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1. Introduction. Consider the Navier-Stokes equation:

Dtu - An + Fp = f - div N(u) in D+ x (0, T) ,

(1.1) άivu = 0 in fl+x (0, Γ) ,

.u\t=o = uo (div u0 = 0) , % 1,3=0 = 0 .

Here N(u) = {%%}(;,̂ =1,2,3) and

/div iVχ(w)\

div iV(u) = I div N2(u) I ,

\div Nz(u)1

The set D is a neighborhood of the origin in the three dimensional
Euclidean space Es and D+ = D n ^3+ with 2?8

+ = {x = (xl9 x2, x5) e E3; xz > 0}.
Let β and £& be some complex neighborhoods of (0, T) and D, respec-
tively. Let Cr>r/2(D+ x Ω) be a weighted Holder space. Now our result
is as follows:

THEOREM 1.1. Let f and u0 be analytically extended from D x (0, T)
and D to & x Ω and 3f, respectively. Let ueC2+μ'{2+μ)/2(D+ x Ω) and
peC1+μA1+μ)/2(D+ x Ω) satisfy the equation (1.1) which are analytic in
ωeΩ for each xeD+ (0 < μ < 1). Then u(x, t) and p(x, t) are analytic
near (0, ί0) for any t0 (0 < t0 < T).

The analyticity of the solutions was proved in Kahane [3] and Masuda
[7], but they only proved the interior analyticity.

Many authors have proved the analyticity of the solutions of elliptic
and parabolic equations, for example, Friedman [1], Morrey [8], etc.
There are several methods to prove the analyticity. We will here use
the method of Morrey. First, by Morrey [8], we shall show that there
exists a complex analytic extension of the solution of the associated
Stokes equation in a half space. Next, we will decompose the solution
(u, p) of (1.1) into u = u' + u", p = pf + p", respectively. Here (u'9 pf)
is the solution of some integral equation and {u", p") is the solution of
some Stokes equation. We will prove that they and their first spatial



178 K. NAKAGAWA

derivatives have complex analytic extensions in (zl9 z2, ώ) for (z, ω) e &Qδ =
{(z, ω)eDx Ω;z = x + ίy,ω = t + is,x,yeEz,t,seElf y3 = 0, \(zl9 z2)\ < δ,

I® — ̂ ol < δ, 0 < #g < δ). Hence we see that u, DX3u, p are analytic in
(zlf z2, ώ) for (z, ω) e &oδ. Moreover, we will see that

\u(z, ω)\ + \D.Λu(z, ω)\ + \p(z, ώ)\ < M

for (z, ft)) e &Os, where δ and M are independent of xB. Therefore, by
the Cauchy-Kowalewsky Theorem, there exists a neighborhood of (0, t0)
in D x (0, T) in which u and p are analytic.

The author wishes to thank Professor Takeshi Kotake and Dr. Kinji
Watanabe for their useful suggestions and encouragement. .

2. The Stokes equation. We consider the following Stokes equation
in a half space:

Dtv - Av + Fq=f in E? x (-Γ, T) ,
div v = div φ in Es

+ x ( - T, T) ,

v \t=-τ = % (div v0 = div φ | ί = _ Γ ) , v L8=0 = 0 ,

Voo = l im t6(α;, ί) = 0 , #oo = 0 .

(2.1)

If the vector valued functions /, φ and v0 are smooth and decrease fast
enough as |x|—• <*>, then it is well known that the system (2.1) has a
unique classical solution, which one can write explicitly in terms of the
given data.

First, let v be the solution of the equation:

Ef x (-T, T) ,
(2.2)

in

Next, let {v\ p') be the solution of the equation:

Dtv' - Δv' + Vp' = f in Es x ( - T, T) ,

(2.3) div-u' = 0 in E,x{-T,T),
* I />w t f r\

V \ — T :—" V V<χ> = : l̂?oo —' v

where / , v0 denote smooth extensions, vanishing as |α |->oo, of the
functions /, v0 - Vv\t=__τ to the spaces Ez x (-00, T), E3, respectively.
Finally, let (y", p") be the solution of the equation:

(Dtv" - 4v" + Γp" = 0 in Ej x (-T, T) ,
(2.4) div v" = 0 in E3

+ x (-Γ, Γ) ,

^ ' | t = _ r = 0 , i;'f|»3=o = - '

Then one can easily verify that
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(2.5)
(v = U(f, φ, v0) = v' + v" + Vv ,

\q = P(/, φ, v0) = p ' + p " - Dtv + Av

is an actual solution of (2.1).
The integral representation of the solution (2.5) is also known. Let

K(x) = -l/4;r|α!| , Q = F ^ (g) <5t ,

f(4π£)-3/2 exp (-1 x |2/4ί) for ΐ > 0 ,
Γ{X' t] ~ (0 for K 0 ,

Γ'(x, ί) = Γ(x, t+T), T = Γ/ - Hess {(JSΓ (x) δ,) * Γ} ,

where δt is Dirac's delta function on the real line, I is the 3 x 3 unit
matrix, Hess (F) = {DxjDXkF}{j}k=1}2fΆ) is the Hessian and f*g is the con-
volution of functions (or distributions) / and g on Ez x (— oo, oo). Then
we may represent the solution of (2.3) as

ίv'(a, ί) = Γ*/(α;, ί) + ΓΊ*(vo®dt)(x, t) - ΓΊ*(T*f\t=_τ®δt)(x, t) ,

\p'(x, t) = Q*f(x, t) .

