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Abstract. Necessary and sufficient conditions for existence of small
periodic solutions of some evolution equations can be obtained by the
Liapunov-Schmidt method. In a neighborhood of zero, this gives a func-
tion (the bifurcation function) to each zero of which corresponds a periodic
solution of the original equations. If this function is scalar, we show
that its sign between the zeros gives the complete description of the sta-
bility properties of the periodic solutions.

1. Introduction. For the determination of solutions of an equation
near a given solution, the method of Liapunov-Schmidt is very effective
and has been applied to boundary value problems for ordinary, partial
and functional differential equations, the problem of Hopf bifurcation
for such equations, as well as many other problems. For several prob-
lems, this method reduces the discussion to the zeros of a function,
called the bifurcation function, from a neighborhood of zero in one
finite dimensional space to another finite dimensional space. The zeros
of this function correspond to solutions of the original problem near the
given solution, and conversely. Thus, the bifurcation function is a
precise quantitative measure of the number of solutions of the original
problem.

If the original problem corresponds to an evolutionary equation, one
also must determine the stability properties of these solutions. It is
the purpose of this paper to show that the bifurcation function may
also carry the qualitative and quantitative dynamic behavior of the
original problem. More precisely, consider the problem of the existence
of 2ττ-periodic solutions of 27Γ-periodic ordinary, parabolic or retarded
functional differential equations for which the linear part of the unper-
turbed equation has one zero eigenvalue and the remaining ones with
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negative real parts. In this case, the bifurcation function is a map G
from R to R and we prove that the stability of a periodic solution cor-
responding to a zero of G is the same as the stability of the zero of G
as a solution of ά = G(α). This result also has immediate application to
the problem of Hopf bifurcation since an appropriate change of vari-
ables using polar coordinates reduces the discussion to the above situa-
tion.

For differential equations containing only one parameter, the clas-
sical procedure for determining the existence and stability properties of
periodic solutions is the method of averaging which consists in succes-
sively transforming the nonautonomous evolutionary equation to one
which is almost autonomous. Under generic hypotheses on the auto-
nomous part, one obtains the number and stability of the solutions. If
the equation contains several parameters, the method of averaging can
be applied by appropriately scaling each parameter in terms of a com-
mon scalar parameter. When the generic hypotheses are not satisfied;
that is, at points in the original parameter space where bifurcations
could possibly occur, special arguments are needed, if they can be done
at all, to show that bifurcations actually do occur uniformly with re-
spect to parameters. The bifurcation function truncated to a certain
order coincides with the averaged equations on the center manifold
truncated to the same order. This shows that the quantitative infor-
mation on stability is also contained in the bifurcation function. Thus,
averaging is not needed for this problem. Since the bifurcation func-
tion is obtained simply by equating coefficients in a Fourier series, it is
much easier to apply than averaging.

In addition to showing that the bifurcation function gives as much
information as averaging for this particular problem, we can show that
the structure of the flow of the nonautonomous equation is completely
determined by the scalar ordinary differential equation x = G(x) where
G is the bifurcation function. This qualitative result could never be
obtained from averaging.

If the center manifold has dimension 2 and G is the bifurcation
function from R2 to R\ one cannot hope that the flow for the original
system is completely determined by the equation x = G(x). However, it
is interesting to attempt to discover which properties of the original
equation are determined by this autonomous equation. We do not
know the answer, but some information has already been obtained by
Langford [8].

Let us now describe the problem in some detail. Suppose B is an
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nxn matrix with zero as a simple eigenvalue and all other eigenvalues
with negative real parts; suppose F: RxRn-± Rn has continuous deriva-
tives up through order k^2, F(t, 0) = 0, dF(t, 0)/dz = 0, h: RxRn->Rn is
continuous, h(t, z) has continuous derivatives up through order k with
respect to z and let

\h\k = sup(M)J | - 0 - (ί, 2

Also, suppose /&(£ + 2π, z) = h(t, z).
For a given function F, the problem is to determine the existence,

number and stability of the 2π -periodic solutions of the equation

(1.1) z = Bz + F(t, z) + h(t, z)

near z = 0 for every fe with \h\k small. In the applications, one gener-
ally does not consider all perturbations h but only those which depend
on a finite number of parameters in a specified manner. The results
below apply equally as well to this case.

