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1. Preliminaries. Let g = (α, b; c, d) (ad — be = 1) denote a Moebius
transformation acting on H = {(2;, £); 2 e C, t ^ 0} U {°°} in the manner

n. i7 fλ _ fac(\z\2 + f) + adz + bcz + bd
g. (z, t) \-* , ., , ,,, ,—TΓ,\cz + d\2 + c2ί2 ' |cs + d|2 + \e\2t2.

Obviously g keeps the upper half space H = {(z, t); zeC, t > 0} and the
boundary C=CU{°°} of if invariant, that is, {g(ζ); ζ eί ί} = H and
{̂ (ζ); ζ G C} = C. Let SL' be the group of all such Moebius transforma-
tions. A Kleinian group G is a subgroup of SL' which acts discontinuously
at some point of C. A Kleinian group acts discontinuously in H. The
set of all points in C at which G acts discontinuously is denoted by
Ω(G), and Λ(G) = C - Ω(G) is called the limit set of G.

An elementary group G is a Kleinian group such that Λ(G) is a
finite set. A finitely generated Kleinian group G is quasi-Fuchsian, if
Ω(G) consists of two invariant components. A finitely generated Kleinian
group G is a web group, if each component of Ω(G) is the image of an
open disc under a quasi-conformal automorphism of C. Quasi-Fuchsian
groups give the simplest examples of web groups. A finitely generated
Kleinian group is totally degenerate if Ω(G) is connected and simply
connected. A finitely generated Kleinian group with an invariant com-
ponent is a function group. For a set S in H, we denote by S the closure
of S in H. The points ζ and ζ' in H are equivalent under G if there
exists an element g e G which transforms ζ into ζ\ Let S be an invariant
subset of H — Λ(G) under G. A subset D of S is a fundamental region
for G in S, if no pair of distinct points in D are equivalent under G
and if GD = {g(Q; geG,ζeD} covers S.

A set S in i ϊ is convex, if any two points in S can be joined by a
part of a line or a circle in S orthogonal to C. A Kleinian group G is
geometrically finite if there is a convex fundamental region for G in H
surrounded by a finite number of hyperbolic planes, that is, hemispheres
or half planes orthogonal to C.
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Beardon-Maskit [4] proved that any convex fundamental region for
a geometrically finite group is surrounded by a finite number of hyper-
bolic planes. It is known that elementary groups and quasi-Fuchsian
groups are geometrically finite and it is also known that totally degenerate
groups are not (Greenberg [7]). In his paper [16], Maskit showed the
existence of geometrically finite web groups and that of geometrically
infinite web groups.

For g = (α, 6; c, d) e SL', c Φ 0, we define the isometric sphere I(g)
of g as {(z, t)eH; \z - p{g)\2 + t2 = r(g)2}, where p(g) = g-\°o) and r{g) =
\c\~\ As is well known, g can be decomposed into a product g = u3°
ttjo^ of motions, where ux is the inversion in I(g), u2 is the reflection
about the plane {ζeH; \ζ—p(g)\ = \ζ—p(g~1)\} and uz is the rotation with
the line {{z, t)eH;z = pig'1)}. Since u2 and u3 are Euclidean motions, the
Jacobian Jg(ζ) of g at the point ζ e H is more than, equal to or less than
1, respectively, if ζ is in the bounded component mt I(g) of H — I(g),
on I(g) or in the unbounded component ext I(g) of H — I(g).

Let H be a subgroup of a Kleinian group G. A set S in C is
precisely invariant under H in G if HS = S and if (G - H)S Π S = 0 .
For a cyclic subgroup if, a precisely invariant disc B for if is a Jordan
subdomain of C such that B — Λ(H) is precisely invariant under H, and
(B — Λ(H))aΩ(G). For later use we state Maskit's combination theorems
in the following form.

