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1. Introduction and statement of certain asymptotic problems. Our
purpose in this paper is to compare the solutions of the retarded linear
differential equation:

(L) y = L(yt)

with the solutions of the perturbed equation:

(P) * = L(xt) + f(tf xt)

Roughly speaking, we will try to answer the following question: if
the perturbation f(t, xt) is small, are the solutions of (P) "close" to the
solutions of (L), for large values of ti

It is clear that we can compare the solutions of the above systems
in many ways, depending on what we mean by "close".

Many works have been done in the case where it is required that
the difference between the solutions of (L) and the solutions of (P) tends
to zero, as t goes to infinity. This can be found, for example in Cooke
[2], Evans [5], Kato [8].

In this paper we are interested in the case where the relative error,
between the solutions of (L) and the solutions of (P), goes to zero, as t
goes to infinity. For ordinary differential equations, results in this
direction can be found in Szmidt [11], Onuchic [9], Coppel [3], Brauer and
Wong [1], Rodrigues [10], etc. Szmidt uses the topological method of
Wazewski and Onuchic [9] uses admissibility theory introduced by Massera
and Schaffer. More precisely, we will be concerned with the following
problems:

1. THE DIRECT PROBLEM. Given a solution y(t) of (L), yt Φ 0, for
all large t, does there exist a family of solutions x(t) of (P), such that:

2. THE CONVERSE PROBLEM. Given a solution x{t) of (P), xt Φ 0, for
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all large t, does there exist a family of solutions y(t) of (L), such that:
yt - x* = o(\\xt\\y!

For ordinary differential equations, both questions have affirmative
answers.

Surprisingly, for retarded equations the direct problem has an
affirmative answer, but the coverse one has, in general a negative answer.
Hale gave the following counterexample. Let L = 0 and let x =
—2te1~2tx(t — 1) be the perturbed equation. Then x(t) = e~t2 is a solution
of (P) and there is no solution of the linear equation (L) close to it, in
the above sense. However, Hale and Onuchic conjectured that if the
Liapunov number of ||α?4||, that is lim sup^^ ί"1 log \\xt\\, is finite, then
the answer to the converse is affirmative.

Chapter 2 contains some basic lemmas which will be important in
the analysis of the above problems. Chapter 3 gives a solution of the
direct problem. Our approach is related to Hale [6-a]. Chapter 4 gives
a solution of the converse problem. As a matter of fact Theorem 4.3
gives this information, Theorem 4.2 is important by itself and in fact
it contains the harder part of the chapter. The method used here, for
the analysis of the converse problem, when restricted to the case where
the delay is zero, is very different from the one used in Coppel [3, Th.
7, p. 104]. The approach used in that reference depends strongly on the
fact that the considered ordinary differential equation is defined on a
finite dimensional space and it is not clear how to extend it to the case
of retarded functional differential equations.

2. Basic lemmas. The notation we use is that of Hale [6-c]. Let
r ^ 0 and C = C([ — r, 0], Rn) with the usual sup norm which will be
denoted by || ||. We use | | to denote a norm on Rn. Let L be a
continuous linear functional defined on C and suppose that f(t, φ) is
continuous in [0, oo) x C. Consider the systems:

(L) y = L(yt)

(P) 4 - L(xt) + f(t, xt) .

The following lemma gives a characterization of the asymptotic
behavior of nonzero solutions of the linear equation.

LEMMA 2.1. // y(t) is a solution of (L) such that yt Φ 0 for all
large t, then there exist a nonnegative integer I and a real number a,
both uniquely determined, such that

(2.1) 0 < l i m i n f \\yt\\/tιeat £ l i m s u p \\yt\\/tιeat < <*>
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PROOF. From Henry [7, Th. 1], it follows that there is a number β
such that y(t)/eβt does not go to zero. Let A. = {λ e σ(A): Re X ^ β),
where A denotes the infinitesimal generator of T(t), σ(A) is the set of
point spectra of A and T(t)φ indicates the solution of (L) with initial
condition φ, for t = 0. From Hale [6-c, Th. 4.1] it follows that C = P ® Q,
d i m P < oo, P and Q depending on A, and there exist positive constants
K and 7, such that:

\\T(tψ\\
where ^ p and φQ denote the projection onto P and Q.

