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1. Introduction. For ordinary differential equations, many authors
have discussed necessary and sufficient conditions for a closed set in the
^-dimensional Euclidean space Rn to be positively invariant. Yorke [11]
has discussed this problem by using a non-Lipschitzian Liapunov function
which is lower-semicontinuous. For an autonomous system, Brezis [1]
obtained a result under the assumption that the right hand side of the
system is locally Lipschitzian, and his proof depends essentially on this
assumption. Crandall [2] obtained a similar result by applying the method
of polygonal approximations. For a nonautonomous system, Hartman [5]
also considered an approximation which is different from the one con-
sidered in [2].

The purpose of this article is to discuss the same question for
functional differential equations with infinite delay. Seifert [10] also
discussed this question under the assumption that a closed set is convex.
In Section 2, we introduce an abstract phase space B which satisfies some
general hypotheses slightly different from those considered in [4]. We
consider a subset Ω in R x Rn such that the cross section Ωt = {y e Rn;
(ί, y) 6 Ω] is convex for all t e R and that the cross section Ωt satisfies a
continuity condition in the sense of Hausdorff metric. We discuss the
properties of Ω which play an important role in Section 3. In Section 3,
we state the main theorem. We give the necessary and sufficient condi-
tion that, for any initial value (σ, φ) in R x B such that φ(t — σ) e Ωt

for all t ^ σ, there exists at least one solution x(t) through (σ, ψ) which
is defined on its right maximal interval of existence and satisfies
(ί, x(t)) 6 Ω there. Special approximate solutions are needed to prove
the theorem. The construction of the solutions, although analogous to
the one in [5], is much more complicated for functional differential
equations. The proof of the theorem is given in Section 4. The case
where the delay is finite has been considered in [7] and [8] by a different
approach.
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2. Preliminaries. Let Rn be an ^-dimensional real linear vector
space, and let R — R\ We denote by B a real linear vector space of
functions mapping (—°°, 0] into Rn with a semi-norm | |. No confusion
will occur if we use the same symbol | | to denote the norm in Rn. For
elements φ and ψ in B, φ = ψ means that φ{θ) = ψ(θ) for all θ in
(_co ? 0]. Then the quotient space B* = 2?/| | is a normed linear space
with the norm naturally induced by the semi-norm. The topology of B
is defined by the semi-norm, that is, a family {V(φ, ε);φeB, ε > 0} is
an open base, where V(φ, ε) = {ψ eB; \ψ — ψ\ < ε}. B with this topology
is a pseudo-metric space.

For any φ in B and any β ^ 0, let φβ be the restriction of φ to the
interval (— oo, — β]. This is a function mapping (—oo, — β] into Rn.
Denote the space of such functions φβ by Bβ and define a semi-norm | |̂
in B by

If we let \φ\β — \φβ\β for φeB, then \-\β is also a semi-norm in B.
For an Rn-valued function x defined on (— oo, α), we define the

function xt for each £ e(— co> σ) by the relation xt{θ) = x(t + θ), — oo <

Let D be an open set in R x B and let f: D-^> Rn be a given con-
tinuous function. A functional differential equation on D is the relation

( 1 ) x'(t) = f(t, xt) ,

where x\t) stands for the right hand derivative of x(t). For (σ, φ) in
D, an unvalued function x defined on (—cofσ + A) with 0 < A ^ oo is
said to be a solution of (1) through (σ, φ) if xa — φ and if x is continu-
ously differentiate and satisfies (1) for all t e[σ, σ + A).

We make the following hypotheses on the space B.
(Bl) For an A > 0, let x: (— <*>9 A)—>Rn be a function such that x{

is in B and # is continuous on [0, A). Then a?t is in B for all t in [0,
and # t is continuous in t.

