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Let f\Rr—>R be an w-fold covering of compact, connected Riemann
surfaces and let g and g' denote the genara of R and Rf respectively.
The classical formula of Riemann-Hurwitz then states that

2g' - 2 = (2g - 2)n + Σ (e( P') - 1)

where the sum is taken over all points P' on R' and e(P') denotes the
ramification index of P' for the covering /. In a recent paper [6], Kida
proved a highly interesting analogue of the above forumla for algebraic
number fields.υ In the present paper, we shall give an alternate proof
for the theorem of Kida from a different point of view. Namely, as-
suming that the covering / is regular, let G denote the group of all
covering transformations for /. Then the finite group G acts naturally
on the space of all differentials of the first kind on R', and the repre-
sentation of G thus defined was completely determined by Chevalley-Weil
[2]. In the following, we shall study certain p-adic representations of
Galois groups which may be regarded as analogues, for algebraic number
fields, of the representation of G mentioned above, and we shall prove
a result for such p-adic representations, quite similar to the theorem of
Chevalley-Weil for the representation of G. The formula of Kida will
then follow from this by comparing the degrees of the representations.
Our proof is based essentially upon Galois cohomology theory for algebraic
number fields which are not necessarily finite over the rational field.
Hence some preliminary results in that theory will be discussed in the
earlier part of the paper.2) In the last section of the paper, we shall
also indicate briefly another approach to Kida's formula which is slightly
different from what is described above; this might be of some interest
because it applies also for, e.g., totally real algebraic number fields.

1. Throughout the following, let Z, Q, R, and C denote the ring of
rational integers, the field of rational numbers, the field of real numbers,
and that of complex numbers, respectively. By a number field K, we

υ See the formula (10) in §9 below.
2 ) See also [1], [9] for Galois cohomology theory.
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shall mean any algebraic extension of Q in C, not necessarily finite over
Q. For such a field K, let oκ denote the ring of all algebraic integers
in K. The invertible o^-submodules of K are called the ideals of Ky and
they form a multiplicative group Iκ, the ideal group of K. Let Pκ denote
the subgroup of principal ideals (α), aeKx. The ideal-class group Cκ —
IKIPK is then a torsion abelian group so that

Cκ = 0 Cκ(q)
Q

where q ranges over all prime numbers and Cκ(q) denotes the g-primary
component of Cκ. If K is a subfield of a number field L, there is a
natural imbedding Iκ —> IL, and it induces homomorphisms Cκ —> CΊ,,
Cκ{q)-+CL{q). Let t; be a finite, i.e., non-archimedean, place on iΓ and
let £v denote the associated maximal ideal of oκ. If K/Q is finite, then
pv belongs to Iκ and generates a cyclic subgroup (pv) of Iκ. For infinite
K/Q, this is not true in general. However, in some special cases, we
can still define a subgroup Iυ of IKi similar to (pv) mentioned above.
Namely, assume that K has a subfield k, finite over Q, such that v is
the unique extension of v\k on K, v\k being the restriction (projection)
of v on the subfield fc. Let K = lim ft* where fc £ fcέ £ K and &</Q is

finite, and let vt = v\kt. Then (pv.) is contained in (pυ.) for Â̂  £ A ̂  so
that a subgroup Iv of Iκ — lim ifc. is defined by

Iυ = lim (pH) .

It is isomorphic to a subgroup of the additive group of Q, containing Z.
In particular, if there exists a subfield k such that v is unramified for
the extension K/k, then pv belongs to Iκ and Iυ = (pv) = Z. We note
here in passing that the ramification theory can be reasonably extended
to places on extensions of number fields which are not necessarily finite
over Q; for example, the ramification indices are defined for such places
so that they agree with the classical definition for finite algebraic number
fields and satisfy the chain rule for K £ L £ M.

Let p be a fixed prime number and let Zp and Qp denote the ring
of p-adic integers and the field of p-adic numbers respectively. Let Qoo
be the unique Z^-extension over Q in C3 ) For each number field k, finite
over Q, the composite &«, = kQ^ is then a Z^-extension over k, and it is
clearly a finite extension of Qoo. Conversely, if if is a finite extension
over Qoo in C, then there exists fc, finite over Q, such that K = kco. In
the following, we shall call such a number field K simply a Zp-field.

3) For Zp-extensions of algebraic number fields, see [5] and the papers in the bibliography
of [5].
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Let q be any prime number and let v be a g-place on a Zp-Άeld K,
i.e., a finite place on K with v\Q = q. From K = fcoo = &Q00, we then
see easily that the subgroup Iv of Iκ is defined as explained above and
that if q Φ p, then Iv = (pv) ^ Z, and if q — p, then Iυ is isomorphic to
the union (J^o p~nZ. Furthermore, for each prime number q, there exist
only a finite number of (/-places on K, and

where v ranges over all finite places on K.
Now, let L be a finite Galois extension of a Zp-field K with G —

Gal (L/K); L itself is then a Zp-field. For each finite place v on K, let

T — Λ 7"
w

where w runs over all extensions of v on L and where Iw denotes the
subgroup of IL defined similarly as Iv for K. Clearly ILtV is a subgroup
of IL, invariant under G, and

v

with v ranging over all finite places of K. Writing Hn(L/K, ) for the
cohomology group Hn{G, ), we then have

H \ L / K , I L ) = @ H n ( L I K , I L , υ ) , f o r ̂ ^ 0 .

We shall next consider Hn(L/K, ILfV) for each finite place v on K.
First, let v be a non-p-place, i.e., v\Q = q Φ p. For an extension w

of v on L, we can define the decomposition group Z — Z(w/v) and the
inertia group T = T(w/v) as usual so that T Q Z g=G. Let e = e(w/t;) =
[Γ: 1], / - f{wjv) = [Z: T], ^ = g(w/v) = [G: Z] so that e/flr = [G: 1] -
[L: JK"]. Then, as in the classical theory for finite algebraic number fields,
one proves the following:

(a) All extensions of v on L are given by σ(w), σeG, so that g is
the number of distinct extensions of v on L. Hence, as G-modules,

IL,V~Z[G/Z]

where Z\G\Z\ denotes the module of all linear combinations of the left
cosets of G modulo Z with coefficients in Z and where the isomorphism
is defined by σ(pw) H+ σZ, for σ e G. Consequently

Hn(L/K, IL,υ) ~ H\G, Z[G/Z]) ~ H*(Z, Z) , n ^ 0

with trivial ^-action on Z.4)

4 ) See [7], Chap. II, Theoreme 6.
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(b) Let wlf '",wg be the distinct extensions of v on L. Then, in
the ideal group ILJ

a \i=l I

Hence
Il% = H%L/K, IL,V) = 0>i/e> = Z.