For the existence of 2ττ-periodic solutions, the method of Liapunov-
Schmidt is very convenient. If

t, x, y)

this method consists only of the following. Fix a constant α, substitute
a Fourier series for z as

z = I a ) + Σ Keint

and determine the coefficients yo(a, h), 6w(α, Λ), n = ± 1 , ±2, so that
all of the Fourier coefficients of the 27Γ-periodic function

z(t) - Bz(f) - F(t, z{t)) - Λ(ί, z(t))

are zero except the constant term in the first component. The function

(1.2) z{t,a,h)= ( * \ + Σ bn(a,h)eM

will then be a solution of (1.1) provided that a satisfies the bifurcation
equation
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(1.3) 0 = G(a, h) = - j L Γ M t , χ(t, a, h)) + fit, z(t, a, h))}dt .
2π Jo

All 2ττ-periodic solutions near zero can be obtained in this way.
In this paper, we show that the stability properties of the 2ττ-peri-

odic solutions of (1.2) are the same as the stability properties of the
zeros of G(a, h) as equilibriums of the autonomous equation

(1.4) a = G(a, h) .

This is true regardless of whether 3G(α, h)/da is ^0 or = 0 .
In addition to having interesting implications for nonautonomous

equations, the results have immediate applications to Hόpf bifurcation.
In fact, problems involving Hopf bifurcation lead to equations of the
form

0 = 1 + Θ(θ, x , y , a ) , x = X{θ, x , y , a ) , y = Ay - Y(θ, x , y , a)

where x e R, ye Rnl, all functions are 2τr-periodic in θ, X, Y are second
order in x, y when a = 0, and Θ vanishes for (α, x, y) = (0, 0, 0). Elim-
inating θ, one obtains an equation of the form (1.1). The existence
and stability of periodic orbits is then determined from the bifurcation
function.

The methods are applicable to certain infinite dimensional evolution-
ary systems. In fact, the only essential facts used are that the linear
part of the equation has a spectral decomposition with all roots negative
except one root zero if the equation is nonautonomous (and a pair of
complex conjugate roots if the equation is autonomous) and exponential
estimates on the semigroup generated by the linear part which imply
the existence of the center manifold. We briefly illustrate this for
certain parabolic systems and retarded functional differential equations.
Neutral functional differential equations with a stable Z)-operator (see
[5]) as well as certain hyperbolic systems could also be discussed.

2. A scalar equation. Suppose v: Rx( — 1, l)-> R, f: RxR-*R are
continuous functions, v(t, x), f(t, x) have continuos derivatives with re-
spect to x up through order k ^ 2 satisfying the following conditions:

( i ) v(t, 0) - dv(t, 0)/dx = 0.
(ii) v(t, x), f(t, x) are 27r-periodic in t.
(iii) \v\h9 \f\k are finite.
We will suppose |/ | f c is small and, thus, be considering the equation

(P/) * - v(t, x) + fit, x)

as a perturbation of the equation
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(UP) * = v(t, x) .

Thus, v will be considered fixed and / a parameter. The problem is to
determine the 2τr-periodic solutions of (P/) which are close to x — 0 and
to determine their stability properties.

Suppose ^ 2 J r = {x: i2—>JB, x 2π:-periodic, continuous} with |g| =
supte «!#(£) I for a e ^ . The method of Liapunov-Schmidt implies there
is an ε > 0 and a neighborhood W of 0 in ^2π such that, for any fe
V(ε) = {/: l/lfc < ε}, every 2ττ-periodic solution of (P,) in W must be of
the form x(t, a, /) , a e U(ε) ύ= (—ε, ε), where a?(ί, α, /) satisfies

1 f2ίΓ

1 x(t, α,
(2.1) - 2 7 Γ J o

= a

x(t, a, f) = v(ί, α?(ί, α, /)) + fit, x{t, α, /)) - G(α, /)

(2.2) G(α, /) = A - Γ Mi, a?(ί, α, /)) + /(ί, a?(ί, α, f))}dt
2π 3o

and α is a zero of the bifurcation function G(α, /) ; that is, satisfies the
bifurcation equation

(2.3) G(a, f) = 0 .

Conversely, any solution of Equation (2.3) gives a 27Γ-periodic solution of
in W. The function G(a, /) is Cfc in α, /.

