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Let f: R"— R be an n-fold covering of compact, connected Riemann
surfaces and let ¢ and ¢’ denote the genara of R and R’ respectively.
The classical formula of Riemann-Hurwitz then states that

29" —2=(29 — 2)n + >, (e(P") — 1)

where the sum is taken over all points P’ on R’ and e¢(P’) denotes the
ramification index of P’ for the covering f. In a recent paper [6], Kida
proved a highly interesting analogue of the above forumla for algebraic
number fields.” In the present paper, we shall give an alternate proof
for the theorem of Kida from a different point of view. Namely, as-
suming that the covering f is regular, let G denote the group of all
covering transformations for f. Then the finite group G acts naturally
on the space of all differentials of the first kind on R’, and the repre-
sentation of G thus defined was completely determined by Chevalley-Weil
[2]. In the following, we shall study certain p-adic representations of
Galois groups which may be regarded as analogues, for algebraic number
fields, of the representation of G mentioned above, and we shall prove
a result for such p-adic representations, quite similar to the theorem of
Chevalley-Weil for the representation of G. The formula of Kida will
then follow from this by comparing the degrees of the representations.
Our proof is based essentially upon Galois cohomology theory for algebraic
number fields which are not necessarily finite over the rational field.
Hence some preliminary results in that theory will be discussed in the
earlier part of the paper.”? In the last section of the paper, we shall
also indicate briefly another approach to Kida’s formula which is slightly
different from what is described above; this might be of some interest
because it applies also for, e.g., totally real algebraic number fields.

1. Throughout the following, let Z, Q, R, and C denote the ring of
rational integers, the field of rational numbers, the field of real numbers,
and that of complex numbers, respectively. By a number field K, we

D See the formula (10) in §9 below.
» See also [1], [9] for Galois cohomology theory.
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shall mean any algebraic extension of @ in C, not necessarily finite over
Q. For such a field K, let o, denote the ring of all algebraic integers
in K. The invertible o,-submodules of K are called the ideals of K, and
they form a multiplicative group I, the ideal group of K. Let P, denote
the subgroup of principal ideals (a), a€ K*. The ideal-class group Cy =
I./P, is then a torsion abelian group so that

Cx = ? Cx(@)

where ¢ ranges over all prime numbers and Cx(q) denotes the g¢-primary
component of C,. If K is a subfield of a number field L, there is a
natural imbedding I — I;, and it induces homomorphisms C,— C;,
Cx(q) — C.(q). Let v be a finite, i.e., non-archimedean, place on K and
let p, denote the associated maximal ideal of o,. If K/Q is finite, then
p, belongs to I, and generates a cyclic subgroup <{p,) of Ix. For infinite
K/Q, this is not true in general. However, in some special cases, we
can still define a subgroup I, of I, similar to <{p,) mentioned above.
Namely, assume that K has a subfield %, finite over @, such that v is
the unique extension of v|k on K, v|k being the restriction (projection)
of v on the subfield k. Let K =limk, where kS k, & K and k,/Q is

finite, and let v, = v|k,. Then {p,) Té contained in <p,;» for k, S k; so

that a subgroup I, of Iy = lim I, is defined by
I, = lim ¢p,) .

It is isomorphic to a subgroup of the additive group of @, containing Z.
In particular, if there exists a subfield £ such that » is unramified for
the extension K/k, then p, belongs to I, and I,= <{p,) = Z. We note
here in passing that the ramification theory can be reasonably extended
to places on extensions of number fields which are not necessarily finite
over Q; for example, the ramification indices are defined for such places
so that they agree with the classical definition for finite algebraic number
fields and satisfy the chain rule for K £ L < M.

Let p be a fixed prime number and let Z, and @, denote the ring
of p-adic integers and the field of p-adic numbers respectively. Let Q.
be the unique Z,-extension over @ in C.* For each number field %, finite
over @, the composite k. = kQ.. is then a Z -extension over k, and it is
clearly a finite extension of Q.. Conversely, if K is a finite extension
over Q.. in C, then there exists k%, finite over @, such that K = k.. In
the following, we shall call such a number field K simply a Z,-field.

® For Z,-extensions of algebraic number fields, see [5] and the papers in the bibliography
of [5].
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Let ¢ be any prime number and let v be a g-place on a Z,-field K,
i.e., a finite place on K with v»|Q =¢9. From K = k. = kQ..,, we then
see easily that the subgroup I, of I is defined as explained above and
that if ¢ # p, then I, = {p,) = Z, and if q¢ = p, then I, is isomorphic to
the union ,s, »~"Z. Furthermore, for each prime number ¢, there exist
only a finite number of ¢-places on K, and

IK:$I’I)

where v ranges over all finite places on K.
Now, let L be a finite Galois extension of a Z,-field K with G =
Gal (L/K); L itself is then a Z,-field. For each finite place v on K, let

IL,v = e Iw

where w runs over all extensions of » on L and where I, denotes the
subgroup of I, defined similarly as I, for K. Clearly I,, is a subgroup
of I,, invariant under G, and

I, = 6 IL,v

with v ranging over all finite places of K. Writing H*(L/K, ) for the
cohomology group H*(G, ), we then have

H"(L/K, I,) = eH”(L/K, I.,,), for n=0.

We shall next consider H*(L/K, I,,) for each finite place v on K.

First, let v be a non-p-place, i.e., v|Q = q # p. For an extension w
of v on L, we can define the decomposition group Z = Z(w/v) and the
inertia group T = T(w/v) as usual so that TS Z < G. Let e = e(w/v) =
[T:1], f= flw/v) =[Z:T], g=g(w/v) =[G:Z] so that efg =[G:1] =
[L: K]. Then, as in the classical theory for finite algebraic number fields,
one proves the following:

(a) All extensions of v on L are given by o(w), g€ G, so that ¢ is
the number of distinet extensions of v on L. Hence, as G-modules,

1. Z1G|Z]

where Z[G/Z] denotes the module of all linear combinations of the left
cosets of G modulo Z with coefficients in Z and where the isomorphism
is defined by o(p,)— 0Z, for 0 € G. Consequently

H“(L/K, I,,) = H"G, Z|G|Z)) > HYZ,Z), n=0
with trivial Z-action on Z.
9 See [7], Chap. II, Théoréme 6.
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(b) Let w, ---, w, be the distinct extensions of » on L. Then, in
the ideal group I,

bo=Tow) = (1Tr,) , oeG.
Hence
If, = HL/K, I,,,) = ¥/ = Z .

