}\right)=l\left(p_{j}\left(\hat{\gamma}_{j}\right), \hat{\boldsymbol{C}}-\left\{0, p_{j}\left(\zeta_{j}\right), p_{j}\left(h_{j}\left(\zeta_{j}\right)\right)\right\}\right) \rightarrow 0$, because $p_{j}\left(\zeta_{j}\right) \rightarrow \infty$, $p_{j}\left(h_{j}\left(\zeta_{j}\right)\right) \rightarrow 1, \sup _{z \in p_{j}\left(\hat{\gamma}_{j}\right)}|z| \rightarrow \infty$ and $p_{j}\left(\hat{\gamma}_{j}\right) \cap\{z \in \boldsymbol{C} ;|z|<2\} \neq \varnothing$ for all j. On the other hand, $l\left(\hat{\gamma}_{j}, \Omega^{\prime}(G)\right)=l\left(\hat{\gamma}_{j+1}, \Omega^{\prime}(G)\right), j=1,2, \cdots$, which is a contradiction.

Next we consider the case (ii). In this case we may assume that $\gamma_{j}=\gamma_{1}, j=1,2, \cdots$. So $\bigcup_{j=1}^{\infty} g_{j}$ is a subset of an elementary group with one limit point, and our conclusion is obvious.
4. Proof. In this section we give a proof of Theorem 1. First we consider the case where the group is constructed via Combination theorem I.

Lemma 3. Let G be a Kleinian group constructed from G_{1} and G_{2} via Combination theorem I , where H is finite cyclic. Then G is geometrically finite if and only if both G_{1} and G_{2} are.

Proof. We may assume that $\Sigma\left(G_{i}\right)-\Sigma(H)$ contains the point $z_{i}=$ $i-1$ for $i=1,2$, and that γ passes through ∞. Thus we can define the isometric sphere of g for each $g \in G^{\prime}$.

Since γ separates $\Sigma\left(G_{1}\right)-\Sigma(H)$ from $\Sigma\left(G_{2}\right)-\Sigma(H)$ and since $l\left(\gamma, \Omega^{\prime}(G)\right)$ is sufficiently small, we may assume that $\left(\Sigma\left(G_{i}\right)-\Sigma(H)\right) \subset D_{i}=\{z \in C$; $\left.\left|z-z_{i}\right|<1 / 100\right\}$ and $\Sigma(G) \subset\left(D_{1} \cup D_{2}\right)$. For any $g \in G_{1}-H$, we have $g(1) \in D_{1}$, since B_{1} is precisely invariant under H in G_{1} and $\Sigma(G)$ is invariant under G. Moreover, $g(0) \in g\left(\Sigma\left(G_{1}\right)\right)=\Sigma\left(G_{1}\right) \subset D_{1}$. If $2 r(g) \geqq|p(g)|$, then

$$
\begin{aligned}
1 / 50 & >|g(0)-g(1)|=\left|u_{1}(0)-u_{1}(1)\right|=\left(|1-0| \cdot\left|p(g)-u_{1}(0)\right|\right) /|p(g)-1| \\
& =\left(r(g)^{2} /|p(g)-0|\right) /|p(g)-1| \geqq r(g) / 2(1+2 r(g)) .
\end{aligned}
$$

If $2 r(g) \leqq p(g)$, then

$$
1 / 100+r(g) \geqq|\xi(g)|+r(g) \geqq|p(g)| \geqq 2 r(g)
$$

where $\xi(g)$ is a fixed point of g on $i(g)=I(g) \cap C$ or on the bounded subdomain of \boldsymbol{C} surrounded by $i(g)$. In any case $\left(|z|^{2}+t^{2}\right)<((|\xi(g)|+$ $\left.2 r(g))^{2}+r(g)^{2}\right)<1 / 3$ for any $g \in G_{1}-H$ and any $(z, t) \in I(g)$. So $D_{1}^{*}=\bigcap_{g \in G_{1}-H} \operatorname{ext} I(g) \quad$ contains $\quad\{(z, t) \in \bar{H} ; \operatorname{Re} z>1 / 2\}$. Similarly $D_{2}^{*}=$ $\bigcap_{g \in G_{2}-H} \operatorname{ext} I(g)$ contains $\{(z, t) \in H ; \operatorname{Re} z<1 / 2\}$.