COMBINATION THEOREM I (Maskit [9], [10]). For i = 1,2, let Bt be a
precisely invariant disc for H, a finite or parabolic cyclic subgroup of
both Gι and G2. Assume that Bλ and B2 have the common boundary Ύ
and 2?! Π B2— 0 . Let G be the group generated by G1 and G2. Then

(1) G is Kleinian and (7 - Λ(H)) c Ω(G),
(2) G is the free product of Gx and G2 with the amalgamated sub-

group H, and
( 3 ) Ω(G)/G = (ΩiG^/G, - BJH) U (Ω(G2)/G2 - BJH), where {Ω(GdlGΛ -

BJH) Π (Ω(G2)/G2 - BJH) = (7 Π Ω(H))/H.

In this case, G is said to be constructed from Gx and G2 via Combi-
nation theorem I.

COMBINATION THEOREM II (Maskit [9], [11]). Let Gx be a Kleinian
group. For i = 1,2, let Bt be a precisely invariant disc for a finite
or parabolic cyclic subgroup Hi and let 7* be the boundary of Bt. Assume
that Gι{B1 — Λ(Hλ)) Π (B2 — Λ(H2)) = 0 . Let F be a cyclic group generated
by /eSL' , where fj, = 72, fBx Π B2 = 0 , and fHJ-1 = H2. Let G be
the group generated by Gλ and F. Then
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(1) G is Kleίnian and (T* — A(Ht)) c Ω(G), i = 1, 2,
(2) every relation in G is a consequence of the relations in Gι and

the relation fHxf~
l = H2, and

(3) Ω(G)/G = Ω(Gd/Gι-(BJH1UBJHt), where (T, Π Ω{G))IHX is
identified in Ω(G)/G with (τ2 Π Ω(G))/H2.

In this case, G is said to be constructed from Gλ and / via Com-
bination theorem II. The loops Ί and Yi appearing in Combination
theorems are called structure loops.

Recently Abikoff and Maskit proved the following basic decomposi-
tion theorem of finitely generated Kleinian groups.

THEOREM A (Maskit [13], [14], Abikoff-Maskit [2]). Every finitely
generated Kleinian group can be constructed from elementary groups,
totally degenerate groups and web groups by a finite number of applica-
tions of Combination theorems I and II.

ACKNOWLEDGEMENT. The author expresses his hearty thanks to the
referee who pointed out an ambiguity and errors in the original manu-
script.

2. Statement of results. The main purpose of this paper is to
prove the following.

THEOREM 1. A Kleinian group is geometrically finite if and only
if it is constructed from elementary groups and geometrically finite
web groups by a finite number of applications of Combination theorems
I and II.

The following corollary to Theorem 1 was proved by Maskit, whose
proof was different from ours.

COROLLARY (Maskit [15]). A function group is geometrically finite
if and only if it is constructed from elementary groups and quasi-
Fuchsian groups by a finite number of applications of Combination
theorems I and II.

The proof of Theorem 1 is immediately obtained by Theorem A and
Lemmas 3 through 7. We note that these lemmas are valid, even if
the groups are not finitely generated.

Lemmas 3 through 7 together with (1) and (2) in Combination
theorems I and II proved in Maskit [9], give a simpler proof of (3) in
Combination theorems proved in Maskit [10], [11], if we regard the
Kleinian groups as those acting only on C.

The following Theorem 2 is an immediate corollary to Theorem 1
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and to the fact that totally degenerate groups are geometrically infinite.
This theorem was proved originally by Abikoff, whose proof was based
on instability of totally degenerate groups.

THEOREM 2 (Abikoff [1]). Totally degenerate groups cannot be con-
structed from elementary groups by a finite number of applications of
Combination theorems.

Finally, we can find a proof of the following generalization of a
classical theorem on the method of constructing a fundamental region
in Lemma 4 (see Ford [6, p. 45]).