(B2) There is a continuous function K(β) > 0 such that

\φ\ ^K(β) sup

0

for all ^ in B and for all /? in [0, oo).
Under the hypotheses (Bl) and (B2), there exists a solution of (1)

through {σ, φ) in D. This was proved by Kaminogo [4].
For (<7, φ) in D, let Q(σ, φ) be the collection of (T,x), where Γ > 0

and ίc is a solution of (1) through (σ, φ) defined on (— oô  σ + y). We
introduce a partial order ^ in Q(σ, φ) in the following way. For ele-
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ments (ϊ71, xι) and (ϊ72, x2) in Q(σ, 0), we write (T1, xι) ^ (T2, a?2) when
T1 <ς Γ 2 and the restriction of x2 to the interval (— ^f a + Γ1) is equal
to 05ι. Then Zorn's lemma implies the existence of a maximal element
(Γ, a?) in Q(σ, 0), and x is called a right maximal solution of (1) through
(σ, φ) and the interval (—coy ^ + T) is called the right maximal interval
of existence of x.

Under the hypotheses (Bl) and (B2), we have the following.

LEMMA 1. For any ψ in B and constants A > 0, L > 0, let FΊiφ)
be a set of functions u: (— oof A] —> Rn such that u0 — ψ and \u{t) — u(s)\ <^
L\t — s\ on [0, A]. Then the set Γ = {ut; ueF^iΦ), te[0, A]} is compact
in B.

For the proof, see Lemma 2.1 of Hale and Kato [4], though the
phase space considered in [4] is slightly different from ours.

Let Ω be a set in R x Rn such that the cross section Ωt = {y e Rn;
(t, y)eΩ} is nonempty for all teR. Assume that Ω satisfies the follow-
ing continuity condition (C).

(C) For any ε > 0 and any t e R, there is a δ = δ(s, t) > 0 such that
if \t - s\ < δ, then

inf {r > 0; U(Ωt,r) 3 i2s and U(Ωt9 r)Z)Ωt) <e ,

where U(ΩU r) is an ? -neighborhood of Ωt.

L E M M A 2. If Ωt is a closed set in Rn for any teR and the condi-

tion (C) is satisfied, then Ω is a closed set in R x Rn.

PROOF. If the conclusion is false, then there is a sequence {(tk, yk)}
in Ω such that (tk, yk) -> (tβ, yo)&Ω as A; -> co. Since yβ g β ί o and β ί o is
closed, we see that U(y0, ε0) Π Ωto is empty for some ε0 > 0. On the
other hand, if k is large, U(yk9 eβ/3) contains a point 2;fc 6 Ωto since the
condition (C) implies that Ωt]c c Ϊ7(βto, εo/3) for sufficiently large &.
Moreover, \yk — yo\ < εo/3 if k is large. Thus for sufficiently large k,
we have

\Vo ~ s*l ^ \Vo - Vk\ + I!/* - zk\ < εo/3 + εo/3 < ε0 ,

a contradiction to the emptiness of U(y09 ε0) Π Ωto, and we are done.

From now on, let \y\ = (Σ?=iί/D1/2 for y = ( ^ •••,!/») in i2\

LEMMA 3. Suppose that Ωt is closed convex for all teR and that
the condition (C) is satisfied. For a continuous function p(t): [σ, c^)—>
Rn, let d(p(t), Ωt) = inf {\p(t) — y\\ y eΩt}. Then there is a continuous
function g(t): [σ, oo) -> Rn such that g(t) e Ωt and d(p(t)f Ωt) = \p(t) — g(t)\.
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PROOF. Since Ωt is closed, there exists a g(t) e Ωt with d(p(t), Ωt) —
\p(t) — 9(t)\ for each t e [σ, w). We show that g(t) is uniquely determined
for each t. Otherwise, there would exist a zeΩ8 for some se[σ, oo)
such that 2; ̂  g(β) and |p(s) — z\ = d(p(s), Ω8) = \p(s) — g(s)|. Set d(p(s), Ω8) = r
and let S(p(s), r) denote the sphere in Rn with radius r and center p(β).
Then g(s) and z belong not only to Ω8 but also to S(p(s), r). Since Ω8 is
convex, the segment Xg(s) + (1 — X)z with 0 ̂  λ ^ 1 belongs to Ω8. We
see immediately that | p(s) — {Xg(s) + (1 — λ)z} | < r for 0 < λ < 1, which
contradicts d(p(s), Ω8) = r.

