THE HAUSDORFF DIMENSION OF LIMIT SETS OF SOME FUCHSIAN GROUPS

HARUSHI FURUSAWA

(Received August 1, 1980)

1. Preliminaries. Let Γ and Λ be a non-elementary finitely generated Fuchsian group of the second kind and its limit set, respectively. Put $M_t(\delta, \Lambda) = \inf \sum_i |I_i|^t$, where the infimum is taken over all coverings of Λ by sequences $\{I_i\}$ of sets I_i with the spherical diameter $|I_i|$ less than a given number $\delta > 0$. Further, put $M_t(\Lambda) = \sup M_t(\delta, \Lambda)$, which is called the *t*-dimensional Hausdorff measure of Λ . It is shown in [2] that if $\infty \notin \Lambda$, $M_t(\Lambda) = \sup_{\delta} \inf \sum_i \operatorname{dia}^t (I_i)$, where the infimum is taken over all coverings of Λ by sequences $\{I_i\}$ of sets I_i with the Euclidean diameter dia (I_i) . We call $d(\Lambda) = \inf \{t > 0; M_t(\Lambda) = 0\}$ the Hausdorff dimension of Λ . In [3] Beardon proved that $d(\Lambda) < 1$ for the limit set $\Lambda(\not \gg \infty)$ of any finitely generated Fuchsian group of the second kind.

The purpose of this note is to show the continuity of $d(\Lambda)$ with respect to quasiconformal deformations of Γ .

Let w be a K-quasiconformal mapping of the unit disc D onto itself and w(0) = 0. The following distortion theorem is due to Mori [5].

PROPOSITION 1. Let w be a K-quasiconformal mapping of D onto itself and w(0) = 0. Then for every pair of points z_1, z_2 with $|z_1| \leq 1$, $|z_2| \leq 1$,

$$|w(z_1)-w(z_2)|< 16\,|z_1-z_2|^{{\scriptscriptstyle 1/K}}$$
 , $(z_1
eq z_2)$.

Let Γ be a finitely generated Fuchsian group acting on D. We say that Γ has a type (g; n; m) if $S = D/\Gamma$ is obtained from a compact surface of genus g by removing j (≥ 0) points, m (≥ 0) conformal discs and if there are finitely many, say k (≥ 0) , ramification points on S, where n = j + k. Suppose that to each ramification point a_i $(i = 1, 2, \dots, k)$ on S, there is assigned an integer ν_i , $1 < \nu_1 \leq \nu_2 \leq \dots \leq$ $\nu_k < +\infty$. Then we say that Γ has the signature $(g; \nu_1, \nu_2, \dots, \nu_k,$ $\nu_{k+1}, \dots, \nu_n; m)$, where $\nu_{k+1} = \dots = \nu_{n-1} = \nu_n = \infty$. We call an isomorphism χ of a Fuchsian group Γ_0 onto Γ_1 quasiconformal if there exists a quasiconformal mapping w which maps D onto itself and w(0) = 0such that $\chi(A) = wAw^{-1}$ for all $A \in \Gamma_0$. The following proposition was proved by Bers [4].

H. FURUSAWA

PROPOSITION 2. Assume that Γ_0 , Γ_1 have the same signature $(g; \nu_1, \nu_2, \dots, \nu_n; m)$. Then Γ_0 is quasiconformally isomorphic to Γ_1 .

2. Statement of the theorem. Let B(D) denote the set of all bounded measurable functions $\mu(z)$ $(|z| < \infty)$ with $\operatorname{ess\,sup}_{|z|<\infty} |\mu(z)| < 1$, which satisfy the condition $\overline{\mu(z)} = \mu(1/\overline{z})\overline{z}^2/z^2$. The Beltrami equation $f_{\overline{z}} = \mu f_z$ has one and only one normalized solution $w^{\mu}(z)$ with $w^{\mu}(0) = 0$, $w^{\mu}(1) = 1$ which maps D quasiconformally onto itself. Set $B(D, \Gamma) =$ $\{\mu \in B(D) | \mu(A)\overline{A'}/A' = \mu(z) \text{ for all } A \in \Gamma\}$. Let Γ_0, Γ_1 be finitely generated Fuchsian groups of the second kind with the same signature. By Proposition 2, Γ_0 is quasiconformally isomorphic to Γ_1 . For any real number s $(0 \leq s \leq 1)$, $s\mu \in B(D, \Gamma_0)$ if $\mu \in B(D, \Gamma_0)$. Hence $\Gamma_s =$ $w^{s\mu}\Gamma_0(w^{s\mu})^{-1}$ is also a Fuchsian group leaving the unit disc D.

