DECOMPOSITION THEOREM AND LACUNARY CONVERGENCE OF RIESZ-BOCHNER MEANS OF FOURIER TRANSFORMS OF TWO VARIABLES

Satoru Igari*)

(Received September 10, 1980)

Introduction. This paper is concerned with some inequalities related to Fourier transforms of functions of two variables. Our starting points are Fefferman's divergence theorem [4] of spherical means of Fourier transforms and Carleson-Sjölin theorem [1] on the norm convergence of the Riesz-Bochner means $s_{R}^{\sigma}(f)$.

In the previous paper [8] the author showed that the lacunary subsequence of the Riesz-Bochner means $s_{R}^{o}(f)$ with positive order of a function f in $L^{p}\left(\boldsymbol{R}^{2}\right), 4 / 3 \leqq p \leqq 2$, converges almost everywhere. In this note we shall apply a technique in [8] to prove Carleson-Sjölin theorem for l^{2}-valued functions. It gives a partial answer of a problem in Stein [9] and also implies lacunary convergence theorem in the previous paper.

In the last section we shall prove a decomposition theorem of Littlewood-Paley type for "weak" spherical truncations.

1. Carleson-Sjölin theorem for l^{2}-valued functions. For an integrable function f on the two dimensional euclidean space \boldsymbol{R}^{2} let \hat{f} be the Fourier transform:

$$
\widehat{f}(\xi)=\frac{1}{2 \pi} \int_{\boldsymbol{R}^{2}} f(x) e^{-i \xi x} d x, \quad \xi \in \boldsymbol{R}^{2}
$$

The Riesz-Bochner kernel s_{R}^{σ} of order $\sigma \geqq 0$ is defined by $\widehat{s}_{R}^{o}(\xi)=$ $\left(1-|\xi|^{2} / R^{2}\right)^{\sigma}$ for $|\xi|<R$ and $=0$ otherwise, and the Riesz-Bochner mean of f by $s_{R}^{\sigma}(f)=s_{R}^{\sigma} * f$, the convolution of f and s_{R}^{σ}.

TheOrem 1. Let $\left\{R_{n}\right\}$ be a sequence of positive numbers with Hadamard's gap, i.e., $R_{n+1} / R_{n}>q(n=0, \pm 1, \pm 2, \cdots)$ for some $q>1$. Let $4 / 3 \leqq p \leqq 4$ and $\sigma>0$. Then

$$
\begin{equation*}
\left\|\left(\sum_{n}\left|s_{R_{n}}^{\sigma}\left(f_{n}\right)\right|^{2}\right)^{1 / 2}\right\|_{p} \leqq c\left\|\left(\sum_{n}\left|f_{n}\right|^{2}\right)^{1 / 2}\right\|_{p} \tag{1.1}
\end{equation*}
$$

[^0]for $\left\{f_{n}\right\} \in L^{p} \cap L^{1}\left(\boldsymbol{R}^{2} ; l^{2}\right)$, where $\|\cdot\|_{p}$ denotes the L^{p}-norm and c a constant depending only on q, p and σ.

In the following we fix $q>1$ and $\sigma>0$ and denote by c a positive constant depending only on q and σ which will be different in each occasion. In Theorem 1 the case $p=4$ is most essential and other cases will follow from this case by duality and interpolation arguments. Our proof procceeds along the line of the previous paper [8] but for convenience' sake we give a complete proof.

Let ϕ be a C^{∞}-function on $(-\infty, \infty)$ such that the support of $\phi \subset$ $(1,3)$ and $1=\sum_{n=-\infty}^{\infty} \phi\left(2^{-n} \rho\right)$ for $\rho>0$. For $\delta>0$ put $\phi_{R, \delta}(\xi)=\phi\left(R^{-1} \delta^{-1}(R-|\xi|)\right)$, $\xi \in \boldsymbol{R}^{2}$ and $s_{R}(f)=s_{R, \delta}^{\sigma}(f)=s_{R}^{\sigma} * \hat{\phi}_{R, \delta} * f$. Then (1.1) follows from the inequality

$$
\begin{equation*}
\left\|\left(\sum_{n}\left|s_{R_{n}}\left(f_{n}\right)\right|^{2}\right)^{1 / 2}\right\|_{4} \leqq c \delta^{\varepsilon}\left\|\left(\sum_{n}\left|f_{n}\right|^{2}\right)^{1 / 2}\right\|_{4} \tag{1.2}
\end{equation*}
$$

where ε is a positive constant depending only on σ and q.
Put

$$
I_{m, n}=\int\left|s_{R_{m}}\left(f_{m}\right) s_{R_{n}}\left(f_{n}\right)\right|^{2} d x
$$