(¢) T is a normal subgroup of Z and
Z|T = Gal (t,/t,)

where ¥, = 0/p, and f, = 0,/p, are the residue fields of v and w respec-
tively. In particular, f = [f,:f,]. Note that both f, and f, are algebraic
extensions of the finite field F, with ¢ elements and that [f,: F,] is divisible
by p~ because K = k..

Assume now that L/K is a p-extension. Then Z/T is a p-group, and
the remark just mensioned above implies that f=[f,:t] =1, Z=T.
However, since v|Q # p, v is tamely ramified in L so that T is a cyclic
group of order e. Hence, in this case, we obtain from (a) above that

H"(L|K, I,,) = ZleZ , for all even n =2,
=0, for all odd n =1,
while H'(L/K, I, ,) is given in general by (b).
Next, let v be a p-place on K. Then I, is uniquely divisible by p
as mentioned earlier. Hence, for a p-extension L/K, we see easily that
If, = H(L/K, I,,) = I,
= HYL/K,1,,) =0, for n=1.

2. Let K be again a Z,-field and let L/K be a p-extension with
G = Gal(LL/K). We do not assume here that L/K is a finite extension.
Hence L is not necessarily a Z,-field. However, if {L,} denotes the family
of all finite Galois extensions of K contained in L, then each L, is a Z,-

field and
L=1lmlL,.

For a finite place v on K, let
I,,=1limI,,
—

where I, , is defined as in §1 and where the limit is taken with respect
to I;,,— I;, for L, = L;. Then I,, is a subgroup of I,, invariant under

@, and
IL = ? IL,v .
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Hence
H"(L/K, I,) = @ H*(L/K, I,,,) ,

H*(L/K, I.,,) = lim H*(L,/K, I,,,), nZ=0.

LEMMA 1. Let v|Q = p. Then
Ig,v = HO(L/K’ IL,v) = Iv ’
H*L/K, I,,)=0, for n=1.
Let v|Q # p. Let w be an extension of v on L and let e = e(w/v) denote
the ramification index of w/v, i.e., the order of the inertia group T(w/v).
If e is finite, then T(w/v) = Z/eZ and
If, = H(L|K, I,,) = p)) = Z,
H*(L/K, I, ,) = ZleZ , for even n =2,
=0, forodd n=1.
On the other hand, if e is infinite, then T(w/v) = Z, and
If, = HYL/|K, I,,) = {p;lreR} = R = p"Z,
H"L/K,I,,)=0, for n=1.
PrROOF. The first part is an immediate consequence of the results
for H™(L,/K, I;,,) mentioned in §1. Let v|Q # p and let w, = w|L,,
e; = e(w;/v), T, = T(w,/v) = Z(w,/v) for each ©. Then T = T(w/v) = lim T,

and the argument in §1 shows that the following diagram is commuta-
tive for L, & L;:

H"(L,/K, I,.,) = HT,, Z)

! !
H~(L,;/K, I,,;,) = HYT;, Z) .
Here the vertical map on the right is defined by the natural homomor-
phism T; — T, and by the endomorphism a i (e;/e,)a of Z. Hence it
follows that
H*L/K,I,,) =S HYT,limZ), n=0.

As each T, is a cyclic group of order ¢;, the statements in the second
part are consequences of the above remarks and of the results in §1.

When e(w/v) is infinite and T(w/v) = Z,, we shall say that the finite
non-p-place v is infinitely ramified in L; note that if w’is another extension
of v on L, then e(w'/v) = e(w/v), T(w'[v) = T(w/v) so that the definition
is in fact independent of the choice of w. The following result is then
an immediate consequence of Lemma 1:
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LEMMA 2. Let L be a p-extension over a Z,-field K with G = Gal (L/K).
Suppose that each finite non-p-place on K is either unramified in L or
infinitely ramified in L. Then

H*L/K,I,)=0, forall n=1,
and
oL = @ A,

where v ranges over all finite non-p-places on K, ramified in L and
where, for each v,

A, =p}p,= R|Z = Q,/Z,
with B = U,:»™"Z in Q.

3. Let K be a Z,field, v a finite non-p-place on K, and f, the residue
field of v:f, = 0g/p,. Since f, is an algebraic extension of a finite field
and K = k. = kQ. with k finite over @, we see easily that the multipli-
cative group ¥ is a torsion abelian group and that the order of f} is
either divisible by p> or prime to p, i.e., the p-primary component of
fX is either infinite or the identity group.

LEMMA 3. Let the order of tf be prime to p and let L/K be a p-
extension. Then v is unramified in L.

ProOF. We may assume that L/K is finite. Then we can find a p-
extension of finite algebraic number fields, k'/k, such that K = k., L = k..
Let v, = v|k. Then v, is a non-p-place on k and the order of t is prime
to p. Since k'/k is a p-extension, it follows that v, is unramified in %'.
Hence v also is unramified in L.

LEMMA 4. Let the order of tf be divisible by p= and let S be a set
of places on K, including v and all p-places of K. Let L denote the
maximal abelian p-extension over K, unramified outside S. Then v 1is
infinitely ramified in L.

PROOF. Let w be an extension of v on L and assume that
e(whv)=p"< oo, a=0.
Let & be a finite algebraic number field such that K = k.. and that » is
the unique extension of v|k on K, and let k,, » = 0, be the intermediate
fields of the Z,-extension K/k:
k=kc-.---ck,c---Cka=K, K=UEk,.

720

Let S, denote the union of », = v|k, and all p-places on k%,, and F', the
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maximal abelian p-extension over k,, unramified outside S,. Then k, =
K< F,Z L so that we put w, = w|F,. As v, is unramified in K and
e(v/v,) = 1, we have

e(w,/v,) = e(w,[v) = e(w/v) = p* .

For each place z in S,, let k,, denote the z-completion of k,, and U, ,
the multiplicative group of the local units in %,,. Let U, be the direct
product of all such U, ,, z€8S,, and let E, be the group of global units
in k,. Then there is a natural imbedding E, —U,, and we shall denote
by E, the closure of E, in the compact group U,. On the other hand,
let V, denote the Sylow p-subgroup of the profinite abelian group U, ,,.
Since v|Q # p, V, is isomorphic to the Sylow p-subgroup of t}, and since
the order of £ is divisible by p=, V, is a finite cyclic group with order
divisible by p™*'.

Now, applying class field theory for F/k,, one sees that e(w,/v,) is
the order of the image of the product of maps V, — U, — U,/E,. Hence
the order of the image of V, — U,/E, U is at most equal to e(w/v) = p°,
and it follows that

Vi x1x - x1CSEBU" ' CU,=1U...