THEOREM 3. Let G be a Kleinian group such that °o e Ω(G) or such
that oo is fixed by a parabolic element of G. Let P be a convex funda-
mental region for the stabilizer subgroup G^ = {g eG; g(°°) = °°} of {oo}
in G. Then Pf] iΠgeo-G^ ext I(g)) is a fundamental region for G in
H - Ω{G).

Thus, in the remainder of this paper, we shall only give the proof
of Theorem 1.

3. Reduction. Let i c C b e a domain whose boundary consists of
more than two points. Then we can define the Poincare metric XA(z) \ dz |
with the constant negative curvature —1 in A. We denote by l(a, A)
the length of a curve a in A measured by XA(z)\dz\. As is well known,
l(g(a), g(A)) = l{a, A) for each g e SL', and l(a, A) ^ l(a, A') for sets A
and A' ( c i ) . For a Kleinian group G, Gf denotes G with the identity
removed. Set Ω\G) = Ω{G) - {zeC; g(z) = z for some g e G'} and Σ(G) =
C - Ω\G).

A parabolic fixed point ζ e Λ(G) is a cusped parabolic fixed point, if
there is an open set which is precisely invariant under Gζ = {g e G;
g(Q — ζ} in G and which consists of two disjoint nonempty discs, or if
Gζ is not a finite extension of a cyclic group. A point ζ e A(G) is a point
of approximation, if there is a point zeΩ(G), a constant M1 and a se-
quence {gj}T=i c G such that | gά{Q — gό(z) \ > Mλ. The following lemma
plays a central role in the proof of Theorem 1.

LEMMA 1. Let w be a quasi-conformal automorphism of C compatible
with G, that is, wGw~ι is again Kleinian. Then wGw~ι is geometrically
finite if and only if G is.

PROOF. Without loss of generality we may assume that both Λ(G)
and Λ(wGw~ι) are bounded. Note that ΛiwGw'1) = wΛ(G). If G is
geometrically finite, then every point of Λ(G) is either a cusped parabolic
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fixed point or a point of approximation (Beardon-Maskit [4]). If ζeΛ(G)
is the former, then clearly so is w(ζ) e A(wGw~ι). If ζ e Λ{G) is the
latter, then there are a point z e Ω(G), a constant M1 and a sequence
{£,-}£=! c G such that |#,(ζ) - #, (z)| > Afx. Therefore we have

Iwogάow-\w(Q) - w°gόow-\w(z))\ = \w(gά(Q) - w(gj(z))\

:> ((1/M2)\gj(ζ) - Qj{z)\)κ ^ (MJM2)
K ,

where the first inequality is immediate from Ahlfors [3, p. 51] and K
is a constant depending only on w. This means that w(ζ) e Λ(wGw~ι) is
a point of approximation and wGw~x is geometrically finite (Beardon-
Maskit [4]). We can prove the rest of the lemma in the same way as
above.

We denote by 7 (or 7i) a connected fundamental region for H (or
HJ in 7 — Λ(H) (or y, — Λ(Hy), where 7 and 7i are structure loops
appearing in Combination theorems. Bers [4] showed the existence of
a quasi-conformal automorphism w of C compatible with G such that
l(w(y), ΩXwGw'1)) (or Z(w(7i), Ω'iwGw"1))) is sufficiently small. By Lemma
1 quasi-conformal deformations preserve both the assumption and the
conclusion of Theorem 1, so, from now on,we assume that i(7, Ω\G)) (or
Z(7i, Ω\G)) is sufficiently small.

Next we give a simpler proof of the following lemma due to Maskit
[10].

LEMMA 2. Let j l 9 j 2 , be translates of the structure loop 7 under
G constructed via Combination theorems. Then the spherical diameter
of Ύj tends to zero.

PROOF. If 7 is contained in Ω{G), then this lemma was proved by
Maskit [12]. Therefore we need only to consider the case that 7 Π
Λ(G) Φ 0. In this case 7 and the point ξ = 7 Π Λ(G) are fixed by a
parabolic cyclic group H. Without loss of generality, we may assume
that co eΩ(G), that GL = {id} and that all 7/s are contained in a bound-
ed domain.