(c) T is a normal subgroup of Z and

where ϊv = oκ/pυ and ϊw = oL/pw are the residue fields of v and w respec-
tively. In particular, / = [ίw: ΪJ. Note that both tv and lw are algebraic
extensions of the finite field Fq with q elements and that [tv: Fq] is divisible
by p°° because K = koo.

Assume now that L/K is a ^-extension. Then Z/T is a p-group, and
the remark just mensioned above implies that / = [ϊw: ΪJ = 1, Z = T.
However, since v \ Q Φ p, v is tamely ramified in L so that T is a cyclic
group of order e. Hence, in this case, we obtain from (a) above that

Hn(L/K, ILtV) = Z/eZ , for all even n ^ 2 ,

= 0 , for all odd n :> 1 ,

while H°(L/K9 ILtV) is given in general by (b).
Next, let v be a p-place on K. Then /L>v is uniquely divisible by p

as mentioned earlier. Hence, for a p-extension L/K, we see easily that

= H%L/K, ILtV) = 0 , for ra^l.

2. Let i ί be again a Zp-field and let L/iί be a p-extension with
G = Gal (L/K). We do not assume here that L/K is a finite extension.
Hence L is not necessarily a Z -̂field. However, if {Lt} denotes the family
of all finite Galois extensions of K contained in L, then each Li is a Zp-
field and

L = lim Li .

For a finite place v on K, let

JLf, = lim IL\V

where JL.,V is defined as in § 1 and where the limit is taken with respect
to IL.iV —> ILj>v for Li £ L3. Then IL)V is a subgroup of IL, invariant under
G, and

IL = ®IL,V.
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Hence

v

H\L\K, ILfV) = lim H\LtIK, ILί,v) ,

LEMMA 1. Let v\Q = p. Then

I£tV = HXL/K, IL,V) = Iv ,

H*(L/K, ILlV) = 0 , for n ^ l .

Let v\Q Φ p. Let w be an extension of v on L and let e — e(w/v) denote
the ramification index of w/v, i.e., the order of the inertia group T{wjv).
If e is finite, then T(w/v) = Z/eZ and

/ G 117"0/7" ITT T \̂ /W/e\ ~ Ύ

Hn(L/K, ILtV) = Z/eZ , for even n ^ 2 ,

= 0 , for odd n ^ 1 .

On the other hand, if e is infinite, then T(w/v) = Zp and

IL = H\L/K, IL,V) = {pi I r e R) = R - y P~%Z ,

H\L/K,IL>υ) = 0, for n ^ l .

PROOF. The first part is an immediate consequence of the results
for Hn(LJK, IL.jV) mentioned in § 1 . Let v\Q Φ p and let wt = w\Li9

e. = e(wjv), Tt = T(wjv) = Z(wjv) for each i. Then T = T(w/v) = lim Tif

and the argument in § 1 shows that the following diagram is commuta-
tive for Li Q L3:

\ ' Li'υ Γ

Here the vertical map on the right is defined by the natural homomor-
phism T3 —> Ti and by the endomorphism a ι-» (βy/ejα of Z. Hence it
follows that

Hn(L/K, IL,V) ~ H\T, lim Z) , w ^ 0 .

As each Tt is a cyclic group of order eif the statements in the second
part are consequences of the above remarks and of the results in § 1.

When e(w/v) is infinite and T(w/v) = Zp, we shall say that the finite
non-p-place v is infinitely ramified in L; note that if w' is another extension
of v on L, then e(w'/v) = e(w/v), T(w'/v) = T(w/v) so that the definition
is in fact independent of the choice of w. The following result is then
an immediate consequence of Lemma 1:
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LEMMA 2. Let L be a p-extension over a Zp-field K with G = Gal (L/K).
Suppose that each finite non-p-place on K is either unramίfied in L or
infinitely ramified in L. Then

Hn(L/K, IL) = 0 , for all n ^ 1 ,
and

IS/h = ®AV
V

where v ranges over all finite non-p-places on K, ramified in L and
where, for each v,

Aυ = pξ/pυ = R/Z = QJZP

with R = U^o P~nZ in Q.

3. Let if be a Z -̂field, v a finite non-p-place on K, and ΐυ the residue
field of v: tv — oκjpv. Since tv is an algebraic extension of a finite field
and K = koo = kQoo with k finite over Q, we see easily that the multipli-
cative group ϊ* is a torsion abelian group and that the order of ϊ£ is
either divisible by p°° or prime to p, i.e., the p-primary component of
f* is either infinite or the identity group.

LEMMA 3. Let the order of ϊ* be prime to p and let L/K be a p-
extension. Then v is unramified in L.

PROOF. We may assume that L/K is finite. Then we can find a p-
extension of finite algebraic number fields, k'/k, such that K = &«,, L = kl.
Let v0 — v\k. Then v0 is a non-p-place on k and the order of ϊ£0 is prime
to p. Since k'jk is a p-extension, it follows that v0 is unramified in k\
Hence v also is unramified in L.

LEMMA 4. Let the order of t% be divisible by p°° and let S be a set
of places on K, including v and all p-places of K. Let L denote the
maximal abelian p-extension over K, unramified outside S. Then v is
infinitely ramified in L.

PROOF. Let w be an extension of v on L and assume that

e(w/v) = pa < °o , a ^ 0 .

Let k be a finite algebraic number field such that K = k™ and that v is
the unique extension of v \ k on K, and let knJ n ^ 0, be the intermediate
fields of the Z^-extension K/k:

k = kQ c c kn c c fcoo = K , K = \Jkn .

Let Sn denote the union of vn = v\kn and all p-places on knJ and Fn the
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maximal abelian p-extension over kn, unramified outside Sn. Then kn £
K £ Fnςz L so that we put wn = w\Fn. As vn is unramified in K and
e{vhn) — 1, we have

e(ww/ι;J = e{wjv) ^ e(w/v) = pa .

For each place z in Snf let fc%)Z denote the ^-completion of kn, and Z7nιβ

the multiplicative group of the local units in kntβ. Let Un be the direct
product of all such UntX, ze Sn, and let En be the group of global units
in kn. Then there is a natural imbedding En-^>Un, and we shall denote
by En the closure of En in the compact group Un. On the other hand,
let Vn denote the Sylow p-subgroup of the profinite abelian group UUtV%.
Since v\Q Φ p, Vn is isomorphic to the Sylow p-subgroup of ϊ?w, and since
the order of ϊ* is divisible by p00, Vn is a finite cyclic group with order
divisible by pn+1.

Now, applying class field theory for FJknf one sees that e(wjvn) is
the order of the image of the product of maps Vn —> Un —> UJEn. Hence
the order of the image of Vn -> UJEnUΓ+1 is at most equal to e(w/v) = pa,
and it follows that

F f x l x x U EnU:n+1 ΩUn = n Un,z .
z

Consequently, if n ^ α, then there exists a unit ε in En such that ε is
a p%+1-th power in kn>z for every p-place 2; on knf but is at most a pα-th
power in kn>Vn. Let ζ be a primitive 2p-th root of unity in C and let

kr = fc(ζ) , K' = kl = K{Q .