Consequently, if % = a, then there exists a unit ¢ in E, such that ¢ is
a p"t'-th power in k,, for every p-place z on k,, but is at most a p°-th
power in k,, . Let { be a primitive 2p-th root of unity in C and let

K=k, K =£k=K¢.

Replacing & by KN k' if necessary, we may assume that KNk =k so
that k,(C) is the n-th intermediate field of the Z,-extension K'/k’ for all
n=0:k, =k,(). Let be an extension of v on K’, let v, = v'|k,, and
let V., be the group defined for the local field %, , similarly as V, for
k,. Since the degree [£,,:f,] is a factor of b = [k": k] = [k,: k,] and since
blp—1if p>2 and b=1 or 2 if p =2, it follows that V, = V, for
p>2and[V,.:V,]=1or2 for p =2, n = 1. Consequently, we see that
¢ is at most a p**-th power in the local field %, ,., for » > a. Let ¢,
denote a p"t'-th root of ¢ in C. As k| contains primitive p"+-th roots
of unity, it follows from the above that k,(c,)/k, is an unramified cyclic
p-extension, of which the local degree at v, is divisible by p"+'p=*~* = p"~°.
Therefore, by class field theory, the order of the ideal-class of p,, in k;,
is divisible by p** for all n > a. However, this is impossible because,
for a non-p-place ', the order of the ideal-class of p,, in k, is equal to
the order of the ideal-class of p,, in K’ whenever n is large enough.



270 K. IWASAWA

The contradiction proves that e(w/v) is infinite, namely, that v is infinitely
ramified in L.

Now, let S be any set of places on a Z,field K, containing all p-
places of K, and let S, denote the subset of all finite non-p-places v in
S such that the order of f} is divisible by p=. Let L, denote the maximal
abelian p-extension over K, unramified outside S, and let L be any p-
extension over K, containing L, and unramified outside S: K & L, & L.
Let v be a finite non-p-place on K. Then it follows from Lemmas 3, 4
that » is unramified in L or infinitely ramified in L according as v ¢S,
or v€S,, Hence we may apply Lemma 2 for such an extension L/K.

For each integer » = 1, let W, denote the group of all n-th roots
of unity in C, and let

W<p) = ”L\Jo Wp” .

Then a Z,field K contains W(p) if and only if it contains W,,. When
this happens, we shall call K a cyclotomic Z,-field. Let v be any finite
non-p-place on such a cyclotomic Z,-field K. It is clear that the order
of £ is then divisible by p=. Let p* = (a) with ae K*, a = 1, and let
o, be a p™th root of @ in C for » = 1. Then one sees easily that the
field L in Lemma 4 contains all «,, » = 1, so that v is infinitely ramified
in L. Thus the proof of Lemma 4 is much simpler in this case.

4. We need another lemma as follows:

LEMMA 5. Let K be a number field containing Q. (e.g., a Z,-field)
and let L/K be a p-extension, unramified at every imfinite, i.e., archi-
medean, place on K. Then

H*L/K,L*)=0, forall n=1.

PrROOF. We may assume that L/K is finite. Since H'(L/K, L*) =0,
it is sufficient to prove H*L/K, L*) =0." Let K= hm k,, L = hm k.,

where for each n = 0, k,/k, is a Galois extension of ﬁmte algebraic num-
ber fields such that kK =L, k., K =k,. Then it follows from the
assumption that whenever = is large enough, k,/k, is unramified at every
infinite place of k,. On the other hand, since K contains Q., the local
degree of the extension K/Q at each finite place of K is divisible by p=.
Hence we obtain H*L/K, L*) = 0 by the same argument as in the proof
of [9], Chap. II, Proposition 9.

Now, in general, for each number field K, let Ex and Wy denote the
group of all units of K and the group of all roots of unity in K,

» See [8], Chap. IX, Théoréme 8.



RIEMANN-HURWITZ FORMULA 271

respectively. Let M/K be an arbitrary Galois extension of number fields
and let G = Gal (M/K). Then we have short exact sequences

0O—-P,—>I,—C;—0,

0O—-F,—>M"—P,—0,
and they induce long exact sequences for the cohomology groups
H*M/K, )= H"G, ), n=0.

THEOREM 1. Let K be a Z,-field and let M be a p-extension over K
with the following properties: (i) Cy(p) = 0 and M/K is unramified at
every infinite place of K, (ii) each finite non-p-place on K is either un-
ramified in M or infinitely ramified in M. Then

H"M/K, E,) =0, forall n=2,
and there exists an exact sequence

0 — Cx(p) » H(M/K, Ey) > @ A, — 0

(1)

where v ranges over all non-p-places v on K, ramified in M, and where,
for each v,

A, =y =Q,Z,, R=UpZ.
Proor. Since G = Gal (M/K) is a pro-p-group,
H"(M|/K, C,) = H*M|K, C,(p)) =0, for n=1.
By Lemmas 2, 5, we also have
H*M/K, I,)=0, H*M/K,M*) =0, for n=1.
Therefore (1) induces exact sequences and isomorphisms as follows:
1§ —-C§— H\M/K, P,)—0, H"(M/K,Py,) =0, n=2,
K*— P%— H'M|K, E,)—0, H“M|K,P,) > H"""(MK,E,, n=1.

However, since H(M/K, P,) is a p-primary abelian group, the first exact
sequence and C,(p) = 0 induce H(M/K, P,) = 0. Hence

H"M/K,E,) =0, forall n>=2.
We also obtain from the second exact sequence that
(2) H'(M|K, Ey) = Pi/Px = (Ii N Py)[Pg .
From P, I, NP,<IjnP, we then see that both I N P,/Pr and

I N P,/I; N P, are p-primary abelian groups. Now, in the exact sequence

0_>IKﬂPM/PK—’IK/PK—*IK/IKﬂPM—’O,
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we have I./I.N P, = I.P,/P,< I,/P,. Hence we obtain an exact

sequence
0— Ix N Py/Py — Cx(p) — Cy(p) .

On the other hand, we also have the exact sequence

0— Ii N Py/Ix N Py — I/ Iy — Ii/(Ii 0 Py)Ix — 0.
Since I§/I; is easily seen to be p-primary and since

I¢/I§ (\ Py = IEPy[Py S L,[Py ,

we know that Ij/(I5 N Py)Ix is a factor group of a subgroup of C,(p).
The assumption C,(p) = 0 then implies

I. N P,/Px = Cg(p) , IiNnPy/Iy NP EIg/IK-
Therefore, by Lemma 2 and the isomorphism (2) above, one obtains the
exact sequence for H'(M/K, E,) stated in the theorem.