We can suppose yt = T(t)ψ. The second inequality implies
|| T(t)ψp\\/eβt -+> 0, t—> oo. The reference mentioned above also tells that
T{t)fp = Φeβtα, where Φ is a basis of P and the eigenvalues of B have
real part greater than or equal β. Then there exist a nonnegative
integer I and a real number a ;> /3, such that (2.1) is satisfied, since
\\T(t)fQ\\/tleat->0, as ί-> co.

REMARK 2.2. The condition (2.1) will be denoted by U2/JI 21 tιettt.

Let 2/(£) be a solution of (L) satisfying \\yt\\ — tιeat. For each xeσ(A)
let kx = min {m: ^ ^ ( A - λ/) w + 1 = ^^^(A - Xl)m] and

(2.2) JSΓ =f max [kλ: X e σ{A) and Re λ = α} ,

where / is the identity operator.
Let A = {λ 6 σ(A): Re λ ;> α}. Following Hale [6-c], this set A induces

a decomposition C — P(BQ, where P — PΛ9 Q — QA and P is a finite
dimensional subspace of C.

Let Px - {φ 6 P: l i m ^ || T(t)φ\\/tιeat = 0}.

LEMMA 2.2. There exists a subspace P 2 of P and projections XPi:
P->Pif i = l, 2, such that, P = Λ 0 P2, Z P l + Xp* = I. Furthermore,
there are positive constants M and σ, such that,

II T(t)Xp*T(-8)φp\\ ^ Mtι-ιsN-ιea{t-8)\\φp\\ , σ ^ s ^ t
( 2 ' 3 ) II T ( t ) X p * T ( - s ) φ p \ \ ^ M t ι s N - ι - 1 e a { t - 8 ) \ \ φ p \ \ , σ ^ t ^ s .

PROOF. Let us define C* = C([0, r], Rn*), where i2Λ* is the n-
dimensional vector space of row vectors, and for any a in C*, φ in C,
define

(α, ^) - a(0)φ(0) - Γ Γα(f - θ)[dη(θMξ)dξ
J-r JO

where 17 denotes the function of bounded variation which defines the
linear function L. Following Hale [6-c, Chap. 7], let A* be the formal
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adjoint of A, relative to the bilinear form defined above, and P = PΛ,
p* = p* be the generalized eigenspaces of equation (L) and of the

S o
y(τ — θ)άη(β), respectively, associated with

-r

A. Let Φ and Ψ be bases for P and P*f respectively, such that
(φy ψ) = J, the identity. From the above reference we get T{t)φp =
ΦeBt(Ψ, φp). Furthermore the eigenvalues of the matrix B are the ele-
ments of A and B can be supposed to be in the Jordan canonical form.
We claim that we can find projections Zu Z2 in Rq, where q = order of
B and positive constants M and σ, such that

(2.4)
eBtZ1e~

MtιsN-ι-ιea{t~8)

σ

σ
The result given in (2.4) is partially stated in Coddington-Levinson [4,
p. 106]. We present now an outline of the proof. The idea is to de-
compose B into Jordan's blocks and to obtain (2.4) for each block.

Let B = diag (Bu B2), where the eigenvalues of Bx have real part
greater than a and the eigenvalues of B2 have real part a.

For the part corresponding to Bλ it is easier to get the projections
and in fact we can get estimates better than (2.4).

Let us now suppose that J is a Jordan's block of B2, of order s.
We construct the projection Z[ such that \eJtZ[\ = o(tιeat), that is,

1 0 T 0 0

eJtZl = eλt

J-7(β - 1)! tι~ιl{l - 1)! 0 0

If we take Z{ — I — Z{, & straightforward calculation gives estimates
like (2.4) for Z{ and Z{. Using those projections we get Zx and Z2.

The next step is to define XPι and XPz. Let Φ — (φl9 , φq) be the
considered basis of P. We define,

, φp) = , φp)

The above definition implies that

T(t)XpiT(-s)φp= T(t)Xp*Φe-B8(Ψ, φp) =

for i = 1, 2 and the proof is complete.