Let b(x', t) = b(x', t) for t ^ - Γ, and b(x', t) = 0 for t ^ - T, G =
•f(T 1 ί c ' ̂ ^ fit/ ί>C ")

Gi*(!c, ί) = -2δjkDXiΓ(x, t) + 2δkBDxjK(x)

- 4£>.4 ( dy' [3 DnΓ(y, t)DxjK{x - y)dyt ,

A(x,t) = \ Γ(y',0,t)\x-y'\-W,

where δjk is Kronecker's delta. The solution of (2.4) is written as

p"(aj, ί) = - 2 div {QJ* (b (g) δX8)}(a;, ί) - 2(KI® at) * (2),δ, <8> «.,)(*, *)

- π-1 div ( A - Σ D.λ{AI* (b ® ^3)}(x, t) .
\ fc=l /

(2.7)

Let N(x, y) = iΓ(ίc - y) + ΛΓ(a? — y), y = (ylf y2, -2/8) The solution of
(2.2) is written as

(2.8) v(x,t) = \ N(x, y) div φ(y, t)dy .
J Eo

Now, we introduce some function spaces. Let B(xQf R) denote the
ball \x - xo\ < R in Ez and BR = JB(O, i2). Let

σ = {x e Ez\ x5 = 0} , σB = BBΓ\σ , GB = {xe BR; xs > 0} ,

JΓ = (-Γ, T) , /fcΓ = {ω - ί + is; |β| < h(t + T), ί elτ) ,
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where 0 < h < 1. Let Ck+μ(GR), (k; an integer, 0 < μ < 1), be the usual
Holder space. For feCk+μ(GB)9 we define

(2.9) I / U = sup |A7K> - Dϊf(x2)l/lx, - x2\
μ ,

(a?!, # 2 e G Λ , a?x ^ a?2, | α | = k) .

For feCk+" {h+rm(GB x / Γ ), we define

(2.10) \\f\\k+μ= sup

+ sup \DiDϊf(x,td- DϊDSftx,

+ sup |A ίD^!

(G»y, *), (», *y) 6 G* x Iτ, j = 1, 2, a?! ^ αj2, tx Φ t2,

a\ + 2α = k, 0 < & + μ - 26 - \β\ < 2) .

(2.11) Ci+"'{k+^n(GB x IΓ) = {/6C f c +^ ( A^ ) / 2(GΛ x JΓ);

D?Dϊf(0, 0) - 0, | α | + 2α ^ k} .

Assume / to be of the form div F. Then we have the following by
Solonnikov [11, p. 76] and McCracken [6, p. 49].

PROPOSITION 2.1. Let F e Q+μΛ1+μ)ί\Et x Iτ), φ e Q+μ+εΛ2+μ+ε)/\Et x IΓ),
v0 6 C2+μ{E}) and suppose they decrease fast enough as \ x \
ίfee solution (2.5) satisfies the following properties.

( 1 )

(2.12) |M| 8 + / ,

(0 < μ - ε < 1, ε > 0) .

( 2 ) // F^G1+μΛlJrμ)l\E} x Iτ) (j = 1, 2) decrease fast enough as

F 2 , φ, vo)\\2+μ ^ C\\F, - F 2 t

where Fό denotes a smooth extension of Fd similar to f for /.
( 3 ) // FeCl+μΛ1+μ)/\Et x Ihτ) and φeC2

0

+μ+εΛ2+μ+ε)/XE+ x Ihτ) are
analytic in ωe Ihτ for each xeEf, then v and q are analytic in ωe IhT

for each x e E} and the inequality (2.12) holds for Ihτ.

3. The integral equation. In this section we consider the functions
VR, QB which are determined by u, p of (1.1).

First, we notice the following. There exists Ro such that GB is con-
tained in D+ for 0 < R < Ro. We regard u, p to be restricted onto such
GR. Since / in (1.1) is analytic in 2P x Ω, there exists F = {FSk}{jtk=lt2ι9)
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analytic in ^ x Ω and satisfying div F = /. Here £^0 is a complex
neighborhood of the origin which is contained in St. We choose one
such F and fix it in what follows. It is easy to see that we can assume
uQ = 0 in (1.1). We put

= Σ D!p(0, 0)xβ .