REMARK. For any Galois extension L/K of number fields, we see
easily that H'(L/K, I,) = 0. Since H'L/K, L*) = 0, it follows from (1)
that

H'(L/K, E;) = P;|Pg,

Ker (H*L/K, E.) — H¥L/K, L*)) = Coker (I — C§) .
When both K and L are finite over Q, these isomorphisms are well known
in the classical literature.

5. Let K be a number field. In the following, we shall denote the

p-primary part Cx(p) of the ideal-class group Cy simply by Ag:
Ag = Cg(p) .
As a p-primary abelian group, Ay is a torsion Z,-module. For a Z field
K, the following facts are known on the structure of the Z,-module A,.?
Namely, let K = k. = kQ.. with & finite over @ and let A = MK/k) and
¢ = #(K/k) denote respectively the so-called M- and pg-invariant of the
Z,-extension K/k. Then
Ar = (Q,/Z,) D A
with A’ a Z,-module of bounded exponent: p°4’ =0, a = 0. Further-
more, if ¢ =0, then A’ = 0 so that
AK = (Qp/Zp)lI ’ AK/pAK =0 )

and if ¢ > 0, then A’ is infinite so that A, /pAy is an infinite Z,-module.

® For the results stated below, see [4], [5].
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Now, it follows from the above that \ = M(K/k) depends only upon
the structure of the Z,-module A, and is independent of the choice of &
such that K = k.. Hence it may be denoted by Aax: \x = MK/k). Simi-
larly, since Ax/pAx is zero or infinite according as ¢ =0 or ¢ > 0, the
fact that #(K/k) = 0 is actually a property of K so that it may be simply
written as

te=0.
The isomorphism for A, shows that in the case t, = 0, A; gives us a
good analogue of the p-power division points of the Jacobian variety of
an algebraic curve and, hence, Az an analogue of twice the genus of
that curve.

In general, for each torsion Z,-module A4, let

V(A) = Hom,, (4, Q,/Z,) ®., @, -

Then A+ V(A) defines an exact contravariant functor from torsion Z,-
modules into vector spaces over Q,. For A = A, let

Ve = V(Ag) .
Since V(A’) = 0 for the above Z,-module A’, we then have
VK = ]Z_, y )"K = dimop VK .

Now, it has been conjectured for some time that p, = 0 for all Z,-
fields K. The conjecture was proved by Ferrero-Washington [3] in the
case where K is an abelian extension over the rational field @, but the
problem is yet unsolved in the general case. As an application of Theo-

rem 1, we shall next give a necessary and sufficient condition for g, = 0
when K is a cyclotomic Z,-field.

THEOREM 2. Let K be a cyclotomic Z,-field, S a finite set of places
on K, including all p-places of K, and M the maximal p-extension over
K, unramified outside S. Then px =0 if and only if Gal (M/K) is a
free pro-p-group.

PROOF.” Since there is no non-trivial unramified abelian p-extension
over M, we see easily that A, = C,(p) = 0. As K contains W(p), it is
a totally imaginary field so that M/K is unramified at every infinite place
of K. By the remark after Lemma 4, each finite non-p-place on K is
either unramified or infinitely ramified in M. Therefore both conditions
(i) and (ii) in Theorem 1 are satisfied for the extension M/K. On the

” This is essentially a known result. Cf. [1], Corollary 2.5. A proof is included here
to clarify, in this simpler case, the main idea of arguments which will again be applied later
to prove more elaborate results.
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other hand, we also see from the definition of M that the map ¢+ e?
for ¢ in E, defines an exact sequence

0-W,—>E,>E, -0,
and this induces the exact sequence
H'(M/K, E,) LN H'M/K, E,) — H*M/K, W,) - H(M/K, E,)
where H*(M/K, E,,) = 0 by Theorem 1. Hence
H*M/K, W,) = H(M|/K, E,)/pH'M|/K, E,) .
However, by the same theorem, there exists an exact sequence
0— Ay —» H(M|K, E’,,J—»@A”—»O

where v ranges over a finite set and 4, = Q,/Z, for every such ». Since
Ag/pAg is zero or infinite according as ptx = 0 or px > 0, it follows from
the above exact sequence that y¢, = 0 if and only if H*M/K, W,) =0,
i.e., H¥Gal (M/K), Z/pZ) = 0. As Gal(M/K) is a pro-p-group, the last
equality means that Gal (M/K) is a free pro-p-group.® Hence the theorem
is proved. Note that the finiteness of the set S is used only to deduce
tx = 0 from H*(M/K, W,) = 0, and not in the opposite deduction.

6. Let J denote the complex-conjugation of the complex field C.
When a number field K is invariant under the automorphism J of C, the
restriction of J on the subfield K will be simply denoted again by J.
In such a case, J acts on various abelian groups canonically associated
with K, e.g., K*, Ix, Cx, ete. In general, when J acts on an abelian
group A, we define the subgroups A+ and A~ by

A* ={a|lac A, J(a) = +a}.

One sees immediately that if A is uniquely divisible by 2, e.g., a Z,-module
with p > 2, then
A=A*PA.

For each number field K, let K+ denote the maximal real subfield of
K. K+=KNR. K iscalled a number field of C-M type if K+ is totally
real, K is totally imaginary, and [K: K+] = 2. K is then invariant under
J, and

Gal (K/K+) = {1, J} .

It is also known that for such K,
(3) Ef = Ex+, Ey = Wy, [Ex: WxEx+:]=1 or 2.
® See [9], Chap. I, §4.
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We now assume that p > 2 and K is a Z,-field of C-M type. We
can then fined a number field & of C-M type, finite over @, such that
K = ko, K* = k%. For such K/k, we can define four invariants \(K/k)*,
M(K/k)* which have similar properties as explained in §5 for M(K/k) and
U(KJk).” For example, M(K/k)* depend only upon K so that they may
be denoted by \z. In fact, we have

AK:A;®AI—{, }:AK'}"
Vei=Vi® Vx, Vi = V(A7) , dime, Vi = \i .
Furthermore, if gz = 0, then
Ax = (Q,/Z,)x ;
and Ax/pAg is zero or infinite according as sz = 0 or pxz > 0.