In terms of Fourier series, the solution x(t, a, f) of the integro-dif-
ferential system (2.1) must satisfy

(2.6) x(t, a,f) = a + Σ {in)-ιeίntcn[v{ , *( , α, /))+/(•, *( ,

with α;(ί, 0, 0) = 0, where cn(g) = c-n(g) represents the Fourier-coefficient
of g corresponding to eint.

Under appropriate hypotheses on G(a, / ) , we show below that the
qualitative properties of the solutions of (P/) in a neighborhood of zero
are the same as the qualitative properties of the solutions of the auton-
omous equation

(B/) a - G(α, /)

in U(e).
To facilitate the statement of the theorems, we need some defini-

tions.

DEFINITION 2.1. Consider a scalar equation x = g(t, x), g{t + 2π, x) =
g(t, x). A 2ττ-periodic solution φ(t) is stable from the left if, for any
ε > 0, there is a δ > 0 such that — δ < x0 — <f>(0) < 0 implies the solution
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x(t, xQ) through x0 at t = 0 satisfies —s < x(t, x0) — φ(t) < 0 for t ^ 0.
The solution φ(t) is asymptotically stable from the left if it is stable
from the left and there is a 6 > 0 such that —b<x0 — φ(0) < 0 implies
x(t, x0) — φ(t)->0 as t—>oo. A similar definition applies to the right with
all inequalities reversed and appropriate signs changed. The solution
φ(t) is asymptotically unstable to the left (right) if it is asymptotically
stable to the left (right) with t replaced by — t. The solution φ(t) is
asymptotically stable if it is asymptotically stable from the left and the
right. The solution φ(t) is totally unstable if it is asymptotically stable
with t replaced by —t. The solution φ(t) is asymptotically semistable
from the left (right) if it is asymptotically stable from the left (right)
and asymptotically unstable from the right (left).

For two scalar equations x = g(t, x), y = h(t, y) with corresponding
2ττ-periodic solutions φ(t), ψ(t), we say φ and ψ have the same stability
properties if φ having one of the above concepts of stability is equiv-
alent to ψ having the same type of stability; that is, φ being asympto-
tically stable is equivalent to ψ being asymptotically stable, etc.

DEFINITION 2.2. Two first order equations x = g(t} x), y — g(t, y) are
said to be topologically equivalent in a neighborhood U of x = 0, V of
y — 0, if there is a strictly increasing function mapping U onto V
which preserves trajectories.

THEOREM 2.1. Suppose G(a*f /) = 0 and x(t, a*, f) is the 2π-periodic
solution of (Pf) corresponding to α*. Then the stability properties of
α* as a solution of (Bf) are the same as the stability properties of
x( , a*, /) as a solution of (Pf).

REMARK 2.1. There is actually a much closer correspondence be-
tween the stability properties of α* as a solution of (Bf) and α?( f α*, /)
as a solution of (P/). For example, if G(a, f) = 0 for a in an interval,
then (P/) has an interval of initial data corresponding to 2π-periodic
solutions. If there is a sequence aά-*a* such that G(ajf f) = 0, then
there is a sequence x(t, ajf f) of 27r-periodic solutions of (Pf) converging
to x(t, α*, / ) . From the proof of Theorem 2.1 below, one will see how
to discuss the stability properties of the solutions. There are several
other possibilities as well. We have not discussed this in detail since
there are too many cases and they may be easily discussed when a
particular situation arises with this more complicated structure.

THEOREM 2.2. // G(a, f) has only a finite number of zeros, then
(B/) is topologically equivalent to (Pf) in neighborhoods of a = 0, x = 0.
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REMARK 2.2. If G{a, 0) = ak + g&a) where g,(a) = o(\a\k) as |α |->0,
then the conditions on G(a, /) in Theorem 2.2 are satisfied. In fact, an
easy application of Rollers theorem shows that G(a, f) has at most k
zeros in a sufficiently small neighborhood of a = 0 for fe V(e).

REMARK 2.3. The hypothesis that G has only a finite number of
zeros in Theorem 2.2 is probably not necessary, but the proof below
will not work.

To prove Theorems 2.1, 2.2, we need the following lemma.