Next the continuity of d(p(t), Ωt) in t will be proved. For any t, s e
[a, 00), we have

( 2 ) \d(p(t), Ωt) - d(p(s), Ω.)\

^ \d(p(t), Ωt) - d(p(t), Ω.)\ + \d{p(t), Ω.) ~ d(p(8), Ω8)\ .

For any ε > 0 and any fixed t in [σ, ©o), there exists a ^ = ^(ΐ, ε) > 0
such that if | ί - s\ < δlf then

( 3 ) \d(p(t), Ω.) ~ d(p(8), Ω.)\ < e/2 ,

because we have \d(p(t), Ω8) — d(p(s), Ω8)\ ^ \p(t) — p(s)\. Let d(p(t), Ω8) —
\p(t) —u*\ for u*eΩ8. Then, by the condition (C), there exists a <52 =
δ2(t, ε) > 0 such that if 11 — s \ < δ2, then C/(ws, ε/2) contains a point v* in
i3t and U(g(t), ε/2) contains a point w8 in ββ. Therefore we have

d(p(t), Ωt) ̂  \p(t) -v°\^ \p{t) - u°\ + \us - v*\ £ d{p{t\ Ω.) + ε/2

and

d(p(t), Ω.) ^ \p{t) - w ° \ £ | p ( ί ) - g(t)\ + \g{t) -ws\^ d { p ( t \ Ωt) + ε / 2 ,

which then imply that if 11 — s \ < δ2, we have

( 4 ) \d(p(t),Ωt)-d(p(t),Ω.)\£ε/2.

Combining (3) and (4), the right hand side of (2) is less than ε if
\t — 81 < δ, where δ = min {δl9 δ2}. Thus d(p(t), Ωt) is continuous in t.

Finally we show that git) is continuous. Suppose that g(f) is not
continuous at t = t0 ^ δ. Then there exists an ε0 > 0 and a sequence {tk}
such that tk —> t0 as & —> 00 and that | flr(ίfc) — g(t0) \ ̂  ε0 for all k = 1, 2,
Since p(ί) and d{p(t), Ωt) are continuous in ί, the sequence {^(ifc)} is bounded,
and hence we may assume that the sequence is convergent. Set

= z0. Then z0 e Ωto by Lemma 2. Moreover, since d(p(t), Ωt) =
and p(£) are continuous in ί, we have

\p(t0) -zo\ = l i m ^ \p(tk) - g(tk)\ =



POSITIVELY INVARIANT SETS 561

Thus z0 = g(t0) because of the uniqueness of g(t). On the other hand,
\g(tk) — g(to)\ ^ ε0 implies \g(t0) — zo\ :> ε0, which contradicts z0 = #(£<,).
This proves that g(t) is continuous and completes the proof.

3. The main result. Consider a system

(5) x'(t)=f(t, xt),

where /: R x B —> Rn is a continuous function.

THEOREM. Assume that Ωt is closed convex for all teR and the con-
dition (C) is satisfied. Then the following two statements are equivalent:

( i ) For any (σ, φ)eR x B with φ(t — a) e Ωt for all t ^ σ, ί/iβrβ
exists at least one solution x of (5) through (σ, φ) defined on its right
maximal interval of existence and satisfying (t, x(t)) eΩ on the interval.

(ii) For any (σ, φ) eR x B with φ{t — σ) e Ωt for all t ^ σ, it holds
that

lim^0+ d(φφ) + hf(σ, φ), Ωa+h)jh = 0 .

We prove this theorem in the next section. In the rest of this
section, we consider special approximate solutions under the condition
(ii).

Let (σ,φ)eR x B be such that φ(t - σ) 6 Ωt for all t <: σ. Since /
is continuous at (σ, φ), there are positive constants r, A and δ such that
l / l ^ r on K<j + i ] x 7 ( M ) . Let L = max {JΓ(/9); 0 ^ /3 ̂  A} > 0.
Define ^ by

ί^ ( ί "" σ) ' * - σ f

(0(0) , t ^ σ .