LEMMA 2.3. Let p(t) and β(t) be nonnegative continuous functions

S oo

p(s)ds < <^ and β(t). is a decreasing func-
0
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tίon. If u{t) ^ 0 is a bounded continuous function for t ^ 0 and satisfiesf

u(t) ^ β(t) + Γ p(s)u(s)ds , if t ^ to ̂  0 ,
j t

then,

u(t) S β(t) exp β " p(β)ώ] , /or ί ^ to .

The proof of the above lemma is straightforward and it is similar
to the proof of GronwalΓs inequality.

The following integral inequality plays an important role on the
analysis of the converse problem.

LEMMA 2.4. Let p, geL^O, °o)y R) be nonnegative continuous func-
tions. Let γ(t) > 0 be a decreasing continuous function, for t ^ σ and

g(s)ds + \ p(s)ds < 1.
a Jσ

Suppose that u(t) is a nonnegative continuous function such that y(t)u(t)
is bounded and

u{t) ^ K + Γ u(s)p(s)ds + - ί - Γ 7(s)u(s)g(s)ds

for t ^ σ, where K is a constant. Then,

PROOF. Let v(t) = max^^ ( u(s). Then v(t) is an increasing continuous
function, such that, u(t) ^ v(t) and j(t)v(t) is bounded for ί ^ 0. For a
given t ^ σ, there exists ^ e [σ, £] satisfying v(t) = ^(ίi). This implies,

P1 1 f°°
^ if + I v(s)p(s)ds + —— \ τ(s)v(s)^(s)ώ .

But

y(8)v(8)g(8)d,8 = I 7(8)v(8)g(8)ds + \ 7

^ 7(ti)v(t) ( flr(s)ώ + Γ

Combining the above inequalities we get

v(t) ^K + v(d\~ p(s)ds + Γ g(s)ds] + — - f y(s)v(s)g(s)ds .
LJO Jσ J j(f,) Jt

Then,

7(tM«) ^
1 —
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Using Lemma 2.3 we get

y(t)v(t) ^ γ 3 — 7 ( t ) exp

and this completes the proof.

3. A solution of the direct problem. The next theorem gives a
solution of the above problem.

THEOREM 3.1. Let y(t) be a solution of (L) with Liapunov number
a. Let S be the subspace of C defined by {φeC: l i m ^ T(t)φ/\\yt\\ — 0}.
Let N be defined as in (2.2). Suppose f satisfies: f(t, 0) == 0, | f(t, φ) —
f(t, ψ)\ <*h(t)\\φ—ψ\\, for t^O, φ and ψ in C, where h is continuous and

satisfies Γ tN~ιh(t)dt < 00.
Jo

Then there exist a subset Ys of C and a real number σ ^ 0, such
that:

(a) for each φ£ Ys the solution xt — xt{o, Φ), of (P), satisfies:
(3.1) Urn 1 1 ^ -

(b) there is a homeomorphism W: S —> Ys, whose inverse is the
restriction to Ys of a projection from C onto S.

PROOF. Lemma 2.1 implies that there is a nonnegative integer Z,
such that, \\yt\\ ~ tιea\ If we put x = y + z, finding solutions of (P)
satisfying (3.1) is equivalent to finding solutions z(t) of

(3.2) i = L{zt) + f(t, yt + zt) ~ L(zt) + F(t, zt)

satisfying zt = o(tιeat).
Let A = {xeσ(A): Reλ ^ a} and C = P ® Q, as in Lemma 2.2. Let

p x = {φeP: T{t)φ = o(tιeai)}. It is easy to see that S = Q®Pι. Lemma
2.2 implies that there is a subspace P2, such that, the estimates (2.3)
hold, for a sufficiently large σ.

