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1. Introduction. Consider the Navier-Stokes equation:
Dy — du +Vp = f—divNw) in D*x(0,7T),
1.1) divu =0 in D*x(0,T),
Ulso = Up  (divau, = 0), ula:3=0 =0.

Here N(u) = {ujuk}(j,k=1,z,3) and

div N,(u) UU;
div N(u) = (div Nz(u)) , N;(uw) = | uu;
div N,(u) Ul ;

The set D is a neighborhood of the origin in the three dimensional
Euclidean space E, and D* = D N E;t with E;" = {x = (2, 2,, 2,) € Ey; 2, > 0}.
Let 2 and &7 be some complex neighborhoods of (0, T) and D, respec-
tively. Let C»*(D* x 2) be a weighted Holder space. Now our result
is as follows:

THEOREM 1.1. Let f and u, be analytically extended from D x (0, T)
and D to 2 x Q and <, respectively. Let u e C**@+02(D+ % Q) and
p e CHmITY DY x Q) satisfy the equation (1.1) which are analytic in
we R for each xe D+ 0 < 1 <1). Then u(x,t) and p(x, t) are analytic
near (0,1,) for any t, (0 <t, < T).

The analyticity of the solutions was proved in Kahane [3] and Masuda
[7], but they only proved the interior analyticity.

Many authors have proved the analyticity of the solutions of elliptic
and parabolic equations, for example, Friedman [1], Morrey [8], etec.
There are several methods to prove the analyticity. We will here use
the method of Morrey. First, by Morrey [8], we shall show that there
exists a complex analytic extension of the solution of the associated
Stokes equation in a half space. Next, we will decompose the solution
(u, p) of (1.1) into w =" + u”, p = p" + p”, respectively. Here (u/, p)
is the solution of some integral equation and (u”, p”) is the solution of
some Stokes equation. We will prove that they and their first spatial



178 K. NAKAGAWA

derivatives have complex analytic extensions in (21, 2, @) for (2, w) e Z,, =
{(Z, w)GD X .Q,Z = x+/’:y’ w = t+’i8, w, yeE3’ t’ seEly ?/3 = 09 ](zly zZ)‘ < 3!
| —t] < 0,0 <x, <d}). Hence we see that u, D,u, p are analytic in
(2, 2,, w) for (z, w)e &,,. Moreover, we will see that

lu(z, @)| + | D,u(z, ®)| + |p(z, ®)| < M

for (2, w)e 2, where 6 and M are independent of z,. Therefore, by
the Cauchy-Kowalewsky Theorem, there exists a neighborhood of (0, t,)
in D x (0, T) in which v and p are analytic.

The author wishes to thank Professor Takeshi Kotake and Dr. Kinji
Watanabe for their useful suggestions and encouragement. .

2. The Stokes equation. We consider the following Stokes equation

in a half space:
Dyv—4w+Vg=f in Eftx(-T,T),
dive = divg in Efx (=T, T,
@1) Wleir = v, (divo, = divelerr), Vlo=0,

Vo = lim ux,t) =0, go.=0.

|| —00

If the vector valued functions f, ¢ and v, are smooth and decrease fast
enough as |x| — o, then it is well known that the system (2.1) has a
unique classical solution, which one can write explicitly in terms of the

given data.
First, let ¥ be the solution of the equation:

4v =dive in Ef x (=T, T),
D, Vo0 =0, 7=0.
Next, let (v/, p’) be the solution of the equation:
Dy — M +Vp =Ff in E,x(~T,T),
(2.3) dive' =0 in E,x(-T,1T)),

’ ~ ’ r
Ve r =7y, Ve=0.=0,

(2.2)

where f, ¥, denote smooth extensions, vanishing as |#|— oo, of the
functions f, v, — V%|,—_r to the spaces E, X (—, T), E, respectively.
Finally, let (v”, ") be the solution of the equation:

DY — ' +Vp"' =0 in Efx((-T,T)),
2.4) dive” =0 in Efx(-T,T),

Ver =0, Vo= —Vloyeo = Vlomo=d, v5=pi=0.