In addition to the above, let us now also assume that K is a cyclo-
tomic Z,-field, i.e., W(p) = K. Let S* be a set of finite places on K+ =
KN R, containing all p-places of K+, and let M* denote the maximal
p-extension over K*, unramified outside S*. Let

M=KM+.
Since M+/K+ is unramified at every infinite place on K+, M+ is totally
real, and it follows that M is a number field of C-M type and that M+ =
M N R, justifying the notation M+. It is easy to see that M/K+ is a
Galois extension, that KN M+ = K+, and that
Gal (M/K+) = Gal (M/K) x Gal (M/M+) ,
Gal (M/K) = Gal (M*/K*) .
It is also known that g, = 0 if and only if p¢z = 0.

(4)

LEMMA 6. The extension M/K has the properties (i), (ii) stated in
Theorem 1 so that the cohomology groups H*(M/K, E,), n = 1, are given
by that theorem.

PROOF. As in the proof of Theorem 2, A} = A,+ = 0 for the maxi-
mal p-extension over K+, unramified outside S*. Since K is totally
imaginary, M/K is unramified at every infinite place of K. (This follows
also from the fact that M/K is a p-extension with p > 2.) Let cc Ay,
pc =0. Let a be an ideal of I, in the ideal-class ¢ and let a? = (),
aeM*. Then b? = (B8) with b =a""’, 8= a'"’. Since M contains W,,
M(¥B)/M is a cyclic extension of degree 1 or p. However, 5"/ =1
implies that M( ¥ 8)/M~ is abelian. Hence there exists a cyclic extension
M'/M+ which is of degree 1 or p, unramified outside p-places of M+,

9 See [5].
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and satisfies M(¥8) = MM’. It then follows from the definition of M+
that M’ = M+, M(¥B) = M so that b = (¥R3) with ¥ 8 eM*. Thus
1—J)e=0, ccAy =0, and consequently ¢ =0. Therefere Ay =0,
A, = AF P A; =0, and the property (i) of Theorem 1 is verified for
MJ/K. Next, let v be a non-p-place on K and let »* = v|K*. Since
K+ =L} is a Z,field, it follows from the remark after Lemma 4 that
v* is either unramified in M* or infinitely ramified in M~*. Using the
fact that Gal (M+*/K*) is a pro-p-group with p > 2, we then see from
(4) that v is unramified or infinitely ramified in M according as »* is
unramified or infinitely ramified in M+. Hence M/K has also the property
(ii) of Theorem 1.

Let »* be any place on K+ and let » be an extension of »* on K.
Then v and ¥ = J(v) are the only extensions of »* on K. As usual, we
shall say that o»* splits in K if v ## #. Since each place on K+ has at
most two extensions on K, the above proof shows that if S+ is a finite
set, then there exist only a finite number of finite non-p-places v on K
which are ramified in M; namely, the direct sum @,A, in the exact
sequence for H'(M/K, E,) in Theorem 1 is a finite sum.

THEOREM 3. Let K be a cyclotomic Z,-field of C-M type for p > 2
and let S* be a finite set of finite places on K+ = KN R, including all
p-places of K*. Let M+ be the maximal p-extension over K*, unramified
outside S+, and let s denote the number of finite non-p-places on K+
which split in K and are ramified in M*+. Then tty =0 if and only +f
Gal (M*/K™*) is a free pro-p-group, and if this is the case, then the mini-
mal number of gemerators for Gal (M+/K+) is Mg + s.

PrOOF. As stated above, let M = KM+. Then Gal (M/K*) acts on
E, so that J also acts on H"(M/K, E,). Hence H*(M/K, E,)* are defined.
Since p > 2, it follows from (3), (4) and W(p) < W, that

H"(M|K, E,)~ = HYM/K, W) = H"(M/K, W(p)), for n=1.
Therefore, by Theorem 1 and Lemma 6, we see that
H*M/K, W(p)) =0, for n=2.

Furthermore, the exact sequence in Theorem 1 also implies an exact

sequence
0— Ax — H'(M/K, W(p)) — (@ A,)"—0

where, as easily seen from the definition of A4,,

@ 4) = @17, -
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Now, from H*(M/K, W(p)) = 0 and from the exact sequence
0— W, — W(p) > W(p) -0,
one obtains
H*(M/K, W,) = H'(M|K, W(p))[pH'(M/K, W(p)) .

On the other hand, Ax/pAx is zero or infinite according as t;z = 0 or
tx > 0. Therefore, similarly as in the proof of Theorem 2, we conclude
from the above exact sequence for HYM/K, W(p)) that gz = 0 if and
only if HM/K, W,) = 0, namely, that ¢, = 0 if and only if Gal (M+/K*) =
Gal (M/K) is a free pro-p-group. Furthermore, when this is the case,
then Ax = (Q,/Z,)* so that
H'(M/K, W(p)) = (Q,/Z,)" * .

However, since W(p) € K, H'(M/K, W(p)) is the Pontrjagin dual of the
factor commutator group of Gal (M/K). Therefore the above isomorphism

indicates that \x -+ s is the minimal number of generators for the free
pro-p-group Gal (M+/K+).

We note here that an essential difference between Theorem 2 and
Theorem 3 lies in that the free pro-p-group Gal (M*/K™*) in Theorem 3 is
finitely generated while this is not so for the free pro-p-group Gal (M/K)
in Theorem 2.

We shall next also briefly explain a generalization of Theorem 3.
Let K’ be a totally real Z,-field with p > 2. Let S’ be a finite set of
finite places on K’, including all p-places of K’, and let M’ denote the
maximal p-extension over K', unramified outside S’. Let

K =KW, .

Then K is a cyclotomic Z,-field of C-M type and K/K’ is a cyclic exten-
sion with degree a factor of p — 1. In fact, there exists a monomorphism

L:Gal (K/K') — Z

such that ¢({) = {* for all 0e€Gal(K/K’) and (e W(p) S K. Let AP
denote the submodule of Az = Ck(p), consisting of all ¢ in A, such that
o(a) = X(o)a for every o in Gal(K/K'). The Z,-module AY is then a
direct summand of A, and it has similar properties as mentioned earlier
for Ax and Ag; for example, if AP = pAY, then

49 = @,/Z,)

with an integer » = A% = 0. Let s be the number of finite non-p-places
on K’ which are ramified in M’ and which split completely in K.
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Now, it can be proved that the Galois group Gal (M'/K') is a free
pro-p-group if and only if AP = pAY, and if this is the case, then the
minimal number of generators for Gal (M!/K’) is M’ + s. The proof is
similar to that of Theorem 3, the key fact in this case being C,(p)* =0
for M = KM’'. However, we omit the detail. It is clear that AY = pAY
follows from A, = pAi, namely, from g, = 0. Therefore p, = 0 for
K = K'(W,) implies that Gal (M'/K’) is a free pro-p-group. Hence it
follows from the theorem of Ferrero-Washington [3] that for any Z,-field
K', p > 2, which is real and abelian over @, the Galois group Gal (M'/K")
is always a free pro-p-group with a finite number of generators.