Suppose that the conclusion in our lemma is false. Then there exists
a subsequence, again denoted by {Ύj}J=ι, of {7^=1 such that the Euclidean
diameter dia yd of j3- is greater than a constant. Let g3- be an element
in G with g^j) = yd. Set y3- = g^i). Then two cases can occure; (i)
there exist infinitely many distinct f/s, and (ii) otherwise.

First we consider the case (i). Let hά be the element in gάHgγ
with r(hj) ^r(h) for each hegjHgj1. Since r(h5) -> 0 (Ford [6, p. 41]),
we see dia Ύj/r(hj) —> 00. Let ζy be a point in Λ(G) with | ξs — ζy | ̂ >
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|fy — ζ| for all ζeΛ(G). Let pά be a linear transformation C3z->aόz +
bά e C, a3; bj 6 C, such that py(f y) = 0 and p5{I{hjι) Π C) = {z e C; \ z - 11 =1}.
Set 7i = 7y Π ext 7(Λy) n ext IQij1). Then we obtain Z(7y, Ω\G)) ^ Z(7y, C -
to, Cy, Λy(Cy») = K Λ C U £ - ίθ, Py(Cy), Py(Λy(Cy))}) - 0, because py(Cy) - oo,
Py(fcy(ζy))->1, supβei,y(fy) |«|->°° and Py(7y) Π {s e C; | z | < 2 } ^ 0 for all j . On
the other hand, l(jj9 Ω'(G)) = l(jj+1, Ω'(G)), j = 1, 2, , which is a con-
tradiction.

Next we consider the case (ii). In this case we may assume that
Ty = 7i, i = 1, 2, . So UΓ=i 9s is a subset of an elementary group
with one limit point, and our conclusion is obvious.

4. Proof. In this section we give a proof of Theorem 1. First we
consider the case where the group is constructed via Combination theorem I.

LEMMA 3. Let G be a Kleinian group constructed from G± and G2

via Combination theorem I, where H is finite cyclic. Then G is geo-
metrically finite if and only if both Gλ and G2 are.

PROOF. We may assume that Σ{G%) — Σ(H) contains the point zt =
i — 1 for i — 1, 2, and that 7 passes through °o. Thus we can define
the isometric sphere of g for each g e G'.

Since 7 separates Σ{GX) - Σ(H) from Σ(G2) - Σ(H) and since Z(7, Ω\G))
is sufficiently small, we may assume th$t (Σ(Gt) — Σ(H)) c A = {zeC;
\z - zt\ < 1/100} and Σ{G) c (A U A). For any geG,- H, we have
g(T) e Dlf since Bγ is precisely invariant under H in Gι and Σ(G) is in-
variant under G. Moreover, g(0) e g^Gd) = Σ(Gλ) a Dx. If 2r(g) ^ | p(g)\,
then

1/50 > Iflr(O) - 0(1)1 = |^(0) - ^(1)| = (|1 - 0 | . \p(g) -

= (r(gY/\p(g) - O|)/|p(0) - 1| ^ r(0)/2(l + 2r(0)) .

If 2r(0) ^ p(0), then

1/100 + r(0) ^ |f(0)| + r(0) ^ |p(0)|

where f (0) is a fixed point of g on i(#) = 7(0) Π C or on the bounded
subdomain of C surrounded by {(0). In any case (|^|2 + t2) < ((|f(0)| +
2r(g))2 + r{gf) < 1/3 for any geGx- H and any (z, ί) e 7(0). So
D* = Π9eGl-HextI(g) contains {(z, t)eH;Ή,ez> 1/2}. Similarly A* =
Π9eG2-Hext7(0) contains {(z, t)eH;Rez < 1/2}.

