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1. Introduction. The notion of “practical stability” was discussed
in the monograph by LaSalle and Lefschetz [6] in which they point out
that stability investigations may not assure “practical stability” and
vice versa. For example an aircraft may oscillate around a mathemat-
ically unstable path, yet its performance may be acceptable. Motivated
by this, Weiss and Infante introduced the concept of finite time stability
[7]. They were interested in the behavior of systems contained within
specified bounds during a fixed time interval. Many problems fall into
this category including the travel of a space vehicle between two points
and the problem, in a chemical process, of keeping the temperature
within certain bounds.

In particular, Weiss and Infante [7] provided sufficient conditions for
finite time stability in terms of Lyapunov functions. Moreover, Weiss
[9] provided necessary and sufficient conditions for uniform finite time
stability and exponential contractive stability. These results were ex-
tended by Kayande [3] who obtained necessary and sufficient conditions
for contractive stability (without requiring the exponential behavior
assumed in [9]).

The sufficiency part of the above results were extended by Kayande
and Wong [4], and Gunderson [1], who applied the comparison principle.
Moreover Hallam and Komkov [2] generalized the concept of the finite
time stability of the zero solution to that of arbitrary closed sets.

In this paper we analyze a more general notion of practical stability
than is provided for by finite time stability considerations. Our state
space includes finite as well as infinite dimensional Banach spaces. The
sets upon which we impose our stability conditions are not restricted to
balls containing the origin as is done by the others. This leads to
interesting implications. We first present necessary and sufficient condi-
tions for generalized practical stability, in a more meaningful setting
than that of Kayande [3] for finite time stability. We then apply our
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results to a discussion of perturbations on the flow. In particular we
study the amount of change incurred upon the initial set, target set, and
constraint set under the influence of these perturbations. Such analysis
is very important when modeling real world problems. This perturbation
study is new even in the case of finite time stability, where Weiss and
Infante [8] have discussed results on stability under small disturbances.
They do not discuss the important relationship between the practical
stability of the unperturbed system and that of the perturbed system.

Since many physical models can be realized as ordinary differential
equations in Banach spaces we feel that it is important to assume the
flow is in a finite or infinite dimensional Banach space.

2. Notation and preliminaries. Let (B, ]/-||) be a Banach space
(either finite or infinite dimensional), and let J = [¢, t, + T'] for some
T>0, t,=0. We consider the following system

(E) = f@, %),
where f is defined and continuous on J X B and satisfies the Lipschitz

condition: for each bounded set A and all ¢t J, there exists A () which
is in L'(J) such that

2.1) | £, @) — f(& 9| =M@ e — yll

for any two points x, y € A.

Let M, N, and I be three bounded sets in B such that M UN C T,
the closure of M is contained in I, and I" is open and connected. We
shall refer to M, N, and I" as our initial set, target set, and constraint
set respectively.

DEFINITION. The system (E) is (M, N, I', T) practically stable if
2, € M implies that

(2.2) x(t, to, x)el” for ted
and
(2.3) x(t, + T, t, ) €N

In case NcMc I, where N, M, and I’ are neighborhoods of the
origin then we have contractive stability [7]. If Mc Nc I, where
M, N, I’ are neighborhoods of the origin then we have expansive stability
[4]. Our notion of practical stability which includes finite time stability
as a special case, offers a reasonable mechanism in analyzing the question
of stability under perturbations.

We say V:J X B— R is a Lyapunov function if V(¢ x) is continuous
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in (t, x), bounded on bounded subsets of B, i.e. for each bounded set
A C B there exists @ such that

(2.4) sup [V(¢, 2)| = Q

reAd,ted
(notice this will always be true if B is finite dimensional), and satisfies
the Lipschitz condition: for each bounded set A C B there exists a,(t)
which is integrable on J such that for each teJ and z,yc A
(2.5) VE, 2) = VR, | = M@llz —yll .

We shall need the following known fact [10]: if V is a Lyapunov function
then

2.6) Vit ) lim (V(¢ + h, a(t + b)) = V(t, o)}
@7 = lim {V(t + h, @ + hf(t, @) — V(E, D)/h .

h—0+

3. Characterization of practical stability. Before stating our charac-
terization theorem, we need the following quantities:
8.1) ay=supV(t,x), b= inf V({t,x), by = infV(t, + T, ).

zeM teJ,zedl’ ze =N

where I” is the closure of I', and oI  is the boundary of I'. Notice these
quantities always exist in finite dimensional space since V is continuous.
However these quantities may not exist in infinite dimensional space
unless we assume (2.4). We now have the following characterization
theorem.