Then one can easily verify that



NAVIER-STOKES EQUATIONS 179

{v= U, ¢, 5) =v + 0" + 75,
q=P(f,6,5)=0 + 0" — Db+ 45

is an actual solution of (2.1).
The integral representation of the solution (2.5) is also known. Let

K@) = —1/4z|z|, Q@=V,K®2a.,
4drmt)—**exp(—|x|?/4t) for t >0,
r@,t):{(”’ xp(—|of/4t) for t>
0 for t<0,
e, t)y=r@,t+ 1), T=TII—Hess{(KQod)*I},
where §, is Dirac’s delta function on the real line, I is the 3 x 3 unit
matrix, Hess (F') = {D,;D;, F'}j k=1, 18 the Hessian and fxg is the con-

volution of functions (or distributions) f and g on E; X (—co, ). Then
we may represent the solution of (2.3) as

vz, t) = Txflx, t) + I'Ix(T, @ 8,)(x, t) — I'Ix(T+f |-, Q 8,)(x, t) ,
P, t) = Q+f(x, t) .
Let b(2', t) = b(a’, t) for t = —T, and b2, t) =0 for t< —T, G =
{ij}(j,k=1,z,3n v = (x, x,),
G, t) = —20;D,. (@, t) + 20,,D,,K(x) ® 6,

- 4p,| av ("D, 1w, oD K@ - vay,,

(2.5)

(2.6)

A, ) = | 1@, 0,000 — vy,
Ey
where §;, is Kronecker’s delta. The solution of (2.4) is written as

V'@, t) = Gx(b®d,)x,t),
@ {P'@ 1) = —2div{QIx (b ® 4.}, 1) — AKI @ 3) (Db ® d.,)(w, 1)

— 7 div (D, — kz_‘, D,k){AI* b ® 0.}, b .

Let N(z, y) = K(x — %) + K(x — %), ¥ = (Y1, Y», —¥5). The solution of
(2.2) is written as

2.8) o, 8) = | N, v) div otw, iy -
3
Now, we introduce some function spaces. Let B(x, R) denote the
ball | — 2, < R in E, and B, = B(0, R). Let

o= {xek;x, =0}, or=BzNo, Gr = {x € Bg; x, > 0},
L=(-T,T), IL,={w=t+is;|s|<hit+T),tel},
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where 0 < h < 1. Let C**(Gy), (k; an integer, 0 < ¢ < 1), be the usual
Holder space. For fe C**(Gy), we define

(2.9) | fleve = xfgpalD:f(xl) — Df(a,) |/l@y — m|”
2 @, 2,€Gp, ®, #+ 2, ] = k) .
For fe Ct+ut+n0(G, x I;), we define
2.10) || fllesn = xlggga’alDfD:f(xl, t) — DiDif(w,, O)|/| @ — .|"
+ sup |DiDif(x, t,) — DeD;f(x, t,)|/|t, — t,]"*

z,ty,tg,a50

+ sup |[DiDif(x, ¢,) — DiDif(x, t)|/|t, — &|Fre--ten

2,t1,t9, 8,0
((wiy t); (x; t]) € GR X IT’ j = 1; 2) xl i x2) tl ¢ t2y
la| +20 =k, 0<k+p—20—|8<2).
(2.11) Ckrmtrm (G, x Ip) = {f € Ctrmb+n(G . x I,);
rD;f(0,0) = 0, || + 20 < K} .
Assume f to be of the form div F. Then we have the following by
Solonnikov [11, p.76] and McCracken [6, p. 49].
PROPOSITION 2.1. Let F e Cie+02(Fr x I,), ¢ € Cirete@+eal2(fr s I,
v, € C***(BY) and suppose they decrease fast enough as |x| — . Then

the solution (2.5) satisfies the following properties.
(1)

2.12) [[9llr + 17l + 1 qllrne
=< Cll Fllvsnezgxep + ||¢”2+F+5(E;'><IT) + [Vob+ e}
O<p—e<1,e>0).

(2) If F;eC»ex(Er x I) (j=1,2) decrease fast emough as
x| — oo, then

| U@iv F, ¢, #) — U@Aiv Iy, ¢, 50) |l < Cll Fy — Follsrnzt g »

where F; denotes a smooth extension of F; similar to £ for f.

(8) If Fe(Cimwor(Br x I,) and ¢e Cireto@resa2(fr s 1) are
analytic in e I, for each x e K, then v and q are analytic in wel,,
for each xe Ef and the inequality (2.12) holds for I,.

3. The integral equation. In this section we consider the functions
Vg, ¢z Which are determined by u, p of (1.1).

First, we notice the following. There exists R, such that G is con-
tained in D* for 0 < R < R,. We regard u, p to be restricted onto such
Gr. Since f in (1.1) is analytic in &2 x 2, there exists F' = {F;.}; 1=1.09
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analytic in &, x 2 and satisfying divF = f. Here &, is a complex
neighborhood of the origin which is contained in <. We choose one
such F and fix it in what follows. It is easy to see that we can assume
#, =0 in (1.1). We put

&, t)= 3 (k! al) DEDu0, 0)zt
2

k+lals2

Pz, t) = “; D?p(0, 0)x? .
We define w(w) = {w.jk(w)}(j,k=1,2,3) by

wik(w)(x, t) = _{wj(x, t) + @(xy t)}{wk(wy t) + Q;,(x, t)} + ui(O’ 0)uk(0’ 0)
+ Fy(, 1) — F(0, 0) + 0,:{DZu,(0, 0) — D,,p(0, O)}a, .