7. In general, let K be a Z,-field, and L/K a finite Galois extension
with G = Gal (L/K). Then L is again a Z,-field and G acts on A, = C.(p)
in the natural manner. Therefore G acts also on the vector space V, =
V(A,) defined in § 5 and we obtain a \,-dimensional p-adic representation

Tt G = Gal (LK) — GL(V,) .

Let p > 2 and assume that both K and L are number fields of C-M type.
Then L/K+* is a Galois extension and

Gal (L/K+) = Gal (I/K) x Gal (L/L*) , Gal (L/K) = Gal (L*/K*) .
Consequently, we have the decomposition for 7 .:

Tk = Thx D Tk
where

Tt G — GL(VE) .

Let us next investigate the above representation 77, in the case
where L/K is a finite p-extension and K is a cyclotomic Z,-field, i.e.,
W(p) S K. We first note that there exist only a finite number of finite
places on K+ which are ramified in L*; in fact, this is true in general
for any finite extension of Z,-fields. Since L*/K* is unramified at every
infinite place of K+, there exists a finite set S* of finite places on K+,
including all p-places of K+, such that L* is contained in the maximal
p-extension M+ over K+, unramified outside S*:

Kt Lt M+*.
For M = KM+, we then have
K Lo M.

It is clear that M+ is the maximal p-extension over L*, unramified out-
side the set of extensions, on L*, of all »* in St. Thus M*/L+ is the
same kind of extension as M*/K* in Lemma 6 so that there exists an
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exact sequence
0—~A,—H(M|L, Ey) - @ A, —0

where w ranges over all finite non-p-places on L, ramified in M. Further-
more, in this case, the maps in the exact sequence are homomorphisms
over Gal (L/K*). Hence it induces an exact sequence of G-modules:

0— A7 - H(M/L, Ey) — (@ 4.~ —0,

where HYM/L, E,,)- = H'(M/L, W(p)) as explained in the proof of Theo-
rem 3. Let v+ = w|K+*. By the remark after Lemma 4, vt is either
unramified in M* or infinitely ramified in M+. Therefore, if w is ramified
in M, then v* is ramified in M+, and the converse is alse true. In general,
for each finite non-p-place »* on K+, define a module B,» over G =
Gal (L*/K+*) by

B,+ = G? A+,

with w* ranging over all extensions of v* on L*. Then we obtain from
the above an exact sequence of G-modules:
0— Ay — H(M/L, W(p)) > @ B, -0,
»t
where vt now runs over all finite non-p-places on K+, ramified in M+
and split in K. Let
V, = V(H(M/L, W(p))

with the functor V defined in §5. Since V is exact, it follows from the
above that

Vo= Vi ® @ V(B
as representation spaces for the finite group G. Thus
(5) T, = Trx D (@ T,+)

with 7, and 7,+ denoting the representations of G on the spaces V, and
V(B,+) respectively. Now, for each v*, fix an extension w* of v* on L*,
and let T = T(w*/v*). Then T = Z(w*/v*) by §1 so that as G-modules,

B, = (@,/Z,)IG/T]

where the right hand side denotes the linear combinations of the left
cosets of G modulo T with coefficients in @,/Z,. Consequently

V(B,+) = Q,[G/T],

and we see that x,+ is isomorphic to the representation of G over the
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field Q,, induced by the trivial one-dimensional representation of the
subgroup T = T(w*/v*). 1t is then clear from (5) that the representation
7z x is completely determined if we know the representation 7, of G on
the space V, = V(H{(M/L, W(p)).

Let

X =Gal(M*/K+) = Gal (M/K) , Y = Gal (M+/L*) = Gal (M/L) .
Then Y is a closed normal subgroup of the pro-p-group X and
X/Y = Gal (L*/K*) = Gal (L/K) = G .

As explained in the proof of Theorem 3, H(M/L, W(p)) is the Pontrjagin
dual of Y, the factor commutator group of Y. Since W(p) < K, we
see that as G-modules,

VO = de ®Zp Qp ’

where the action of G = X/Y on the right is given by conjugations in
X. Let us now assume that gt = 0. Then it follows from Theorem 3
that X is a free pro-p-group with Az + s generators, where s denotes
the number of places vt in the direet sum in (5). Therefore the repre-
sentation 7z, can be described by the following purely group-theoretical
lemma:

LEMMA 7. Let X be a free pro-p-group with m generators, m = 1,
and let Y be a closed normal subgroup with finite index in X. Then
the representation @, of the finite group G = X|/Y on the vector space
Y*®,,Q, is given by

Ty, = 77:169(7"/"‘ l)nG’

where w, denotes the onme-dimensional trivial representation of G over
Q,, and 7w, the regular representation of G over Q,.

PrROOF. Let I, denote the augmentation ideal of the group ring
Z,[G] so that

0-1I;,—ZJ|G]l—Z,—0
is exact. Then there exists'® an exact sequence of Z,[G]-modules:
0->Y*—ZJ[GI"—1,—0.

The lemma follows from this by replacing each term of the above by
its tensor product with @, over Z,.

We now consider again the case where X = Gal (M/K), Y = Gal (M/L),

100 See [10]. Note that m need not be the minimal number of generators for G.
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and G = X/Y = Gal(L/K). We know that X is a free pro-p-group with
m = Ax + s generators. Assume that G # 1, i.e., K+ L. Then X # 1,
m = 1 so that we obtain from (5) and Lemma 7 that

TNk +8s— Vg =75P (@ T,) ,

where s is exactly the number of places v+ which appear on the right.
For such a place v+, let w* denote an extension of v* on L* and let
T = T(w*/v*). Then 7,+ is the representation of G over Q,, induced by
the trivial representation z,|T of the subgroup 7. Therefore

Mg = Mo+ D Tt

where 7+ is the representation of G over @,, induced by the represen-
tation 7, — 7,|T for T. Note that when we change the extension w*
of »* on L*, the inertia group T(w*/v*) is relaced by its conjugate in G
so that 7,+ and #}+ are unchanged (up to isomorphisms). We now obtain
from the above that

(6) R = T @ (i — Do © @ 1)

where v+ ranges over all finite non-p-places on K+ which are ramified
in M* and split in K. However, if »* is unramified in M*, then
T(w*/vt) =1 so that w,+ = 7w, @+ = 0. Hence the sum in (6) may be
taken over all v+ which split in K. Note also that if Az = 0, then the
right hand side of (6) should be interpreted as the difference of the sum
over v+ and the representation w; — =,.