Theorem (1.3) (Fefferman [4], cf. Córdoba [2]). We have

$$
I_{n, n} \leqq c \delta^{\varepsilon} \int\left|f_{n}\right|^{4} d x
$$

For a locally integrable function g in R^{2} let g^{*} be the Hardy-Littlewood maximal function, i.e.,

$$
g^{*}(x)=\sup _{r>0} \frac{1}{\pi r^{2}} \int_{|x-y|<r}|g(y)| d y
$$

Lemma (1.4.) There exist $\varepsilon>0$ and $2>\gamma>1$ such that

$$
\begin{equation*}
I_{m, n} \leqq c \delta^{\delta} \int\left(\left|f_{m}\right|^{2 / r}\right)^{* r}\left|s_{R_{n}}\left(f_{n}\right)\right|^{2} d x \tag{1.5}
\end{equation*}
$$

for all $\left\{f_{n}\right\} \in L^{p} \cap L^{1}\left(\boldsymbol{R}^{2}\right)$ and for m, n satisfying $R_{n} / R_{m}<\delta^{2}$.
Proof. Let $\left\{\psi^{j} ; j=0,1, \cdots,\left[2 \pi \delta^{-1}\right]-1\right\}$ be a partition of unity on the unit circle such that $\psi^{j}(\omega)=\psi\left(\delta^{-1}(\omega-j \delta)\right), 0 \leqq j<\left[2 \pi \delta^{-1}\right]-1$ where ψ is a C^{∞}-function on $(-\infty, \infty)$ with support contained in ($-3 / 4,3 / 4$). Define $s_{R}^{j}=s_{R, \delta}^{\sigma, j}$ by $\widehat{s}_{R}^{j}(\xi)=\widehat{s}_{R}(\xi) \psi^{j}(\omega)$, where $\xi=|\xi|(\cos \omega, \sin \omega)$. Then $s_{R_{m}}^{j}\left(f_{m}\right)=s_{R_{m}}^{j} * f_{m}$ satisfies

$$
s_{R_{m}}\left(f_{m}\right)=\sum_{j} s_{R_{m}}^{j}\left(f_{m}\right)
$$

Since $\hat{s}_{R_{m}}^{j}\left(f_{m}\right) * \hat{s}_{R_{n}}\left(f_{n}\right) \cdot \hat{s}_{R_{m}}^{k}\left(f_{m}\right) * \widehat{s}_{R_{n}}\left(f_{n}\right) \equiv 0$ if $|j-k|>1$, we have

$$
I_{m, n} \leqq 3 \sum_{j} \int \mid s_{R_{m}}^{j}\left(f_{m}\right) s_{R_{n}}\left(f_{n}\right)^{2} d x
$$

Define $\eta^{j}=\eta_{R_{m}, \delta}^{j}$ and $\eta=\eta_{R_{n}, \dot{o}}$ by

$$
\hat{\eta}^{0}\left(\xi_{1}, \xi_{2}\right)=\psi\left(\left[\left(\xi_{1}-R_{m}\right)^{2}+\xi_{2}^{2}\right] / 100 \delta^{2} R_{m}^{2}\right)
$$

$\eta^{j}(\xi)=\eta^{0}\left(M_{j} \xi\right)$, where M_{j} is the rotation of angle δj, and

$$
\hat{\eta}(\xi)=\psi\left(|\xi| / 100 R_{m}\right) .
$$

Then

$$
s_{R_{m}}^{j}\left(f_{m}\right)=s_{R_{m}}^{j} * \eta^{j} * \eta * f_{m}
$$

Suppose that the support of f_{m} is contained in the square Q of side length $R_{m}^{-1} \delta^{-\gamma}$ with center at O, where $\gamma>1$ is a number close to 1 but determined later. By Schwarz's inequality

$$
\left|s_{R_{m}}^{j}\left(f_{m}\right)(x)\right|^{2} \leqq \int\left|s_{R_{m}}^{j}\right|^{2} d x \int\left|\eta^{j} * \eta * f_{m}\right|^{2} d x
$$