Set $D_{H}=\bigcap_{g \in H^{\prime}}$ ext $I(g)$. Then $D_{i}=D_{i}^{*} \cap D_{H}$ is a convex fundamental region for $G_{i}, i=1,2$, and $D=\bigcap_{g \in G^{\prime}}$ ext $I(g)$ is a convex fundamental region for G. Obviously $D_{1} \cap D_{2}$ is surrounded by a finite number of hyperbolic planes if and only if so are both D_{1} and D_{2}.

To complete the proof of our lemma, it suffices to show that $D_{1} \cap$ $D_{2}=D$. Clearly $\left(D_{1} \cap D_{2}\right) \supset D$. Let $\zeta \in D_{1} \cap D_{2}$. Then obviously $\zeta \in$ $\bigcap_{g \in H^{\prime}} \operatorname{ext} I(g)$. By the conclusion (2) of Combination theorem I each $g \in G-H$ can be written in the form $g_{n} \circ \cdots \circ g_{1}$, where $g_{j} \in \bigcup_{i=1}^{2}\left(G_{i}-H\right)$, $j=1, \cdots, n$, and both g_{j} and g_{j+1} are not in some $G_{i}-H, j=1, \cdots, n-1$. We may assume that $g_{1} \in G_{1}-H$. Then $J_{g_{1}}(\zeta)<1$ by virtue of $\zeta \in D_{1} \subset$ $\operatorname{ext} I\left(g_{1}\right)$. Since $g_{1}(\zeta) \in \operatorname{int} I\left(g_{1}\right) \subset \operatorname{ext} I\left(g_{2}\right)$, we see $J_{g_{2} g_{1}}(\zeta)=J_{g_{2}}\left(g_{1}(\zeta)\right) \cdot J_{g_{1}}(\zeta)<1$. For the same reasoning, we have $J_{g}(\zeta)<1$, which implies $\zeta \in \operatorname{ext} I(g)$. This means that $D_{1} \cap D_{2}=D$.

Lemma 4. Let G be a Kleinian group constructed from G_{1} and G_{2} via Combination theorem I , where H is parabolic cyclic. Then G is geometrically finite if and only if both G_{1} and G_{2} are.

Proof. We may assume that H is generated by $h=(1,1 ; 0,1)$, that γ passes through 0 and that B_{1} contains $\left\{z \in C ; \operatorname{Im} z>y_{0}\right\}$. Since B_{i} is precisely invariant under H in G_{i}, the stabilizer subgroup $G_{i \infty}=$ $\left\{g \in G_{i} ; g(\infty)=\infty\right\}$ of $\{\infty\}$ in G_{i} is identical with H or is generated by h and by an elliptic element of order two (Ford [6, p. 142]), whose fixed points in $\hat{\boldsymbol{C}}$ are ∞ and $\xi_{i} \in \widehat{\boldsymbol{C}}-\left(B_{i} \cup \gamma\right)$. Since the stabilizer subgroup G_{∞} of $\{\infty\}$ in G is generated by $G_{1 \infty}$ and $G_{2 \infty}$, we see $J_{g}=1$ for each $g \in G_{\infty}$. If $G_{i \infty}=H$, then we set $P_{i}=\{(z, t) \in \bar{H} ; 0<\operatorname{Re} z<1\}, i=1,2$, and we also set $P_{1}=\left\{(z, t) \in \bar{H} ; 0<\operatorname{Re} z<1, \operatorname{Im} z>\operatorname{Im} \xi_{1}\right\}$ if $G_{1 \infty}$ is not cyclic and $P_{2}=\left\{(z, t) \in \bar{H} ; 0<\operatorname{Re} z<1, \operatorname{Im} z<\operatorname{Im} \xi_{2}\right\}$ if $G_{2 \infty}$ is not cyclic. It is clear that $P=P_{1} \cap P_{2}$ is a fundamental region for G_{∞}.