Replacing & by iΓ Π &' if necessary, we may assume that K f)k' — k so
that kn{ζ) is the w-th intermediate field of the Z^-extension K'jk' for all
n ^ 0: k'n = fcn(ζ). Let vf be an extension of v on ίC', let < = v'\kf

n9 and
let yϋ be the group defined for the local field k'n>v> similarly as Vn for
kn. Since the degree [ϊ^: ΐυj is a factor of b = [&': &] = [&ί,: fc%] and since
6 | p - l if p > 2 and b = 1 or 2 if p = 2, it follows that K = F w for
p > 2 and [Vή: Vn] = 1 or 2 for p = 2, w ^ 1. Consequently, we see that
ε is at most a pα + 1-th power in the local field K,v>n, for n > a. Let eΛ

denote a pn+1-th root of ε in C. As fcj, contains primitive p%+1-th roots
of unity, it follows from the above that k'n(εn)/k'n is an unramified cyclic
p-extension, of which the local degree at < is divisible by ^+ 1

2 >- α - 1 = pn-a.
Therefore, by class field theory, the order of the ideal-class of pv*n in k'%
is divisible by pn~a for all n > α. However, this is impossible because,
for a non-p-place v', the order of the ideal-class of pv>n in k'n is equal to
the order of the ideal-class of Jv in -K7 whenever ^ is large enough.
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The contradiction proves that e(w/v) is infinite, namely, that v is infinitely
ramified in L.

Now, let S be any set of places on a Zp-field if, containing all p-
places of if, and let So denote the subset of all finite non-p-places v in
S such that the order of ϊ* is divisible by p°°. Let Lo denote the maximal
abelian p-extension over if, unramified outside S, and let L be any p-
extension over if, containing Lo and unramified outside S: K £ LQ £ L.
Let v be a finite non-p-place on if. Then it follows from Lemmas 3, 4
that v is unramified in L or infinitely ramified in L according as v ί SQ

or v G So. Hence we may apply Lemma 2 for such an extension L/K.
For each integer n*zl, let Wn denote the group of all n-ΐh roots

of unity in C, and let

Then a Z -̂field if contains W{p) if and only if it contains W2p. When
this happens, we shall call K a cyclotomic Z -̂field. Let v be any finite
non-p-place on such a cyclotomic Z -̂field K. It is clear that the order
of !£ is then divisible by p°°. Let J>; = (a) with αeif x , α >̂ 1, and let
αw be a p%-th root of a in C for w ^ 1. Then one sees easily that the
field L in Lemma 4 contains all an9 n Ξ> 1, so that v is infinitely ramified
in L. Thus the proof of Lemma 4 is much simpler in this case.

4. We need another lemma as follows:

LEMMA 5. Let K be a number field containing Qoo (e.g., a Zp-field)
and let L/K be a p-extension, unramified at every infinite, i.e., archί-
medean, place on K. Then

Hn(LjK, Lx) = 0 , for all n ^ 1 .

PROOF. We may assume that L/K is finite. Since H\L/Kf Lx) = 0,
it is sufficient to prove H2(L/K, Lx) = 0.5) Let K = lim ftn, L = lim K

where for each n ^ 0, k'Jkn is a Galois extension of finite algebraic num-
ber fields such that KK = L, fc^ Π if = fcw. Then it follows from the
assumption that whenever n is large enough, k'njkn is unramified at every
infinite place of k%. On the other hand, since K contains Qoo, the local
degree of the extension K/Q at each finite place of K is divisible by p°°.
Hence we obtain H2(L/K, Lx) = 0 by the same argument as in the proof
of [9], Chap. II, Proposition 9.

Now, in general, for each number field if, let Eκ and Wκ denote the
group of all units of if and the group of all roots of unity in if,

δ) See [8], Chap. IX, Theoreme 8.
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respectively. Let M/K be an arbitrary Galois extension of number fields
and let G = Gal (M/K). Then we have short exact sequences

o -> PM - iM -»cM — o ,

and they induce long exact sequences for the cohomology groups
H*(M/K, ) = Hn(Gf ), n ^ 0.

THEOREM 1. Lei K be a Zp-field and let M be a p-extension over K
with the following properties: (i) CM(p) = 0 and M/K is unramified at
every infinite place of K, (ii) each finite non-p-place on K is either un-
ramified in M or infinitely ramified in M. Then

Hn(M/K, EM) = 0 , for all n ^ 2 ,

and there exists an exact sequence

0 -> Cκ(p) -> H\M/K,

where v ranges over all non-p-places v on K, ramified in M, and where,
for each v,

Aυ = p«lpξ = Qp/Zp , R = U V~nZ .

PROOF. Since G = Gal (M/K) is a pro-p-group,

Hn(M/K, CM) = Hn(M/K, CM(p)) = 0 , for n ^ 1 .

By Lemmas 2, 5, we also have

Hn(M/K, IM) = 0, Hn(M/K, M x ) = 0 , f o r n ^ l .

Therefore (1) induces exact sequences and isomorphisms as follows:

K* - > P £ - > H \ M / K , E M ) - * 0 , H \ M / K , PM) ^ H*+\M/K9 EM) , n ^ l .

However, since Hι(M/K, PM) is a p-primary abelian group, the first exact
sequence and CM(p) = 0 induce H\M/K, PM) = 0. Hence

H*(M/K, EM) = 0 , for all n ^ 2 .

We also obtain from the second exact sequence that

(2) H\M/K, EM) = PMIPK = (IS Π P^)/Pχ .

From PKQ IκdPMQ /£ n P i , we then see that both Iκ n P W ^ and
/£ Π Pjf//χ Π Pjf are p-primary abelian groups. Now, in the exact sequence

o -> iκ n
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we have Iκ/Iκ Π PM — IRPM/PM £ IM/PM Hence we obtain an exact
sequence

o -> iκ n PMIPK - cx(p) -> c* (p).

On the other hand, we also have the exact sequence

o - is n PW/Z nP,-> /£//* -> /£/(/£ n PM)IK -> o .

Since /S/Tg; is easily seen to be p-primary and since

IS/IS nPM = ISPM/PM C ̂ / P * ,

we know that /£/(/* Π PM)Iκ is a factor group of a subgroup of CM(p).
The assumption C^(p) = 0 then implies

iκ n p^/Pr = cκ(p), /5 n PM/IK ΠPM = IΪ/IK .

Therefore, by Lemma 2 and the isomorphism (2) above, one obtains the
exact sequence for H\M/K, EM) stated in the theorem.