Let E be the space of functions geC([σ, c°), C), such that g(t) =
o(tιeat). If g is in E, we define \\g\\E = sup t έ σ \\g(t)\\/tιeat. It is possible
to prove that, in E, the equation (3.2) with initial condition za ~ φ is
equivalent to the integral equation:

(3.3) zt = T(t - σ)φs + Γ Tit - s)X0

QF(s, zs)ds
Jσ

T(t)Xp>T(-s)XίF(s, zB)ds - ^T(t)Xp'T(-s)XopF(s, z,)ds ,

where Xo

p and X? are given as in Hale [6-c, p. 186], XPί, XΓ* are obtained
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in Lemma 2.2 and

φs = φ + Γ T(σ)Xp*T(-8)XopF(8, z8)ds .
jσ

Before solving equation (3.3), where φs is an arbitrary element of
S, we will first solve the following equation in E:

(3.4) g(t) = T{t - σ)φs + Γ T(t - s)XQ

QF(s, g(s))ds
Jσ

sf g(s))ds .

If g(t) is a solution of (3.4), then zt is a solution of (3.3) where zt is
defined by za = #(<7), s(£) = g(t)(O), for £ ̂  σ.

We will solve equation (3.4) via contraction principle. If geE, let
(Ug)(t) be the second member of (3.4). Of course, U depends on φs.
From Hale [6-c, p. 181] it follows that || T(t)φQ\\ ̂  Ke{a'r)t\\ψQ\\f for t ^ 0,
where K and 7 are positive numbers. If we combine this estimate with
the ones given in Lemma 2.2 we get for g and w in E:

(3.5) ||(Ug)(t)|| £ ΛΓ̂ β f o(l) + β~r* Γer*h(s)ds

+ i- Γ s^(s)ds + Γ

(3.6) l l(EfaXt) - (Uw)(t)\\ ^ M4}eκt VsN^h(s)ds\\g - w\\E ,
Jσ

where Mlf M2 are positive constants and M2 does not depend on φs.
Using the above estimates and the uniform contraction principle (see

Hale [6-b, Th. 3.2]), we prove that there exists a unique fixed point
g = gφs depending continuously on φs, if σ is large enough to satisfy

M2[° sN-ίh(s)ds < 1.

Consider now the function

W(φs) = V - (°° T(σ)XΓ*T(-8)Xo

pF(8, g,s(s))ds
Jσ

defined on S. Let Ys == W(S). If we consider the continuous projection,

Xs = Xo

ρ + Γ(σ)X^Γ(-σ)Xo

p

from C onto S, it is not difficult to see that Xs\γs is the inverse of W.
Then W is a homeomorphism and the proof is complete.

4. A solution of the converse problem. The following theorem
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shows us how to relate the Liapunov numbers of solutions of the
perturbed equation (P) with the spectrum of the infinitesimal generator
A.

THEOREM 4.1. Let x(t) be a solution of (P) with Liapunov number

μeR. We assume that \f(t, φ)\ ̂  h(t)\\φ\\ for all £ i> 0 and φ in C,

where f(tt φ), h(t) are continuous and I h(s)ds < co. Then there exists
Jo

λ 6 σ(A) such that Re λ = μ.
PROOF. Suppose that Reλ Φ μ for all xeσ(A). Let A = {xeσ(A):

Re λ > μ}. Then there exist positive numbers ε and K such that C =
P 0 Q and

The variation of constant formula gives,

xt = T(t - σ)φ + J4 T(t - s)X?f(s, x8)ds - J~ T(t - s)Xo

pf(s, xs)ds

which combined with the above inequalities implies,

| | Γ ( ί - σ)φ\\e-{^g)t ^ \\xt\\e-w + Ke~2εt [ e2ε8h(s)\\x8\\e-{'ι+ε)sds
Jσ

+ κ\°° h(8)\\x8\\e-{μ+t)'d8 , t ^ σ

As a consequence of the assumption that the Liapunov number of \\xt\\
is μ we get that the second member of the above inequality goes to
zero as ί->oo, But this implies that φp = 0. Using again (4.1) we obtain

e~2ε8h(s)\\x8\\e-{μ-ε)sds] ,+ e2εt Γ e~2ε8h(s)\\x8\\e-{μ-ε)sds] , t ^ σ .

Lemma 2.4 implies that \\xt\\e~{μ~ε)t is bounded, for t^σ. But this con-
tradicts the fact that the Liapunov number of ||α?t|| is μ. The proof is
complete.