23"k
LEMMA 3.1. There exists an extension operator @: CE+o%+02(G, x I,) —
Clrmt+w(B ) (—oo, T)) such that O(f)ls,x1, = f and that
H¢(f)”k+#(E3x(—°°,T)) = CHfHIa+#(GR><IT) ’ (0 <p< 1) ’
with a constant C independent of R, T.
We give here the sketch of the proof for & = 1. Let (v, ¢, 4,), 0 <
r<R,0=<¢ =m 04, <2m, be polar coordinates in G,. Let the func-

tion x = x(r, ¢,, ¢.) be the transformation from the polar coordinate to
the orthogonal coordinate. We put fi(r, ¢, ¢, t) = fla(r, ¢, ¢.), ) and set

fo(’ry ¢1, ¢2, t) (0 s=r=s R)

o, y P1y z:t = S y
o7, ¢y 2y B) glcjfo(R_J(y_R),qsl,qu,t) (R<r=2R),

where 37, Ci(—j/2)" =1 (m =0,1). We put f'(2', x;, ) = fi(r(x), ¢,(x),
@,(x), t), where the functions r = r(x), ¢, = ¢,(x), ¢, = é,(x) are the trans-
formation from the orthogonal coordinate to the polar coordinate. We
define f* by

f'@, @, t) (x; = 0)
2
%Cff’(x,; —jxs/zy t) (xa < 0) ’
where 32, C¥(—j/2)" =1 (m = 0, 1), and also f by

= *(z, 1) ~T<t<T

a0 = {1,

f*x, —t—2T) —-3T=<t=<-T.

An extension operator stated in the lemma is then given by

P(|&|[Rp(—t — T)/T)f(z,t) in Bypx(—3T, T)
0 outside of B,,x(—3T, T),

f*(x,, xs, t) =

O(f)x, t) = {
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where 4 is a smooth function on the reals such that (s) =1,0 for s <1,
s = 4/3, respectively.

In what follows we fix one such extension operator @. We put
U, t) = Udivo¥ (v — &)), —9(&), —9(&)|i-_r)z, 1),
Pz, t) = P(div 0¥ (u — &), — (&), —P(&)|i=_r)(z, t) .
We define functions vz and ¢ by
ve(®@, 1) = Kgl¥(u — &)](z, ?)

= U, t) — 3, (k! a))"'DiD;U0, 0)xt* ,
(3.2) 2k+ ol <2

2, ) = Le[¥(uw — @), t) = Pz, ¢) — |Z' DiP(0, 0)a’ .

BlI=1

(3.1)

Then they satisfy

JD,vR — dvg +Vqr =divo@(u — &) in Ef x I,
(3.3) div e, = —div (&) in Ef x I,
lvRIt:—T = —97(67)&:4—%%52(70! al)7'DED; U0, 0)xt*, vgl,,—o=0 .

From now on, we regard vz, qz, Kg, Lz as restricted onto G x I.
By Proposition 2.1 and Lemma 3.1, we easily obtain the following.

PROPOSITION 3.1. The operators Kz, Ly satisfy the following prop-
erties.

(1) Kjis an operator from Ci+*+0X(Gy, x Ip) into CiH+0%( G, x Ip)
and satisfies

| Kel¥losre = Cl¥ ||isre for ¥ eCitet oGy X Ip) ,

where C = C(R,, T,) for R< R, T T,
(2) If¥;eCiHm+(Gy x Ip) (3 =1, 2), then

”Kk[wl] - KR[wzl |]2+# = CHWI - wz”xﬂl ’

where C = C(R,, T,) for R R,, T = T.,.

(8) If¥eCitm+mG, X I), them VLg[¥] € C**(Gy X 1) and Lg[¥] €
Cite—ste=a (G x I) for any € satisfying 0 < . —e <1, ¢ >0.

(4) If ¥eCH# G, x I,p) 18 analytic in w € I, for each x e Gy,
then Kp[T] e Citm+i™(Gy X I,p), VLR[T] e Co*(Gr X Iiy), Lg[7]e
Cite—otte=a(G. x I,;) and they are analytic in € I, for each x e Gpy.