REMARK. For any Galois extension L/K of number fields, we see
easily that Ή.\L\K, IL) = 0. Since H\LjK, Lx) = 0, it follows from (1)
that

, EL) = PS/PK ,

Ker (HXL/K, EL) -> H\LjK, Lx)) = Coker (IS -> CS) .

When both if and L are finite over Q, these isomorphisms are well known
in the classical literature.

5. Let K be a number field. In the following, we shall denote the
^-primary part Cκ(p) of the ideal-class group Cκ simply by Aκ:

Aκ = CK(P)

As a p-primary abelian group, Aκ is a torsion Z^-module. For a Z,-field
if, the following facts are known on the structure of the Z^-module Aκ.

6)

Namely, let K = koo = ΛQoo with & finite over Q and let λ = X(Kjk) and
μ = μ{Kjk) denote respectively the so-called λ- and /^-invariant of the
Zp-extension Kjk. Then

Aκ~{Q,/Z,y®A'

with A' a Zp-module of bounded exponent: paAf = 0, a ̂  0. Further-
more, if μ = 0, then A' = 0 so that

A* s (QJZPY , A^/pA, = 0

and if μ > 0, then A' is infinite so that Aκ/pAκ is an infinite Z^-module.
6) For the results stated below, see [4], [5].
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Now, it follows from the above that λ = X(K/k) depends only upon
the structure of the Z^-module Aκ and is independent of the choice of k
such that K = koo. Hence it may be denoted by Xκ: Xκ = X{K/k). Simi-
larly, since Aκ/pAκ is zero or infinite according as μ = 0 or μ > 0, the
fact that μ(K/k) = 0 is actually a property of K so that it may be simply
written as

μ κ = o .
The isomorphism for Aκ shows that in the case μκ = 0, Aκ gives us a
good analogue of the p-power division points of the Jacobian variety of
an algebraic curve and, hence, \κ an analogue of twice the genus of
that curve.

In general, for each torsion Zp-module A, let

V(A) = HomZί, (A, QJZP) ®Zp Qv .

Then A H^ V{A) defines an exact contra variant functor from torsion Zv-
modules into vector spaces over Qv. For A = Aκ, let

VK = V(AK) .

Since V(A') = 0 for the above Z^-module Ar, we then have

Vκ = Qλ

p , Xκ = dim^p Vκ .

Now, it has been conjectured for some time that μκ = 0 for all Zp-
fields K. The conjecture was proved by Ferrero-Washington [3] in the
case where K is an abelian extension over the rational field Q, but the
problem is yet unsolved in the general case. As an application of Theo-
rem 1, we shall next give a necessary and sufficient condition for μk = 0
when K is a cyclotomic Z -̂field.

THEOREM 2. Let K be a cyclotomic Zp-field, S a finite set of places
on K, including all p-places of K, and M the maximal p-extension over
K, unramified outside S. Then μκ = 0 if and only if Gal (M/K) is a
free pro-p-group.

PROOF.7) Since there is no non-trivial unramified abelian p-extension
over M, we see easily that AM = CM(p) = 0. As K contains W(p)f it is
a totally imaginary field so that M/K is unramified at every infinite place
of K. By the remark after Lemma 4, each finite non-p-place on K is
either unramified or infinitely ramified in M. Therefore both conditions
(i) and (ii) in Theorem 1 are satisfied for the extension M/K. On the

7) This is essentially a known result. Cf. [1], Corollary 2.5. A proof is included here
to clarify, in this simpler case, the main idea of arguments which will again be applied later
to prove more elaborate results.
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other hand, we also see from the definition of M that the map
for ε in EM defines an exact sequence

0 -* Wp -> EM -^ EM -> 0 ,

and this induces the exact sequence

H\M/K, EM) ^ H\M/K, EM) - H\M/K, Wp) -> H\M/Kf EM)

where H\M/K, EM) = 0 by Theorem 1. Hence

HXM/K, Wp) = H\M/K, EMVPHXM/K, EM) .

However, by the same theorem, there exists an exact sequence

0 -» Aκ -> JEΓ̂ Λf/JΓ, #*) -> 0 Av -> 0

where v ranges over a finite set and Aυ = Qp/Zp for every such t>. Since
Aκ/pAκ is zero or infinite according as μ# = 0 or μκ > 0, it follows from
the above exact sequence that μκ = 0 if and only if H2(M/K, Wp) = 0,
i.e., iP(Gal (M/K), Z/pZ) = 0. As Gal (M/K) is a pro-p-group, the last
equality means that Gal (M/K) is a free pro-p-group.8) Hence the theorem
is proved. Note that the finiteness of the set S is used only to deduce
μκ = 0 from H2(M/K, Wp) = 0, and not in the opposite deduction.

6. Let J denote the complex-conjugation of the complex field C.
When a number field K is invariant under the automorphism J of C, the
restriction of J on the subfield K will be simply denoted again by J.
In such a case, J acts on various abelian groups canonically associated
with K, e.g., Kx, Iκ, Cκ, etc. In general, when J acts on an abelian
group A, we define the subgroups A+ and A~ by

A± = {α I α e A, J(a) = ±a} .

One sees immediately that if A is uniquely divisible by 2, e.g., a Zp-module
with p > 2, then

For each number field K, let ίC+ denote the maximal real subfield of
K: K+ = KnR. K is called a number field of C-M type if K+ is totally
real, K is totally imaginary, and [K: K+] = 2. if is then invariant under
J, and

Gal (ΛΓ/JΓ+) = {1, J} .

It is also known that for such K,

( 3 ) Ei = EK+ , ££ = TΓ* , [#*: W ^ + ] - 1 or 2 .
See [9], Chap. I, §4.
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We now assume that p > 2 and if is a Zp-field of C-M type. We
can then fined a number field k of C-M type, finite over Q, such that
K — fcoo, K+ = ft£. For such K/kf we can define four invariants ^(K/kY,
μ{Kjk)± which have similar properties as explained in § 5 for X(K/k) and
μ(K/k).g) For example, XiK/k)* depend only upon K so that they may
be denoted by λj. In fact, we have

Aκ = At 0 AK , Λί = Ax+ ,

F ^ F ί θ F , - , F ί = F(A±) , dim^ Vί = Xi .

Furthermore, if μ* = 0, then

and A^/pA^ is zero or infinite according as μi = 0 or μ^ > 0.
In addition to the above, let us now also assume that K is a cyclo-

tomic Zp-field, i.e., W{p) £ K. Let S+ be a set of finite places on K+ =
K Π R, containing all p-places of K+, and let M+ denote the maximal
^-extension over K+, unramified outside S+. Let

M = KM+ .

Since M+/K+ is unramified at every infinite place on K+, M+ is totally
real, and it follows that M is a number field of C-M type and that M+ =
Mf)R, justifying the notation M+. It is easy to see that M/K+ is a
Galois extension, that Kf] M+ = K+, and that

Gal (M/K+) = Gal (M/K) x Gal (M/M+) ,
( 4 } Gal (M/K) - Gal (M+ /K+) .