Set Ay = ΠgeH' ext 7(gr). Then A = A* Π I>H is a convex fundamental
region for Gif i — 1, 2, and D = ΠffeG'ext7(0) is a convex fundamental
region for G. Obviously A Π A is surrounded by a finite number of
hyperbolic planes if and only if so are both A &ncl A
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To complete the proof of our lemma, it suffices to show that A Π
A = D. Clearly (A Π A) => D. Let ζ e A ΓΊ A Then obviously ζ e
ΓigeH> βxt I(g). By the conclusion (2) of Combination theorem I each
g eG — H can be written in the form gno . . . og19 where g5 e U*=i (Gt — H),
j = 1, , n, and both g, and gj+1 are not in some Gέ — H, j = 1, , n — 1.
We may assume that g1eG1 — H. Then J&1(ζ) < 1 by virtue of ζeD1d
ext/(^). Since ^(ζ) 6 int /(sOcext J(#2), we see J92θgi(ζ) = Jg2(g1(Q)'J9l(Q<l
For the same reasoning, we have Jg(Q < 1, which implies ζ€ext/(gr).
This means that A Π A = -D

LEMMA 4. Lei G be a Kleίnian group constructed from Gx and G
via Combination theorem I, where H is parabolic cyclic. Then G is
geometrically finite if and only if both Gλ and G2 are.

PROOF. We may assume that H is generated by h = (1, 1; 0, 1),
that 7 passes through 0 and that Bλ contains {zeC Imz > y0}. Since
Bt is precisely invariant under H in Gi9 the stabilizer subgroup Gioo =
{g sGii g(oo) = oo} of {oo} in Gt is identical with H or is generated by h
and by an elliptic element of order two (Ford [6, p. 142]), whose fixed
points in C are oo and ζt e C — (Bt U 7). Since the stabilizer subgroup
Goo of {oo} in G is generated by Gl0O and G2oo, we see Jg = 1 for each
βr e GL. If (?ίoo = H, then we set P€ = {(z, t) e H; 0 < Re z < 1}, i = 1, 2,
and we also set P1 = {(2:, ί) e 5 ; 0 < Re z < 1, Im z > Im £j if Gloo is not
cyclic and P2 = {(2, t) e 3; 0 < Re z < 1, Im z < Im f2} if G2oo is not cyclic.
It is clear that P = P± Π P2 is a fundamental region for G^.

We shall show that Z) = PfΊ (Π»e(?-<?«, ext/(flr)) is a fundamental
region for G. Obviously no two points in D are equivalent under G.
Let ζ G 5" - A(G). Then there exists a goeG with J,0(ζ) ^ J,(ζ) for each
g eG. If it were false, then there would exist a sequence {gj}7=icG
with JΓ,i+1(ζ) > J,/ζ) > Λ(C) = 1. This means ζ 6 i n t / ( ^ ) . Then two
cases can occur; (i) there exists a subsequence, again denoted by {0/}JU,
°f {̂ i}?=i with lim^^ r(flTy) = 0, and (ii) otherwise. In the case (i), we
see ζ = Iimj^00gj1(oo)e Λ(G)f which is a contradiction. In the case (ii),
we can find a constant r0 and a subsequence, again denoted {#,}£=!, of
{Qj\7=i with r(gd) ^ r0 for each j . Set Po = {(2, t) e H; z e P Π C, t > 1}.
Since r(#) ^ 1 for each geG — G^ (Kra [8, p. 51]), Po is contained in Zλ
Let p, be an element in G^ with g,•(<*>) epjP. Then the Euclidean volume
volg^opjPo of gjloPjP0 is more than a constant Ί;0 for each j . Since
gjι°PiPQ is contained in int/(#,-), (J?=i 971 ° Pyίo is contained in a bounded
subset V of J5". Therefore we see, for each natural number N,

vol V ̂  vol U ̂ τ l ° PjPo = Σ
i i
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which is a contradiction. Let g0 be an element in G satisfying Jβ0(Q ^
Jg(ζ) for each g e G. If p is an element in G with p(gQ(ζ)) e P, then
p(Qo(Q) is in 5 . If it were not true, then there would exist a g e G with
p(ffo(Q) e int J(<7) So Jqapog0(ζ) > Jgo(ζ)f which is a contradiction. Similarly
Di = Pif) (f}geG._Gioo ext I(g)) is a fundamental region for Gif i = 1,2.