LEMMA 2.1. Let fe V(ε), let α* e ί7(ε) be an equilibrium of Equation
(B/) and let x(a*9 f) be the corresponding 2π-periodic solution of Equa-
tion (P/). Then, α* is hyperbolic {that is, dG(a*, f)/da Φ 0) if and only
if the characteristic exponent X of the linear variational equation of
χ(a*> /) is nonzero and in this case λ 3(?(α*, f)/da > 0.

PROOF. The variational equation of Equation (P/) about x(a*, f) is
given by

V(t) = p(t)y(t)

where p(t) = (dv/dx)(t, x(t, α*, /)) + (dfjdx)(t, x(t, a*, /)). Therefore, the
characteristic exponent of the above linear equation is given by

λ = -i^-\ p{t)dt .
2π Jo

On the other hand, we have, from the definition of G, that

da

where z(t) =f dx(t, α*, f)/da is a solution of

z = p(t)z + b

where 6= -3G(α*, /)/3α. Furthermore, «(ί) = «(ί + 2ττ), (2ττ)-1(^ «(ί)dί = 1.

S t Jo

ί)(s)cίs, then the variation of constants formula and the peri-
0

odicity condition imply
z(t) = eQ

Since we know a solution 2(0) exists, we have & Φ 0 implies λ ^ O . If
the explicit expression of z(0) is used in the formula for z(t), the condi-
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tion (2τr)~1\ z(s)ds = 1 implies
Jo

b-\l - e2πλ) = -λ-[π[eQ{8)[8e-Q<u)du + eMe-QW [eQMdu}ds > 0 .
2π Jo L Jo Jo J

Thus, λ6 < 0 or λdG(α*, f)/da > 0.
Conversely, if λ Φ 0, then 2(0) is uniquely determined and z(0) = 0

if 6 = 0. Thus, 6 = 0 implies z(t) = 0 which contradicts the fact that

(
Jo

This proves the lemma.
PROOF OF THEOREM 2.1. Suppose α* is asymptotically stable from

the left. We prove x(t, α*, /) is asymptotically stable from the left.
From the hypotheses, there is an η > 0 such that G(a, /) > 0 on
[α* —7), α*). We claim we may choose an r]1 > 0 so that the solution
φf(t, x0) of (P/), φf(0, x0) = x0, is not 2τr-periodic for — τη1 <J x0 —
x(09 α*, /) < 0. In fact, if this is not the case, for every ε > 0, there
is a 2π-periodic solution x(t, xOε) of (Pf) with — ε < x0£ — x(0, α*, /) < 0.
Let a? be the zero of G(α, /) corresponding to x(t, xoe). Then

α* = -^-[χ(t, xoε)dt < - ^ - ( » ( ί , a*9 f)dt = α*
2ττ Jo 2ττ Jo

and one can choose ε so small that a? e(a* — η, α*). This is a contradic-
tion since G(a, /) > 0 on this interval. Thus, we may assume — ΎJ1 <; x0—
a?(0, α*, /) < 0 implies x(t, x0) is not 2ττ-periodic.

Now there is a small perturbation g of the vector field / for which
the new bifurcation G(a, f + g) satisfies the property that there is an
ag such that G(ag, f + g) = 0, dG(ag, f + g)/da < 0, ag e [a*-ηf a*), ag -+ α*
as g —» 0, G(α, / + g) > 0 for a e [α* — ̂ , αff). Lemma 3.1 implies the cor-
responding 2π"-periodic solution x(t, ag, f + g) has a negative characteristic
exponent and is uniformly asymptotically stable.

From the same type of argument as above, we may suppose that
the solution Φf+g(t, x0) of (Pf+g) is not 2τr-periodic for xQe[a* — ηl9 ag). If
χ(tj α*> /) is n o * asymptotically stable from the left, then φf(t, x0) —
x*(t, α*, /) —> 0 as ί->— oo and the mapping ψf( — 2π, •)• [α* — ̂ Ί, α*] —•
[α*—ft, α*] has the property that φf{—2π, α* — ̂ ) > α* — ̂  Consequent-
ly, for g sufficiently small Φf+g( — 2π, a* — η1) > a* — fy. Therefore,
Φf+g(—2π, •)• [α* — 7i, α j —> [α* — ̂ i, αff] with αff being an unstable fixed
point of this map. This implies there is another fixed point ξ in
(α* — ηu ag) which corresponds to a 27r-periodic solution φf+g(t, ξ) of
(Pf+g). This corresponds to a zero of G(a, f + g) in [α* — η, ag] which
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is a contradiction.
Conversely, suppose x(t, a*, f) is asymptotically stable from the left.