It is also known that μκ — 0 if and only if μ& — 0.

LEMMA 6. The extension M/K has the properties (i), (ii) stated in
Theorem 1 so that the cohomology groups Hn(M/K, EM), n ^ 1, are given
by that theorem.

PROOF. AS in the proof of Theorem 2, At = AM+ — 0 for the maxi-
mal p-extension over K+, unramified outside S+. Since K is totally
imaginary, M/K is unramified at every infinite place of K. (This follows
also from the fact that M/K is a ^-extension with p > 2.) Let c e AM,
pc = 0. Let α be an ideal of IM in the ideal-class c and let ap = (α),
aeM\ Then b* = (β) with b = α w , /3 = α w . Since M contains Wp,
M(\/β)/M is a cyclic extension of degree 1 or p. However, β1+J = 1
implies that M( Vβ)/M+ is abelian. Hence there exists a cyclic extension
M'/M+ which is of degree 1 or p, unramified outside p-places of M+,

9) See [5].
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and satisfies M( Vβ) = MM'. It then follows from the definition of M+

that Mr = M+, M{ V"β) = I s o that b - ( %~β) with VβeM*. Thus
(1 — J)c = 0, c e AM = 0, and consequently c = 0. Therefere A^ = 0,
AM = Aί 0 4 ϊ = 0, and the property (i) of Theorem 1 is verified for
M/K. Next, let v be a non-p-place on K and let v+ — v\K+. Since
2£+ = fc+ is a Zp-field, it follows from the remark after Lemma 4 that
v+ is either unramified in M+ or infinitely ramified in M+. Using the
fact that Gal (M+/K+) is a pro-p-group with p > 2, we then see from
(4) that v is unramified or infinitely ramified in M according as v+ is
unramified or infinitely ramified in M+. Hence M/K has also the property
(ii) of Theorem 1.

Let v+ be any place on K+ and let v be an extension of v+ on K.
Then v and v = J(ι;) are the only extensions of v+ on K. As usual, we
shall say that v+ splits in K Ίί v Φ v. Since each place on K+ has at
most two extensions on K, the above proof shows that if S+ is a finite
set, then there exist only a finite number of finite non-p-places v on K
which are ramified in M; namely, the direct sum φvAv in the exact
sequence for H1(M/Kf EM) in Theorem 1 is a finite sum.

THEOREM 3. Let K be a cyclotomic Zv-field of C-M type for p > 2
and let S+ be a finite set of finite places on K+ — K f] R, including all
p-places of K+. Let M+ be the maximal p-extension over K+, unramified
outside S+, and let s denote the number of finite non-p-places on K+

which split in K and are ramified in M+. Then μκ = 0 if and only if
Gal (M+/K+) is a free pro-p-group, and if this is the case, then the mini-
mal number of generators for Gal (M+/K+) is XK + s.

PROOF. AS stated above, let M = KM+. Then Gal (M/K+) acts on
EM SO that J also acts on Hn(M/K, EM). Hence Hn(MjK, E^ are defined.
Since p > 2, it follows from (3), (4) and W{p) £ WM that

H*(M/K, E M ) - = H \ M / K , WM) = H*(M/K, W{p)) , f o r n ^ l .

Therefore, by Theorem 1 and Lemma 6, we see that

Hn(M/K, W(p)) = 0 , for n ^ 2 .

Furthermore, the exact sequence in Theorem 1 also implies an exact
sequence

0 -> A~κ ̂  H\M/K, W{p)) -> ( 0 Av)- -> 0
V

where, as easily seen from the definition of Av,

( θ A,)- = (Q,/Zr) .
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Now, from H2(M/K, W(p)) — 0 and from the exact sequence

0 -> W9 — W(p) Λ W(p) -> 0 ,

one obtains

H\M/K, WP) = H\M/K, W(p))/pH\M/K, W{p)) .

On the other hand, Aκ/pJCκ is zero or infinite according as μi = 0 or
μ^ > 0. Therefore, similarly as in the proof of Theorem 2, we conclude
from the above exact sequence for Hι(M/K, W(p)) that μi = 0 if and
only if H2(M/K, Wp) = 0, namely, that μκ = 0 if and only if Gal (M+/K+) =
Gal (M/K) is a free pro-p-group. Furthermore, when this is the case,
then AK = (QP/Zp)

λ~ so that

H\M/K, W(p)) ~ (Q,/Z,y-+ .

However, since W(p) £ K, H\M/K, W(p)) is the Pontrjagin dual of the
factor commutator group of Gal (M/K). Therefore the above isomorphism
indicates that λ^ + s is the minimal number of generators for the free
pro-p-group Gal (M+/K+).

We note here that an essential difference between Theorem 2 and
Theorem 3 lies in that the free pro-p-group Gal (M+/K+) in Theorem 3 is
finitely generated while this is not so for the free pro-p-group Gal (M/K)
in Theorem 2.

We shall next also briefly explain a generalization of Theorem 3.
Let Kr be a totally real Z -̂field with p > 2. Let S' be a finite set of
finite places on K', including all p-places of K\ and let M' denote the
maximal p-extension over K', unramified outside S'. Let

K=K'(WV) .

Then K is a cyclotomic Zp-field of C-M type and K/K' is a cyclic exten-
sion with degree a factor of p — 1. In fact, there exists a monomorphism

1: Gal (K/Kf) -> Zp

x

such that σ(Q = ζ*(σ) for all σ e Gal (K/Kf) and ζ e W(p) £ # . Let A^)

denote the submodule of Aκ = Cκ(p), consisting of all a in A* such that

σ(a) = %(σ)α for every σ in Gal (If/IΓ)- The Z^-module Aψ is then a
direct summand of Aκ and it has similar properties as mentioned earlier
for Aκ and A%\ for example, if A{κ] = pA{κ\ then

A" = (QJZpy

with an integer λ = λg} ^ 0. Let s be the number of finite non-p-places
on if' which are ramified in Mτ and which split completely in K.
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Now, it can be proved that the Galois group Gal (M'/Kr) is a free
pro-p-group if and only if A$ = pAJP, and if this is the case, then the
minimal number of generators for Gal (M'/Kf) is λiP + s. The proof is
similar to that of Theorem 3, the key fact in this case being CM{p){1) = 0
for M = KM'. However, we omit the detail. It is clear that Aιi] — pA{£]

follows from Aκ = pAκ, namely, from μκ = 0. Therefore μκ = 0 for
K = K'(WP) implies that Gal (AT'/•*£') is a free pro-p-group. Hence it
follows from the theorem of Ferrero-Washington [3] that for any Zp-field
K'y p > 2, which is real and abelian over Q, the Galois group Gal (M'/Kr)
is always a free pro-p-group with a finite number of generators.