The next theorem gives a more precise information about the growth
or decay of the solutions of the perturbed equation.

THEOREM 4.2. Let x(t) be a solution of (P) with Liapunov number

μeR. Suppose \f(t, φ)\ ^h(t)\\φ\\, for all t^O and φ in C, where

f(t, φ), h{t) are continuous \ tN~ιh{t)dt < co, and N is defined as in (2.2).
Jo
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Then there exists a nonnegative integer I, such that,

0 < lim inf \\xt\\/tιeμt <: limsup \\xt\\/tιeμt < co .
ί-+oo t—»oo

PROOF. Let Λ = {xe σ(A): Re (λ) > μ}. This set induces a decomposi-
tion C = S 0 Q, where S has finite dimension and there exist positive
numbers kx and ε such that,

The variation of constant formula gives,

(4.3) xt = T(t - σ)φ + Γ Γ(ί - s)X0

?/(s, α.)dβ - j Γ(ί -

where X$, X£ are given in Hale [6-c, p. 186]. From (4.2) and (4.3) we
get, for a convenient constant k,

e-{fi+ε)t\\T(t - σ)φ\\ ̂  | |a? l | |e- ( ' l + l )* + fce-t/2Γ h(s)\\x8\\e~{'u+ε/2)8ds

h(s)\\xs\\e-{"+'uds .

The Liapunov number of | | $ t | | being μ implies that the second
member of the above inequality goes to zero, as t —>• co and thus
e- ("+ ε ) t | | T{t - σ)φ\\ -> 0, as t -^ <». Then ^ s = 0 and || Tit -σ)φ\\ =
for large values of t. From (4.2) and (4.3) we get,

Γ s J V - 1 Λ(s)s- ( J V - 1 ) e-'" II £cs II srf Ί+

If we let ^(ί) =f ί-ίΛr-ι)e--"t||ίci||, τ(ί) =f e-ψ-1, Lemma 2.4 shows that u(t)
is bounded.

Let I =' min {w ^ 0: | | * t | | = O(ί"e'!ί), for large values of t}. Let ΛP =

{λ e σ(A): Re λ = /<}, /ίρ = {λ e σ(A): Re λ < μ}. As before C = P φ S φ Q .

If we let Pί = {ψeP: || T(ί}f || = o^'e'")}, there exists a subspace P2 of P

and there exist positive constants K and ε, such that:

11 T(t)Xp*ΊX - s)γp 11 ^ ίft'β*-1-V1*-' 11 fp 11 , <τ ̂  t ^ s
( 4 < 4 ) || T(t - β)f «|| ^ Ze 1"-» ( l-' | |ψ«| | , σ ^ s ^ ί

| |Γ(ί - s ) f s | | ^UΓe ( " + s ) ( ί - 8 ) | | ^ΊI , σ £t^s

As in (3.3) we can prove that, there is ψ in C, such that xt can be
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written in the form

(4.5) xt = Γ(ί - σ)γ + j ' T(t - s)X$f(s, x,)ds

T(t)Xp^T(-s)Xpf(st xs)ds - J" T(t)Xp*T(-s)Xpf(s, xs)ds

- J T(t - s)X?f(s, xs)ds ,

where f = p« + Γ T{σ)Xp*T{~s)Xξf(s, xs)ds.
Jo

Below, we show the convergence of the above integrals. Then,

(4.6) || T(t - σ)f\\ £ O(tιe"1) + Keif-e)t \ β-"1-) ||a;.||Λ(β)<fe

+ JSi'-V [ 8N-ιe~'" || x. || h(s)ds
Jσ

+ Kt'eA™sN-ι-ιe-">\\xM(s)ds + Ke^e" ("«—«-*• ||x.|
Jί Jt

£ Otfe"*) + κ\tιe"te~tt\e"h{s)s-ιe-'"\\xs\\ds

+ t V — [sNh(s)s-ιe-"'\\x,\\ds + tιe'a [°sίr-1h{s)s-ιe-"s\\xs\\ds
t Jσ Jt

+ tιe^(t~ι Γ sιh(s)s-ιe-^811 a. 11 dsY\

= O(ίV*) .