We shall show that $D=P \cap\left(\bigcap_{g \in G-G_{\infty}} \operatorname{ext} I(g)\right)$ is a fundamental region for G. Obviously no two points in D are equivalent under G. Let $\zeta \in \bar{H}-\Lambda(G)$. Then there exists a $g_{0} \in G$ with $J_{g_{0}}(\zeta) \geqq J_{g}(\zeta)$ for each $g \in G$. If it were false, then there would exist a sequence $\left\{g_{j}\right\}_{j=1}^{\infty} \subset G$ with $J_{g_{j+1}}(\zeta)>J_{g_{j}}(\zeta)>J_{h}(\zeta)=1$. This means $\zeta \in \operatorname{int} I\left(g_{j}\right)$. Then two cases can occur; (i) there exists a subsequence, again denoted by $\left\{g_{j}\right\}_{j=1}^{\infty}$, of $\left\{g_{j}\right\}_{j=1}^{\infty}$ with $\lim _{j \rightarrow \infty} r\left(g_{j}\right)=0$, and (ii) otherwise. In the case (i), we see $\zeta=\lim _{j \rightarrow \infty} g_{j}^{-1}(\infty) \in \Lambda(G)$, which is a contradiction. In the case (ii), we can find a constant r_{0} and a subsequence, again denoted $\left\{g_{j}\right\}_{j=1}^{\infty}$, of $\left\{g_{j}\right\}_{j=1}^{\infty}$ with $r\left(g_{j}\right) \geqq r_{0}$ for each j. Set $P_{0}=\{(z, t) \in \bar{H} ; z \in P \cap C, t>1\}$. Since $r(g) \leqq 1$ for each $g \in G-G_{\infty}$ (Kra [8, p. 51]), P_{0} is contained in D. Let p_{j} be an element in G_{∞} with $g_{j}(\infty) \in p_{j} P$. Then the Euclidean volume vol $g_{j}^{-1} \circ p_{j} P_{0}$ of $g_{j}^{-1} \circ p_{j} P_{0}$ is more than a constant v_{0} for each j. Since $g_{j}^{-1} \circ p_{j} P_{0}$ is contained in int $I\left(g_{j}\right), \bigcup_{j=1}^{\infty} g_{j}^{-1} \circ p_{j} P_{0}$ is contained in a bounded subset V of \bar{H}. Therefore we see, for each natural number N,

$$
\operatorname{vol} V \geqq \operatorname{vol} \bigcup_{j=1}^{N} g_{j}^{-1} \circ p_{j} P_{0}=\sum_{j=1}^{N} \operatorname{vol} g_{j}^{-1} \circ p_{j} P_{0} \geqq N v_{0}
$$

which is a contradiction. Let g_{0} be an element in G satisfying $J_{g_{0}}(\zeta) \geqq$ $J_{g}(\zeta)$ for each $g \in G$. If p is an element in G with $p\left(g_{0}(\zeta)\right) \in \bar{P}$, then $p\left(g_{0}(\zeta)\right)$ is in \bar{D}. If it were not true, then there would exist a $q \in G$ with $p\left(g_{0}(\zeta)\right) \in \operatorname{int} I(q)$. So $J_{q \circ p g_{0}}(\zeta)>J_{g_{0}}(\zeta)$, which is a contradiction. Similarly $D_{i}=P_{i} \cap\left(\bigcap_{g \in G_{i}-G_{i \infty}} \operatorname{ext} I(g)\right)$ is a fundamental region for $G_{i}, i=1,2$.

Since $l\left(\hat{\gamma}, \Omega^{\prime}(G)\right)$ is sufficiently small, where $\hat{\gamma}=\gamma \cap\{z \in C ; 0<\operatorname{Re} z<1\}$, we have $\bigcup_{g \in G_{1}-G_{1 \infty}} p(g) \subset \Sigma\left(G_{1}\right) \subset\{z \in C ; \operatorname{Im} z<-2\} \cup\{\infty\}$ and $\bigcup_{g \in G_{2}-G_{2 \infty}} p(g) \subset$ $\Sigma\left(G_{2}\right) \subset\{z \in C ; \operatorname{Im} z>2\} \cup\{\infty\}$. Since $r(g) \leqq 1$ for each $g \in G-G_{\infty}, D_{1} \cap D_{2}$ is surrounded by a finite number of hyperbolic planes if and only if so are both D_{1} and D_{2}. As in the proof of Lemma 3, we can show that $D_{1} \cap D_{2}=D$ and we complete the proof of our lemma.

Next we consider the case where the group is constructed via Combination theorem II.

Lemma 5. Let G be a Kleinian group constructed from G_{1} and f via Combination theorem II, where both H_{1} and H_{2} are trivial. Then G is geometrically finite if and only if G_{1} is.