Putting ¢t =6 + ¢ in the hypotheses of Theorem 1.1, the solution
(u, p) of (1.1) is in Cz+0+s,(2+0+e)/2(GR x Ihr) and Cl+0+e,(1+9+s)/z(GR x I,p), Te-
spectively, and is analytic in we I, for each x € G;. For the function
f=div F in (1.1), we know that F e C'+0+>0+0+0/2(@Q, x I,,) is analytic in
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wel,, for each xe€G,. Then, by Proposition 3.1, we have wv,¢
Cittreettrar(Gy X Ip), Vagpe ClHo+ %Gy X Ip), qgr€ Cit0+0%Gy X I,;),
and they are analytic in w € I,; for each x € G,. We define H, and M, by
Uu=vp+Hzg+ &, and p=gqz+ My + 2.
Then we see that the functions H,, VM., M, have the same regularity
as that of vy, Vqz, qz, respectively. The functions H; and M, satisfy
DH, — 4H, +VM,=0 in G, x I,
(3.4) divH,=0 in Gp,x I,
HR|t=-T = (7 ’ HRlxg,:O = 0 ’
where 57 = Sptiai=e (B! @) DEDZU(O0, 0)xt*.
Regarding H, as given, we shall consider the integral equation:
(3.5) w = Kp[¥(w + Hp)] .
It is obvious that the function v, is a solution of (3.5) in C:*0-*+9%(G, x I,).
Now we show the uniqueness of the solution of (3.5).

PROPOSITION 3.2. There exists a positive mumber M such that (3.5)
has a unique solution in {we C+0*+0%G, x I); ||wllee < M}, for 0 <
R < R, and T = O(R?, where R, = R,(M) is a sufficiently small number
depending on M.

To prove the above proposition, we need the following.

PROPOSITION 3.3. Choose R, sufficiently small and put T = O(R?) for
0 < R< R, Suppose weCit#*1%Gy x I) and suppose | w||srn 18 uni-
formly bounded by some number M for 0 < R < R,. Then

(3.6) V(w) e Gyt %Gy X In) ,
3.7 | (w)l;+x < C, + C(M)R?,

where C, 18 independent of M and R, while Cy(M) depends only on M.
Moreover, if ||w;l|. =< M (§j =1, 2), then

(38) “w(wl) - w(w2)lll+p é Ca(M)Rle - wz”zﬂl ’
where Cy(M) depends only on M.
Proor. In view of the definition of ¥, we can verify (3.6) immedi-

ately. Let ¥{) be the first and second order terms of w in ¥';, and let
7® be the remainder. We put |¥$ |+, = C,. Since

sup | DiDiw(w, )| = C(R*"™=e+t 4 Tt [ |,y ,

(z,t) eGpxIp

(lal + 20 = 2),
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we obtain (3.7) and (3.8) by an easy calculation.

PrROOF OF PROPOSITION 3.2. Let w, and w, be two solutions of (3.5)
in {weCHIH%G, X I); || wl+e < M} for 0 <R <R, We have
w, — w, = Kp[¥(w;, + Hp)] — Kg[¥(w, + Hz)]. By Proposition 3.1 with
p =0, we obtain ||w, — w,|l,+s =< C||¥(w, + Hy) — ¥(w, + Hg)||;+s, Where
C=CR, for R< R, By Proposition 3.3 with ¢ =46, we see that
| w,—w, ||sre < Co(M)R|| w,—w,||;+s. Hence, choosing R, so that C(M)R < 1/2
for 0 < R < R,, we have ||w, — w,|,+» = 0.

4. The complex analytic extensions of the operators K, L. Let

Br={z=2+1y; x,yckE, |yl <hR — |z])},
Bz = {z € Byp; ¥y, = 0}, Gz = {2z € Byg; v, > 0},
Oizx = {2 € Byg; 2, = 0},

E = {Byz X Iy} U{E; X Iz} U {Byz X (—o0, T)} U{E; X (—co, TV},
H*#*(@G,z) = {f € C***(G,p); f is analytic in 2’ = (z,, 2,) for 2¢€ Gz} .
Let the semi-norm |-|f . (resp. ||-||#.) be an extension of (2.9) (resp.
(2.10)) with Gy replaced by G, (resp. Gp X I, by G,z X I,;). We denote
by H¥+#%+oy (G X I,,) (resp. HEH*+0X( @G, o x I,,.)) the space of functions
fin Ck+mtk+0(@q, o x I,,) which are analytic in (', w) for (2, ®) € G,z X I,y
(resp. the space of functions f in H*+#®+¥(@q,. x I,,) which satisfy
D:Dzf(0,0) = 0, |a| + 2a < k). We define the spaces Hf*»*+»*%(G, x I,,),
H}+mktn2(F) ete. similarly and the norm of the spaces is written as

Il - Hl’ckw(amu“), |- || ¥nee ete.