THEOREM 3.1. A mnecessary and sufficient condition for (E) to be
(M, N, I’y T) practically stable is that there exists a Lyapunov function
such that

(@) V'(t, ) < g(t, V(t, %) for (t,x)eJ X I', where g: R X R — R* is
continuous,

(b) () r(t, to, ax) < b, for ted, and (1) r(t, + T, to, ay) < bry,
where r(t, t, w,) 18 the maximal solution of

uw' =g, w), ult) = u.

ProOOF. Suffictency. We first show x(¢, &, x,) € I for all ¢ €[, t,+ T]
whenever x,€ M. Assume there exists ¢, > ¢, such that (¢, ¢, x,) €ol"
and «(t, t,, x,) € I" for telt, t,). The comparison principle [5] and (a) and
(b) (i) imply for all ¢€[t, t.]

(3'2) V(ty x(t) tO) xo)) é 'r(t, tOy V(toy xo)) é 'r(t’ tO, a’M) < bl‘

However, (3.1) implies V(¢, x(t,, ¢, %,)) = b, a contradiction to (3.2) at
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t =t. We now show xz(t, + T, t, «,) € N whenever z,e M. Since
x(t, t, x,) eI’ for telt, t, + T], then as before V(t, ¢, x,) < r(t, to, Qu)-
Letting ¢ = t, + T, we obtain with the aid of (b) (ii)

(3.3) V(to + T, o, 2) = (b + T, o, an) < bry .

If =(t, + T, t, x,) € N then from (3.1) b,y < V(t, + T, t,, ,), a contradiction
to (3.3). The sufficiency part is proved.

Necessity. Observe, first, that the Lipschitz condition on f(¢, x)
given by (2.1) yields, with the aid of the Gronwall inequality, the estimate

to-+T
@4 lalt, 5, @) — a(t, 5, 9l < exp([ M)l — wl
0
def to+T
for ¢, seft, to+ T1, o, yo€M, and \(t) = Ar(f). Let K= exp(s ).(s)ds).
t,
Consider the system ’

(3.5) o = F(t, x),

where F:J X B— B is continuous, Lipschitz in x, and bounded on J X B,
such that F(¢, ) = f(¢,x) on J x I'. It follows from standard theory
of differential equations [10] and the previous paragraph that all solutions
of (3.5) exist on J for any initial point (¢,Z)cJ X B and depend con-
tinuously on initial conditions. Let a* denote a trajectory of (3.5). Define

(3.6) Vi, @) = d(z*(t, ¢, ), M) + [ M]],

where || M|| = sup,ex [|2]].
Clearly V(t, x) satisfies (2.4) and from (3.4) we notice that

Vi, %) = Vi, )] = exo (| A )lle — wll

0

that is V satisfies (2.5). Moreover from (2.7) V'(t, ) = 0; that is V
satisfies (a) with ¢ = 0. Hence it remains to prove that a, < b, and
ay < bry since »(¢, t, x,) = x,. But this follows from arguments similar
to those in [9, page 1321], or [2, page 498] or [3, page 603]. We leave
the details to the reader. (Notice that (3.1) and (3.6) imply that the
values of b, and b,y may depend on the set M.)

REMARK. In (3.6) we include the term |[|M]|| since then

3.7 V{(t, x) exp(S:O

0

T
Me)ds) = o] .
Condition (3.7) will be used in Section 4.

4. Perturbation results. We now apply Theorem 3.1 to the perturbed
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equation » ‘
P) ' = f(t, x) + h(t, x) .

Let us assume the unperturbed equation (E) is (M, N, I, T) practically
stable. We ask the following two questions: (i) What effect does the
“size” of perturbation term h(t, ) have on the stability of (E)? (ii) If
a given h(t, «) is prescribed, how do we find new quantities M, N, I", T
such that system (P) is (M, N, I, T) practically stable ?