Since $\int\left|s_{R_{m}}^{j}\right|^{2} d x \leqq c R_{m}^{2} \delta^{2 \sigma+2}$,

$$
\begin{equation*}
\sum_{j}\left|s_{R_{m}}^{j}\left(f_{m}\right)(x)\right|^{2} \leqq c R_{m}^{2} \delta^{2 a+2} \sum_{j} \int\left|\eta^{j} * \eta * f_{m}\right|^{2} d x \tag{1.6}
\end{equation*}
$$

By the Parseval relation $\sum_{j} \int\left|\eta^{j} * \eta * f_{m}\right|^{2} d x \leqq c \int\left|\eta * f_{m}\right|^{2} d x$. Furthermore by Young's inequality $\left\|\eta * f_{m}\right\|_{2} \leqq\|\eta\|_{2 /(3-r)}\left\|f_{m}\right\|_{2 / r} \leqq c R_{m}^{r-1}\left\|f_{m}\right\|_{2 / r}$. Thus the right hand side of (1.6) is bounded by $c \delta^{\varepsilon}\left((1 /|Q|) \int_{Q}\left|f_{m}\right|^{2 / \gamma} d x\right)^{r}$, where $\varepsilon=$ $2\left(\sigma+1-\gamma^{2}\right)$ which is positive for γ close to 1 . Thus

$$
\begin{equation*}
\sum_{j}\left|s_{R_{m}}^{j}\left(f_{m}\right)(x)\right|^{2} \leqq c \delta^{\epsilon}\left(\left|f_{m}\right|^{2 / \gamma}\right)^{* \gamma}(x) \tag{1.7}
\end{equation*}
$$

for $x \in 3 Q$.
Next remark that for every $M \geqq 0$ there exists a constant c such that

$$
\begin{equation*}
\left|s_{R_{m}}^{j}(x)\right| \leqq c R_{m}^{2} \delta^{\sigma+2}\left(R_{m} \delta|x|\right)^{-u} \tag{1.8}
\end{equation*}
$$

for $x \neq 0$. Thus

$$
\begin{equation*}
\left|s_{R_{m}}^{j}\left(f_{m}\right)(x)\right| \leqq c \delta^{\sigma}\left(R_{m} \delta|x|\right)^{-M+2}\left(\left|f_{m}\right|^{2 / r}\right)^{* \gamma / 2}(x) \tag{1.9}
\end{equation*}
$$

for $x \notin 3 Q$.
To get an estimate for a general function f_{m} divide \boldsymbol{R}^{2} into nonoverlapping squares $\{Q(\alpha)\}$ similar to Q and with center at $R_{m}^{-1} \delta^{-\gamma} \alpha$ where $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ is a lattice point. Then

$$
\begin{equation*}
\sum_{j}\left|s_{R_{m}}^{j}\left(f_{m}\right)(x)\right|^{2} \leqq c \sum_{j} \sum_{|\alpha| \leq 1}\left|s_{R_{m}}^{j}\left(f_{m} \chi_{\alpha}\right)(x)\right|^{2}+c \sum_{j}\left|\sum_{|\alpha|>1} s_{R_{m}}^{j}\left(f_{m} \chi_{\alpha}\right)(x)\right|^{2} \tag{1.0}
\end{equation*}
$$

where χ_{α} is the characteristic function of $Q(\alpha)$. Suppose $x \in Q=Q(0)$. We apply (1.7) for the first term on the right hand side of (1.10) and (1.9) for the second term. Then we get

$$
\begin{align*}
& \sum_{j}\left|s_{R_{m}}^{j}\left(f_{m}\right)(x)\right|^{2} \tag{1.11}\\
& \quad \leqq c \delta^{e}\left(\left|f_{m}\right|^{2 / r}\right)^{* \gamma}(x)+c \delta^{-1}\left[\delta^{\sigma} \sum_{|\alpha|>1}\left(\delta^{1-r}|\alpha|\right)^{-M+2}\left(\left|f_{m}\right|^{2 / r}\right)^{* \gamma / 2}(x)\right]^{2} \\
& \quad \leqq c \delta^{\varepsilon}\left(\left|f_{m}\right|^{2 / r}\right)^{* \gamma}(x),
\end{align*}
$$

if M is sufficiently large. Thus we get (1.11) for all x in \boldsymbol{R}^{2}. Thus we get (1.5).