Then there is an Ύ]X > 0 such that φf(t, xQ) is not 2ττ-periodic for ~Vi^
x0 — x(0, α*, /) < 0. By an argument similar to the above, there is an
η > 0 such that G(a, f)Φθ for a e [a* - η, a*). To prove G{a, f) > 0,
one perturbs the vector field / to / + g to make all 27Γ-periodic solutions
of (Pf+g) near x(t, a*, f) have nonzero characteristic exponents. The
one with smallest initial value will be asymptotically stable correspond-
ing to a zero ag of G(a, f + g) with dG(ag, f + g)/da > 0.

Assuming that G(a, /) < 0 on [α* — η, a*), one argues by contradic-
tion as before. The other concepts of stability are treated in a similar
way to complete the proof of the theorem.

PROOF OF THEOREM 2.2. Let ax{f\ , αp(/) be the distinct zeros of
G(α, /) and let &,-(/) = x(Q, α//), f) be the initial value of the correspond-
ing 2π-periodic solutions. Let φ(t, b) be the solution of Equation (P/)
with φ(0, b) = 6. The &,(/) are distinct and we may thus assume they
are ordered so that 6^/) < 62(/) < < bp(f). We also have

for all j .
To construct a continuous strictly increasing function h\{ — ε, ε) —>

( —ε, ε) which preserves trajectories of (Pf) and (B/), define first a func-
tion h: (-ε, ε) -> ( — ε, ε) such that h(b, (f)) = α, (/), i = 1, 2, , p and
extend Λ in any way whatsoever as long as it is strictly increasing and
C1. With the transformation x k-> h(x)9 one obtains a new bifurcation
function G(a, f) with &,-(/) = α i(/) for all j . For any & e ( —s, ε), there is a
unique fe(6) such that h(Φ(2π, 0, 6)) = α(2τr, 0, fe(6)) where a(t, s, a), φ(t, s, 6)
are respectively the solutions of (B/), (P/) with initial values a,b at ί = s.
The function fc(δ) is continuous and strictly increasing. For any t e [0, 2π]
and c small, there is a unique ^(ί, c) such that c = ^(ί, 0, ^(ί, c)). Let
fe(ίf c) = a(t, 2π, h{ώ{2π, 0, ψ(t, c)))). It is easy to verify that h(t, c) is a
homeomorphism in c and fe(ί, ^(ί, 0, 6)) = α(ί, 0, fe(0, b)) for all t, s.

REMARK 2.3. Suppose #(£, «), t.eR, xeR, g(t + 2ττ, x) = flf(ί, ») is a
given function, ε is a parameter, and consider the existence of 27r-peri-
odic solutions of the equation x = εg(t, x). For any given r > 0, one can
determine an ε0 = εo(r) > 0, and the bifurcation function

2π
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for all I a | ^ r, | ε | < ε0 and x( , α, ε) satisfying the same integro-differ-
ential system as before. The conclusions in Theorems 2.1, 2.2 remain
valid for this case.

3. A vector equation. Suppose v, f: RxRxRn -> R, H, g: RxR x
Rn -> Rn, v(t, x, y), H(t, x, y), f(t, x, y), g(t, x, y) continuous together with
derivatives in x, y up through order k ^ 2, 2π-periodic in t; v and H
together with their derivatives in x} y vanishing at x = 0, y = 0. If
A is n xn matrix whose eigenvalues have negative real parts, we con-
sider the existence of 2ττ-periodic solutions of the equation

x = v(t, x, v) + f(t, x, y) = V{t, x, v, f)
vό.i; d e f

y = Ay + H(t, x, y) + g(t, x, y) = Ay + W(t, x, y, g)

in a neighborhood of x = 0, ?/ = 0 for |/|fc, |flr|fc small.
The method of Liapunov-Schmidt implies there is an ε > 0 and a

neighborhood W of 0 in ^2π = {(x(t), y(t)), 2π-periodic in t, continuous}
such that, for any (/, g) e V(ε) = {/: \f\k9 \gk\ < ε}, every 27r-periodic solu-
tion of (3.1) in W must be of the form x(t9 α, /, g), y(t, α, /, g), a e
JJ(ε) = ( —ε, ε), where these functions satisfy the equations