7. In general, let K be a Zp-field, and L/K a finite Galois extension
with G = Gal (L/K). Then L is again a Zp-field and G acts on AL = CL(p)
in the natural manner. Therefore G acts also on the vector space VL =
V(AL) defined in § 5 and we obtain a λL-dimensional p-adic representation

πL/κ:G = Gal (L/K) ^GL(VL) .

Let p > 2 and assume that both K and L are number fields of C-M type.
Then L/K+ is a Galois extension and

Gal (L/K+) = Gal (L/K) x Gal (L/L+) , Gal (L/K) = Gal (L+/l£+) .

Consequently, we have the decomposition for πL/κ:

where

Let us next investigate the above representation πiικ in the case
where L/K is a finite p-extension and K is a cyclotomic Z -̂field, i.e.,
W(p) £ K. We first note that there exist only a finite number of finite
places on K+ which are ramified in L+; in fact, this is true in general
for any finite extension of Z^-fields. Since L+/K+ is unramified at every
infinite place of K+, there exists a finite set S+ of finite places on K+,
including all p-places of K+, such that L+ is contained in the maximal
^-extension M+ over K+, unramified outside S+:

K+ QL+ QM+ .

For M = KM+, we then have

KQLQM.

It is clear that M+ is the maximal p-extension over L+, unramified out-
side the set of extensions, on L+, of all v+ in S+. Thus M+/L+ is the
same kind of extension as M+/K+ in Lemma 6 so that there exists an
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exact sequence

0 -> AL - HXAΓ/L, EM) -> 0 Aw -> 0

where w ranges over all finite non-p-places on L, ramified in M. Further-
more, in this case, the maps in the exact sequence are homomorphisms
over Gal (L/K+). Hence it induces an exact sequence of (?-modules:

0 -> Ai — HXM/L, EM)- -> ( 0 Aw)~ -> 0 ,
w

where H\M/L, EM)~ = H\M/L, W(p)) as explained in the proof of Theo-
rem 3. Let v+ = w\K+. By the remark after Lemma 4, t;+ is either
unramified in M+ or infinitely ramified in M+. Therefore, if w is ramified
in M, then v+ is ramified in M+, and the converse is alse true. In general,
for each finite non-p-place v+ on K+, define a module Bυ+ over G =
Gal (L+/iί+) by

with w+ ranging over all extensions of v+ on L+. Then we obtain from
the above an exact sequence of G-modules:

0 -> A~L -> Jff̂ Af/L, TΓ(p)) -> 0 £ v + -> 0 ,

where v+ now runs over all finite non-p-places on K+, ramified in M+

and split in K. Let

Fo - V(H\M/L, W(p))

with the functor V defined in § 5. Since V is exact, it follows from the
above that

Vo = VI 0 (© V(BV+))
v +

as representation spaces for the finite group G. Thus

( 5 ) πQ = 7rz/x © (© πv+)
v+

with τr0 and πv+ denoting the representations of G on the spaces Vo and
V(Bυ+) respectively. Now, for each v+, fix an extension w+ of v+ on L+,
and let Γ = T(w+/v+). Then Γ = Z(w+/v+) by § 1 so that as G-modules,

Bv+ s {QJZ,)[G/T]

where the right hand side denotes the linear combinations of the left
cosets of G modulo T with coefficients in QJZP. Consequently

V(BV+) = QJG/T] ,

and we see that πυ+ is isomorphic to the representation of G over the
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field Qp, induced by the trivial one-dimensional representation of the
subgroup T = T(w+/v+). It is then clear from (5) that the representation
πι,κ is completely determined if we know the representation π0 of G on
the space Fo = V(H\M/L, W(p)).

Let

X = Gal (M+/K+) = Gal (M/K) , Y = Gal (ΛΓ+/L+) = Gal (M/L) .

Then Y is a closed normal subgroup of the pro-p-group X and

X/Y= Gal (L+/K+) = Gal (L/ίQ = G .

As explained in the proof of Theorem 3, H\M/L, W(p)) is the Pontrjagin
dual of Yab, the factor commutator group of Y. Since W(p) £ If, we
see that as G-modules,

V ~ Yab (9) O

where the action of G = 1/7 on the right is given by conjugations in
X. Let us now assume that μκ = 0. Then it follows from Theorem 3
that X is a free pro-p-group with λ^ + s generators, where s denotes
the number of places v+ in the direct sum in (5). Therefore the repre-
sentation π0 can be described by the following purely group-theoretical
lemma:

LEMMA 7. Let X be a free pro-p-group with m generators, m >̂ 1,
and let Y be a closed normal subgroup with finite index in X. Then
the representation π0 of the finite group G — X\Y on the vector space
Yab ®zp QP is given by

πQ = ^i Θ (w - l)πG ,

where πλ denotes the one-dimensional trivial representation of G over
Qv, and πG the regular representation of G over Qp.

PROOF. Let IG denote the augmentation ideal of the group ring
ZP[G] so that

is exact. Then there exists10) an exact sequence of ZpfG

o _> r > -> zp[G]m -* iG -> o .

The lemma follows from this by replacing each term of the above by
its tensor product with Qp over Zp.

We now consider again the case where X = Gal (M/K), Y = Gal (M/L),

See [10]. Note that m need not be the minimal number of generators for G.
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and G = X/Y = Gal (L/if). We know that X is a free pro-p-group with
m = \κ + s generators. Assume that G Φ 1, i.e., K Φ L. Then X Φ 1,
m ^ l so that we obtain from (5) and Lemma 7 that

Ki 0 (λ* + s - l)πG = πz,* 0 (© π,+) ,

where 8 is exactly the number of places v+ which appear on the right.
For such a place v+, let w+ denote an extension of v+ on L+ and let
T — T(w+/v+). Then πυ+ is the representation of G over Qp, induced by
the trivial representation πx\T of the subgroup T. Therefore

πG = πυ+ 0 π'v+

where π'υ+ is the representation of G over Qp, induced by the represen-
tation πτ — πλ I T for T. Note that when we change the extension w+

of v+ on I/+, the inertia group T(w+/v+) is relaced by its conjugate in G
so that πv+ and π'v+ are unchanged (up to isomorphisms). We now obtain
from the above that

( 6 ) π~Llκ = πλ® (λΐ - l)πa 0 ( 0 π;+)

where v+ ranges over all finite non-p-places on K+ which are ramified
in M+ and split in K. However, if v+ is unramified in M+, then
T(w+/v+) = 1 so that πυ+ = π09 π'υ+ = 0. Hence the sum in (6) may be
taken over all v+ which split in K. Note also that if λ^ = 0, then the
right hand side of (6) should be interpreted as the difference of the sum
over v+ and the representation πG — πx.