We shall use the following:
Theorem (1.12) (Fefferman and Stein [4]). Let $1<r, p<\infty$ and $\left\{f_{m}\right\}$ be a sequence of $L^{p}\left(\boldsymbol{R}^{d}\right)$. Then

$$
\left\|\left(\sum_{m} f_{m}^{* r}\right)^{1 / r}\right\|_{p} \leqq c_{p, r}\left\|\left(\sum_{m}\left|f_{m}\right|^{r}\right)^{1 / r}\right\|_{p}
$$

where $c_{p, r}$ is a constant depending only on p and r.
Proof of Theorem 1. Let $\sum_{m, n}^{1}$ be summation over (m, n) such that $\delta^{2}<R_{m} / R_{n}<\delta^{-2}$ and $\sum_{m, n}^{2}$ summation over (m, n) such that $R_{m} / R_{n}>\delta^{-2}$ or $R_{m} / R_{n}<\delta^{2}$.

By Schwarz's inequality $I_{m, n} \leqq I_{m, m}^{1 / 2} I_{n, n}^{1 / 2}$. Thus $\sum_{m, n}^{1} I_{m, n} \leqq \sum_{m, n}^{1} I_{m, m}$. For every m the number of n 's satisfying $\delta^{2}<R_{m} / R_{n}<\delta^{-2}$ is less than $4 \log \delta^{-1} / \log q$. Thus, by Theorem (1.3)

$$
\begin{equation*}
\sum_{m, n}^{1} I_{m, n} \leqq c \log \delta^{-1} \sum_{m} I_{m, m} \leqq c \delta^{\varepsilon} \log \delta^{-1} \sum_{m} \int\left|f_{m}\right|^{4} d x \tag{1.13}
\end{equation*}
$$

By Lemma (1.4)

$$
\sum_{m, n}^{2} I_{m, n} \leqq c \delta^{\varepsilon} \sum_{m, n} \int\left(\left|f_{m}\right|^{2 / r}\right)^{* r}\left|s_{R_{n}}\left(f_{n}\right)\right|^{2} d x
$$

Put $S=\sum_{m, n} I_{m, n}=\left\|\left(\sum_{m}\left|s_{R_{m}}\left(f_{m}\right)\right|^{2}\right)^{1 / 2}\right\|_{4}^{4}$. Then by Schwarz's inequality and Theorem (1.12)

$$
\begin{aligned}
\sum_{m, n}^{2} I_{m, n} & \leqq c \delta^{\varepsilon}\left[\int\left(\sum_{m}\left(\left|f_{m}\right|^{2 / r}\right)^{* r}\right)^{2} d x\right]^{1 / 2} S^{1 / 2} \\
& \leqq c \delta^{\varepsilon}\left[\int\left(\sum_{m}\left|f_{m}\right|^{2}\right)^{2} d x\right]^{1 / 2} S^{1 / 2}
\end{aligned}
$$

Combining the last inequality with (1.13) we get

$$
S \leqq c \delta^{\varepsilon}\left\|\left(\sum_{m}\left|f_{m}\right|^{2}\right)^{1 / 2}\right\|_{4}^{2} S^{1 / 2}+c \delta^{\varepsilon} \log \delta^{-1}\left\|\left(\sum_{m}\left|f_{m}\right|^{2}\right)^{1 / 2}\right\|_{4}^{4},
$$

which proves (1.2) with norm $c \delta^{\varepsilon / 8}$.
2. Lacunary convergence of $s_{R}^{\sigma}(f)$. In this section we shall prove the almost everywhere convergence of $s_{R_{m}}^{\sigma}(f)$ where $f \in L^{p}\left(\boldsymbol{R}^{2}\right), 4 / 3 \leqq p \leqq$ $4, \sigma>0$ and $\left\{R_{m}\right\}$ is a lacunary sequence with Hadamard's gap $q>1$.

