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Introduction. Let A be a combinatorial triangulation of the ordinary
(d — l)-sphere, or, more generally, a (d — l)-dimensional finite simplicial
k-homology sphere with a field k (cf. (1.10) below). Number the vertices
( = 0-simplices) of A from 1 through r. Consider the collection ΞA of
subsets of {1, , r} defined as follows: a subset ξ belongs to SΔ if and
only if either ξ is the empty set or there exists a simplex σ of A such
that ξ is the set of vertices of σ.

In the r-dimensional aίfine space Ar over k, let Y be the d-dimensional
closed reduced subscheme obtained as the union

Y=\JV(ξ)
ζeSj

of the aίfine subspaces V(ξ) defined by

{t = ( t l f ' " 9 t r ) e A r ; t j = O i f j ί ζ ) .

Since V(ξ)z)V(η) if £=>??, it suffices to take V(ς)'& with ς in ΞA of
cardinality d to cover Y. Thus the normalization of Y is the union of
these d-dimensional affine subspaces, hence is nonsingular. Here, let us
tentatively call such Y a cί-dimensional k-spherical scheme with the
nonsingular normalization. Hochster and Ishida showed that such Y is
Gorenstein (cf. (1.8) and (1.10) below).
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In terms of rings, we have Y = Spec(S), where S is the residue ring

S = k[tlf - ,tr]/J

of the polynomial ring by the ideal J generated by the monomials

for all subsets {ilf ί2, , is) of {1, , r} not belonging to ΞΔ. Thus we
need, in general, too many equations to define Y, hence Y is far from
being a complete intersection.

Nevertheless, we can use the rich combinatorial information on ΞΔ

to compute the hyperextension sheaves, the "tangent complex",

έ£-//F(
LΓ, <?γ) i = 0, 1, 2 ,

where L] is the cotangent complex of Y introduced and studied by
Lichtenbaum-Schlessinger [LS], Grothendieck [GJ, Rim [R] and Illusie [IJ
(cf. (1.14) below).

We carried out the computation for the following reasons. For one
thing, we intend eventually to study the deformations of those varieties
locally and formally isomorphic to such Y. As far as we know, no
explicit computation of the second hyperextension sheaf was ever
systematically carried out for nonnormal higher dimensional varieties
which are not local complete intersections. For another, we wanted to
test the reasonableness of the notion of fc-sphericity. We hope we
succeeded in doing so.

As a consequence of our slightly more general main theorems
announced in Section 2 and proved in later sections, we get the following
results:

(0) (cf. Remark after Corollary 2.2). The zeroth hyperextension
sheaf

which classifies local infinitesimal automorphisms of Y and is nothing but
the sheaf S^k{^γ) of germs of fc-derivations of ^V, is canonically iso-
morphic to the kernel of the homomorphism induced by the restriction
maps

with a and β running through the sets belonging to ΞΔ with | a \ = d
and |/31 = d — 1, respectively, where for ξeΞΔ in general, we let
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which is the sheaf of germs of k-derivations on V(ξ) with logarithmic
zeros along the divisor D(ξ) on the affine subspace V(ζ) defined by

with η running through the subsets of ξ satisfying \ξ\ — \η\ = 1. This
is a generalization of a result obtained by Nakamura [Nx, Proposition
2.5].

( 1 ) (cf. Theorem 2.3). The first hyperextension sheaf

which coincides with the ordinary extension sheaf

for the sheaf Ω\ of 1-forms, is canonically isomorphic to the kernel of
a homomorphism

with β and 7 running through the sets belonging to EΔ with \β\ = d — 1
and \Ύ\ = d — 2, respectively, where the ^-modules %?(β) and 5^(7)
defined in Section 2 have the following properties: For \β\ = d — 1, %?(β)
is an invertible ^V(/3)-module on the (d — l)-dimensional affine subspace
V(β), while for | 7 | = d — 2, 55"(7) is either zero or a locally free ^V(n-
module of rank two on the (d — 2)-dimensional afRne subspace V(y). This
is a generalization of another result obtained by Nakamura [Nx, Section 5].