Finally, if G=1, then K= L, Vy = V., and 77, = Azw,. Since
w,+ = 0 for all »*, the equality (6) still holds in this case. Thus we have
proved the following

THEOREM 4. Let p > 2 and let L/K be a finite p-extension of cyclo-
tonic Z,-fields of C-M type. Let mwyx: G — GL(V}) be the representation
of G = Gal(L/K) on the vector space Vi = V(A:;) over Q,. Assume that
tx = 0. Then

g = T D Wk — Vg D (Qi T+) .

Here 7, 1s the ome-dimensional trivial representation of G over Q,, mg
18 the regular representation of G over Q,, v+ ranges over all finite non-
p-places on K+ = KN R which split in K, and =+ denotes the comple-
ment in ws of the representation w,+ of G = Gal (L*/K*), induced by the
one-dimensional trivial representation, over Q,, of the imertia group
T(w*/vt) of v* for the Galois extension L*/K*.
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As mentioned above, when Az = 0, the right hand side of the for-
mula should be interpreted as the difference of the sum over »* and
Mg — Ty

8. Again, let p > 2 and let L/K be a finite p-extension of Z,-fields
of C-M type. We shall next study the representation 77, in the case
where K is not cyclotomic. Since p > 2, [Q(W,): Q] =p» — 1, L also is
then non-cyclotomic and W, is not contained in W,. We can find a finite
set S of finite places on K, including all p-places of K, such that L is
contained in the maximal p-extension M over K, unramified outside
S:KC L M. Furthermore, we may choose S so that it is invariant
under the automorphism J of K/K+. Then M/K+ is a Galois extension.
Clearly, if S’ denotes the set of all extensions, on L, of the places in S,
then M is the maximal p-extension over L, unramified outside S’. There-
fore, as in the proof of Theorem 2, we can see that both extensions
M/K and M/L satisfy the conditions (i), (ii) of Theorem 1; here one has
only to note that both K and L are totally imaginary because they are
number fields of C-M type. It then follows from Theorem 1 that

H*M/L, E,) =0, forall n=2.

Therefore the Hochschild-Serre spectral sequence for K £ L & M induces™
an exact sequence
0 — H'L/K, E;) — H(M|K, Ey) — H(L/K, H(M|L, E,))
— H¥L/K, E;) — HM|/K, E,) — H(L/K, H'(M/L, E,))

—> e e

Since M/K+ and M/L*+ are Galois extensions, the automorphism J acts
on each term of the above exact sequence, and we obtain similar exact
sequences where H"( , ) are relaced by H*(, )*. By Theorem 1,

H*M|/K, E,) = H*M/K, E,,)* =0, for n=2.
Since W, is not contained in W,
H"(L/K, E,;)- = H*(L/K, W;) =0, for n=1.
Therefore it follows from the exact sequence for H"( , )~ that
A°= H(M|K, E,)~, H"G,A) =0, for n=1
where we put
G = Gal (L/K) , A = H\M|L, Ey)~ .

1 See [7], Chap, VI, Théoréme 4. Of course, one has to consider here Galois cohomology
groups instead of cohomology groups of discrete groups.
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Let s now denote the number of finite non-p-places v+ on K+ which split
in K and are ramified in M. Similarly as in §7, Theorem 1 for M/K and
MJ/L then give us the exact sequences

0—-Ax— H'MIK, E,) @ A4,+ —0,
vt
(7) 0—~4,-

—A— @B, 0,
»t

where »* ranges over the places on K+ as mentioned above and where
A,+ and B, are defined in the same manner as in §7.

Assume now that g, = 0. It is known in general that this induces
Y, = 0 for a finite p-extension L/K. Therefore px = ¢; = 0 so that

Ak = (Q,/Z,)x , L =(Q)Z,)
as explained in §6. Hence we obtain from the above that
(8) A° = (Q,/Z)5 A= (Q,Z,)

with s defined above and with a certain integer ¢t = A;. Let
A, =Ker(p: A— A)

so that 0 -4, — A% 450 is exact. Then H*G, A) =0, for n =1,
imply
H"G,A,)=0, forall n=2.

Since G is a finite p-group, it follows that A, is free over (Z/pZ)[G]™.
From (8), we then see that
A = (Q,/Z,)[G)x+ .

Let 7, denote as before the representation of G on the vector space
V, = V(A) over Q,. Then the above isomorphism implies

Vo= Q,IG)x™, 7w = (\x + 8)7g

with 7, denoting again the regular representation of G over @,. From
the exact sequence (7), we again obtain the equality (5) in §7, but with
the representation =, as mentioned above. Therefore, just as in §7, we
can prove the following result:

THEOREM 5. Let p > 2 and let L/K be a finite p-extension of mon-
cyclotomic Z,-fields of C-M type. Let nr,x: G — GL(V;) be the represen-
tation of G = Gal (L/K) on the vector space Vi = V(A7) over Q,. Assume
that ptx = 0. Then

TZixk = Nzl D (@ To+)
12) Qee [8], Chap. IX, Théoréme 5.
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where T, and the sum over v* are defined in the same manner as in
Theorem 4.

Note that in both Theorem 4 and Theorem 5, #,+ = 0 if »* is un-
ramified in L*. Hence the sum over v* is actually a finite sum and it
is zero if and only if L*/K+* is unramified outside the p-places of K™.

9. In general, for each Z,-field K, let
og=1 or 0

according as K is cyclotomic or not. As in Theorems 4, 5, let L/K be
a finite p-extension of Z,-fields of C-M type. Then the formulae in those
theorems can be uniformly written as

(9) g = 0x, D (Mg — 0x)Ts D (Q ) .

We shall next compare the degrees of the representations on the both
sides. It is clear that

deg (m7x) =Nz, deg(m)=1, deg(my) =n=I[L:K].