We here follow Morrey [8]. Let B be the ball || < R in E,. Let
B={z=2+1y; x,ye kb, |yl <hWR - |z},
X={z=a+1y; v,yckE, |y| <hlz]}.

Suppose that the kernel .#(x) has an analytic extension onto X. For
each z =z + iy € B, we define a surface S(z) in B passing through the
point 2z, by the equations & = &(r) for r € B, where ¢ satisfies
(1) Reé&(r)=7r, reB, Imeglr) =0, r€oB;
}(2) Imér) =y, |Imé(r) —yl<hlr—2zl;
4.1) 4(3) [Im&(r)| <MR —|[r]), reB;
1( 4) Img(r)eC(B), differentiable almost everywhere and its
derivatives D,j Imeg(r) (5=1,2,--+-,m) are in L~(B).
For f€ H#B) and a kernel .# (x), we define the integral over the surface
S(z) by
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@2 | Fe—ofd=| 56— donfemmar,

where J('I') = 3(51, Goy vty En)/a(’rl’ Tas * %y ,rﬂ)'

PropOSITION 4.1. Let fe H*B), z€ B.
(1) If both surfaces S(z) and S*(z) satisfy (4.1), then the correspond-
ing integrals defined by (4.2) have the same value.

(2) The function F(z) = Ss( (@ — 9f(@ds is analytic on B and
we have

(4.3 D.F@) =\ D, —ofeds.

REMARK 4.1. The above proposition holds also if we replace B by
B(k) = {# € B; 2, € E,}.

PROPOSITION 4.2. Suppose feC#E,) and suppose it decreases fast
enough as |x| — oo. If the integral

Fz) = § Fw =

18 absolutely convergent, then F(x) can be analytically extended to B. We
have F(z) = S F(z — r)f(r)dr for zeB.
E,\B

n

Now, we return to the Stokes equation (2.1). Notice that the solu-
tion (v, @) of (2.1) can be written as follows:

{sz(fysb,?%):v’Jrv”JrVﬁ,
q=P(f,¢,%) =0 + 9" — D7 + 45 .

We have the following proposition.

(2.5)

PROPOSITION 4.3. Suppose that, for the function f in (2.1), there
exists F' = {F;};p=129 Such that f=divF and F has an analytic exten-
sion F to E. Let ¢, ¥, have analytic extensions to {E,U By} X Ly,
E,U By, respectively. Then the solution v(x,t) = UWdiv F ¢, #,)(x, t),
q@x, t) = P(div F, ¢, 5,)(z, t) has an analytic ewtension to G,z X I, and
satisfies

ol + 17gll + gl
= C{”FHI*+!1(E) + ”¢||;+#+e((E3UBOhR)x1hT) + "Eo'ﬁymsuno,m)} .

To prove this proposition, we first give the complex analytic exten-
sions of the kernels T(z,t), Q(x,t), A(z,t) and G(z,t). The analytic
extension of K(x) is well known. So, by using Propositions 4.1 and 4.2,
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we obtain the following lemmas,- where we define
I'=(0, ), I={w=t+1s;|s|<httel},
Xh = {z =2 + 'iy; x; yeE3, Iyl < hlxl} H
Xoh={zeXh;y3:0}, Yh:{zeXoh;x3>0}-

LEmMMA 4.1. The kernel T(x,t) (resp. A(x, t), resp. Gy(x, t) (b + 3))
can be extended to an analytic function in (2, @) for (2, w)eX, X I
(resp. (z', w) for (z, w)e Y, X I} resp. (Z/, w) for (z, w)e Y, x I)), and we
have, for (z, w)e X, X I},

(4.9) | DEDIT(z, @)| < C(aff + £y son

(resp. for (z, w)e Y, x I},

.5) | DEDZAGz, )] < G + t)-0esomg=n=e,

resp. for (z, w)eY, x I,

(4.6)  [DEDLDEG4(z, @)| < Ct-"Vi(|af* + )~ 9/(af + £y

The real number % depends on the kernels. We choose and fix a
sufficiently small positive number k so that the above analytic extensions
exist.

We put &# =TI, B = B, and take S(z) satisfying (4.1). Then we
have the following.

LEMMA 4.2. Suppose that feCi**(H, X (—e, T)) and suppose it
decreases fast enough as |(x,t)| — o, and has an analytic extension to
H#(E). Put

Flz, t) = S_m SE @ —r,t —)fr, D)drdz .