Then φt belongs to B for all t ^ σ by the hypothesis (Bl) and φσ — φ.
Furthermore, by the hypothesis (Bl), there is an a = a(σ, φ) with 0 <
a ^ A such that

(6 ) 3Lra + \φt — Φ\ < δ for all t e [<J, σ + a] .

The set TΓ defined by

TΓ = {(t, ut); σ ^ t ^ σ + α, t6σ - Φ and |%(t) - u(s)| ^ 2 r | t - β|

on [σ, σ + a]}

is compact in Λ x δ by Lemma 1.
Let ε, 0 < ε < r, be given. Since W is compact, there is an

η(ε, W) > 0 such that

( 7 )
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if (ί, φι)e W and \φι — φ2\ < η(ε, W), where we can assume that

(8) η{ε, W) < Lra .

Now consider the set Q9(σ, ψ) which consists of all (Γ, x)f where 0 <
T^a and x is a function mapping (—oofσ+T] into Rn with the
following properties:

( I ) xσ = φ, x(σ + T) e i2σ+Γ and d(α(£), ί?t) < >?(ε, T7)L~1 for all
t e [σ, σ + Γ].

(II) |a(t) - x(t')\ ^ 2r]ί - ί'| on [σ, σ + Γ].
(III) \x(t) - f(t, xt)\ ^ 3ε for almost all te[σ, σ + Γ], where 4(ί) is

the derivative of x(t).
(IV) Every subinterval of [σ, σ + T] of length ε contains a point s

such that (s, #(s)) e 42.

LEMMA 4. ΪT&e seί Qε(σ, φ) is nonempty for any small ε > 0.

PROOF. By Lemma 3, there is a continuous mapping g: [σ, oo) -> Rn

such that d(φ(O) + hf(σ, φ), Ωσ+h) = |^(0) + Λ/(σ, ^) - r̂(σ + h) \ and ^(σ + h) e
i2β+fc for all Λ ^ 0. For S with 0 < S ^ ε, define a function y by

W O ) + {(g(σ + S) - φ(O))/S}(t - σ) , σ < t ^ σ + S .

We show that (S, y) belongs to Qε(σ, φ) if S is sufficiently small.
The condition (ii) implies that there is a δ1 with 0 < δx ^ ε such

that

( 9 ) I(g(σ + h) - φ(O))/h - f(σ, φ)\ < ε

for all h e (0, oj. Hence if S ^ δί9 we have

(10) |!/(t) - y(jt')\ = \(g(σ + S) - φ(O))/S\\t - t'\

^ (l/(σ,^)| + e ) | ί - ί ' j £2r\t - tr\

on [σ, σ + S]. Then by the hypothesis (B2), we have |̂ /t — φ\ ̂  1^ — φt\ +
l^ί — ί̂ l ^ 2rL(t — σ) + \φt — φ\ for alH e [σ, σ + £] . Hence the continuity
of / implies that there is a δ2 with 0<δ2 ^δ1 such that | /(σ, φ) — /(ί, 3/t) | < ε
for all te[σ, σ + S] if S ^ δ2. From this and (9), it follows that

(11) Iy(t) - f(t, yt)\£\{g(σ + S) - φ(0))/S - /(σ, φ)\ + |/(σ, ^) - f(t, yt)\

^ 2 ε

for all te[σ,σ + S] if S ^ δ2.
Since flr(α ) = ^(0) = y(σ) and ?/(ί) satisfies (10) for S ^ δ2, there is a

δ3 with 0 < δ3 ^ δ2 such that |(/(ί) - y(t)\ < η(ε, W)L~ι on [σ, σ + S] if
S < δo. Therefore we have
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(12) d(y(t), Ωt) £ \v(t) - g(t)\ < v(e

for all t e[σ, σ + S] if S ̂  δz. From (10), (11) and (12), it follows that
y(t) satisfies (I), (II).and (III) if S = δs. The condition (IV) is also satisfied
because 0 < 33 5g ε. This completes the proof.

