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DECOMPOSITION THEOREM AND LACUNARY CONVERGENCE
OF RIESZ-BOCHNER MEANS OF FOURIER TRANSFORMS

OF TWO VARIABLES
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Introduction. This paper is concerned with some inequalities related
to Fourier transforms of functions of two variables. Our starting points
are Fefferman's divergence theorem [4] of spherical means of Fourier
transforms and Carleson-Sjδlin theorem [1] on the norm convergence of
the Riesz-Bochner means sσ

R(f).
In the previous paper [8] the author showed that the lacunary sub-

sequence of the Riesz-Bochner means sσ

R(f) with positive order of a
function / in LP{R2), 4/3 ___ p <̂  2, converges almost everywhere. In
this note we shall apply a technique in [8] to prove Carleson-Sjolin
theorem for Z2-valued functions. It gives a partial answer of a problem
in Stein [9] and also implies lacunary convergence theorem in the pre-
vious paper.

In the last section we shall prove a decomposition theorem of
Littlewood-Paley type for "weak" spherical truncations.

1. Carleson-Sjόlin theorem for I2-valued functions. For an inte-
grable function / on the two dimensional euclidean space R2 let / be
the Fourier transform:

fYf\ — _____ I •ff<rλι?~itχίJΎ* & C J? 2

J \ζ J 1 J \*M/& IΛ/iΛ/ , S *

The Riesz-Bochner kernel sσ

R of order σ __: 0 is defined by sσ

R(ζ) —
(1 — |f \2/R2)σ for \ζ I < R and =0 otherwise, and the Riesz-Bochner mean
of / by 8%(f) = 8σ

B*f, the convolution of / and sσ

R.

THEOREM 1. Let {Rn} be a sequence of positive numbers with
Hadamard's gap, i.e., Rn+1/Rn > q (n = 0, ± 1 , ±2, •) for some q > 1.
Let 4/3 ___ p ___ 4 and σ > 0. Then

( i . i ) II ( Σ I « ; . ( / . ) I1)171 II, ^ c || ( Σ I/. I2N1/2 I
fn\ ) I
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for {fn\ e Lp Π L\R2; I2), where || ||p denotes the Lp-norm and c a constant
depending only on q, p and σ.

In the following we fix q > 1 and σ > 0 and denote by c a positive
constant depending only on q and σ which will be different in each
occasion. In Theorem 1 the case p = 4 is most essential and other cases
will follow from this case by duality and interpolation arguments.
Our proof procceeds along the line of the previous paper [8] but for
convenience' sake we give a complete proof.

Let φ be a C°°-function on (—oo, <x>) such that the support of ^ c
(1, 3) and l = ΣZ=-<*Φ@-nP) for p>0. For δ>0 put φR,δ(ξ) = Φ(R-1δ-\R-\ζ\)),
ξeR2 and sB(f) = sσ

R>δ(f) = sσ

R*φR)δ*f Then (1.1) follows from the ine-
quality

(1.2) II ( Σ I «*„(/„) I T 2 II, ̂  cδ° || ( Σ IΛ I Π
n n

«

where ε is a positive constant depending only on σ and q.
Put

THEOREM (1.3) (Fefferman [4], cf. Cordoba [2]). We have

For a locally integrable function g in R2 let g* be the Hardy-Little-
wood maximal function, i.e.,

g*(x) = sup — A I g(y) | dy .
r > 0 7ZT }\χ-y\<r

LEMMA (1.4.) There exist ε > 0 and 2 > 7 > 1 such that

(1.5) /... ^ c8'\(\fMn*r\8B%(fn)\*dx

for all {fj eLpΠ L\R2) and for m, n satisfying RJRm < δ2.

