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DECOMPOSITION THEOREM AND LACUNARY CONVERGENCE
OF RIESZ-BOCHNER MEANS OF FOURIER TRANSFORMS
OF TWO VARIABLES
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Introduction. This paper is concerned with some inequalities related
to Fourier transforms of functions of two variables. Our starting points
are Fefferman’s divergence theorem [4] of spherical means of Fourier
transforms and Carleson-Sjolin theorem [1] on the norm convergence of
the Riesz-Bochner means s%(f).

In the previous paper [8] the author showed that the lacunary sub-
sequence of the Riesz-Bochner means s%(f) with positive order of a
funetion f in L?(R?), 4/3 < p £ 2, converges almost everywhere. In
this note we shall apply a technique in [8] to prove Carleson-Sjolin
theorem for [/’-valued functions. It gives a partial answer of a problem
in Stein [9] and also implies lacunary convergence theorem in the pre-
vious paper.

In the last section we shall prove a decomposition theorem of
Littlewood-Paley type for “weak” spherical truncations.

1. Carleson-Sjolin theorem for [*-valued functions. For an inte-
grable function f on the two dimensional euclidean space R* let 7 be
the Fourier transform:

fe) = %S f@edx, &eR.
T JR=

The Riesz-Bochner kernel s% of order o =0 is defined by 8§%(¢) =
(1 — |&)/R¥° for |¢] < R and =0 otherwise, and the Riesz-Bochner mean
of f by s%(f) = s%*f, the convolution of f and s%.

THEOREM 1. Let {R,} be a sequence of positive numbers with
Hadamard’s gap, t.e., R, ,/R,>q (n =0, =1, =2, ---) for some q > 1.
Let 4/3<p=4and 0 >0. Then

(1.1 I8, (L)1l = el (L fa ) [l
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for {f.} € L* N L'(R% *), where ||-||, denotes the LP-morm and ¢ a constant
depending only on q, p and o.

In the following we fix ¢ > 1 and ¢ > 0 and denote by ¢ a positive
constant depending only on ¢ and ¢ which will be different in each
occasion. In Theorem 1 the case p = 4 is most essential and other cases
will follow from this case by duality and interpolation arguments.
Our proof procceeds along the line of the previous paper [8] but for
convenience’ sake we give a complete proof.

Let ¢ be a C=-function on (—co, ) such that the support of ¢ c
(1, 3) and 1=35_.4(2"0) for p>0. For 6>0 put g ,(&)=g(R"5-(R—2])),
gc R and s8ip(f) = 8%,4,(f) = sk*dr,+f. Then (1.1) follows from the ine-
quality

(1.2) 15 182, (L) Nl = e [ 1 £

where ¢ is a positive constant depending only on ¢ and gq.
Put

Low = {80, (fs2, () o .
THEOREM (1.3) (Fefferman [4], cf. Coérdoba [2]). We have
I, < cﬁ‘glf,,l‘*dx .

For a locally integrable function g in R? let g* be the Hardy-Little-
wood maximal funetion, i.e.,

g*(x) = sup —1—2§ l9(y)|dy .
r>0 Y |z <r

—yl

LEMMA (1.4.) There exist ¢ > 0 and 2 > v > 1 such that
(15 Lw < 00 (fu )" 53, (£ de

for all {f,} € L* N L'(R*) and for m,n satisfying R,/R, < &

ProOOF. Let {y; 7 =0,1, ---,[276~'] — 1} be a partition of unity on
the unit circle such that /(@) = (6~ (@ — 79)), 0 < 7<[276~*]—1 where
4 is a C=-function on (—co, o) with support contained in (—3/4, 3/4).
Define s} = s%% by 8i(&) = §z(&)v/(w), where & = |&|(cos w, sin w). Then
8% (fw) = Sk, *fn satisfies

sRm(fm) = ; S;i‘m(fm) .

Since §%,(fn)*8r,(fn): 8%, (fa)*8s,(f2) = 0 if |j — k| > 1, we have



RIESZ-BOCHNER MEANS OF FOURIER TRANSFORMS 415

Lnn < 33|84, (fuse, (£

Define %/ = 9%, and 7 =75, , by
76, &) = Y& — Ba) + &1/1000°Rz,) ,
7i(¢) = 7°(M,&), where M; is the rotation of angle 65, and
7(&) = ¥(1¢]/100R,,) .
Then
St (fn) = 8%, 2D [,

Suppose that the support of f,, is contained in the square @ of side
length R;'6-7 with center at O, where v > 1 is a number close to 1 but
determined later. By Schwarz’s inequality

b (@ = {58, Ido {Ipeps e
Since Sls?}m Pde < cRLO™,
(1.6) S 184, (fu)@) | < cRad e ([ 7iens s e

By the Parseval relation >); S]n"*ﬁ* foulPde < CSW* fu?dax. Furthermore
by Young’s inequality [|9«full. = |7 |lso-n |l fuller = ¢BE || fullr. Thus the
right hand side of (1.6) is bounded by cb”((l/lQ[)gQ ifmlz/fdxy, where ¢ =
2(o + 1 — v*) which is positive for v close to 1. Thus

1.7 2 | 8%, (fu)(@) [P = c0°(|f|"7)*7(2)

for x €3Q.
Next remark that for every M = 0 there exists a constant ¢ such

that

(1.8) |s%, ()] < cRLOTH(R,0|x])~"
for x = O. Thus

(1.9) Ish, (fu)(@)| < 07 (R0 |2 )~ (| £ [¥1)*7"*()
for x ¢ 3Q.