We define Ψ{w) = {Ψjk(w)}u,k=h2}B) by

^ ( w ) ( α , «) - -{wj(x9 t) + ̂ (a?, t)}{wk(x, t) + ̂ 4(aj, ί)} + % ( 0 , 0K(0, 0)

+ Fik(x, t) - F i fc(0f 0) + δifc{A>,(0, 0) - 2}β4p(0, 0)}xk .

LEMMA 3.1. Tfcere exists an extension operator Φ: Q+μAk+μ)/2(GB x Iτ)
Q+μΛk+μ)/\E3 x (-00, T)) sucfc ίAαί Φ(f)\βBχiτ = / α^ώ ίfeαί

l|Φ(/)ll*^(ί8χ(-«.ri) ^ C| |/ | | 4 + ^ Λ χ / r , , (0 < μ < 1) ,

a constant C independent of R, T.

We give here the sketch of the proof for k = 1. Let (r, φl9 φ2), 0 ^
r ^ J?, 0 ̂  ^ ^ π, 0 ̂  ^2 < 2π, be polar coordinates in GR. Let the func-
tion x = x(r, φu φ2) be the transformation from the polar coordinate to
the orthogonal coordinate. We put /0(r, φlf φ2, t) = f(x(r, φlf φ2\ t) and set

fi(r, φu φ2, t) =
, Φl9

where ΣJ-iC£-jβ) m = 1 (m = 0,1). We put /'(x', *., «) = /f(r(x), Φ&),
φz{x), t), where the functions r = r(x), φ± = Φ^x), Φ?. = Φ2(x) are the trans-
formation from the orthogonal coordinate to the polar coordinate. We
define /* by

/'(*', »., ί) (α. ̂  0)

f*(x',x3,t)= ±Cff(χ>,-jχs/2,t) («,<0),

where Σ5-iC?(-i/2)" = 1 (m = 0, 1), and also / by

'./*(*, -t - 2Γ) - 3 Γ ̂  ί ^ - Γ .

An extension operator stated in the lemma is then given by

{ψ(\x\/R)ψ((-t - T)IT)f(x, t) in £ 2 Bx(-3Γ, Γ)

outside of B2Bx(-3T, T) ,
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, ί) .

where ψ is a smooth function on the reals such that ψ(s) = 1, 0 for s ^ 1,
s ^ 4/3, respectively.

In what follows we fix one such extension operator Φ. We put

j U(x, t) = U(div Φ{Ψ(u -

\P(x, t) = P(div Φ(¥(u - t

We define functions vB and g^ by

vΛ(a?, ί) - KB[Ψ(u - <g?)](x, t)

— ΊT(fϊ> f\ V (k\ /v1s\-1HkT)aTT(() ΠWα/

qB(x, t) = LB[Ψ(u - &)\(x, t) = P(x, t) -

Then they satisfy

(DtvB — ΔvR + VqR = div Φ(Ψ(u — &)) in Et x

(3.3) J ά\\vR= -άivΦ(&) in Et x

| ί β-r- Σ

(3.2)

From now on, we regard vB9 qB, KRf LR as restricted onto GR x Iτ.
By Proposition 2.1 and Lemma 3.1, we easily obtain the following.

PROPOSITION 3.1. The operators KR, LR satisfy the following prop-
erties.

( 1 ) KRisan operator from Ci+μΛ1+μ)/\GB x Iτ) into Q+μΛ2+μ)/\GR x Iτ)
and satisfies

II KB[Ψ] \\2+μ ^ C\\ Ψ \\1+μ for Ψ e

where C = C(R0, To) for R ^ Ro, T^ Γo.

x Iτ) ,

(2) // ^ e x /Γ) (i - 1, 2),

C = C(R0, To) for R ^ Ro, T ^ Γo.
3) / / ! F G C ί + ^ + ^ G * x / Γ ), ίfee^ VLB[Ψ] eCo

μ'μ/\GB x /Γ) and LB[Ψ] e
ε , ( l + ^ - ε ) / 2 ^ χ J ^ ̂  α ^ g g a t f o f y i n g 0 < ^ - β < l , β > 0 .

(4) 7/ ?Γ e Q+μ {l+μ)/\GB x /AΓ) is analytic in ωelhτ for each xeGB,
then KB[Ψ] e Q+μ^\GR x Ihτ), VLB[Ψ] e CS'μ/\GB x Ikr), LJW] e
Qi+μ-ε,(i+μ-ε)/2^Q^ χ j ^ an^ ifay a r e analytic in a) G Ihτ for each xeGB.