PROOF. Let {ψj; j = 0, 1, , pπδ-1] — 1} be a partition of unity on
the unit circle such that fj{ω) = ψ{δ~\ω - jδ)), 0 <: j < ftπδ'1] -1 where
ψ is a C°°-function on (— °̂, ©o) with support contained in ( — 3/4,3/4).
Define sB = sσ

Riδ by sj

R(ζ) = sR(ξ)ψj(ω), where f — |f |(cosα>, sinω). Then
4 m ( / J = 8*Bm*fm satisfies

Since ίi.(/J*ίs,(Λ) n.(/J ίs.(/.) = 0 if | i - A;| > 1, we have
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Define if = 7]j

Bn,s and 7] = -ηBm<s by

V%ξu £,) = t([& - # J 2 +

) = Ίf(M}ξ), where Λf, is the rotation of angle δj, and

Then

Suppose that the support of /„ is contained in the square Q of side
length R£S-r with center at O, where 7 > 1 is a number close to 1 but
determined later. By Schwarz's inequality

ι«i.(/JWf ^ J iei.isd* ji^ ^ / . i ^

Since [\s>RJ2dx^ cRlδ*°+\

(1.6) Σ I <,(/. )(*) I2 ̂  oΛLδ2-" Σ ί I yj*y*fm \2dx .
ό 3 J

By the Parseval relation Σ i ll^*^*/mΓ^ ^ ^ll^^/mi2^. Furthermore

by Young's inequality || η*fm ||2 ̂  || η ||2/(3_n | |/m ||2/r ^ ciϊL"11|/« ||2/r. Thus the

right hand side of (1.6) is bounded by c<5e((l/|Q|)ί \fm\Vrdx\, where ε =

2(σ + 1 — τ2) which is positive for 7 close to 1. Thus

(1.7) Σ \sim(fj(x)\2 ^ c8\\fm\^ψr{x)
3

for xeSQ.
Next remark that for every M ̂  0 there exists a constant c such

that

(1.8) \sim(x)\

for x Φ O. Thus

for x $ 3Q.
To get an estimate for a general function fm divide R2 into non-

overlapping squares {Q(a)} similar to Q and with center at R^δ-γa
where a = (au a2) is a lattice point. Then
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(i O) ΣI sίjfj(χ) ί ^ c Σ Σ ! 4m(/Jϋ(*) I2 + c ΣI Σ sim(fmxa)(x) |2
3 3 I α | ^ l 3 | α | > l

where Zα is the characteristic function of Q(α). Suppose xeQ = Q(0).
We apply (1.7) for the first term on the right hand side of (1.10) and
(1.9) for the second term. Then we get

(l.ii) ΣI4m(/J0*0(2

if M is sufficiently large. Thus we get (1.11) for all x in R2. Thus we
get (1.5).

We shall use the following:

THEOREM (1.12) (Fefferman and Stein [4]). Let 1 < r, p < oo and {fj
be a sequence of Lp(Rd). Then

where cp,r is a constant depending only on p and r.

PROOF OF THEOREM 1. Let Σ U b e summation over (m, n) such that
δ2 < RJRn < δ~2 and Σ2

m>w summation over (m, n) such that i2w/#w > δ~2

or i?w/i?Λ < δ2.
By Schwarz's inequality Im,n^PXmPJχ. Thus Σ U /»,. ^ Σ U /.,,.

For every m the number of w's satisfying δ2 < i?m/i2M < δ~2 is less than
4 log δ'Vlog g. Thus, by Theorem (1.3)

(1.13) Σ 1 /•.. ^ c log δ-1 Σ /«,. ^ cδδ log δ"1

By Lemma (1.4)

Σ 2 Im,n ^ cδ'Σ*

Put S = Σ»>«i™,» = ll(Σ»|sS m(/J|2)1 /Ίlί. Then by Schwarz's inequality
and Theorem (1.12)

Σ 2 1 . . . 22 cδ Γίffi (l/.l2/r)*02ώχT2S

Combining the last inequality with (1.13) we get
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s ^ cδ< || ( Σ I/. I2)1/2 \\isι/* + cδ£ log δ-1 | | (Σ I/. IT 2 Hi,
m m

which proves (1.2) with norm cdε/8.