Proof. Without loss of generality, we may assume that $f=(a, 0$; $\left.0, a^{-1}\right),|a|>1$ and that $1=\inf \left\{|z| ; z \in \gamma_{2}\right\}$. We note that each $g \in G_{1}^{\prime}$ is of the form $(*, * ; c, *), c \neq 0$. Since $l\left(\gamma_{2}, \Omega^{\prime}(G)\right)$ is sufficiently small, the set $\Sigma(G) \cap\left(\hat{C}-B_{2}\right)$ is contained in the set $\{z \in C ;|z|<1 / 100\}$. In particular, it holds that $|g(0)|<1 / 100$ for each $g \in G_{1}$. Since $l\left(g\left(\gamma_{1}\right), C-\right.$ $\{0, g(0)\}) \leqq l\left(g\left(\gamma_{1}\right), \Omega^{\prime}(G)\right)$ is sufficiently small, $g\left(\gamma_{1}\right)$ is contained in the set $\{z \in \boldsymbol{C} ;|z|<1 / 2\}$. Set $\boldsymbol{B}_{1}=\left\{(z, t) \in \bar{H} ;|\boldsymbol{z}|^{2}+t^{2}<|a|^{-2}\right\}$ and $\boldsymbol{B}_{2}=\{(z, t) \in \bar{H} ;$ $\left.|\boldsymbol{z}|^{2}+t^{2}>1\right\} \cup\{\infty\}$. Then B_{1} is precisely invariant under H_{1} in G_{1}, $G_{1} \overline{\boldsymbol{B}}_{1} \cap \overline{\boldsymbol{B}}_{2}=\varnothing$ and $f\left(\boldsymbol{\gamma}_{1}\right)=\boldsymbol{\gamma}_{2}$, where $\boldsymbol{\gamma}_{i}=\overline{\boldsymbol{B}}_{i}-\boldsymbol{B}_{i}, i=1,2$. Since both $g(0)$ and $g(\infty)=p\left(g^{-1}\right)$ are in $\Sigma(G) \cap\left(\widehat{\boldsymbol{C}}-B_{2}\right)$ for each $g \in G_{1}^{\prime}$, we have $\left|u_{1}(0)-u_{1}(\infty)\right|=|g(0)-g(\infty)|<1 / 50$. Therefore $r(g)<1 / 5$, and ext $I(g)$ contains \boldsymbol{B}_{2}. Now we see that \boldsymbol{B}_{2} is precisely invariant under H_{2} in G_{1}. These properties of B_{1} and B_{2} show that no pair of points in $D=$ $\left(\bigcap_{g \in G_{1}} \operatorname{ext} I(g)\right)-G_{1}\left(\overline{\boldsymbol{B}}_{1} \cup \overline{\boldsymbol{B}}_{2}\right)$ are equivalent under G, since each $g \in G^{\prime}$ can be written in the form $f^{\alpha_{n+1}} \circ g_{n} \circ \cdots \circ g_{1} \circ f^{\alpha_{1}}$, where $\alpha_{k} \neq 0, k=2, \cdots, n$, and $g_{k} \in G_{1}^{\prime}, k=1, \cdots, n$.

Let F be the cyclic group generated by f. Set $\Delta_{1}=G_{1}\left(\bar{D} \cup \Lambda\left(G_{1}\right)\right)$, $\Delta_{2}=F \Delta_{1}, \quad \Delta_{2 j-1}=G_{1} \Delta_{2 j-2} \quad$ and $\quad \Delta_{2 j}=F \Delta_{2 j-1}, \quad j=2,3, \cdots$. Let $\zeta \in \bar{H}-$ $G\left(\bar{D} \cup \Lambda\left(G_{1}\right)\right)$. Then $\zeta \in \bar{H}-\Delta_{j}, j=1,2, \cdots$. Let δ_{j} be the component of $\bar{H}-\Delta_{j}$ containing ζ. Since δ_{j} is a translate of \boldsymbol{B}_{1} or \boldsymbol{B}_{2} under an element of G and since $\left(\overline{\boldsymbol{B}}_{i}-\boldsymbol{B}_{i}\right) \cap \hat{\boldsymbol{C}}$ is a structure loop, $i=1,2$, the Euclidean diameter of δ_{j} tends to zero by Lemma 2. So we can find a sequence $\left\{g_{j}\right\}_{j=1}^{\infty} \subset G$ with $g_{j}\left(\gamma_{1}\right) \rightarrow \zeta$. Hence we see that $\bar{H}-G\left(\bar{D} \cup \Lambda\left(G_{1}\right)\right) \subset$
$\Lambda(G)$ and that $\bar{H}-\Lambda\left(G_{1}\right) \subset \Lambda(G)$ and that $\bar{H}-\Lambda(G) \subset G \bar{D}$. Therefore we have obtained a convex fundamental region D for G in $\bar{H}-\Lambda(G)$.