We proceed to answer these questions. Let us assume

(4.1) IA(E, )| = w(@)(ll2]) ,

where ¢(-) is nonnegative and nondecreasing. Now from Theorem 3.1
there exists V(t, ) such that V}(¢, ) < 0. Hence

2 Vi, sexp(| Mds) I, @)l S Koozl

to+7T
where again K = exp S " Ms)ds. From (3.7) and the nondecreasing nature
1

of ¢(-) we have from (101.2)

(4.3) Vi, 2) = Ky(@t)($(KV(¢, 2))) .
The comparison principle suggests we consider the maximal solution of
(4.4) 7" = Ky(t)p(Kr),  r(t) = ay .

In order for system (P) to be (M, N, I', T') stable, Theorem 3.1 requires
us to show that the solutions of (4.4) satisfy

{ r(t, to, ay) < by
r(t, + T; Lo, aM).< bry ’
where b, and b,y are defined in (3.1). Consider the system (4.4); then

(4.5)

r du . t (5" du ~ . : '
SU«JI ¢(Ku) a thov(S)ds r oF SKGJ’¢(_1L) B SIOV(S)ds )
Define
" du
4, R
(4.6) G @) S o
Then

G(K?) = 6(Kay) + K* | w()ds ;
to
that is, (4.5) is satisfied if
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A7) 2, b, ay) = lG—(G(KaM) i KS «,’r(s)ds) < min(by, bry) .
K tp

This leads us to the following result.

THEOREM 4.1. Assume (E) is (M, N, I', T) practically stable. In the
perturbed equation (P) assume h(t, x) satisfies (4.1) where ¢(-) is non-
negative and nondecreasing and (-) is integrable on [t, t, + T]. If ay
18 such that

to+T
4.8) G“‘(G(KaM) n Kzst q;f(s)ds) < Kmin(by, bry) ,

(]

where G(-) satisfies (4.6), then (P) is (M, N, I', T) practically stable.

ExAMPLE 1. Assume the system (E) is (M, N, I, T') practically stable.
Suppose ||k(t, 2)|| < ||z||]. Then solutions of (P) are (M, N, I", T') practi-
cally stable if

ay exp(K*T) < min(by, bry) ;

That is, we require

(4.9) ay = exp(—K*T)min(by, byr) .
Notice that the stability of (P) requires according to Theorem 3.1 that
(4.10) ay < min (b, bry) .

Consequently (4.9) may be an unregsonable restriction in some cases. So
suppose we shrink M to some set M in which a; = a, exp(— K*T). Then
(P) is (M, N, I', T) practically stable in view of (4.10).

REMARK. The above analysis shows that in Theorem 4.1 we may
modify some or all of the quantities M, N, I, T in order to ascertain
that (P) is (M, N, I", T) practically stable given that (E) is (M, N, I', T)
practically stable. Here M, N, I, T are modifications of M, N, I", and
T respectively. To do this we require that there exist sets M, N, I’
and a time T and constants ag, br, br5 defined in (3.1) where V{(¢, 2) is
constructed using system (E) in Theorem 3.1 (we always assume (E) is
(M, N, I', T) practically stable). We now state this as our final result
which is a generalization of Theorem 4.1. (We included Theorem 4.1
for motivational reasons.)

THEOREM 4.2. Assume system (E) is (M, N, I', T) practically stable
and let V(t, x) be the known Lyapunov function satisfying the conditions
in the proof of Theorem 3.1. Consider the perturbed equation (P) and
assume h(t, x) satisfies (4.1) where ¢(-) is nonnegative and nondecreasing
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and () is integrable on[t, t,+ T). Let M, N, I', T be any modifications
of M, N, I"', T respectively (we do allow for any of the four possibilities
T=T, M=M, N=N,I' =T). Define as in (3.1)

ay = supV(t, x), brF = inf V(t, %), and br = inf V(t, + T, 2) .

ze M teJ=[tgtg+T),zeal zel—N

If a5 satisfies

o+T
G“(G(Kag) + KS a,'r(S)dS) < K min(by, brs)

t
to
where G(-) satisfies (4.6), then (P) is (M, N, I', T) practically stable.

REMARK. This theorem provides us a relationship between the
original quantities M, N, I", T and the new quantities M, N, I, T in terms
of our perturbation term h(t, ). Of course the assumption (4.1) on h(t, x)
can be generalized. Further results in Banach spaces can be obtained
assuming accretive type conditions on f(¢, ). We will not consider these
extensions here.
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