Putting μ = θ + ε in the hypotheses of Theorem 1.1, the solution
(u, p) of (1.1) is in C2+θ+εΛ2+θ+ε)/\GR x Ihτ) and c ι + ' + i ( l + ' + i ) / ϊ (G Λ x / A Γ ) , re-
spectively, and is analytic in ωelhτ for each xeGR. For the function
/ = div-F in (1.1), we know that FeC1+θ+εΛ1+θ+£)/2(GR x Ihτ) is analytic in



NAVIER-STOKES EQUATIONS 183

ωelhτ for each xeGR. Then, by Proposition 3.1, we have vRe
Q+θ+εΛ2+θ+ε)/\GR x Ihτ), VqR e CS+^β+t)'\GB x Ihτ), qB e Q+°'«+e)'\GB x Ihτ),

and they are analytic in ω e Ihτ for each x e GR. We define HR and MR by

u = vR + HR + & , and p = qR + ΛfΛ + ^ .

Then we see that the functions HR, VMR9 MR have the same regularity
as that of vB, VqR, qR, respectively. The functions HR and MR satisfy

DtHR - ΔHR + VMR = 0 in GR x Iτ

(3.4) div HR = 0 in

where ^ = Σ2fc+ι«ι«(fc! al^DίDHUiO, 0)xat\

Regarding HR as given, we shall consider the integral equation:

(3.5) w = KR[Ψ(w + HR)] .

It is obvious that the function vR is a solution of (3.5) in Q+ΘΛ2+Θ)/\GR x Iτ).
Now we show the uniqueness of the solution of (3.5).

PROPOSITION 3.2. There exists a positive number M such that (3.5)
has a unique solution in {w eCo+ΘΛ2+θ)/\GR x Iτ); \\w\\2+θ ^ M), for 0 <
R < Rγ and T = O(R2), where Rt = R^M) is a sufficiently small number
depending on M.

To prove the above proposition, we need the following.

PROPOSITION 3.3. Choose R2 sufficiently small and put T = O(R2) for
0 < R < R2. Suppose w e Q+μA2+μ)/\GR x Iτ) and suppose \\w\\ι+μ is uni-
formly bounded by some number M for 0 < R < R2. Then

(3.6)

(3.7)

where Cλ is independent of M and R, while C2(M) depends only on M.
Moreover, if \\Wj\\2+μ ^ M (j = 1, 2), then

(3.8) || Ψiw,) - Ψ{w2) | |1 +, ^ CIM)R\\ Wl - w2 \\t+μ ,

where CZ(M) depends only on M.

PROOF. In view of the definition of W, we can verify (3.6) immedi-
ately. Let Ψfl be the first and second order terms of w in Ψjk and let
Ψfl be the remainder. We put \\Ψ%\l+μ = &. Since

sup \DΐD;w(x, t)\
(at,ί) eGRxIτ
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we obtain (3.7) and (3.8) by an easy calculation.

PROOF OF PROPOSITION 3.2. Let wt and w2 be two solutions of (3.5)
in {w e C!+0'l2+9)/\GB x Iτ); \\ w \\2+θ ̂  M} for 0 < R < R,. We have
w1 - w2 = KR[Ψ(w1 + HB)] - KB[Ψ(w2 + IΓΛ)]. By Proposition 3.1 with
μ = θ, we obtain \\w, - w2\\2+θ ^ C\\Ψ{wι + HR) - Ψ(w2 + JEΓΛ)| | 1 + < ?, where
C = C(R0) for R < Ro. By Proposition 3.3 with μ = θ, we see that
II w1 — w2112+0 <; C0(Λί)i2|| Wi — w2 \\i+θ. Hence, choosing Rι so that CQ(M)R < 1/2
for 0 < R < Rίf we have H ^ — w2\\2+θ = 0.

4. The complex analytic extensions of the operators KR, LR. Let

BhR = {z = x + iy; x, y e EB, | y \ < h(R - | x |)} ,

-BO*Λ-= {̂  6 BhB; y, = 0} , 6?Λi2 = {a; e fiofcB; x, > 0} ,

σΛi2 = {z e β λ i 2 ; z3 = 0} ,

E = {BQhB x Ihτ} U {̂ 3 x hτ\ U {Λo« x (~ - , 21)} U {̂ 3 x ( - - , Γ)} ,

Hk+"(GkB) = {fe Ck+"(GkB); f is analytic in z' = (^, z2) for z e GΛΛ} .

Let t h e semi-norm | |?+J« (resp. || \\*+μ) be an extension of (2.9) (resp.
(2.10)) wi th GB replaced by GhB (resp. GB x Iτ by GhB x / A Γ ) . We denote
by Hk+μΛk+fi)/\GhR x /fcΓ) (resp. Ho

k+μ'ιk+μ)/\GhB x /A Γ)) t h e space of functions
/ in Ck+μΛk+μ)/2(GhB x Ihτ) which are analytic in (z\ ώ) for (z, ω) e GhB x Ihτ

(resp. the space of functions / in Hk+μΛk+μ)/\GhB x Ihτ) which satisfy
Da

ωDΐf(0t 0) = 0, | α | + 2α ̂  fc). We define the spaces Ho

k+μAk+μ)/\GB x / f c Γ),
H£+μΛk+μ)/2(E) etc. similarly and the norm of the spaces is written as
I I I I * I I I I *
II ' \\k+μ{GBχihτ)f II \\k+μ(E)

We here follow Morrey [8]. Let B be the ball \x\ < R in En. Let

β = {z = x + iy; x,yeEn, \y\ < h(R - \x\)} ,

χ = {z = α; + i » ; x,yeEn, \y\ < h\x\) .