Now we shall prove the following theorem.

THEOREM 1. Let Γ_0 , Γ_1 be finitely generated Fuchsian groups of the second kind with the same signature. Let Γ_s be a Fuchsian group constructed above for any real number s ($0 \leq s \leq 1$) and let Λ_s be the limit set of Γ_s . Then $d(\Lambda_s)$ is continuous in s ($0 \leq s \leq 1$).

Before going into the proof of Theorem 1, we shall show the following lemma.

LEMMA 1. Let F be a compact set in $\{|z| \leq 1\}$. Then

$$K^{-1}d(F) \leq d(w(F)) \leq Kd(F)$$
 ,

where w(z) is a K-quasiconformal mapping of the unit disc onto itself and w(0) = 0.

PROOF OF LEMMA 1. First, we shall prove the second inequality $d(w(F)) \leq Kd(F)$. Assume that Kd(F) < d(w(F)) for some K-quasiconformal mapping w of the unit disc onto itslf with w(0) = 0. Take and fix t > 0 such that Kd(F) < Kt < d(w(F)). Then $M_t(F) = 0$. By the definition of the Hausdorff measure, for any $\varepsilon > 0$, there are a positive number δ and a covering $\{I_i\}$ of F with dia $(I_i) < \delta$ such that $\sum_i \operatorname{dia}^t (I_i) < \varepsilon$. Let d_i be the diameter of $w(I_i \cap D)$. Then we have $d_i \leq 16 (\operatorname{dia} (I_i))^{1/K}$ by Proposition 1. We take a disc I'_i with radius d_i centered at some point $w_i \in w(I_i \cap F)$ $(i = 1, 2, \cdots)$. It is easily seen that $\{I'_i\}$ is a covering of w(F). It is well known that $d(E) \leq 2$ for any compact set E of $\widehat{C} = C \cup \{\infty\}$. Therefore we have

$$\sum_i \mathrm{dia}^{{\scriptscriptstyle K}t}\left(I_i'
ight) \leq 32^{{\scriptscriptstyle K}t}\sum_i \mathrm{dia}^t\left(I_i
ight) < 32^{\cdot} arepsilon$$
 .

As ε is arbitrary, we obtain $M_{Kt}(w(F)) = 0$. This contradicts the

assumption Kt < d(w(F)). The first inequality is given similarly by considering the inverse K-quasiconformal mapping w^{-1} . Therefore we have our lemma.

PROOF OF THEOREM 1. By Proposition 2, Γ_0 is quasiconformally isomorphic to Γ_1 , that is, there is a quasiconformal mapping w^{μ} such that $\Gamma_1 = w^{\mu}\Gamma_0(w^{\mu})^{-1}$. Denote by $w^{s\mu}$, $w^{t\mu}$ the normalized quasiconformal mappings for $s\mu$, $t\mu \in B(D, \Gamma_0)$, $0 \leq s, t \leq 1$, respectively. Set $w^{s\mu} = w^{\tau_0} w^{t\mu}$. Then we have $\eta \circ w^{t\mu} = (s-t) \cdot \mu \cdot (1-st |\mu|^2)^{-1} \cdot w_z^{t\mu} \cdot (\overline{w_z^{t\mu}})^{-1}$ (see [1, p. 9]). Set $K = \text{ess sup} (1 + |\eta|)/(1 - |\eta|)$. Then w^{τ} is a K-quasiconformal mapping such that $w^{\tau}(\Lambda_t) = \Lambda_s$ and $w^{\tau}(0) = 0$. We have from Lemma 1

$$|\log d(\Lambda_s) - \log d(\Lambda_t)| \leq \operatorname{ess\,sup}[s\mu, t\mu],$$

where [a, b] denotes the non-Euclidean distance between two points a and b in D measured by the metric $ds = 2|dw|(1 - |w|^2)^{-1}$ in D. Thus we have Theorem 1.