Then F(x,t) can be extended analytically in (2', ®) for (z, ®)€ By, X I)p
and we have
[ Fl13e = ClLf ke -

Similarly, the following lemmas hold.

LEMMA 4.3. Suppose that ge Cit#+W%E, X (—o, T)) and suppose
it has a compact support in Hy, X (—o, T) and has an analytic exten-
ston to Hyt»®+#0*(E). Then the function F(x, t) defined by

F(x, t) = SE K(x — r)D,g(r, t)dr ,

can be extended analytically in (2, ®) for (z, )€ By, X I,; and satisfies
(4.7 ID:F || = Cllg e, lal=2,
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(4.8) | F ([%n-e = Cllg | u -

LEMMA 4.4. Let 9, be in H***(E; U By,z). Then the function F(x,t)
defined by

F(x, t) = SE e —rt+ T)0(r)dr,

can be extended to {E, U Bz} X Iy so that F'e H***#2({E, U Bz} X I ).
We have
||F”;+# = Clﬁ0|;+#(E3UHOhR) .

PROOF OF PROPOSITION 4.3. As mentioned above, the functions 2’
and ' given by (2.6) have analytic extensions and satisfy the desired
inequalities. In other words, we obtain the extension and the estimate
for »’ by Lemma 4.3. Regarding the function 9’ as the solution of the
Cauchy problem for the heat equation with f — »’ on the right-hand side,
by Lemmas 4.2 and 4.3, we have

0" 5w + 12" [ Sne + 171X = CU F [ + 190Bsnizsumpm} -
In the same way as in the proof of Lemma 4.3, we have

H’EH;-I‘ g CH¢H2*+0+6((E3UBO}LR\><I;,T) ’

where ¥ is given by (2.8).

LEMMA 4.5. Let b, be the third component of b in (2.4) and suppose
it satisfies the condition Db, = 33;_, D,.e;. Let b;e Hyt*®+**({g U 0,5} X
IL,) and e, Hi**"+"*{g UGz} X L), 7=1,2,8, k=1,2. Then the
Sfunctions v and p" given by (2.4) are extended analytically in (2', ®)
for (z, ) € Gy X I, and satisfy

" |Ee + 12" o + 72”1
é C(”bH;‘f'l‘((UU"hR)XIhT) + He“;k‘f'!‘((UU’hR}thT)) .

For the detail of the proof of each lemma see Morrey [9, pp. 174-
179].

In view of the definition of b, in (2.4), we get the following by
Solonnikov [11, p. 53].

Db, t) = 3 D, ©) + 3 Db, 1),
J=1 J=1
where
b, ) = @) D\ I, Olo — ridrs g,
— 3

- D, SEar(y, Bz — rl—ldr*f3]

’
23=0
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b@, 1) = D, | @7, t + T)ou(r)dr
3

23=0

z3=

_ D, SE I'(@ — 7, t + T),(r)dr

The above formula is also valid after the analytic extension. Hence it
is easy to see that there exist ¢, (k = 1, 2) satisfying D,b, = >, Q,kek.
We see that the norms of b and e¢ are bounded by those of f and
#,. Therefore the proof of Proposition 4.3 is complete.
Similarly, we have the following.

PrOPOSITION 4.4. Suppose that, for f in (2.1), there exists F =
{Ft} i k=12, Such that f=divF and F is in H+*"+*Ef X I,,). Let
f=0 and divg =0 on G X I,,. Let ¢ Hitr+o@teto(Fr x I,.), v, €
H***(E] U G,z). Then the solution (v, q) of (2.1) has an analytic extension
onto G, X Iy, and satisfies

lollde + 117gllX + llallfe-.

= C{IIFI!;(‘er(E;thT) + H¢”§k+#+s(E;”x1hT) + Ivolékww.jucm)} .
Now we will give here the analytic extensions of H, and M.