Next we observe that for at most finitely many g_{n} 's of $G_{1}, I\left(g_{n}\right)$ meets $\boldsymbol{B}_{1} \cup \boldsymbol{B}_{2}$. If it were false, then there would exist a sequence $\left\{g_{n}\right\}_{n=1}^{\infty} \subset G_{1}$ and some \boldsymbol{B}_{i}, say \boldsymbol{B}_{1}, such that $I\left(\boldsymbol{g}_{n}\right) \cap \boldsymbol{B}_{1} \neq \varnothing$, which contradicts the fact that $\overline{\boldsymbol{B}}_{1} \cap \Lambda\left(G_{1}\right)=\varnothing$ (Ford [6]). Moreover, this means immediately that at most finitely many translates of $\overline{\boldsymbol{B}}_{i}$ under G_{1} can intersect $\bigcap_{g \in G_{1}} \operatorname{ext} I(g), \quad i=1$, 2, because $I(g) \cap \boldsymbol{B}_{i} \neq \varnothing$ if and only if $I\left(g^{-1}\right) \cap g\left(\boldsymbol{B}_{i}\right) \neq \varnothing$. Thus we complete the proof of our lemma.

Lemma 6. Let G be a Kleinian group constructed from G_{1} and f via Combination theorem II, where both H_{1} and H_{2} are elliptic cyclic. Then G is geometically finite if and only if G_{1} is.

Proof. Without loss of generality we may assume that f is of the form ($a, 0 ; 0, a^{-1}$), $|a|>1$, and that $1=\inf \left\{|z| ; z \in \gamma_{1}\right\}$. Since $l\left(\gamma_{1}, \Omega^{\prime}(G)\right)$ is sufficiently small, we see $\xi_{1} \in\{z \in C ;|z| \leqq 1 / 100\}$ and $\xi_{2} \in\{z \in C ;|z| \geqq 100\} \cup$ $\{\infty\}$, where ξ_{i} is the fixed point of a generator of H_{i} in $B_{i}, i=1,2$. Let $\widetilde{B}_{1} \subset B_{1}$ be the largest disc invariant under H_{1}. Then \widetilde{B}_{1} contains the disc $\{z \in \boldsymbol{C} ;|z|<1 / 2\}$, because $\left(\xi_{1}-z\right)\left(\xi_{2}-w\right) /\left(\xi_{1}-w\right)\left(\xi_{2}-z\right)=1$ for any z and w on the boundary of \widetilde{B}_{1}, where we understand $\infty / \infty=1$. Set $\boldsymbol{B}_{1}=\left\{(z, t) \in \bar{H} ;\left|z-z_{0}\right|^{2}+t^{2}<r_{0}\right\}$, where $\boldsymbol{B}_{1} \cap \boldsymbol{C}=\widetilde{B}_{1}$. If we set $\boldsymbol{B}_{2}=$ $\bar{H}-\overline{f\left(B_{1}\right)}$, then, as in the proof of the previous lemma, we can show that \boldsymbol{B}_{i} is precisely invariant under H_{i} in $G, i=1,2$, and that $G_{1} \bar{B}_{1} \cap \bar{B}_{2}=\varnothing$. The rest of the proof of our lemma is similar to that of Lemma 5.

Lemma 7. Let G be a Kleinian group constructed from G_{1} and f via Combination theorem II, where both H_{1} and H_{2} are parabolic cyclic. Then G is geometrically finite if and only if G_{1} is.

Proof. We may assume that H_{1} is generated by $h_{1}=(1,1 ; 0,1)$ and that B_{1} contains the set $\left\{z \in \boldsymbol{C} ; \operatorname{Im} z>y_{0}\right\}$. Let $B_{1}^{*}=\left\{z \in \boldsymbol{C} ; \operatorname{Im} z>y_{1}\right\}$ be the smallest half plane containing B_{1}. Set $\boldsymbol{B}_{1}=\left\{(z, t) \in \bar{H} ; z \in B_{1}^{*}\right\}$. Obviously $\boldsymbol{B}_{2}=\bar{H}-\overline{f\left(\boldsymbol{B}_{1}\right)}$ is precisely invariant under H_{2} in G_{1}. Since B_{1} is precisely invariant under H_{1} in G_{1}, the subgroup $G_{1 \infty}=\left\{g \in G_{1}\right.$; $g(\infty)=\infty$ \} is the cyclic group H_{1} or is the group \hat{H}_{1} generated by h_{1} and by an elliptic element e of order two whose fixed points in \hat{C} are ∞ and $\eta \in \widehat{\boldsymbol{C}}-\bar{B}_{1}$.