Since Z(τ, Ω\G)) is sufficiently small, where 7 = 7 Π {2; e C; 0 < Re z < 1},
we have Uireσ1-fflooί>(ί7)c2'(G1)c{«6C; I m « < -2}U{oo} and U*6<?2-G200 p(flθc
2XG2) c {s e C; Im s > 2} (J {<*>}. Since r(g) ^ 1 for each g eG - G^ A Π A
is surrounded by a finite number of hyperbolic planes if and only if so
are both A and A As in the proof of Lemma 3, we can show that
A Π A = -D and we complete the proof of our lemma.

Next we consider the case where the group is constructed via Com-
bination theorem II.

LEMMA 5. Let G be a Kleinian group constructed from Gx and f
via Combination theorem II, where both HL and H2 are trivial. Then
G is geometrically finite if and only if Gλ is.

PROOF. Without loss of generality, we may assume that / = (α, 0;
0, a'1), \a\ > 1 and that 1 = inf {\z\; z eτ 2}. We note that each geG[ is
of the form (*, *;c, *), c Φ 0. Since ϊ(72, Ω\G)) is sufficiently small, the
set Σ(G) (Ί (C - B2) is contained in the set {z eC; \z\ < 1/100}. In partic-
ular, it holds that | ^ ( 0 ) | < 1/100 for each geG,. Since ί(flr(7i), C -
{0, g(0)}) ^ l(g(Ύi), Ω\G)) is sufficiently small, #(7i) is contained in the set
{zeC; \z\ < 1/2}. S e t B, = {(z, t)eH; \z\2 + t2 < \a\~2} a n d B2 = {{z, t)eH;
\z\2 + t2 > 1} U {°°}. Then Bx is precisely invariant under H1 in Glf

GJB, Π B2 = 0 and /(yj = y2, where Ύi = Bt - Bif i = 1, 2. Since both
0(0) and g(°°) = pig'1) are in Σ(G) n (C — B2) for each g eG[, we have
l^i(0) - W l(oo)| = Iflr(O) - έf(oo)| < 1/50. Therefore r(g) < 1/5, and ext/(flf)
contains B2. Now we see that B2 is precisely invariant under H2 in Gx.
These properties of B1 and B2 show that no pair of points in D =
(Πί/e^ext I(g)) — G^B^B*) are equivalent under G, since each greG' can
be written in the form fan+1 o ^ o . . o ^ o / % where ak Φ 0, fc = 2, , n,
and gk£G[, k = 1, , w.

Let ί 7 be the cyclic group generated by /. Set Δγ — Gxφ U Λ(GX)),
4 = i^Λ, 4i-i = GΛj-2_ and zf2y = FA2j_x, j = 2, 3, . Let ζ e 5 -
G(D U ̂ (GJ). Then ζ 6 H - J, , i = 1, 2, . Let 5,. be the component
of H — Δ5 containing ζ. Since δj is a translate of Bλ or JB2 under an
element of G and since (Bt — Bt)Γ\C is & structure loop, ί = 1, 2, the
Euclidean diameter of δ̂  tends to zero by Lemma 2. So we can find a
sequence {gi\f=1 c G with g^y,) —> ζ. Hence we see that H—Gφ U ̂ (GJ) c
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Λ(G) and that H - Λ(Gλ) c Λ(G) and that 5 - Λ(G) c GD. _ Therefore we
have obtained a convex fundamental region D for G in H — Λ(G).