Suppose that the kernel ^"(a?) has an analytic extension onto X. For
each z — x + iy eB, we define a surface S(z) in B passing through the
point z, by the equations ξ = ξ(r) for r e B, where ξ satisfies

( 1 ) Re £(r) = r , r e 5 , Im £(r) = 0 , redB

( 2 ) Imf(r) = », |Imf(r) -y\<h\r~x\

(3) | I m e ( r ) | < λ ( Λ - | r | ) , r e ΰ ;(4.1)

For / eHμ(B) and a kernel ^~(x)f we define the integral over the surface
S(z) by

( 4 ) Im ξ{r) G C(B) , differentiable almost everywhere and its

derivatives DrImξ(r) (j = 1, 2, , %) are in L°°(J3) .
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(4.2) ( jT{z - ξ)flξ)dξ =\ J T ( Z - ξ(r))f(ξ(r))J(r)dr ,
JS{z) JB

where J(r) = d(ξlf f2, , ξn)/d(ru r2, , r j .

PROPOSITION 4.1. Let fe Hμ(B), zeB.
( 1 ) If both surfaces S(z) and S*(z) satisfy (4.1), then the correspond-

ing integrals defined by (4.2) have the same value.

( 2 ) The function F(z) = \ ^{z — ξ)f(ξ)dξ is analytic on B and
jS(z)

we have

(4.3) DzjF(z) = \ Dzj^(z - ξ)f(ξ)dξ . '

REMARK 4.1. The above proposition holds also if we replace B by
B(k) = {zeB ZkβE,}.

PROPOSITION 4.2. Suppose feCμ(En) and suppose it decreases fast
enough as \ x \ —> °°. // the integral

F(x) = \
JEn\

x — r)f(r)dr

is absolutely convergent, then F(x) can be analytically extended to B. We

have F(z) = \ J^(z - r)f(r)dr for zeB.
jEn\B

Now, we return to the Stokes equation (2.1). Notice that the solu-
tion (v, q) of (2.1) can be written as follows:

[v = U(f, φ, v0) = v' + v" + Fv ,
( 2 < 5 ) Iff = P(/, φ, v0) = p' + p" - Dtv + Δv .

We have the following proposition.

PROPOSITION 4.3. Suppose that, for the function f in (2.1), there
exists F = {ί7ifc}(i,fc=i,2,3) such that f = div F and F has an analytic exten-
sion F to E. Let φ, v0 have analytic extensions to {EB U BohB} x IhT,
EB U BohB, respectively. Then the solution v(x, t) = U(div F, φ, vo)(x, t),
q(x, t) = P(div F, Φ, vo)(x, t) has an analytic extension to GhR x Ihτ and
satisfies

\\v\\?+μ + \\rq\\*μ + ιι ff \\r+μ-ε

To prove this proposition, we first give the complex analytic exten-
sions of the kernels T(x, t), Q(x, t), A(x, t) and G(x, t). The analytic
extension of K(x) is well known. So, by using Propositions 4.1 and 4.2,
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we obtain the following lemmas,- where we define

J° = (0, oo), /jf = {α> = ί + is;\s\ <ht,teΓ} ,

Xh = {z = x + ia/; a?, 2/6^, |τ/| < fc|a|} ,

LEMMA 4.1. Tfce kernel T(x, t) (resp. A(x, f), resp. Gjk(x, t) (k Φ 3))
can be extended to an analytic function in (z, ft)) for (z, ω)eXh x Γh

(resp. (z\ ft)) for (z, ώ) e Yh x Γh resp. (z\ ώ) for (z, ω)eYhx Ph), and we
have, for (z, oo)eXh x Fh,

(4.4) \D«D™T(z, ft))I ̂  C(\x\2 + t

(resp. for (z, ώ) e Yh x Γh,

(4.5) IDa

zD™A(z, ω)I ^ C(|^| 2 + ί)-

resp. for (z, ω)eYhx /;,

(4.6) \D?,D^D:Gjk(z, ft))| ^ C*-m-1/2(M2 +

The real number h depends on the kernels. We choose and fix a
sufficiently small positive number h so that the above analytic extensions
exist.

We put &~ = Γ, B = β0Λi2 and take S(z) satisfying (4.1). Then we
have the following.

LEMMA 4.2. Suppose that feQifμ/2(EΆ x ( — oo, Γ)) and suppose it
decreases fast enough as | (#, £) | —• °°, awc£ feas an analytic extension to
m>μi\E). Put

F(x, t) = Γ S Γ(aj - r, ί - τ)/(r,

F(x, t) can be extended analytically in (z\ ω) for (z, ft)) 6 BohR x IhT

and we have

Similarly, the following lemmas hold.