First we consider the case $G_{1 \infty}=\hat{H}_{1} . \quad$ Set $\hat{\gamma}_{1}=\left\{z \in \gamma_{1} ; 0<\operatorname{Re} z<1\right\}$. Since $l\left(\hat{\gamma}_{1}, \Omega^{\prime}(G)\right)$ is sufficiently small, we have $\eta \in \widehat{\boldsymbol{C}}-\bar{B}_{1}^{*}$. So $\left(G_{1 \infty}-H_{1}\right)$ $\left(\overline{\boldsymbol{B}}_{1}-\Lambda\left(H_{1}\right)\right) \cap\left(\overline{\boldsymbol{B}}_{1}-\Lambda\left(H_{1}\right)\right)=\varnothing$. By the same reasoning as in the proof of Lemma 4 we see $\left(G_{1}-G_{1 \infty}\right) \overline{\boldsymbol{B}}_{1} \cap \overline{\boldsymbol{B}}_{1}=\varnothing$. These imply that $\overline{\boldsymbol{B}}_{1}-\Lambda\left(H_{1}\right)$
is precisely invariant under H_{1} in G_{1}. Since $g\left(\gamma_{2}\right)$ passes through the fixed point of $g \circ h_{2} \circ g^{-1}$ for each $g \in G_{1}^{\prime}$, the same reasoning as in the proof of Lemma 4 yields

$$
\left(g\left(\gamma_{2}\right) \cap \operatorname{ext} I\left(g \circ h_{2} \circ g^{-1}\right) \cap \operatorname{ext} I\left(g \circ h_{2}^{-1} \circ g^{-1}\right)\right) \subset\left(\hat{\boldsymbol{C}}-\bar{B}_{1}^{*}\right) .
$$

Therefore $G_{1}\left(\overline{\boldsymbol{B}}_{2}-\Lambda\left(H_{2}\right)\right) \cap\left(\overline{\boldsymbol{B}}_{1}-\Lambda\left(H_{1}\right)\right)=\varnothing$. In the case that $G_{1 \infty}=H$, we can also obtain the same result as above.

The remainder of the proof of our lemma is similar to that of the previous lemmas.

It is easy to see that Theorem A and a finite number of applications of Lemmas 3 through 7 yield the proof of Theorem 1.

References

[1] W. Abikoff, Constructibility and Bers stability of Kleinian groups, Ann. of Math. Studies 79, Princeton Univ. Press, Princeton, 1974, 1-12.
[2] W. Abikoff and B. Maskit, Geometric decomposition of Kleinian groups, Amer. J. of Math. 99 (1974), 687-697.
[3] L. Ahlfors, Lectures on quasi-conformal mappings, Van Nostrand, Princeton, 1966.
[4] A. Beardon and B. Maskit, Limit points of Kleinian groups and finite sided fundamental polyhedra, Acta Math. 132 (1974), 1-12.
[5] L. Bers, On boundaries of Teichmüller spaces and on Kleinian groups I, Ann. of Math. 91 (1970), 570-600.
[6] L. Ford, Automorphic functions, Chelsea, New York, 1951.
[7] L. Greenberg, Fundamental polyhedra for Kleinian groups, Ann. of Math. 84 (1966), 433-441.
[8] I. Kra, Automorphic forms and Kleinian groups, Benjamin, New York, 1972.
[9] B. Maskit, Construction of Kleinian groups, Proc. Conf. on Complex Analysis, Minnesota, 1964, Springer-Verlag, New York, 1965, 281-296.
[10] B. Maskit, On Klein's combination theorem, Trans. Amer. Math. Soc. 130 (1965), 499-509.
[11] B. Maskit, On Klein's combination theorem II, Trans. Amer. Math. Soc. 131 (1968), 32-39.
[12] B. Maskit, On Klein's combination theorem III, Ann. of Math. Studies 66 (1971), Princeton Univ. Press, 297-316.
[13] B. Maskit, On boundaries of Teichmüller spaces and on Kleinian groups II, Ann. of Math. 91 (1970), 607-639.
[14] B. MASkit, Decomposition of certain Kleinian groups, Acta Math. 130 (1973), 243-263.
[15] B. Maskit, On the classification of Kleinian groups II, Acta Math. 138 (1977), 17-42.
[16] B. MASKIT, Intersections of component subgroups of Kleinian groups, Ann. of Math. Studies 79 (1974), Princeton Univ. Press, 349-367.

Mathematical Institute
Tôhoku University
Sendai, 980 Japan