( 2 ) (cf. Theorem 2.4 and Corollary 2.5). The most difficult to
compute is the second hyperextension sheaf

which measures local obstructions for deformations of Y. We reduce its
vanishing to that of more computable 11^(0(8*9 s"), k) for various s' and
s", which coincide with the {d — l)-dimensional reduced fc-homology group
of certain "local" subcomplexes of Δ. In particular for d = άimY <: 3, we
can completely classify those Y's with the vanishing second hyperextension
sheaf as follow:

Case d ^ 1. Always. Here Y is either a point or a transversal
intersection of two affine lines (thus with the ordinary double singularity
at the origin).

Case d = 2. Y, in general, is the elliptic polygonal r-cone in the
sense of Mumford [M] for r ^ 3, i.e., Y is the union in Ar of the (tlf ί2)-,
(*2, U)"9 •> (K-i, tr)

 a n d (K, ίi)-planes. The second hyperextension sheaf
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for Y vanishes if and only if r <̂  5. Here the cases r = 3 and r = 4,
i.e., Y = Spec(fcfo, , UW&t*)) and Γ = Spec (fc ft, , ίJ/tfA, «A)) are
complete intersections, while the case r = 5 is not.

Case d = 3. There are many combinatorially different triangulations
A of the 2-sphere even if the number r of the vertices is fixed. Among
them, there are only ten different Δ'& listed in Corollary 2.5 for which
the second hyperextension sheaf vanishes. Only three of them are
complete intersections.

The proof of these results is accomplished after lengthy combinatorial
study in Sections 3, 4, 5 and 6.

Recently Kagami [KJ showed that all these Y's of dimension three
with the vanishing second hyperextension sheaf have stable singularity
at the origin, generalizing Mumf ord's result in the case of elliptic polygonal
cones in [M]. Note that there are some other Y's with the nonvanishing
second hyperextension sheaf, which have stable or semistable singularity
at the origin.

Here is the motivation for our study of Λ-spherical schemes Y with
the nonsingular normalization, as we have already announced in [10].

In connection with the compactification problem of various moduli
spaces, we encounter many examples of "degenerate varieties", for
instance, (i) stable curves of Deligne-Mumford [DM], (ii) degenerate
jacobian varieties of Oda-Seshadri [OS] and Ishida [I2] or, more generally,
degenerate abelian varieties of Namikawa [N3] and Nakamura [NJ, (iii)
degenerate hyperelliptic surfaces of Tsuchihashi [T], (iv) degenerate forms
of Hopf surfaces and other class VII0 surfaces by Kodaira [KJ, Miyake-
Oda [MO] and Nakamura [NJ and (v) degenerate K3 surfaces by Kulikov
[KJ, Persson [P] and Persson-Pinkham [PP].

These degenerate varieties are usually reduced and connected. But,
in general, they are reducible with the irreducible components not
crossing normally. Their singularities are very often formally isomorphic
to our fc-spherical schemes Y with the nonsingular normalization. As we
saw above, however, it is rather hard to deal with them through their
too many defining equations. Fortunately, we have a way of dealing
systematically with monomials by means of the theory of torus embedd-
ings, or Demazure varieties, introduced and studied by Demazure [D],
Mumford et al. [TE], Satake [S] and Miyake-Oda [MO].

Ishida [IJ already began to study, more generally, closed invariant
reduced subschemes Y of normal torus embeddings. He gave a good
description of the dualizing complex Ky of Y and described when Y is
Cohen-Macaulay or Gorenstein. He could single out a very nice class of
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fc-spherical Y's. We recall in Section 1 some of his results in a dual
formulation convenient for our purpose.

The results in Ishida [I3] as well as here grew out of our effort to
understand and generalize those of Nakamura [Nx, Lemma 2.2, Lemma
5.2 and Proposition 5.1] in the case of degenerate abelian varieties. A
generalization in another direction is being carried out by Ishida [IJ.