LEMMA 5. There is an element (a, x) in Qε(σ, φ) for any small ε > 0.

PROOF. Introduce a partial order ^ in Q£σ, φ) as follows. For
elements (Γ1, x1) and (T2, x2) in QΛ(σ, φ), we write (Γ1, xι) ̂  (Γ2, a:2) when
T1 ̂  T2 and the restriction of or to the interval (— oof σ + T1] is equal to
a?1. First, we show that there is a maximal element. Qε(σ, φ) is non-
empty by Lemma 4. Let E — {(Tλ, xλ);\eΛ} be any totally ordered set
in Qε(σ, φ). Set J = sup {Tλ\ X e Λ). If {T\ xλ) ^ (Tn, xμ) for λ, μ e Λ, we
see that

x\σ + Tλ) — xfί(σ + Tμ) \ = \ xμ(σ + Tλ) — xμ(σ + Tμ) | ^ 2r | Tλ —

by the condition (II). Hence Umτλ->jXλ(σ + Tλ) = p exists, and peΩσ+J

by Lemma 2. Define &*(£) by

_ Jα ' ( ί ) , t^σ + Tx,xeΛ,

~ \p , ί = <7 + J .

Then (J, a*) is in Qβ(σ, φ) and is the supremum of E. Therefore there
is a maximal element (Γ, x) in Qε(σ, 0) by Zorn's lemma.

Next, we prove that T = a for the maximal element (Γ, a) obtained
above. Suppose that T < a. By Lemma 3, there is a continuous mapping
g^. [σ, σ + T]—>Rn such t h a t d(x(t), Ωt) = |a&(ί) — flTi(t)| and g^fyeΩt for
all ίe[(7, a-+ T]. Let f: (— co, a + Γ]-> i2n be a function such that
ξσ = 0 and f(ί) = ̂ (ί) on [σ, σ + T]. Then ^ e ΰ for all t e[σ, σ + T] by
the hypothesis (Bl). Recall that \x(t) - ξ(t)\ = |α?(ί) - ^(01 < V(ε, W)L-λ

on [σ, σ + Γ] by (I). Since sc(ί) satisfies (I) and (II), it follows from the
hypothesis (B2) and (6), (8) that

ξa + r — Φ\ ̂  \ζa+T — Φa + τ\ + \Φo+T ~ φ\

^ L sup \ξ(σ + T + θ) -

SL sup {|f(σ+ Γ + ̂ ) -x(σ+ T + θ)\ + \x(σ

^ L{η{ε, W)L-' + 2rT} + \φa+τ -φ\S ZLra + \φa+τ -

Therefore we have

(13) \Aσ + T,ξ.+τ)\£r.
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Since ξa+τ(t - σ - T) e Ωt for all t £ σ + T and ς(σ + T) = α?(σ + T),
we have

(14) lim d(ίr(6r + Γ) + Λ/(σ + Γ, f,+r), Ωo+τ+h)/h = 0
Λ-»0+

by the condition (ii). Again by Lemma 3, there is a continuous function
g2(t): [σ + Γ, °°)-*Rn such that

<2(α(0 + Γ) + Λ/(<7 + ϊ7, fσ+r), Ωo+τ+h)

= \x(σ + T) + hf(σ + Γ, £.+Γ) - g2(σ + Γ + h)\

and <?2(<7 + Γ + h) e β̂ +Γ+Λ for all h ^ 0. Then by (14), there is a δ,
with 0 < δx ^ ε such that

(15) I f(σ + T, ξσ+τ) - {g2(σ + T + h) - x(σ + T)}/h\ ^ ε

for all h e (0, δ j .
Let S be a constant such that 0 < S < a — T and S ^ <5X, and define

a function y by

a?(t) , t^σ + T ,

x(σ + Γ) + {(#2(<7 + Γ + S) - α(<7 + T))/S}(t - σ - T) ,

σ + Γ ^ t ^ <τ + Γ + S .