Put $\phi_{m}(\xi)=\phi\left(2 R_{m}^{-1}|\xi|\right)$. Remark that $\phi_{m}(\xi)=1$ if $3 R_{m} / 4 \leqq|\xi| \leqq R_{m}$.
By the lacunarity of $\left\{R_{m}\right\}$ we have (cf., e.g., [5; p. 120]):
Lemma (2.1). Let $1<p<\infty$. Then

$$
\left\|\left(\sum_{m}\left|f * \hat{\phi}_{m}\right|^{2}\right)^{1 / 2}\right\|_{p} \leqq c_{p}\|f\|_{p}
$$

for $f \in L^{p}\left(\boldsymbol{R}^{2}\right)$, where c_{p} is a constant not depending on f.
Let $\psi_{m}(\xi)=1-\phi_{m}(\xi)$ for $|\xi| \leqq R_{m}$ and $=0$ otherwise.
Lemma (2.2). Suppose $\sigma \geqq 0$. Then

$$
\sup _{n}\left|s_{R_{n}}^{\sigma} * \hat{\psi}_{n} * f(x)\right| \leqq c f^{*}(x)
$$

for $f \in L^{1}\left(\boldsymbol{R}^{2}\right)$.
Proof. Since $\hat{\boldsymbol{s}}_{R_{n}}^{\sigma}(\xi) \psi_{n}(\xi)=\eta\left(R_{n}^{-1} \xi\right)$ for some C^{∞}-function η with compact support, Lemma (2.2) follows from a routine work.

THEOREM 2. Let $\left\{R_{n}\right\}$ be a sequence of positive numbers with Hadamard's gap $q>1$. Let $4 / 3 \leqq p \leqq 4$ and $\sigma>0$. Then $s_{R_{n}}^{\sigma}(f)$ converges almost everywhere to f for all $f \in L^{p}\left(\boldsymbol{R}^{2}\right)$.

Proof. Suppose $f \in L^{p}$. Since $s_{R_{n}}^{\sigma}=s_{R_{n}}^{\sigma} * \hat{\psi}_{n}+s_{R_{n}}^{\sigma} * \hat{\phi}_{n}$,

$$
\sup _{n}\left|s_{R_{n}}^{\sigma}(f)(x)\right| \leqq c f^{*}(x)+\sup _{n}\left|s_{R_{n}}^{\sigma}\left(\hat{\phi}_{n} * f\right)\right|
$$

By Lemma (2.1) and Theorem 1

$$
\left\|\left(\sum\left|s_{R_{n}}^{\sigma}\left(\hat{\phi}_{n} * f\right)\right|^{2}\right)^{1 / 2}\right\|_{p} \leqq c\|f\|_{p}
$$

Thus

$$
\left\|\sup _{n}\left|s_{R_{n}}^{\sigma}\left(\hat{\phi}_{n} * f\right)\right|\right\|_{p} \leqq c\|f\|_{p}
$$

Thus by the Hardy-Littlewood maximal theorem

$$
\left\|\sup _{n}\left|s_{R_{n}}^{\sigma}(f)\right|\right\|_{p} \leqq c\|f\|_{p}
$$

from which our theorem follows.
3. Decomposition theorem. Define k_{n} by the Fourier transform $\hat{k}_{n}(\xi)=\phi\left(2^{-n}|\xi|\right)$. Let $1<p<\infty$ and $f \in L^{p}\left(\boldsymbol{R}^{2}\right)$. Then we have

$$
\begin{equation*}
\|f\|_{p} \approx\left\|\left(\sum_{n=-\infty}^{\infty}\left|k_{n} * f\right|^{2}\right)^{1 / 2}\right\|_{p}, \tag{3.1}
\end{equation*}
$$

that is, two norms of f are equivalent (cf., e.g., [5; p. 120]).
Remark that $\hat{k}_{n} \in C^{\infty}$, the support of $\hat{k}_{n} \subset\left\{2^{n} \leqq|\xi| \leqq 3 \cdot 2^{n}\right\}$ and $\hat{k}_{n}=1$ on $\left\{3 \cdot 2^{n-1} \leqq|\xi| \leqq 2^{n+1}\right\}$, and that (3.1) is valid with \hat{k}_{n} replaced by the characteristic function of $\left\{\xi ; 2^{n} \leqq|\xi|<2^{n+1}\right\}$ if and only if $p=2$ (Fefferman [4]).

Let $\sigma>0$ and $1>\tau>0$. Define $D_{n}(n=0, \pm 1, \pm 2, \cdots)$ as follows. Put $\widehat{D}_{0}(\xi)=1$ for $|\xi|<2,[(2+\tau-|\xi|) / \tau]^{\sigma}$ for $2 \leqq|\xi|<2+\tau$ and 0 for $2+\tau \leqq|\xi|$, and $\hat{D}_{n}(\xi)=\hat{D}_{0}\left(2^{-n} \xi\right)$. Let $\Delta_{n}=D_{n}-D_{n-1}$.