Now that the local theory of "degenerate varieties" is reasonably
well established, we hope to formulate a good global theory of "degenerate
varieties", which, in a sense, is a generalization of the theory of toroidal
embeddings by Mumford et al. [TE].

1. The review of relevant results and amplifications. Partly to fix
notations, we recall and supplement some of the relevant results obtained
by Ishida [I3] and Miyake-Oda [MO], in the dual formulation which is
more convenient for our purpose. We also recall the hyperextension
sheaves of the contagent complex necessary for the formal deformation
theory developed by Lichtenbaum-Schlessinger [LS], Grothendieck [GJ,
Rim [R] and Illusie [IJ.

Throughout, we fix a field k and a free Z-module M of finite rank
r. Let N — Homz(M, Z) be the dual Z-module with the canonical pairing
< , > : M x N-+Z.

(1.1) Let TLT be a convex rational polyhedral cone in MR = R(x)zM
which generates MR as an iί-vector space, i.e., there exist elements
mu " , mseM which span MR over R such that vr = R^om1 + +
R^ms. Then τcr n (— tar) is the largest iί-subspace contained in vr. Here
JBέ0 is the set of nonnegative real numbers.

(1.2) We consider the group ring k[M] of M over k by introducing
the multiplicative base e(m) satisfying e(0) = 1 and e(m + m') = e(m)e{mf)
for m,mr eM so that k[M] = (&meM ke(m). We consider k[M] as an un-
graded ring by letting e(m) to be homogeneous of degree m.

(1.3) For vr as above, let P = k[M Π tar] be the semigroup ring of
the subsemigroup MΠ Ή of M. Then Spec(P) is exactly a normal affine
embedding of the torus T = Spec(&[ikf]). For details, we refer the reader
to [MO]. For instance, P is smooth over k if and only if vr is nonsingular,
i.e., there exists a Z-basis {mu , mr} of M and s ^ r such that τf —
R^m>ι + + R^ms + Rms+1 + + Rmr by [MO, (5.6), p. 21].

(1.4) Let Γ(vr) be the set of the faces ξ of tar, i.e., those subsets ξ
for which there exists a Z-linear functional n e N on M such that n has
nonnegative values on ttr and that ξ is exactly the set of points of tar on
which n vanishes. Those ξ'& are again convex rational polyhedral cones.
Γ(w) is a finite partially ordered set with the largest element tεr and
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the smallest element vf Π ( — vf) via the order ξ > η meaning η is a face
of ξ. For f, η e Γ(τsr), we denote by ζ U η the smallest face of vf con-
taining f and Ύ] as faces, while the intersection ζ Π >7 is the largest face
of -or contained in £ and in ΎJ. We regard Γ(tDr) as an abstract complex.
A subset Ξ c Γ(vf) is a subcomplex (resp. sίαr closed subset, resp. ίocαi
subcomplex) if £ 6 S1 and f > ^ imply 77 e £f (resp. if η e 3 and ξ > η imply
£ e 51, resp. if 51 is the intersection of a subcomplex and a star closed
subset). More generally, subcomplexes, star closed subsets and local sub-
complexes of a local subcomplex ΞcΓ(vf) are defined in a similar manner.

(1.5) For £'s in Γ(vf), p{ξ) = k[MΓ) τf\MΠζ] = Θ»ejrn«\jrne *e(m) are
exactly the M-homogeneous prime ideals of P = k[M Π vf] by [MO, pp.
16-18].

DEFINITION. For a subcomplex ΞaΓ(vf), we define the M-homo-
geneous semiprime ideal J = /(S1) and the M-graded quotient ring S =
S(Ξ) by J(Ξ) = Π.e.Wί) and S(Ξ) = P/J(Ξ).