PROPOSITION 4.5. Let F'e H'*+o 000G, X Iyp), u € H*H0+s #H0F92(G , ¢
L), pe H©“orowwt0+9xGy x I..). Then Hp and My have extensions H,
and My which are analytic in (2, ®) for (2, ®)€ Gp X I, and satisfy

H FIR“2*+-9 + “MRHﬁﬂ—s = C{lIHRI|2+0+e(GR><IhT) + HMRHH!?(GRthT)} .
PrROOF. We already know that H, and M, satisfy
‘(DtHR_—AHR—i_VM :0 in GRXIT,

divH,=0 in Gy x I,
Hileox = 3, (61 @)"DEDIUO, 0t , Hily = 0,

and Hze H0re@t0+9%G, x I,,), Mye Hit0"0%G, x I,), and VMgze
H+o0+94G, x L), Let Hyp and M, be extensions of Hy and M, to
E# X (=0, T) as in Lemma 3.1. Let f* = D,H, — 4Hy + Vil,, ¢* = Hy,
v} = Hyl,o_p. It is easy to see that ¥ is a polynomial on G, f*=0
and divg¢* =0 on Gp X I,;. Since D.Hp = 4Hp — VM, in Gy X I,,, we
see by the construction of H,, M, that there exists F'* such that f* =
div F’* and F*e Hi*0-"+9% B} x I,;). Moreover, we know that ¢*e
Hroreetororz(fr 5 I) and of € H*# 002 B U G,z). Then the functions
H, and M, satisfy
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DtﬁR—AﬁR+VMR:f* in E3+><IhT9
4.9) div H, = div ¢* in EfxI,,,

Hylpe g = v, ﬁle3=0 =0,
and have compact supports. Regarding f*, ¢* v, as given data, and
Hg, M, as solutions of (4.9), by Proposition 4.4 with z = 6, we see that
H, and M, have analytic extensions Hj, M, to G,z xI,, and satisfy

| Hellfo + 1| Mgl
= C{||F* wam;xtﬂ) + [l ¢* H;+0+e(E;r><I,,T) + |v§|;+ﬁ(E;uchR)} .

By using Lemma 3.1, we obtain Proposition 4.5.

REMARK 4.2. The extension operator @ defined in Lemma 3.1 also
satisfies the following. If fe HE+t#® 0@, % I,;), then @(f) € HE+»*+02(F)
for k=1,2, 0 < £ <1. We have

O [Esnm = ClF lEve
where C is independent of R and T.

By the above we obtain the complex analytic extensions of the opera-
tors K, Lp.

PROPOSITION 4.6. The operators K, and L satisfy the following
properties.

(1) K is an operator from Hi+t*O+03( G, X I)z) into HEH*+HOHG, o X
I,;) and we have

KR = ClIT (| Sfor ¥ e HiF# O 0(Gyg X L) ,

where C = C(R,, T,) for R < R,, T < T.,.
(2) If ;e HiW 02 (Gr X Iip) (5 = 1, 2), then
”KR[WJ - KR[WZ]HZ*HI =<—_ C” wl - wz”i*—f-ﬂ ’

where C = C(R,, T,) for R< R,, T < T,.
(8) If UeHp» G, X Iyp), then VLg[¥]e H** Gz X I,;) and
Lp[¥) € Hit#-o04u=92(G 5 X Ip) for any € with 0 < ¢t —e <1, e > 0.

Proor. We know that

Ki[¥](x, t) = Udiv @¥), —¥(&), —X@)li=-1)lagx1,(%, T)
— 2, (k! a)"'DEDFUO, 0)2t* gk 1y »

2k+lals2
LTz, t) = P(div @¥), —9(&), —V(@)| i=-1)| 6px1,(%, T)
- ]%}1 DIP(0, 0)a* | g5xzy -
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In view of the definition of & and Remark 4.2, it is easy to see that
the function &(&) is in Htr+oe+e+0(E). Putting F = 0¥), ¢ = —0(2),
and 7, = —@(«?), we use Proposition 4.3. Then, noticing Remark 4.2,
we have Proposition 4.6.

5. Proof of Theorem 1.1. First, we prove the following proposition
for small R, T.

PROPOSITION 5.1. Let u,€ H*+(G,,). Suppose that u e H*tI+e @0+

(Gi % Ip) and pe H@O+o0+0+a/ (G x I..Y satisfy
Du — du +Vp=f —divNu) in GpxI,,
(5.1) divu =0 im Gpx I,
Ulp——r = w, (divu, = 0), ,,"’123:0 =0.

Suppose that there exists F' = {F;}; 11,25 Such that f=divF and Fe
HiHbvout0ray(q o x Iy, (0<0+e<1, €>0). Then we can extend u and
D S0 that u e H2+0.(2+0)/2(GhRXIhT), Dxau c H1+0,(1+ﬁ)/2(GhRXIhT), P eH1+a,(1+0)/2
(Grz X Lip).