LEMMA 4.3. Suppose that g eC0

1+μ'a+μ)/2(E3 x (-oo, T)) and suppose
it has a compact support in E3 x (— oo, T) and has an analytic exten-
sion to H0

1+μ'a+μ)/2(E). Then the function F(x, t) defined by

F(x, t) = j K(x - r)Drg(r, t)dr ,

can be extended analytically in (z\ ft)) for (z, ft)) e BohR x Ihτ and satisfies

(4.7) ||D?F\\* ^ CUflrllf+ ĵ , | α | = 2 ,
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(4.8) || ± | | i+ Aι_ e ^ κs\\y\\1+μ(E)

LEMMA 4.4. Let v0 be in H2+μ(Es U BohR). Then the function F(x, t)
defined by

F(x, t) = ( Γ(x - r,t + T)vo(r)dr ,

can be extended to {Es U BohB) x Ihτ so that Fe H2+μΛ2+μ)f\{Ez U BQhR} x IhT).
We have

\\F \\2+μ ^ ^\V

PROOF OF PROPOSITION 4.3. As mentioned above, the functions v'
and pf given by (2.6) have analytic extensions and satisfy the desired
inequalities. In other words, we obtain the extension and the estimate
for pf by Lemma 4.3. Regarding the function v' as the solution of the
Cauchy problem for the heat equation with / — p' on the right-hand side,
by Lemmas 4.2 and 4.3, we have

\\*\\ϊ+μ + HPΊIIV-. + II^PΊI* ^ C{\\F\\*+μ[E) + l ^ + ^ a u ^ ) } .

In the same way as in the proof of Lemma 4.3, we have

| | V | | 3 + ^ ^ C\\φ\\2+θ+ε{{E3{JB0hR}Xlhτ) >

where v is given by (2.8).

LEMMA 4.5. Let bz be the third component of b in (2.4) and suppose
it satisfies the condition Dtbz = Σ? =i A^y Let bs e H!+μΛ2+μ)/\{σ U σhR} x
/„.) and ek e £ro

1+^(1+^)/2({o U σhR) x IhT), j = 1, 2, 3, k = 1, 2. Then the

functions v" and p" given by (2.4) are extended analytically in (z\ ώ)
for (z, a)) e GhR x Ihτ and satisfy

a } I + \\e \\l+μ{{σ(JσhR}xIhτ))\\2+μaσ[jσhR}xIhτ) + \\e \\l+μ{{σ(JσhR}xIhτ))

For the detail of the proof of each lemma see Morrey [9, pp. 174-
179].

In view of the definition of bz in (2.4), we get the following by
Solonnikov [11, p. 53].

DA(x', t) = Σ Dmps(z\ t) + ± DmJ>'/(x', t) ,

where

bM, t) = (4π)-ιΓjD.8( Γ(r, t)\x - τ\-ιdr*/,

-DΛ Γ{r,t)\x-r\-ιdr*fΛ\ ,
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b'/(x', t) = D.s \ Γ(x-r,t + T)vos(r)dr
J EQ

- DX3 \ Γ(x-r,t + T)voj(r)dr
JEΆ

The above formula is also valid after the analytic extension. Hence it
is easy to see that there exist ek (k = 1, 2) satisfying Dtb3 = Σl=iDXkek.

We see that the norms of b and e are bounded by those of / and
v0. Therefore the proof of Proposition 4.3 is complete.

Similarly, we have the following.

PROPOSITION 4.4. Suppose that, for f in (2.1), there exists F =
{̂ •J(i,fc=i,2,3) such that f= div F and F is in Hl+μΛ1+μ)/\Et X IhT) Let
f=0 and divφ = 0 on GR x Ihτ. Let φeH0

2+μ+ε>{2+μ+ε)/\Eϊ x Ihτ), voe
H2+μ(E£ U GhR). Then the solution (v, q) of {2.1) has an analytic extension
onto GhR x Ihτ and satisfies

\*\\v\\ί+μ+ \\Fq\\

^ C{\\F\\

Now we will give here the analytic extensions of HR and MR.

\?+μ{B+XIhτ)

PROPOSITION 4.5. Let Fe H1+θ+ε>{1+θ+ε)/2(GRx/„.), u e H2+θ+ε>{2+θ+ε)/2(GBx

Ihτ), p e H1+θ+εΛ1+θ+ε)/\GR x Ihτ). Then HR and MR have extensions HR

and MR which are analytic in (z\ ώ) for (z, ώ) e GhR x Ihτ and satisfy

\\HR\\i+9 + \\MB\\T+Θ-. ^ C{\\HR\\2+θ+ε{GRχIhτ) + \\MR\\1+θ{GRXlhτ)} .