S(Ξ), as a A -vector space, coincides with k[\JζeS(Mf)ζ)], with, however,
the multiplication defined for m, m' e Ueê C-MTl <f) by e(m)e(m') = β(m + m')
if there exists <J e Ξ containing both m and m' while e{m)e(mr) = 0
otherwise. For f e Γ(Όf), P/p(ζ) is isomorphic to the semigroup ring
&[Mn?L which we always regard as an M-graded quotient ring of P.
Y(Ξ) = SpecCSίiS1)) is a reduced Γ-invariant closed subscheme of the
torus embedding Z = Spec(P)z) T = Spec(fc[M]). For ς e Γ(vr), let V(ξ) =
Spec(P/t>(£)), which is an irreducible reduced Γ-invariant closed subscheme
of Z with dimF(f) = dimf and with V(ξ)z>V(η) if and only if ζ > η.
We have V(ζ)aY(Ξ) if and only if ξ e Ξ so that Y{Ξ) - \J^sV{ξ) = U«
where α runs through the maximal elements of B.

(1.6) For a local subcomplex BdΓ{vf) and j" ̂  0, let

and let
d = dim S1 = max {dim <J ξ 6 5} .

For ξ e ^ , consider the Z-submodule Z{M Π £) of M of rank j generated
by MΓ\ ξ, and its highest exterior power

detZ(MΠί) = AZ(MΠξ) .

For η e Sy.i with ξ > 77, there exists a primitive element neN, unique
mod NΠξ1

9 such that n has nonnegative values on ξ and that 77 is
exactly the set of points of ξ at which n vanishes. Thus we have an
exact sequence
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0 -> Z(M ΓΊ η) -> Z(M n ξ) ^ Z^ 0 ,

hence a canonical isomorphism det Z(M Π ξ) ̂ > det Z(M Π V) sending m1 Λ
• Λ mjf with mγ e Z(M n f) and m2, , m, e Z(M Π ^), to (m^ n)m2 Λ
• Λ mj. For j ^ 0, let

CyίS1) - 0 d e t Z ( M Π f )

with the map

3:Cy(S)-CUS)

defined so that its (<J, ??)-component for f e Ξά and 37 e Ξ^t is zero if 37 is
not a face of ξ, and is the above isomorphism det Z(M Π ί) —> det Z(M D ^)
if f > 37. Then by Ishida [I3, Proposition 1.6], we see that C.(Ξ) together
with 3 is a finite complex of free Z-modules.

If we fix a Z-basis uξ of det Z(M Π ξ) for each ξ e Ξ, we see that
for ξ e Ξj

= Σ [ξ: V\uη

for numbers [ξ: f]] = 0, 1 or — 1 , which we call the incidence numbers.
For a subcomplex Ξf c S7, we can canonically regard Cm(Ξ') as a sub-

complex of Z-modules of C.(B). Then the quotient complex C.(Ξ)/CXΞ')
coincides with Cm(Ξ\Ξ') defined for the local subcomplex Ξ\Ξ'. We denote
by Hm(Ξ, k) and H\Ξ, k) the homology group of C.(S, k) = C.(S) ®ZΛ and
the cohomology group of C#(S, k) = Homz(C.(S), k). We call Ξ homo-
logically trivial (resp. k-homologically trivial) if Hu(Ξ) = 0 (resp. Hm(Ξ, k) =
0).

(1.7) For ζeΞ, let

S t a r ζ ( ^ ) = { ξ β Ξ ; ς > ζ } = Ξ \ { τ ] e Ξ ; V > Q

be the star of ζ in £?, which is a star closed subset of Ξ with the
smallest element ζ. Thus we can think of C.(Starζ(ιE?)) as a quotient
complex of CJβ).

Recall that for ζ e Γ(τf), we have bisections

Rζ) ^ Γ((vr + RQjRζ)

by sending f to ζ + iίζ and then to (f + Rζ)/Rζ (cf. [MO, Proposition
3.1] and [I3, Proposition 1.3]).