Finally, if G = 1, then K = L, VK = VI, and π~Llκ = Xίπx. Since
π'+ = 0 for all v+, the equality (6) still holds in this case. Thus we have
proved the following

THEOREM 4. Let p > 2 and let L/K be a finite p-extensίon of cyclo-
tonίc Zp-fields of C-M type. Let πίίκ:G-+GL(Vr) be the representation
of G — Gal (L/K) on the vector space Vl — V(Aι) over Qp. Assume that
μκ = 0. Then

πiικ = πx © (λϊ - l)πG 0 (© π'υ+) .
v +

Here πλ is the one-dimensional trivial representation of G over Qpf πG

is the regular representation of G over Qp, v+ ranges over all finite non-
p-places on K+ = K f] R which split in K, and π'+ denotes the comple-
ment in πG of the representation πv+ of G — Gal (L+/K+), induced by the
one-dimensional trivial representation, over QpJ of the inertia group
T(w+/v+) of v+ for the Galois extension L+/K+.



282 K. IWASAWA

As mentioned above, when λ^ = 0, the right hand side of the for-
mula should be interpreted as the difference of the sum over v+ and
πG — TΓx.

8. Again, let p > 2 and let LjK be a finite p-extension of Z -̂fields
of C-M type. We shall next study the representation πiικ in the case
where K is not cyclotomic. Since p > 2, [Q(WP): Q] = p — 1, L also is
then non-cyclotomic and Wp is not contained in WL. We can find a finite
set S of finite places on K, including all p-places of K, such that L is
contained in the maximal ^-extension M over K, unramified outside
S: K S= L Q M. Furthermore, we may choose S so that it is invariant
under the automorphism J of K/K+. Then M/K+ is a Galois extension.
Clearly, if S' denotes the set of all extensions, on L, of the places in S,
then M is the maximal p-extension over L, unramified outside S'. There-
fore, as in the proof of Theorem 2, we can see that both extensions
MjK and M/L satisfy the conditions (i), (ii) of Theorem 1; here one has
only to note that both K and L are totally imaginary because they are
number fields of C-M type. It then follows from Theorem 1 that

H*(M/Lf EM) = 0, for all n ^ 2 .

Therefore the Hochschild-Serre spectral sequence for K £ L £ M induces11*
an exact sequence

0 -> H\L/K, EL) -+ H\M/K, EM) -> H%L/K, H\M/L, EM))

-> HXL/K, EL) -> HXMIK, EM) -> H\L/K, H\M/L, EM))

Since M/K+ and M/L+ are Galois extensions, the automorphism J acts
on each term of the above exact sequence, and we obtain similar exact
sequences where Hn( , ) are relaced by Hn{ , )±. By Theorem 1,

Hn(M/K, EM) = Hn(M/K, EM)* = 0 , for n ^ 2 .

Since Wp is not contained in WLf

H%LIK, ELY = Hn(L/K, WL) = 0, for w ^ 1 .

Therefore it follows from the exact sequence for Hn( , )~ that

AG = HXM/K, EM)' , H\G, A) = 0 , for n ^ 1

where we put

G = Gal (L/K) , A = H\M/L, EM)~ .
n ) See [7], Chap, VI, Theoreme 4. Of course, one has to consider here Galois cohomology

groups instead of cohomology groups of discrete groups.
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Let s now denote the number of finite non-p-places v+ on K+ which split
in K and are ramified in M. Similarly as in § 7, Theorem 1 for M/K and
M/L then give us the exact sequences

0 -> A~κ — H\M/K, EM)- - . φ Λ ^ O ,

(7) 0-^A~ >A .φ^-^o,

where v+ ranges over the places on K+ as mentioned above and where
Av+ and Bv+ are defined in the same manner as in § 7.

Assume now that μκ = 0. It is known in general that this induces
μL = 0 for a finite p-extension L/K. Therefore μϊ = μj; = 0 so that

as explained in § 6. Hence we obtain from the above that

(8) AG~ (Qp/ZPYκ+s A = (QP/ZPY

with s defined above and with a certain integer t ^ X£. Let

Ap = Ker (p: A -> A)

so that 0 - > A ^ 4 ^ 4 - > 0 is exact. Then H\G, A) = 0, for n ^ 1,
imply

iϊ%(G, Ap) = 0 , for all n ^ 2 .

Since G is a finite p-group, it follows that Ap is free over (Z/pZ)[G]12).
Prom (8), we then see that

A s (Q,/Z,)[G]ai+ .

Let π0 denote as before the representation of G on the vector space
Vo = V{A) over Q .̂ Then the above isomorphism implies

Vo = QP[GY*+8 , π0 = (λ ϊ + 8)ττσ

with πG denoting again the regular representation of G over Qp. From
the exact sequence (7), we again obtain the equality (5) in § 7, but with
the representation π0 as mentioned above. Therefore, just as in § 7, we
can prove the following result:

THEOREM 5. Let p > 2 and let L/K be a finite p-extension of non-
cyclotomic Zp-fields of C-M type. Let πi,κ: G—>GL(Vz) be the represen-
tation ofG — Gal (L/K) on the vector space Ff = V(Aί) over Qp. Assume
that μκ = 0. Then

πϊlκ = XκπG 0 ( φ τr'v+)

1 2 ) See [8], Chap. IX, Theoreme 5.
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where πG and the sum over v+ are defined in the same manner as in
Theorem 4.

Note that in both Theorem 4 and Theorem 5, ττ'+ = 0 if v+ is un-
ramified in L+. Hence the sum over v+ is actually a finite sum and it
is zero if and only if L+/K+ is unramified outside the p-places of K+.

9. In general, for each Z -̂field K, let

δκ = 1 or 0

according as K is cyclotomic or not. As in Theorems 4, 5, let L/K be
a finite p-extension of Zp-fields of C-M type. Then the formulae in those
theorems can be uniformly written as

( 9 ) πi/κ = δκπλ 0 (λϊ - δκ)πσ 0 ( 0 π'v+) .
v +

We shall next compare the degrees of the representations on the both
sides. It is clear that

deg {π-L]κ) = λz , deg (π,) = 1 , deg (πG) = n = [L: K] .

Since πυ+ is induced by the trivial representation of the inertia group
T(w+/v+) = Z(w+/v+)f we have

deg (πv+) = n/e = g , deg (π'v+) = n - g = g(e - 1)

where e = e(w+/v+) = [Γ(w+/'y+): 1] is the ramification index of w+ for the
extension L+/K+ and where # = g(w+/v+) is the number of the extensions
w+ of ^+ on L+. Hence it follows from (9) that

λZ = δκ + (λϊ - ^)[L : K] + Σ (e(w+/v+) - 1) ,
+

where the sum on the right is now taken over all finite non-p-places w+

on L+, split in L. The same formula may be also written as

(10) 2(λZ - δL) = 2(λi - δκ)[L :K] + Σ (e(w/v) - 1)
w

with w ranging over all finite non-p-places on L, split for the extension
L/L+. This is the formula of Kida [6], mentioned in the introduction.
We note that it is easy to deduce from (9) a similar formula for UjK
where U is an arbitrary intermediate field of K and L, not necessarily
a Galois extension over K.