We show that (T + S, y) belongs to Q€(σ, <j>) if S is sufficiently small.
Since y(t) = a?(ί) for ί ^ α1 + T, it is sufficient to consider the case t ;>
σ + T. By (13) and (15) and as in the proof of Lemma 4, we can find
a δ2 with 0 < δ2 ^ δx such that #(ί) satisfies (I), (II) and (IV) for S ^ δ2.

To show (III), define another function z by z(t) = <J(ί) on (— ooy ^ + Γ]
and s(t) = »(ί) on [σ + Γ, (J + Γ + S], where S = <52. Then yσ = zo = φ
and sup {|«(ί) - i/(ί) |; t e [σ, σ + Γ + S]} = sup {|x(t) - ξ(t)\; t e [σ, σ + ϊ7]} <
Ύ)(ε, W)L"1

9 and hence

\yt — zt\ ^ L sup Iy(< + θ) — z(t + ^)I < Lη(ε, W)L~ι — η(ε, W)

for all te[σ, σ + T + S] by the hypothesis (B2). (t, yt) belongs to the
compact set W for all t e [σ, σ + Γ + S] since ?/(ί) satisfies (II) on
[σ, σ + Γ + S]. Thus we have

(16) I /(ί, 2/t) - /(ί, β4) I < β on [<7, σ + Γ + S]

by (7). Since z(t) is 2r-Lipschitzian in te[σ + T, σ + T + S], we see
that \zt — ξσ+τ\ = \zt — za+τ\ is small if t — (σ + Γ) > 0 is sufficiently
small by the hypotheses (Bl) and (B2). Therefore the continuity of /
implies that there is a δ3 with 0 < <53 ̂  δ2 such that

(17)
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for all t e [σ + Γ, σ + T + S] if S ^ <53. Let S = δΛ. Then it follows
from (15), (16) and (17) that

f(t, yt)\£\{g2(σ + T + S) - x(σ + T)}/S - f(σ + T, ξσ+τ)|

+ \Λσ+ T, ξσ+τ) - f(t, zt)\ + \ f(t, zt) - f{t, yt) 1

for all t e [σ + T, σ + T + S].
Consequently, we obtain an element (T + S, y) in Q,(σ, φ) such that

(T,x)^(T + S,y) and (T,x) Φ (T + S,y), which contradicts the maxi-
mality of (Γ, x). Thus T should be equal to α, and we are done.

4. The proof of the theorem. It is easily proved that (i) implies
(ii), and so we prove the converse.

Let {εk} be a sequence such that εk > 0 and εk —> 0 as fe-^oo. Let
(σ, φ)eRxB be such that φ(t — σ) 6 Ωt for all £ <; σ. By Lemma 5, there
exists an a > 0 such that the set Qejfe(tf, Φ) contains an element (α, xk)
for each &. Since the sequence of the functions {xk(t)} is uniformly
bounded and equicontinuous on [σ, σ + a], we may assume that the
sequence converges uniformly to a continuous function x(t) on [σ, σ + a]
as & —> oo. Let flc(ί) = 0(ί — σ) for t ^ σ. Then a?t belongs to 5 for all
te[σ, σ + a] by the hypothesis (Bl). Also, \xk — xt\-*Q as fc-^oo for
all ί e [ σ , σ + α] by the hypothesis (B2). Since (t, xk) belongs to the
compact set W for all t e[σ, σ + a] by (II), we have |/(ί, α£)| ^ C for
all ί 6 [(7, σ + α] and all k, where C is a constant. Hence, applying
Lebesgue's dominant convergence theorem, we see by (II) and (III) that

x(t) = \imx\t) = Km \φ(0) + Γ xk(s)ds\

(β, xt)ds + [ [x\s) - /(s, ajί)]

for all t e[σ, σ + a]. Thus x(t) is a solution of (5) through (<τ, ^).
By (IV), for each t e [σ, σ + a] and k, there is a point sk e [σ, a + α]