(1.8) A local subcomplex ΞaΓ(vf) with the smallest element ^ is
called k-spherίcal if for any ζeΞ we have
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[k j = dim Ξ
.te), k) =

0 otherwise .
A local subcomplex ΞaΓ(vr) is called k-semispherical if there exists
peΞ such that Star/i?) contains all the maximal elements of 5 and that
Starts) is ά-spherical.

Note that a ά-spherical Ξ is λ -semispherical by taking p to be the
smallest element φ. Note also that by Ishida [I3, Proposition 5.8], p in
the definition of the A -semisphericity of Ξ is uniquely determined, and
for ζ e Ξ we have

G, ,„. . fλ -spherical if ζ> p
Starζ(£) is

(fc-homologically trivial if ζ > p .

Moreover, by [ibid. Corollary 5.6], we see that for ζ > p and ώ = dimi?,
the canonical map

Hd(8t*τp(Ξ), k) Z Hd(Stzrζ(Ξ), k)

is an isomorphism.
The importance of the A -sphericity and &-semisphericity lies in the

following basic:

THEOREM (Ishida [I3, Theorem 5.10 and Proposition 5.13]. See also
Hochster [H, Added in proof].). // a subcomplex ΞcΓ(vr) with the
smallest element φ is k-spherical, then S(B) is a Gorenstein ring. If tar
is nonsingular, then S(Ξ) is a Gorenstein ring if and only if Ξ is k-
semisphericaL In this case, S(Ξ) is noncanonically isomorphic to the
tensor product over k of S(Ξ'), for a k-spherical Ξf c Γ(vf') for a non-
singular rational polyhedral cone tzr', and the k-smooth ring k[M Π p]9

where p is the one appearing in the definition of the k-semisphericity
of Ξ.

(1.9) Let Ξ c Γ(tar) be a subcomplex. If Y = Y(Ξ) has the nonsingular
normalization Ϋ, then we have

Ϋ=ΊIV(ξ)

with ξ running through the maximal elements of Ξ. In this case, replacing
-or by a possibly higher dimensional cone if necessary, we may assume
tar itself is nonsingular.

If vf is nonsingular, with

vr = R^Qm1 + + R^ms + Rms+1 + + Rmr
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for a Z-basis {mlf , mr} of M and s ^ r, then the complex Γ(vr) is
isomorphic to that of the family of subsets of {1, -- ,r} containing
{s + 1, , r} via the map sending ξ e Γ(vr) to {i; 1 ^ i ^ r, mi G f}.

If Y = YXff) with a λ -semispherical BczΓ(vf) has a nonsingular
normalization Ϋ, then F is noncanonically isomorphic to the product

Y = Γ(£') x ΛL. x T

of an affine space As, an algebraic torus I " and F(5") for a fc-spherical
subcomplex Ξr c Γ(τtfr) for a nonsingular convex rational polyhedral cone
vr' with α>' Π ( — Έ O — {0}. Thus for many purposes it is enough to study
Y(B) for a A -spherical subcomplex ΞaΓ(vf) for a nonsingular convex
rational polyhedral cone vr with tar η ( — tar) = {0}. Thus if

tar = iί^omi + • + R^mr

for a Z-basis {m^ , mr} of M, then iff can be identified with a sub-
complex of the complex of subsets of {1, •••,?•} via the map sending
ξ e Ξ to {i; 1 <̂  i ^ r, m f e f}.

(1.10) (cf. Hochster [H]). As above, let tar = R^m1 + + R^mr

for a Z-basis {mlt •• ,m r } of ikί and let ΞcΓ(vr) be a cZ-dimensional
subcomplex. Then Ξ is Λ-spherical if and only 3 — ΞA for a (d — 1)-
dimensional simplicial k-homology sphere A with r vertices {1, β , r},
where ΞAaΓ{vf) is the collection of all ξeΓ(vr) such that {ί l ^ i ^ r,
m£ 6 f} is the set of vertices of a simplex of A or the empty set. The
reason for this is that for {0} Φ ζ e 3M Hj+1(Sta.τζ(Ξj), k) coincides with the
(j — dim ζ)-dimensional reduced A -homology group of the link in A of
the simplex corresponding to ζ, while for ζ = {0}, it is the ^'-dimensional
reduced ft-homology group of A itself.