2. Lacunary convergence of sσ

R(f). In this section we shall prove
the almost everywhere convergence of s%m(f) where feLp(R2), 4/Z<^p<^
4, σ > 0 and {Rm} is a lacunary sequence with Hadamard's gap q > 1.

Put ίU£) = φ(2R?\ξ\). Remark that 0,® = 1 if SRJA ^ \ξ\ ̂  Rm.
By the lacunarity of {RJ we have (cf., e.g., [5; p. 120]):

LEMMA (2.1). Let 1 < p < oo. Then

/or feLp(R2), where cp is a constant not depending on f.

Let ψm(ξ) = 1 - 0Λ(f) for |f | ^ Rm and =0 otherwise.

LEMMA (2.2). Suppose σ ^ 0.

for feL\R2).

PROOF. Since s%n(ξ)ψn(ζ) = ηiR^ξ) for some C°°-function η with
compact support, Lemma (2.2) follows from a routine work.

THEOREM 2. Let {Rn} be a sequence of positive numbers with
Hadamard's gap q > 1. Let 4/3 ^ p <I 4 αwώ σ > 0. T%0w 8*R%(f) con-
verges almost everywhere to f for all feLp(R2).

PROOF. Suppose feLp. Since sσ

Rn = sσ

Rn*fn + 8σ

Bn*$n9

sup |8JΛ(/)(OJ)| ^ β/*(a?) + sup | s ^ ( ^ * / ) | .
n n

By Lemma (2.1) and Theorem 1

II ( Σ I sin(k*f) I 2 ) 1 7 2 1|,^

Thus

Thus by the Hardy-Littlewood maximal theorem

II s u p I«*„(/) I H ^
n

from which our theorem follows.
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3. Decomposition theorem. Define kn by the Fourier transform
K(ξ) = 0(2~* If I). Let 1 < p < oo and feLp(R2). Then we have

(3.1) \\f\\P~\\(n±jκ*f\ή1/2

that is, two norms of / are equivalent (cf., e.g., [5; p. 120]).
Remark that kneC°°, the support of knc{2n ^ \ξ\ <: 3-2*} and ίcn = l

on {3-2*-1 ^ \ζI ^ 2W+1}, and that (3.1) is valid with ίcn replaced by the
characteristic function of {ξ; 2n ^ \ς | < 2n+1} if and only if p = 2 (Feffer-
man [4]).

Let σ > 0 and 1 > τ > 0. Define Dn (n = 0, ± 1 , ±2, - •) as follows.
Put A(f) = 1 for \J\ < 2, [(2 + τ - If \)/τ]σ for 2 ^ |f | < 2 + r and 0 for
2 + r ^ |f I, and -DΛ(f) = Z)0(2~wf). Let An = Dn — Dn_±.

THEOREM 3. Let 4/3 <^ p <* 4.

(3.2)

PROOF. Suppose {fn}eL\l2). First we remark that (1.1) holds if
is replaced by {Dn*fn}. In fact, (1.3) with {Dn*fn} in place of
is valid by an elementary reduction process. On the other

hand we have an estimate similar to (1.8) with DL and 2W in place of
s3

Rm and Rm respectively where a definition of Di will be obvious. Thus
we get Lemma (1.4) for the kernels Dn.

Thus we have

( oo

Σ
Λ = - o

/ oo \l/2

( Σ IΛΓ)
\ w = -oo /

(3.3)

Thus

By the duality and interpolation arguments we have

(3.4) IKΣI^ΛITΊI^clKΣI/JTΊI,
for {/JeL '( f ) , 4/3 ^p^ 4.

Let feLp(R*). Then {(&,_! + f t . + fc.+1)*/} e L'tf*) and by (3.1) and
(3.4) we have

(3.5)

On the other hand, since

\fgdx = Σ J(Λ
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for smooth functions / and g with compact support, we have an opposite
inequality.

REMARK. The author discussed with H. Dappa to organize this note.
His result ([3]) on radial multipliers will be related to Theorem 3.
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