Since 7,+ is induced by the trivial representation of the inertia group
T(wt/v*) = Z(w*/vt), we have

deg (w,+) =nfe=g¢g, deg(m,+)=mn—g=g9g(—1)

where e = e(w*/v") = [T(w*/v*): 1] is the ramification index of w* for the
extension L*/K* and where g = g(w*/v*) is the number of the extensions
w* of v+ on L*. Hence it follows from (9) that

M = 0g + (v — O)lL: K] + 2 (e(w' /o) — 1),

where the sum on the right is now taken over all finite non-p-places w*
on L', split in L. The same formula may be also written as

(10) 20v2 — 02) = 200k — 0R)[L: K] + X (e(w/v) — 1)

with w ranging over all finite non-p-places on L, split for the extension
L/L*. This is the formula of Kida [6], mentioned in the introduction.
We note that it is easy to deduce from (9) a similar formula for L'/K
where L’ is an arbitrary intermediate field of K and L, not necessarily
a Galois extension over K.

The proof of the above formulae for 77 and A; does not work to
obtain similar results for #jx and A}. The main reason is that while
Galois cohomology groups with values in Ef = W, can be quite simply
calculated, it is not so for E} = E,.. However, less explicit formulae
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involving some cohomological invariants still can be proved by similar
arguments in certain cases. We shall next explain it briefly.
In what follows, let p denote an arbitrary prime number, possibly
2, and let L be a cyclic extension of degree p over a Z,-field K, unramified
at every infinite place on K. Let S be the set of all finite non-p-places
on K, ramified in L, and let I, s and P, denote the group of all S-ideals
of L and the subgroup of principal ideals in I, s, respectively.’® Then
we have exact sequences of modules over G = Gal (L/K):
OHPL,S"’IL,S’*GL,S_’O ’
OHEL,S—_)LX—_)PL,SHO y
where C, g is the ideal-class group of S-ideals of L, and E, ¢ the group
of S-units in L. It follows from Lemmas 1, 5 that
H*L/K, I, =0, H*L/K,L*)=0, for n=1.
Hence the above exact sequences imply that for n = 1,
H"(L/K, C.s) = H*"L/K, P;5), H"(L/K, P, 5) = H**'(L/K, E.5) .
As G is cyelic, we then obtain
H"(L/K, A, ) = H*L/K, E,s), for n=1,
where we put
A s =Cps(p) .

We now assume that g, = 0 so that ¢, = 0. Since A, s is a factor group
of A, = C,(p) modulo a finite subgroup, it follows from the remark in
§5 that

AL,s = (Qp/Zp)ZI‘ .

The structure of such a G-module A, can be described as follows.
Namely, let ¢ be a generator of G and let

X, = Z|q], X,,=1-0X,, X, =X/X,.,=2,,
A, = Hom,, (X, Q,/Z,) , for i=1,p—-1, p.
Then
(11) ALs= A" A DAY
with some integers a,, a,,, a, = 0. With the functor V defined in
$5, let
V,=V(l), n:G—->GL(V,), for =1, p—1, p.

¥ Cf. [1l.
19 This is a well-known result on the integral representations of G over the ring Z,.
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Then =, is the trivial representation of G over Q,, m,_, is the unique
faithful irreducible representation of G over Q,, and

T,=m, P, ,=7n4.
Since
Vo= V(A4,) = V(4.s),
it follows from the above that
Tux = 4T D a, .7, . D a,7,

for the representation z,,, of G = Gal (L/K) on the space V,. We shall
next compute the integers a,, a,_,, and a,.

Since G is a cyclic group of order p, the cohomology groups of G
are abelian groups of exponent p. One checks easily that

r(H G, A) =1, rHY(G, A4,.)=0, rHG,A4,)=0,
rH¥G, A)) =0, rHG, A,)=1, rHG, A4)=0
for the ranks of the abelian groups H™(G, A,). Let
r, = r(H LK, A, ) = r(H"L/K, E.), n=1.
Then it follows from (11) that

Ty =0y, To = Qp_y «

In particular, we see that both H'(L/K, E, ) and H*L/K, E, ) are finite
groups so that the Herbrand quotient ¢(&, ) of the G-module E, g is

defined. Let d denote the number of places on K in the finite set S
and let

h,=r(H"L/K, E,)), n=1
for the G-submodule E, of E, ;. Then it can be seen easily that
q(Eys/E,) = p" .
Hence, by Herbrand’s lemma, ¢(¥,) is defind and
Q(ELs) = q(E)p” .
Thus both h, and &, are finite and they satisfy
Qpy —Q=hy, —h, +d.
Now, the assumption ¢, = 0 implies
Ag,s = Cr,s(p) = (Q,/Z,)x .

On the other hand, since H*L/K, L*) = 0 by Lemma 5, the remark at
the end of §4, applied for E, s, gives us
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HI(L/K, EL.S) = Pg,S/PK,S ’
H*L/K, E, ) = Coker (Ifs— C:y) .

As the cohomology groups on the left are finite, it follows that both
the kernel and the cokernel of Ay s — AY; are finite groups. Hence we
see from (11) that
Ag =0 +a,.
Therefore
Tk = O D Ay T,y S ApTTy
= (a1 + )7, D (a1 — a7,
= AgTg @ dTEp—l EB (hy, — h1)7tp—1 .

For each non-p-place v on K, let the representations 7, and #} be defined
similarly as w,+ and 7+ in §7. Then for the cyclic extension L/K of
degree p,

w,=m,, or 0

according as v is ramified or unramified in L. Hence the following theo-
rem is proved:

THEOREM 6. Let p = 2 and let L be a cyclic extension of degree p
over a Z,-field K, unramified at every infinite place of K. Assume that
e =0. Then

Tx = AT D (@D 7)) D (hy — h)w,_,

for the representation 7. of G = Gal (L/K) on the vector space V, over
Q,. Here, h;, denotes the rank of the abelian group HL/K, E.) for
1 =1, 2, m; is the regular representation of G over Q,, w,_, the unique
Sfaithful irreducible representation of G over Q, with degree p — 1, and
v ranges over all non-p-places of K, with 7, as mentioned above.

Of course, if h, — h, is negative, the right hand side of the formula
should be interpreted as a difference of two representations.

Now, comparing the degrees of the representations in Theorem 6,
we immediately obtain the following formula for A, and \g:

M= Phg + 2 (e(w/v) — 1) + (0 = Diky — hi)

where w ranges over all non-p-places on L. Checking the proof of Theo-
rem 6, one also finds that in the case where p > 2 and L/K is an exten-
sion of Z,-fields of C-M type, similar results can be proved for 7, and
A; by the same method. These are of course the special cases of the
formulae (9) and (10) for a cyclic extension L/K of degree p. However,
as Kida [6] pointed out, his formula in the general case is actually an
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easy consequence of the special case mentioned above. Thus the above
method provides another proof of Kida’s formula (10).
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