PROOF. We already know that HR and MR satisfy

{DtHR - ΔHR + VMR = 0 in GR x Iτ ,

div HR = 0 in GR x Iτ ,

and HReH0

2+θ+εA2+θ+ε)/\GR x IhT), MReH0

1+θ>a+θ)/2(GR x Ikτ), and FMRe

H0

θ+ε>{θ+ε)/2(GR x IhT). Let HR and MR be extensions of HR and MR to

E} x ( - oo, T) as in Lemma 3.1. Let / * = DtHR - AHR + VMR, φ* = HR,
v* = HR\t=z_τ. I t is easy to see that v* is a polynomial on GRJ / * = 0
and div φ* = 0 on G^ x /AJP. Since jDίίZ^ = AHR — VMR in G^ x Ihτ, we
see by the construction of HR9 MR that there exists F* such that / * =

and F* e HΪ+ΘΛ1+Θ)/2(E? x Ihτ). Moreover, we know that φ* e
(E+ x Ihτ) a n d v*eH2+ΘΛ2+θ)/2(Ef U GhR). Then the functions

and MR satisfy
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(4.9)

= r in E+xIhτ ,

div HR = div ̂ * in Ef x 7fcΓ ,

ΉR\t==_τ = v* , -B

and have compact supports. Regarding /*, ̂ *, v*f as given data, and
HR, MB as solutions of (4.9), by Proposition 4.4 with μ = θ, we see that
HB and iίfβ have analytic extensions HR, MR to GΛi2 x IhT and satisfy

By using Lemma 3.1, we obtain Proposition 4.5.

REMARK 4.2. The extension operator Φ defined in Lemma 3.1 also
satisfies the following. If fe HQ

k+fίΛk+fi)/\GhR x Ihτ), then Φ{f) e H0

k+ftΛk+μ)/2(E)
for fc = 1, 2, 0 < μ < 1. We have

where C is independent of R and T.

By the above we obtain the complex analytic extensions of the opera-
tors KR, LR.

PROPOSITION 4.6. The operators KR and LR satisfy the following
properties.

(1) KR is an operator from H0

1+μΛ1+μ)/2(GhRxIhτ) into H^
Ihτ) and we have

\\KR[W]\\?+μ <; 011^(1,% for WeHi+'W^Gn x Ihτ) ,

where C = C(R0, To) for R < Ro, T < To.
( 2 ) IfΨ3.e H^^\GhR x Ihτ) (j - 1, 2), then

μ ̂  cwr, - Ψ2\\r+μ,
where C = C(RQ, To) for R < Ro, T < To.

( 3 ) If ΨeHϊ+μΛ1+μ)/\GhRxIhT), then VLR[Ψ] eHr/2{GhR x Ihτ) and

LR[Ψ]eHi+μ-εΛ1+μ-ε)/2(GhR x Ihτ) for any ε with 0 < μ - ε < l , ε > 0 .

PROOF. We know that

KR[Ψ](x, t) = U(divΦ(Ψ), -Φ{&), -Φ{^)\t^τ)\oR,Iτ{x, t)

- Σ (k\a\)-ίDkDx

aU(0ί0)xatk\GRXIτf
2k+\a\S2

LB[Ψ](x, t) = P(AivΦ(Ψ), -
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In view of the definition of & and Remark 4.2, it is easy to see that
the function Φ(έ?) is in Hϊ+μ+εΛ2+μ+ε)/2(E). Putting F = Φ(Ψ), φ = -Φ(έ?),
and v0 = —Φ(&), we use Proposition 4.3. Then, noticing Remark 4.2,
we have Proposition 4.6.

5. Proof of Theorem 1.1. First, we prove the following proposition
for small R, T.

PROPOSITION 5.1. Let u0 e H2+θ+ε(GhB). Suppose that u e H2+θ+εA2+θ+ε)/2

(GR x IhT) and p e H1+θ+εΛ1+θ+ε)/2(GR x Ihτ) satisfy

Dtu — Δu + Vp = / — div N(u) in GBx Iτ ,

(5.1) div u = 0 in GRx Iτ ,

u\t=_τ = u0 ( d i v u Q = 0) , w 1*3=0 = 0 .

Suppose that there exists F = {Fjk}U)k==u2>3) such that f= div F and Fe
H1+θ+e'{1+θ+B)/2(GhBx Ihτ), ( 0 < ^ + ε < l , ε > 0 ) . Then we can extend u and
p so that ueH2+θ>{2+θ)/2(GhBxIhτ), DHueH1+θ>{1+θ)/2(GhBxIhτ), peH

1+ΘΛ1+θ)/2

(GhR x Ihτ).