3. Application. Let G_{α} be the Hecke group generated by $P_{\alpha}: z \mapsto z + 2(1 + \alpha)$ and $E: z \mapsto -z^{-1}$ $(0 \leq \alpha < \infty)$. Then G_{α} is a Fuchsian group of the second kind except when $\alpha = 0$. Let Λ_{α} be the limit set of G_{α} . The following inequality was proved by Beardon [3]:

$$(1)$$
 $d(arLambda_lpha) \geqq 1 - 8(3lpha + 18 lpha^{_{1/2}})$

for a sufficiently small number $\alpha > 0$. On the other hand, there is a positive number α_0 depending only on any given small number ε such that

$$(\ 2\) \qquad \qquad 1/2 < d(arLambda_lpha) < 1/2 + arepsilon$$
 , $\ (lpha \geqq lpha_{\scriptscriptstyle 0})$,

(see [3], [6]).

Now we shall prove the following.

THEOREM 2. Assume that 1/2 < s < 1. Then there is a Hecke group G_{α} with $d(\Lambda_{\alpha}) = s$.

PROOF. Take and fix a number s (1/2 < s < 1). Then there is an arbitrarily small number $\varepsilon > 0$ such that $1/2 + \varepsilon \leq s \leq 1 - \varepsilon$. Let ε be fixed. Then we can find Hecke groups with real parameters p and q such that $d(\Lambda_p) > 1 - \varepsilon$ for $0 and <math>1/2 < d(\Lambda_q) < 1/2 + \varepsilon$ for $0 < q_1 \leq q$ by (1) and (2). The mapping $T(z) = (z - \sqrt{-1})(z + \sqrt{-1})^{-1}$ sends the upper half-plane H onto the unit disc D. Let $G'_{\alpha} = TG_{\alpha}T^{-1}$. Then G'_{α} is a Fuchsian group of the second kind generated by

H. FURUSAWA

Denote by $I_{\alpha} = \{z; |z-(1 + (1 + \alpha)^{-1}\sqrt{-1})| = (1 + \alpha)^{-1}\}$ and $I_{\alpha}^{-1} = \{z; |z-(1 - (1 + \alpha)^{-1}\sqrt{-1})| = (1 + \alpha)^{-1}\}$ the isometric circles of P'_{α} and $(P'_{\alpha})^{-1}$, respectively. Let R'_{α} be the fundamental region of G'_{α} whose boundary consists of I_{α} , I_{α}^{-1} , the imaginary axis and two arcs lying on $\{|z|=1\}$. By Proposition 2, there is a quasiconformal mapping W^{μ} such that $W^{\mu}(0) = 0$, $W^{\mu}(1) = 1$ and $W^{\mu}G'_{q_1}(W^{\mu})^{-1} = G'_{p_1}$. By Theorem 1, there is a Fuchsian group $G_t^* = W^{t\mu}G'_{q_1}(W^{t\mu})^{-1}$ with the property $d(A(G_t^*)) = s$. It is easily shown that G_t^* is freely generated by

$$P_t^{\star} = egin{pmatrix} 1+\lambda & -\lambda \ \lambda & 1-\lambda \end{pmatrix} \hspace{0.2cm} ext{and} \hspace{0.2cm} E^{\prime} = egin{pmatrix} -
u^{\prime}-1 & 0 \ 0 &
u^{\prime}-1 \end{pmatrix}$$

It is easy to verify that if $|\lambda| \leq 1$, G_t^* is a Fuchsian group of the first kind. As G_t^* is a Fuchsian group of the second kind acting on the unit disc D, we have $1 + \lambda = \overline{1 - \lambda}$. Thus λ is pure imaginary and further $|\lambda| > 1$. Replacing $|\lambda|$ by $(1 + \alpha)$ $(\alpha > 0)$, we have the Hecke group $T^{-1}G_t^*T = G_\alpha$ with $d(\Lambda_\alpha) = s$. Thus we have the desired result.

References

- [1] L. AHLFORS, Lectures on Quasiconformal Mappings, Van Nostrand, New York, 1966.
- [2] A. BEARDON, The Hausdorff dimension of singular sets of properly discontinuous groups, Amer. J. Math. 88 (1966), 722-736.
- [3] A. BEARDON, Inequalities for certain Fuchsian groups, Acta Math. 127 (1971), 221-258.
- [4] L. BERS, Uniformization by Beltrami equations, Comm. Pure Appl. Math. 14 (1961), 215-228.
- [5] A. MORI, On an absolute constant in the theory of quasiconformal mappings, J. Math. Soc. Japan 8 (1956), 156-166.
- [6] H. FURUSAWA AND T. AKAZA, On the Hausdorff dimension of Kleinian groups with parabolic elements, Science Reports of Kanazawa Univ. 23 (1978), 31-41.

Kanazawa Women's Junior College Kanazawa 920-13 Japan