As is well known, we may assume that u, = 0. To prove this prop-
osition, we consider the integral equation:
(3.5) w = Kp[¥(w + Hp)]
in H#0®0XqG, . x I,;). Since the solution (u, p) of (5.1) is written as
U=y + Hp + &, D= qr + My + .22, it is sufficient to prove that v,
Hye Hi"®0%(Gyp X Lig), Qry Mg, Dovg, D, Hp € Hi+0 0@, X Ir). By
Proposition 4.5, we see that H, and M, satisfy the above properties.
Regarding Hj e H"®+0*QG,,x I,;) as known, we seek the solution w of
(8.5) in Ht0-+0%(@{,.x I,;). To continue the proof, we need the follow-
ing Propositions 5.2 and 5.3, the first of which can be proved in the
same way as Proposition 3.3.

PROPOSITION 5.2. Choose R, sufficiently small and put T = O(R?) for
0<R<R, Suppose that we H***0*G,,X1L,;) and ||w||¥.. 18 uniformly
bounded by some number M for 0 < R < R,. Then

(5.2) ¥(w) € Hytt 0% (Ghp X Iip)
(5.3) 1T w)|l%- < G + C(M)R?

where C, is independent of M and R, while C,(M) depends on M. More-
over, if ||w;l|%. =M (j =1, 2), then

(5.4) 1T (w) — T(w,) ¥ = C(M)R||w, — we|3s
where Cy(M) depends on M.
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ProPOSITION 5.3. Choose R, sufficiently small and put T = O(R?) for
0 < R< R, Suppose that Hp is in HF"®*0%@G,. X I,;). Then there
exists a solution w of (3.5) which is in Hi*?*+0*@G,, X Ip).

ProorF. We define the sequence {w*} by «w°=0 and w*t =
K [¥(w* + Hz)]. By Proposition 4.6 with # = 6 and Proposition 5.2, we
see that there exists a positive constant M such that w* e HZ+% 0% G, X I,;)
and | w*|%, < M. Choosing R, sufficiently small, we then have ||w*+ —
w || < 27| w* — w*'||%, for R < R,. This shows that the sequence {w"}
is a Cauchy sequence in H*%®*+9%(@G,, % I,,;), whose limit w’ is the solution

of (3.5).

We now continue the proof of Proposition 5.1. The solution we
Hoer0x(Q, . x I, is also in C:0®+07%(G, x I,) and ||w ||y, is uniformly
bounded by some number M for 0 < R < R,. On the other hand, v is
the solution of (8.5) and is in Cit"*9*(G, x I;) and ||vg]|.+s iS also uni-
formly bounded by M for 0 < R < R,. So, by Proposition 3.2, we obtain
w =, in G X I;. In other words, there exists an analytic extension
of v, to H"®*9%@Q,, x I,;). The same properties are true for ¢, and
D,v,. Therefore the proof of Proposition 5.1 is complete.

Now, we prove Theorem 1.1. We return to the solution (u, ») of
(1.1). It is easy to see that the hypotheses of Proposition 5.1 follow
from those of Theorem 1.1 with ¢ =6 + e. By Proposition 5.1, there is
a constant 6 > 0 such that %, D,u, p are analytic in (2’, ®) for (2, w)e
=z, 0)eZ x 2; |2]<6d, |ow—1t|<0d, y,=0, 0<2,<4d}, and
|w(Z', 5, @)| + | D, u(2', @, )| + |p(#', 2, ®)| < M for (2, w) € Z,, where o
and M are independent of x,. We consider the Cauchy problem:

2 3
rpzaal = D i, — ZiDzjal +D,p— fi + 2 u;D, 4, ,
3= §=1

2 3
Dii, = Dly — 3, Diyly + Dop — fo + 33D

=
6.5) (DL = —D.,D. @ — D.,D.i,

2 3
zap = ‘_‘,Dw?zs + E(Dzﬁa + Dszz;;ﬁj) + fS —_— Z‘I/IZ:’DZJ?Z:'} ,
za=d! — u(z', 3’, a)) , Dlaﬁlzg;:b' = Dxau(z,, 51, w) ,
e =D&, 0, ), (09 <9).

By the Cauchy-Kowalewsky Theorem, there exists a unique analytic solu-
tion of (5.5) in &, = {(?, W) e D x 2; |2'| < 8", |w —t,| < 8", |2, — 0| < 8"},
where §” depends on ¢ and M, but ¢” is independent of ¢’. Choosing ¢’
sufficiently small, we see that (0, ¢,) is in Z;..

=)

)
Il

[ o
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On the other hand, by Kahane [3], we know that, under the same
assumption as in Theorem 1.1, the solution (u, ) of (1.1) is analytic near
(0, 0, &', t,). The functions » and p satisfy (5.5). Then we have (u, p) =
(&, ) near (0, 0, &', t,). Therefore, u and p are analytic near (0, t,).
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