As is well known, we may assume that u0 = 0. To prove this prop-
osition, we consider the integral equation:

(3.5) w = KB[Ψ(w + HR)]

in HQ

2+θ>{2+6)/2(GhB x Ihτ). Since the solution (u, p) of (5.1) is written as
u — vR + HB + < ,̂ p = qR + MR + ^?, it is sufficient to prove that vR9

HReH2+°>^\GhR x Ihτ), qB, MB, DX3vR, DxzHBeH^^\GhB x Ihτ). By
Proposition 4.5, we see that HB and MB satisfy the above properties.
Regarding HBeHϊ+ΘA2+θ)/2(GhBxIhτ) as known, we seek the solution w of
(3.5) in Hξ+ΘΛ2+θ)/2(GhBxIhτ). To continue the proof, we need the follow-
ing Propositions 5.2 and 5.3, the first of which can be proved in the
same way as Proposition 3.3.

PROPOSITION 5.2. Choose R3 sufficiently small and put T=O(R2) for
0<R<R5. Suppose that w eH$+μΛ2+μ)/2(GhBxIhτ) and \\w\\t+μ is uniformly
bounded by some number M for 0 < R < R3. Then

(5.2) Ψ(w) 6 Hl+»w\GhB x Ihτ) ,

(5.3) \\Ψ{w)\\^μ^Cι + C,{M)R\

where Cx is independent of M and R9 while C2(M) depends on M. More-
over, if \\Wj\\*+μ == Λf (i = 1, 2), then

(5.4) || Ψ(Wl) - ¥(w2) I\*+μ ^ C3(M)R\\ w, - w2\\*+μ ,

where CS(M) depends on M.
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PROPOSITION 5.3. Choose R4 sufficiently small and put T = O(R2) for
0 < R < # 4 . Suppose that HR is in H0

2+ΘΛ2+θ)/2(GhR x Ihτ). Then there
exists a solution w of (3.5) which is in H2+ΘA2+θ)/2(GhR x IhT).

PROOF. We define the sequence {wk} by w° = 0 and wk+1 =
KR[Ψ(wk + JϊΛ)]. By Proposition 4.6 with μ — θ and Proposition 5.2, we
see that there exists a positive constant M such that wk e Hi+ΘΛ2+θ)/2(GhR x Ihτ)
and ||wfc||2*+0 <£ M. Choosing i?4 sufficiently small, we then have \\wk+ι —
wk \\f+θ <̂  2"1!! wfe — wk~x ||2% for R < R4. This shows that the sequence {wk}
is a Cauchy sequence in H2+θ>{2+θ)/2(GhRxIhτ), whose limit wf is the solution
of (3.5).

We now continue the proof of Proposition 5.1. The solution we
HQ2+θΛ2+θm(GhB χ Ihτ) i s a l s o i n C2o+ΘA2+Θ)/2(GR x I τ ) a n d \\w\\2+θ i s u n i f o r m l y
bounded by some number M for 0 < R < i?4. On the other hand, vR is
the solution of (3.5) and is in Ct+Θ>{2+Θ)/\GR x Iτ) and \\vR\\2+θ is also uni-
formly bounded by M for 0 < R < RA. So, by Proposition 3.2, we obtain
w = vR in GR x Iτ. In other words, there exists an analytic extension
of vR to Ho+ΘΛ2+θ)/2(GhR x IhT). The same properties are true for qR and
DXBvR. Therefore the proof of Proposition 5.1 is complete.

Now, we prove Theorem 1.1. We return to the solution (u, p) of
(1.1). It is easy to see that the hypotheses of Proposition 5.1 follow
from those of Theorem 1.1 with μ = θ + ε. By Proposition 5.1, there is
a constant δ > 0 such that u, DX3u, p are analytic in (z\ ω) for (z, ω) e
^ro δ = {(Zf ω) e & x Ω\ \z'\<δ9 \ω — to\ < δ, yz = 0, 0 < xB < δ}, and

\u(z', a?8, ω)\ + \DX3u(z', x3, ω)\ + \p{z\ x3, ω)\ < M for (z, ω) e &oδ, where δ

and M are independent of x3. We consider the Cauchy problem:
2 _ 3

2 3

'^3^2 — UωU/2 2-Λ J^zj^ί ~V J^z2P J2 ~t~ Z j ilQ'UZ-(AJ2 ,
i=l i=l

(5.5)

Z)Z3p = -jD.it, + Σ (i>ϊ,it. + D.fiifi,) + /, - ]
3

.2-1 ^ i

, *', ω), (0 < «' < δ) .

By the Cauchy-Kowalewsky Theorem, there exists a unique analytic solu-
tion of (5.5) in &,. = {(«, ω) e ̂  x i2; | zf \ < δ", | ω -101< δ", |z3 - δ' | < δ"},
where δ" depends on δ and M, but δ" is independent of δ'. Choosing δ'
sufficiently small, we see that (0, ί0) is in ^ - .
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On the other hand, by Kahane [3], we know that, under the same
assumption as in Theorem 1.1, the solution {u, p) of (1.1) is analytic near
(0, 0, §', t0). The functions u and p satisfy (5.5). Then we have (u, p) =
(ΰ, p) near (0, 0, <5', t0). Therefore, u and p are analytic near (0, t0).
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