1 [2π

——I x(t, a, f, g)dt = a
(3.2) 2π J o

* = V(t, x, y , f ) - G(a, f , g ) , y = Ay + TΓ(t, a?, », g)

(3.3) G(α, /, flr) - J ^ Π ^ ί , «(ίf α, /, g), »(*, α, /, ff)f /)}
2τr Jo

and a is a zero of the bifurcation function G(a, /, g); that is, satisfies
the bifurcation equation

(3.4) G(α, /, fir) = 0 .

Conversely, any solution of Equation (3.4) gives a 2ττ-periodic solution of
(3.1) in W. The function G(α, /, g) is Cfc in α, /, g.

In terms of Fourier series, the functions x(t, α, /, g), y(t, α, /, g)
must satisfy the equations

x(t) = α + Σ (iΛ)-V 'c.[7(., a?(0, »(•), /)]

( 3 < 5 ) 2/(0 - Σ (in - A ) - V d . [ TF( , x( ), y( ), flr)]

where cn[g]f dn[h] are Fourier coefficients corresponding to eίnt.
The equation for y(t) can also be written as

(3.6) y(t) = Γ eA«-s)W(s, x(s), y(s\ g)ds .
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For Equation (3.1), there is a δ > 0 and a center manifold Mf-g,

(3.7) Mf>s = {(ί, α?, »)::,» = 0(ί, x, f, g), teR, \x\.< δ, \f\k <.δ,.\g\k < δ}

where φ(t, x, / , g) is 2π-periodic in t, ψ(t, 0, 0, 0) = 0 and is a solution of
the integral equation

(3.8) ψ(t, x) = Γ β^(ί-8) TΓ(β, ζ(β, ί, x, ψ, /) , ψ(8, ζ(s, t, x, * , /)
J-oo

where ζ(s, £, a;, ψ, f) is the solution of the equation

(3.9) -ψ- = V(8, ζ(s), ψ(β9 ζ(s))f f)
as

with the initial value ζ(ί) = x.
This center manifold is asymptotically stable and the flow on the

center manifold is given as (a?(ί), ψ(t9 x(t), f, g)) where x satisfies the
equation

(3.10) x - V(t, x, φ(t, x, f, g\ f) .

Any 27Γ-periodic solution of (3.1) in W is determined as (x(t), φ(t, x(t),
f, g)) where x(t) is a 2π-periodic solution of (3.10). We can apply the
method of Liapunov-Schmidt to Equation (3.10) to obtain the bifurcation
function G(a, f, g). The stability properties of the 2ττ-periodic solutions
are determined from the stability properties of the zeros of G(a, f, g)
as a solution of a = G(a, f, g) from Theorem 2.1. The zeros of G(a, f, g)
and G(a, f, g) are the same from the way they are constructed and the
fact that they give the 2π-periodic solutions of (3.1). If they have the
same sign between zeros, then the stability properties of the zeros of
G(a9 f, ΰ) a s solutions of ά = G(a, f, g) are the same as the stability prop-
erties of the zeros of G(a, f, g) as solutions of ά = G(a, f, g). To prove
they have the same sign between zeros, we may assume by making a
small perturbation in / in the differential equation that the zeros of
both functions are simple. Suppose this has been done and there is an
α* such that G(α*, /, g) = 0, G(a*, f,g) — Q and the derivatives have op-
posite sign. Now replace f(x, y) by f(x9 y)' + ε and obtain new bifurca-
tion functions

G(α, /, g9 ε) - G(a, f9g) + ε9

G(a, f, gf ε) = G(a, /, g) + δ(ε)ε + O(\ ε |2) , δ(ε) ̂  δ0 > 0

as ε —> 0. These new functions must have a common zero near α* if ε
is small. But this is a contradiction since the derivatives have opposite
signs. Thus, G(a9f9g)9 G(α, /, g) have the same sign between zeoros
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and we have proved

THEOREM 3.1. Suppose G(α*, f,g) = Q and x(t, α*, /, g), y(t, a*, f, g)
is the 2π-periodic solution of (3.1) corresponding to α*. Then the stabil-
ity properties of the solution a* of

(3.11) a = G(a, fy g)

are the same as the stability properties of the solution x(t, α*, /, g),
y(t, a*, /, g) of (3.1).