Theorem 3. Let $4 / 3 \leqq p \leqq 4$. Then

$$
\begin{equation*}
\|f\|_{p} \approx\left\|\left(\sum_{n=-\infty}^{\infty}\left|\Delta_{n} * f\right|^{2}\right)^{1 / 2}\right\|_{p} \tag{3.2}
\end{equation*}
$$

for $f \in L^{p}\left(\boldsymbol{R}^{2}\right)$.
Proof. Suppose $\left\{f_{n}\right\} \in L^{4}\left(l^{2}\right)$. First we remark that (1.1) holds if $\left\{s_{R_{n}}^{\sigma}\left(f_{n}\right)\right\}$ is replaced by $\left\{D_{n} * f_{n}\right\}$. In fact, (1.3) with $\left\{D_{n} * f_{n}\right\}$ in place of $\left\{s_{R_{n}}\left(f_{n}\right)\right\}$ is valid by an elementary reduction process. On the other hand we have an estimate similar to (1.8) with D_{m}^{j} and 2^{m} in place of $s_{R_{m}}^{j}$ and R_{m} respectively where a definition of D_{m}^{j} will be obvious. Thus we get Lemma (1.4) for the kernels D_{n}.

Thus we have

$$
\begin{equation*}
\left\|\left(\sum_{n=-\infty}^{\infty}\left|D_{n} * f_{n}\right|^{2}\right)^{1 / 2}\right\|_{4} \leqq c\left\|\left(\sum_{n=-\infty}^{\infty}\left|f_{n}\right|^{2}\right)^{1 / 2}\right\|_{4} . \tag{3.3}
\end{equation*}
$$

Thus

$$
\left\|\left(\sum\left|A_{n} * f_{n}\right|^{2}\right)^{1 / 2}\right\|_{4} \leqq c\left\|\left(\sum\left|f_{n}\right|^{2}\right)^{1 / 2}\right\|_{4}
$$

By the duality and interpolation arguments we have

$$
\begin{equation*}
\left\|\left(\sum\left|\Delta_{n} * f_{n}\right|^{2}\right)^{1 / 2}\right\|_{p} \leqq c\left\|\left(\sum\left|f_{n}\right|^{2}\right)^{1 / 2}\right\|_{p} \tag{3.4}
\end{equation*}
$$

for $\left\{f_{n}\right\} \in L^{p}\left(l^{2}\right), 4 / 3 \leqq p \leqq 4$.
Let $f \in L^{p}\left(\boldsymbol{R}^{2}\right)$. Then $\left\{\left(k_{n-1}+k_{n}+k_{n+1}\right) * f\right\} \in L^{p}\left(l^{2}\right)$ and by (3.1) and (3.4) we have

$$
\begin{equation*}
\left\|\left(\sum\left|A_{n} * f\right|^{2}\right)^{1 / 2}\right\|_{p} \leqq c\|f\|_{p} \tag{3.5}
\end{equation*}
$$

On the other hand, since

$$
\int f g d x=\sum_{n} \int\left(\Delta_{n} * f\right)\left(k_{n-1}+k_{n}+k_{n+1}\right) * g d x
$$

for smooth functions f and g with compact support, we have an opposite inequality.

Remark. The author discussed with H. Dappa to organize this note. His result ([3]) on radial multipliers will be related to Theorem 3.

References

[1] L. Carleson and P. Sjölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287-299.
[2] A. Córdoba, A note on Bochner-Riesz operators, Duke Math. J. 46 (1979), 505-511.
[3] H. Dappa, Oral communication.
[4] C. Fefferman, The multiplier problem for the ball, Ann. of Math. 94 (1972), 330-336.
[5] C. Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44-52.
[6] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115.
[7] L. Hörmander, Estimates for translation invariant operators in L^{p} spaces, Acta Math. 104 (1960), 93-140.
[8] S. Igari, On the almost everywhere convergence of lacunary Riesz-Bochner means of Fourier transform of two variables, to appear.
[9] E. M. Stein, Some problems in harmonic analysis, vol. 1, Proc. Symp. in Pure Math. A.M.S. 35 (1979), 3-20.

Mathematical Institute
Tôhoku University
Sendai, 980
Japan

[^0]: ${ }^{*}$ Partly supported by the Grant-in-Aid for Co-operative and Scientific Research, the Ministry of Education, Science and Culture, Japan.