such that | ί - s f c | ^ ε f c and (sk, xk(sk)) e Ω. Then, by (II), we have
\x(t) - x\sk)\ ^ \x(t) - x\t)\ + \x\t) - x\sk)\ ^ \x(t) - x\t)\ + 2rεk, which
implies lim^^ (sfc, ccfc(sfe)) = (ί, «(*)), and hence (t, sc(*)) e β by Lemma 2.
Consequently, ίc(ί) is the solution of (5) through (σ, φ) such that (t, sc(ί)) e i2
on (—oo9σ + a].

Now let Q(σ, φ, Ω) be the set defined by

Q(σ, φ, Ω) - {(Γ, y) e Q(σ, φ); (ί, y(ί)) 6 Λ on ( - oo, σ + T)} .
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Then Q(σ, φ, Ω) is nonempty because (α, x) e Q(σ, φ, Ω). Introducing the
same partial order in Q(σ, φ, Ω) as in Q(σ, φ), we obtain a maximal ele-
ment (Γ, y) in Q(σ, φ, Ω) by Zorn's lemma. We show that the (Γ, y) is
also a maximal element in Q(σ, φ). Otherwise, y can be extended up to
t = σ + T, and then (t, y(t)) e Ω for all t £ σ + T by Lemma 2. Clearly,
yσ+τ belongs to B by the hypothesis (Bl). Therefore, by applying the
condition (ii) to (σ + T, yσ+τ) and by the same argument as above we
obtain an element (a', z) in Q(σ + T, yσ+τ, Ω). Then (T + a', z) is in
Q(σ, φ,Ω), (T + a\ z) ^ (Γ, y) and (Γ + α', z)φ{T,y). This contradicts
the maximality of (Γ, y) in Q(σ, φ, Ω). Thus (Γ, 2/) is in Q(σ, φ, Ω) and
is the maximal element in Q(σ, φ), that is, y is the solution of (5) through
(σ, ψ) defined on its right maximal interval of existence (—oo,<τ+ T)
and satisfying (ί, y(t)) e i2 there.

REFERENCES

[ I ] H. BREZIS, On a characterization of flow-invariant sets, Comm. Pure Appl. Math. 23
(1970), 261-263.

[2] M. G. CRANDALL, A generalization of Peano's existence theorem and flow invariance,
Proc. Amer. Math. Soc. 36 (1972), 151-155.

[3] J. K. HALE, Dynamical systems and stability, J. Math. Anal. Appl. 26 (1969), 39-59.
[4] J. K. HALE AND J. KATO, Phase space for retarded differential equations with infinite

delay, Funkcial. Ekvac. 21 (1978), 11-41.
[5] P. HARTMAN, On invariant sets and on a theorem of Wazewski, Proc. Amer. Math. Soc.

32 (1972), 511-520.
[6] T. KAMINOGO, Kneser's property and boundary value problem for some retarded func-

tional differential equations, Tohoku. Math. J. 30 (1978), 471-486.
[7] V. LAKSHMIKANTHAM, S. LEELA AND V. MOAURO, Existence and uniqueness of solutions

of delay differential equations on a closed subset of a Banach spaces, Nonlinear
Analysis 2 (1978), 311-327.

[8] S. LEELA AND V. MOAURO, Existence of solutions in a closed set for delay differential
equations in Banach spaces, Nonlinear Analysis 2 (1978), 47-58.

[9] R. H. MARTIN, Approximation and existence of solutions to ordinary differential equa-
tions in Banach spaces, Funkcial. Ekvac. 16 (1973), 195-211.

[10] G. SEIFERT, Positively invariant closed sets for systems of delay differential equations,
J. Differential Equations 22 (1976), 292-304.

[II] J. A. YORKE, Differential inequalities and non-Lipschitz scalar functions, Math. System
Theory 4 (1970), 140-153.

MATHEMATICAL INSTITUTE

TOHOKU UNIVERSITY

SENDAI, 980 JAPAN