REMARK 3.1. Theorem 3.1 eliminates the consideration of averaging
and normal forms for the determination of the stability of periodic
solutions of nonautonomous equations. All of the information on stabil-
ity is determined from the bifurcation function G(a, f, g). This func-
tion is very easy to calculate since it involves only determining the
Fourier coefficients of a periodic function. Of course, the method of
averaging gives more quantitative information about the rate at which
solutions decay or grow in ί. On the other hand, for a differential
equation of the form

x = e/(ί, x,y,e), y = Ay + eg(t, x, y, ε)

with ε a small parameter, Flockerzi [4] has shown that the bifurcation
function G(a, ε) has the following property. If one averages on the
center manifold up through terms of order εfc to obtain a polynomial of
degree pk(x, ε) approximating the vector field on the center manifold up
through terms of order εk, then

as I β I —> 0. These additional results of Flockerzi [4] show that the quan-
titative information on the flow is also contained in G(a, ε).

However, it should be remarked that the stability Theorem 3.1
applies even when averaging is not applicable. In fact, one can apply
the results of averaging only when zeros of the corresponding poly-
nomial pk(x, ε) are simple. As a consequence, it generally never permits
one to discuss directly what happens at bifurcation points, whereas
Theorem 3.1 gives the complete qualitative picture for a uniform neigh-
borhood of ε = 0.

REMARK 3.2. Theorem 3.1 not only has applications to nonauton-
omous equations of the form (3.1), but gives very interesting results
for Hopf bifurcation. In fact, the problem of Hopf bifurcation leads to
a system of equations of the form
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(3.12) * = 1_+
& = f(β, XfV,a)9 V = Ay + g(θ, x, y, a)

where a is a small real parameter, all functions are 2ττ-periodic in θ,
(θ, x) represent polar coordinates in the two-dimensional subspace cor-
responding to the imaginary roots for a = 0 of the original problem
and y represents the vector corresponding to the roots with negative
real parts. The functions /, g vanish for (x, y) = (0, 0) and are second
order in these variables for a = 0, the function θ vanishes for (a, x, y) =
(0, 0, 0).

For (α, x, y) sufficiently small, we can replace t by θ in the differ-
entiations of x, y to obtain equations

(3.13) J ? ϊ - = f(θ, x,y,a)f -^L = Ay + g(θ, x, y, a)
do do

with /, g being 2π-periodic in θ, vanishing for (x, y) — (0, 0), and second
order in (xf y) for a = 0.

The previous theory is now directly applicable to Equation (3.13) to
obtain the bifurcation function G(a, a). The zeros of G(a9 a) correspond
to 2ττ-periodic solutions in θ of (3.13) and thus periodic solutions with
period ω(a) close to 2π of the original equations. Theorem 3.1 gives
the stability properties of the solutions of (3.13) and thus the orbital
stability properties of the original equations.

Again, we remark that the computations are easier than the ones
used in averaging since one need only equate Fourier coefficients. We
also remark that a being a vector parameter will not change the
theory.

REMARK 3.3. Theorem 3.1 remains valid for certain infinite dimen-
sional problems. In fact, suppose A is a sectorial operator on a Banach
space X, Xa is the Banach space corresponding to the graph norm of
Aa, h: RxXa —• X is sufficiently smooth and sufficiently small, h(t, u) =
h(t + 2τr, u), and A has zero as a simple eigenvalue with the other
elements of the spectrum satisfying Re λ ^ δ > 0. Let us determine the
small 2π-periodic solutions of the equation

(3.14) ύ + An = h(t, u) .

If X = XQ φ Xx where dim Xo — 1, Xo, X1 Π D(A) are invariant under A,
Aφ = 0 for φ e XQ and u = x + y, xeXQ, yeXlt then Equation (3.14) is
equivalent to

(3.15) x = f(t,x,y) , y = -By + g(t, xy y)
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where B is sectorial and the spectrum of — B on Xλ satisfies Reλ<^
—δ < 0 and /, g are smooth and small.