To get an estimate for a general function f, divide R* into non-
overlapping squares {Q(a)} similar to @ and with center at R;9 7«
where a = (a,, ;) is a lattice point. Then
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Jj laisl al

1.0 > |87, (fa)@) S ¢33 |8k, (fakd@) [ + ¢ 2 25 Stn(fak)(@) [

where X, is the characteristic function of Q(a). Suppose ze@ = Q(0).
We apply (1.7) for the first term on the right hand side of (1.10) and
(1.9) for the second term. Then we get

(L1 > | 8%, (fm) (@) [
= o' (|fal")"7(@) + 0078% 3 (@ [a )T fu )T H@)F

= eo(|ful")* (@) ,

if M is sufficiently large. Thus we get (1.11) for all # in R®. Thus we
get (1.5).

We shall use the following:

THEOREM (1.12) (Fefferman and Stein [4]). Let 1 < 7, p < o and {f.}
be a sequence of L”(R?). Then

IS FE o = el S Ful)

where ¢,,, 18 a constant depending only on p and 7.

PrROOF OF THEOREM 1. Let 3. . be summation over (m, n) such that
0 < R,/R, < 67% and >?% , summation over (m, ») such that R,/R, > 02
or R,/R, < 6%

By Schwarz’s inequality I, , < I.2.I):. Thus oo lns < ks Lo
For every m the number of »’s satisfying 0° < R, /R, < 6~% is less than
4 log 6-'/log q. Thus, by Theorem (1.3)

(1.13) ST, <clogdt S I, < colog o ZSI fultde .
By Lemma (1.4)
SV Ly < 08 3 (150 30, (f) e

m,n

Put S =Snlnn = || Cn 182, (fw)[)?|li. Then by Schwarz’s inequality
and Theorem (1.12)

5% L = 0| (S (1l oy [ 50
= o (Sl "5

Combining the last inequality with (1.13) we get
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S < eo° || (X Fu )5S + 0% log 6 |5 | fu D24
which proves (1.2) with norm c¢é*.

2. Lacunary convergence of s%(f). In this section we shall prove
the almost everywhere convergence of s% (f) where fe L?(R?), 4/3<p=
4, ¢ > 0 and {R,} is a lacunary sequence with Hadamard’s gap q > 1.

Put ¢,.(&) = é(2R;'|£]). Remark that ¢,(&) =1 if 8R,/4 < |£] £ R,.

By the lacunarity of {R,} we have (cf., e.g., [5; p. 120]):

LEMMA (2.1). Let 1< p < oo. Then
IS 1f+Bu b1, = & £l
for fe L*(R?, where ¢, s a constant not depending on f.
Let (&) =1 — ¢,() for |£]| < R, and =0 otherwise.
LEMMA (2.2). Suppose 0 = 0. Then
Sup |, . xf(@)| = of *(@)
for fe L'(R?.

Proor. Since 8% (&)y.(&) = N(R,'¢) for some C=-function 7 with
compact support, Lemma (2.2) follows from a routine work.

THEOREM 2. Let {R,} be a sequence of wpositive numbers with
Hadamard’s gap ¢ > 1. Let 4/8<p <4 and 0> 0. Then s% (f) con-
verges almost everywhere to f for all fe L*(R?.

ProoF. Suppose feL”. Since s, = s, *v, + 8%, *P,,
sup [s%,(f)(@)| < of*(@) + sup [sk,(5.-1)] -
By Lemma (2.1) and Theorem 1
(182, @ N, < el £l -
Thus
Isup |8z, (Bux )11, < el £l -

Thus by the Hardy-Littlewood maximal theorem

I sup |5, (A1, < ell £,

from which our theorem follows.
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~ 3. Decomposition theorem. Define %, by the Fourier transform
k(&) = ¢(2™|&]). Let 1< p <  and fe L?(R*». Then we have

3.1 170 (2 1ewrr) |

that is, two norms of f are equivalent (cf , e.g., [5; p. 120]).

Remark that k%, e C=, the support of &, —{2* < |§| <3.2% and k,=1
on {3-2*!' < |g| £ 2"}, and that (3.1) is valid with &, replaced by the
characteristic function of {&; 2" < |£] < 2"} if and only if p=2 (Feffer-
man [4]).

Let ¢ >0 and 1 >7 > 0. Define D, (n =0, =1, 2, ---) as follows.
Put Dyg) =1 for |£] < 2, [(2 + 7 — |&])/z]° for 2< |£] <2+ 7z and O for
2+t < |¢l, and D,() = Dy2"¢). Let 4, =D, — D,...

THEOREM 3. Let 4/3 < p<4. Then

oo 1/2
(3.2) £ 1~ || 21 4enr )|
for fe L*(R%).

PrOOF. Suppose {f,}€ L*?). First we remark that (1.1) holds if
{s%,(f.)} is replaced by {D,xf,}. In fact, (1.3) with {D,xf,} in place of
{sz,(f.)} is valid by an elementary reduction process. On the other
hand we have an estimate similar to (1.8) with Dj and 2™ in place of
s, and R, respectively where a definition of Dj will be obvious. Thus
we get Lemma (1.4) for the kernels D,.

Thus we have

ol 5 1pr)”

(3 1Dwpl)”

3.3)
Thus

4

N2 £ 2l = e IS DL
By the duality and interpolation arguments we have
(3.4) (N dux D], = el (1Ll 1,

for {f,}e L*(I"), 4/3<p =< 4.
Let fe L*(R*. Then {(k,_, + k, + k...)*f} e L*?(*) and by (3.1) and
(3.4) we have

(3.5) |1 dax f P2 = el £l -

On the other hand, since

[0 = 5 (42 f)lus + Bo + Brirode
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for smooth functions f and g with compact support, we have an opposite
inequality.

REMARK. The author discussed with H. Dappa to organize this note.

His result ([3]) on radial multipliers will be related to Theorem 3.
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