This implies that || Γ(t - σ)f \\ = O(fieμi). Now, we claim that
t~ιe~μtT(t — σ)ψ does not go to zero, as t—> <*>. Let us suppose this is
not the case. For I ^ 1, by Lemma 2.1, we must have T(£ — σ)ψ —

A procedure similar to (4.6) gives us:

t-( |-»β-"||a;t|| ^ K + Ke~ct Γeessιh(s)s-ιe->"\\x,\\ds
Jσ

+ κ[ sri-1h(s)s-a-1)e-'" || x, \\ds
Jσ

+ Kt Γ s^2h(s)s-{l-1)e-f" || xa || ds

+ KeH Γ e-c'slh(s)s-le-'"\\x,\\ds , t ^ a .
it

Then there is a constant M such that
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+ t\~8»-t8-{l-ί)e-'' \\x.\\h(8)d8\ , t ^ σ .

If we let u{t)^ t-{l-ι)e-μt\\xt\\ and y(t) = t~\ using Lemma 2.4 we
get ||a?t||ί~

<I-ι>e-'lf bounded, which contradicts the definition of I.

Ifl = 0, we have Px = {0}, P 2 = P, ||a?J| = O(eμt) and αt = Γ(ί - σ)ψ +

J* Γ(ί - s)XQ

Qf(s, x8)ds - Γ T(t - s)X0

P+Y(s, a;8)ds. If ε > 0 is sufficiently

small, there exists a positive constant Ku such that

| |Γ(ί - S ) Φ P + S \ \ ^ i f

and that || T(t - σ)ψ\\ ^ ίC^^^Hf ||, since T(t - σ)φ/eμ*-*0bγ hypothesis.
If we combine this result with (4.4) we get, for a convenient con-

stant K2,

\\xt\\ ^

Then,

+ K2e
2εt \\-{^ε)8h(s)\\x8\\ds , t ^ σ .

If we let w(ί) d= ll^lle-^- " and τ(t) = e~2£t, Lemma 2.4 implies that
u(t) is bounded, which contradicts the fact that the Liapunov number
of | |g t | | is μ.

Our conclusion is that T(t — σ)ψ/tιeμt -+> 0, as t —> co. So, there is a
positive constant cl9 such that

(4.7) t~ιe-μt\\ T(t -σ)ψ\\^Cl>0

for all large t. This is a consequence of Lemma 2.1.
Using (4.5), (4.4) and (4.7), we get,

- ιe-^p,| |(ίs + —
t

Ia*II ^ d - #Γe- e ί Γeε8/ι(s)s-ιe-^
L Jo

+ Γ sN-1h(s)s-ιe-fX8\\x8\\ds

= Ci + o(l) , as ί - > w ,

Then, liminfe-»oβt'"
Ie"A<f||a5ί|| > 0 and this completes the proof.

The next theorem gives answer to the converse problem.
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THEOREM 4.3. Suppose the solution xt of (P) and the perturbation
f(t, φ) satisfy the conditions of Theorem 4.2. Then there exists a solution
y(t) of (L), such that,

xt -Vt = o(\\xt\\) , as t-> oo .

PROOF. Theorem 4.2 implies that there is a nonnegative integer i,
such that | | α ; t | | ~ £ V for large values of t. From (4.4) and (4.5) we
get:

\xt - T(t - σ)f\\ rg κ\t~ιe~εt \eε8h(s)s-ιe-*8\\x8\\ds

sN-1h(s)s-ιe~^\\x8\\ds

+ eεt Γ e-ε8sιh(s)s-ιe-μ811 x8 \ | dsΊ -> 0 , t-^oo .

If we let yt = T(t — σ)ψ, we have \\xt — yt\\/\\xt\\ —>0, as ί-> oo and the
proof is complete.

REMARK 4.1. In fact, in general, we can get a result more general
than the above one in the following sense: under the conditions of
Theorem 4.3, we can get a family of solutions T(t)φ of (L), for φ varying
in a translate of a subspace S of C, such that codim S < °°. In order
to get this result we suffice to pick up the solution yt obtained in
Theorem 4.3 and apply Theorem 3.1, considering the perturbation as the
zero function.
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