One can now apply the method of Liapunov-Schmidt to obtain the
bifurcation function G(α, h). Applying the theory in Henry [6] on the
center manifold, we obtain a generalization of Theorem 3.1. We do not
state the precise conditions on h since they are technical and the reader
may consult Henry [6] or a recent paper of Kielhofer [7].

We remark that the problem of Hopf bifurcation can also be treated
for similar equations taking into account Remark 3.2. Using this result
one obtains stability of the solutions discussed in Kielhofer [7].

REMARK 3.4. Theorem 3.1 can also be generalized to functional dif-
ferential equations. The determination of the bifurcation equations by
the method of Liapunov-Schmidt has already been given in Hale [5].
Since the center manifold theory is also available (see Chafee [2]), one
can complete the proof of Theorem 3.1 for this case.

To apply the results to the Hopf bifurcation for functional differ-
ential equations is a little more difficult since the elimination of t as in
Remark 3.2 is not possible. However, some results of Chow and Mallet-
Paret [3] allow one to proceed almost exactly as in Remark 3.2.

Consider the functional differential equation

(3.16) x{t) = Lxt + f(xt)

where L: C-*Rn

f f:C->Rn, C = C([-r, 0], Rn), r > 0, xt{Θ) = x(t + θ)f

— r<*θ<-0, L is continuous and linear.
Let ^ = C 0 ( I o ) , be the space of functions uniformly continuous

on [—r, 0) with a jump discontinuity at 0. Here Xo is the nxn matrix
function X0(θ) = 0, θ < 0, X0(0) = /. Define the map

(3.17) AiC^Z, Aφ = φ

Now consider the abstract evolutionary equation

(3.18) - ^ - = Axt + XJ{xt)
at

with x0 — φf φeC1.
If x is a solution of (3.18) with x0 = φ, <j> 6 C1, 0(0) = Lφ + f(φ), then

(see [3]) x is a solution of (3.16). The converse is also easy to prove.
Therefore, all smooth solutions of (3.16) are obtained through (3.18) and
one can therefore use (3.18) to obtain all qualitative properties of solu-
tions (see [3]).

If L — L(a), f = f(x, a) and the characteristic equation
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(3.19) det [XI - L(0)ex ],= 0

has two simple eigenvalues on the imaginary axis, say ±i, then we can
introduce coordinates using the decomposition theory in Hale [5]. In
fact, the space C can be decomposed as

C=P®Q, d i m P = 2 , T(t)PaP, Γ(t)QcQ,

such that if Φ = (ψlf ψ2) is a basis for P and AΦ = ΦB9 then there is a
2x2 matrix C such that,

x.eC1 , 4(<) = Lαt + f(xt) ,

then

»* = Φy(t) + «(0 , z e Q

y = By + Cf(Φy + z) , £ = Az + X?/(% + z)

where X0

Q = Xo — ΦC. Furthermore, B may be assumed to have the

form £ = ]

If we introduce polar coordinates for y as Θ, u and eliminate t we have

(3.20) ^ . = f(θ,u,e), -^- = Az + g{θ,n,z)
do aσ

where /, g are 27Γ-periodic in θ.
Under the hypothesis that all other solutions of (3.19) have

Re λ < 0, one can now proceed as in Remark 3.2 to obtain the bifurca-
tion function G(α, /) for 27r-periodic solutions of (3.16). Using the center
manifold theorem, one also obtains the stability properties of the
periodic solution from the bifurcation function.

REMARK 3.5. It is not necessary to assume the eigenvalues of A
have negative real parts to derive the bifurcation equations. One needs
only to assume a nonresonance condition for the eigenvalues on the
imaginary axis. However, one cannot prove a stability result as in
Theorem 3.1 by using the bifurcation function.

REMARK 3.6. One can also consider questions analogous to the ones
studied in Chafee [1] concerning a classification of the perturbations ac-
cording to the number of small periodic solutions of the perturbed
system. As noted recently by Chafee himself, the division theorem for
smooth functions in Michor [9] makes the classification in [1] more com-
plete. The generalization of these results to more general evolutionary
equations should present no essentially new ideas since the analysis is
concerned only with the bifurcation function G(α, /) under the hypoth-
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esis that G(a, 0) = a2k+ι + o(|α|2fc+1) as α->0. The results in this paper
give the additional information about the stability properties of the
periodic solutions for any given / in a neighborhood of zero in C\
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