The proof of the above formulae for πιiκ and λz does not work to
obtain similar results for π\ικ and λj. The main reason is that while
Galois cohomology groups with values in El = WL can be quite simply
calculated, it is not so for Ei = EL+. However, less explicit formulae
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involving some cohomological invariants still can be proved by similar
arguments in certain cases. We shall next explain it briefly.

In what follows, let p denote an arbitrary prime number, possibly
2, and let L be a cyclic extension of degree p over a Zp-field K, unramified
at every infinite place on K. Let S be the set of all finite non-p-places
on K, ramified in L, and let IL}S and PLtS denote the group of all S-ideals
of L and the subgroup of principal ideals in ILySf respectively.13) Then
we have exact sequences of modules over G = Gs\(L/K):

0 -» PLtS — IL.8 -+ GL,S -> 0 ,

0 -> ELt8 -> Lx -* PLίS -> 0 ,

where CL}S is the ideal-class group of S-ideals of L, and ELtS the group
of S-units in L. It follows from Lemmas 1, 5 that

H n ( L / K , I L t 8 ) = 0 , H*(L/K, L x ) = 0 , f o r n ^ l .

Hence the above exact sequences imply that for n^l,

H*(L/K, CL,S) = H'+KL/K, PL,S) , H\L/K, PL,S) = H^(L/K, EL,S) .

As G is cyclic, we then obtain

H*(L/K, A L t S ) = H \ L / K , E L t 8 ) , f o r n^ί9

where we put
ALtS = CL,s(p) .

We now assume that μκ = 0 so that μL — 0. Since ALjS is a factor group
of AL — CL(p) modulo a finite subgroup, it follows from the remark in
§ 5 that

A L ) S = (QPIZpy*>.

The structure of such a G-module ALtS can be described as follows.
Namely, let σ be a generator of G and let

Xp = ZP[G] , Xp-i = (1 — o)Xp , Xι — Xp/Xp_! = Zp ,

A, = Homz?) {Xi9 QJZp) , for i = 1, p - 1, p .

Then

(11) AL,S = A^φA^eA^

with some integers αx, α^.i, α^^O 1 ^. With the functor V defined in
§5, let

V< = V(A%) , π,: G — GL(F0 , for i - 1, p - 1, p .
1 3 ) Cf. [1].
1 4 ) This is a well-known result on the integral representations of G over the ring Zp.
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Then πλ is the trivial representation of G over Qp, πp_λ is the unique
faithful irreducible representation of G over Qp, and

Since

VL = V(AL) = V(ALiS) ,

it follows from the above that

KL/K = α ^ 0 ap_xπp^ 0 αpττp

for the representation πL/κ of G = Gal (L/K) on the space F z . We shall
next compute the integers αx, αp_1, and αp.

Since G is a cyclic group of order p, the cohomology groups of G
are abelian groups of exponent p. One checks easily that

r(H\G, A,)) - 1 , r(H\G, A,^)) = 0 , r(H\G, Ap)) = 0 ,

r(H\G, A,)) = 0 , r{H\G, AP_J) = 1 , r{H\G, Ap)) = 0

for the ranks of the abelian groups Hn(G, A,). Let

r . = r(H%L/K, AL,S)) = r(H*(L/K, EL,S)) , n ^ 1 .

Then it follows from (11) that

n = αx , r2 = α^! .

In particular, we see that both H\L/K, ELtS) and H2(L/K, ELiS) are finite
groups so that the Herbrand quotient q(ELtS) of the G-module ELtS is
defined. Let d denote the number of places on K in the finite set S
and let

h n = r ( H * ( L / K , E L ) ) , n ^ l

for the G-submodule EL of ELyS. Then it can be seen easily that

q(EL>s/EL) = p d .

Hence, by Herbrand's lemma, q(EL) is defind and

q(EL,s) = g(j&Jpd .

Thus both hλ and fe2 are finite and they satisfy

ctp-i — dι = h2 — hι + d .

Now, the assumption μκ = 0 implies

4*,* = CKl8(p) ~ (Qp/Z,y* .

On the other hand, since H\L/Kf Lx) = 0 by Lemma 5, the remark at
the end of §4, applied for EL>S, gives us
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H\L/K, ELt8) = Pίs/Pκ,s ,

HXL/K, ELiS) = Coker (/£β -> C£8)

As the cohomology groups on the left are finite, it follows that both
the kernel and the cokernel of AK)S —> AG

L>S are finite groups. Hence we
see from (11) that

Xκ = αx + ap .
Therefore

πL/κ = α^i 0 ap_j7up^ 0 αpττp

= («i + αp)ττp 0 (αp_! - α j π ^

= λ*τrG 0 dTΓ !̂ 0 (fc2 - hjπ,^ .

For each non-p-place v on i£, let the representations πv and TΓJ, be defined
similarly as πυ+ and π'+ in § 7. Then for the cyclic extension L/K of
degree p,

^ί = tfp-i or 0

according as v is ramified or unramified in L. Hence the following theo-
rem is proved:

THEOREM 6. Let p ^ 2 and let L be a cyclic extension of degree p
over a Zp-field K, unramified at every infinite place of K. Assume that
μκ — 0. Then

πL/κ = ^κπG 0 (Θ O 0 (Λ2 - ΛOTΓ,.!

/or ίfeβ representation πL/κ of G = Gal (L/K) on the vector space VL over
Qp. Here, hi denotes the rank of the abelian group H%L/Kf EL) for
i = 1,2, πG is the regular representation of G over Qp, πv_x the unique
faithful irreducible representation of G over Qp with degree p — 1, and
v ranges over all non-p-places of K, with πr

v as mentioned above.

Of course, if h2 — hλ is negative, the right hand side of the formula
should be interpreted as a difference of two representations.

Now, comparing the degrees of the representations in Theorem 6,
we immediately obtain the following formula for XL and Xκ:

Σ (e(w/v) - 1) + (p - l)(h2 - hλ) ,

where w ranges over all non-p-places on L. Checking the proof of Theo-
rem 6, one also finds that in the case where p > 2 and L/K is an exten-
sion of Zp-fields of C-M type, similar results can be proved for πiικ and
λl by the same method. These are of course the special cases of the
formulae (9) and (10) for a cyclic extension L/K of degree p. However,
as Kida [6] pointed out, his formula in the general case is actually an
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easy consequence of the special case mentioned above. Thus the above
method provides another proof of Kida's formula (10).
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