Next we observe that for at most finitely many gn'& of Gl9 I(gn)
meets B1 U B2. If it were false, then there would exist a sequence
toJ^iCGj and some Bif say Blf such that I(gn) Π Bt Φ 0 , which con-
tradicts the fact that B1 Π Λ(G±) = 0 (Ford [6]). Moreover, this means
immediately that at most finitely many translates of Bt under Gx can
intersect f\geGιext I(g)9 i = 1, 2, because I(g) Π Bt Φ 0 if and only if
lid'1) Π g(Bt) Φ 0 . Thus we complete the proof of our lemma.

LEMMA 6. Let G be a Kleinian group constructed from Gt and f
via Combination theorem II, where both H1 and H2 are elliptic cyclic.
Then G is geometically finite if and only if G± is.

PROOF. Without loss of generality we may assume that / is of the
form (α, 0; 0, α"1), \a\ > 1, and that 1 = inf {\z\; zej,}. Since l(ylf Ω\G))
is sufficiently small, we see ξ 1 e {z e C; \ z \ ^ 1/100} and ξ2 e {z e C; \ z | ̂  100} U
{co}, where ξt is the fixed point of a generator of Hi in Bif i = 1, 2.
Let Bt c B1 be the largest disc invariant under Hλ. Then B1 contains
the disc {z e C; | z | < 1/2}, because (& - z)(ξ2 - w)/(ξL - w)(ξ2 -z) = l for any
z and w on the boundary of B19 where we understand oo/oo = 1. Set
Bx = {(z, t)eH;\z - zo\

2 + t2 < r0}, where B1nC= Bλ. If we set B2 =

H — f(Bj), then, as in the proof of the previous lemma, we can show that
2?* is precisely invariant under Hi in G, i = 1, 2, and that GιBι f] B2 = 0 .
The rest of the proof of our lemma is similar to that of Lemma 5.

LEMMA 7. Let G be a Kleinian group constructed from Gλ and f
via Combination theorem II, where both Hλ and H2 are parabolic cyclic.
Then G is geometrically finite if and only if Gx is.

PROOF. We may assume that Ht is generated by hλ = (1, 1; 0, 1) and
that Bx contains the set {zeC lmz > y0}. Let J5f = {zeC Imz > yx} be
the smallest half plane containing Bx. Set Bt = {(z, t) 6 H; z e J?f}.
Obviously B2 = H — f(Bx) is precisely invariant under H2 in Gx. Since B1

is precisely invariant under Hλ in G19 the subgroup Gloo = {g e Gλ\
g(oo) = oo} is the cyclic group Hx or is the group H1 generated by h^
and by an elliptic element e of order two whose fixed points in Care ̂ o
and η e C — B}.

First we consider the case Gloo = Hλ. Set y1 = {z 6 7iJ 0 < Re 2 < 1}.
Since ί(^i, Ω\G)) is sufficiently small, we have rj eC - 5f. So (Gloo - flΌ
(5i — Λ(Hj)) Π (5X — Λ(JHI)) = 0 . By the same reasoning as in the proof
of Lemma 4 we see (Gλ - G l o o)^ Γ\B1= 0 . These imply that Bλ - Λ(HX)
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is precisely invariant under Hx in Gx. Since g(y2) passes through the
fixed point of g ° h2 o g~x for each g e G[, the same reasoning as in the
proof of Lemma 4 yields

(g(y2) ΓΊ ext I(g o Λ2 o 0-1) n ext Ifo o h,1 ° tf"1)) c: (C - Ef) .

Therefore G ^ - Λ(H2)) n (5 t - ^(JEΓJ) = 0 . In the case that Gloo = if,
we can also obtain the same result as above.

The remainder of the proof of our lemma is similar to that of the
previous lemmas.

It is easy to see that Theorem A and a finite number of applications
of Lemmas 3 through 7 yield the proof of Theorem 1.
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