Combinatorial triangulations A of the ordinary (d — l)-sphere are
typical examples. Conversely for d = 1, 2, 3, (d — l)-dimensional simplicial
&-homology spheres are known necessarily to be combinatorial triangula-
tions of the ordinary sphere. Thus when d = 1, we have

SiSj) = k[tlf QUtA) ,

hence Y(BJ) is a curve with an ordinary double point at the origin. When
d — 2, then A is necessarily a decomposition of a circle into r arcs. Y(BJ)
is realized in the r-dimensional affine space with the coordinates (tlf , tr)
as the union of (tl912)-, (ί2, t8)-, , (tr_lf tr)- and (tr, ίj-planes. Such Y(ΞJ)
is called the elliptic polygonal r-cone by Mumford [M]. The ring S(Bj)
is of the following form:
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(k[tlf t2, UWiUQ r = 3

S(Ξj) = \k[tίf t2, ti9 ίJ/(ίA, ί2ί4) r - 4

'Mil, , ίJ/(ί<*i; i * i - 1, i, i + 1 (mod r)) r ^ 5 .

When ώ = 3, Δ is again necessarily a triangulation of the ordinary 2-
sphere. There are, however, many combinatorially different ones even
when the number r of the vertices is fixed. By Steinitz's theorem (cf
Grϋnbrum [G2, Chapter 13]), the combinatorial classification of zΓs coincides
with that of 3-dimensional simplicial convex polytopes, i.e., bounded
convex polyhedra in Rz whose 2-dimensional faces are triangles. We
encountered this classification problem in another context in [MO,
Section 9].

(1.11) For simplicity, we adopt the following notation: If ΞaΓ(vr)
is a cϊ-dimensional local subcomplex, then we denote d-dimensional cones
in Ξ by a, a', , (d - l)-dimensional cones in Ξ by β9 β\ , and (d — 2)-
dimensional cones in Ξ by 7, 7', . Suppose Ξ c Γ{vf) is a cί-dimensional
fc-spherical subcomplex with τf nonsingular. For β e Sd-i we see by
(1.7), (1.8) and (1.9) that Star^S) is isomorphic to a one-dimensional k-
spherical subcomplex of the complex of subsets of {1, , r}\β. Hence
by (1.10), there exist exactly two distinct a, a' eΞd satisfying a, a'> β.
On the other hand for jeΞd_2f we see again by (1.7), (1.8) and (1.9)
that Starts') is isomorphic to a 2-dimensional ά-spherical subcomplex of
the complex of subsets of {1, •• ,r}\τ . Again by (1.10), the latter is
necessarily isomorphic to a subdivision of a circle into v arcs with v ^ 3.
Thus Starr(S) consists exactly of 7 e sd_2, βu , βυ e Sd~i and au ,
aυ 6 Sd such that a^ > βt < at for 1 ^ i ^ v, where we let a0 = av. In
this case, we call 7 v-valent and denote v(y) = v.

(1.12) For a ^-scheme V, we denote, as usual, by Θv = ^i^k(^v) the
sheaf of germs of ^-derivations of the structure sheaf έ?r. For a closed
subscheme WaV, we denote by ^Ϋ"w/V the normal sheaf of W in V, i.e.,
the ^V-dual of the conormal sheaf I/P, where / is the ideal sheaf of
W in V. Recall, furthermore, the following:

DEFINITION. For a Λ-scheme V and its effective divisor D with the
ideal sheaf J, we define the sheaf Θv( — log D) of germs of k-derίvations
with logarithmic zeros along D to be that of ^-derivations 3 of £?v

satisfying 8{J) c /. Its ^F-dual is denoted by Ω\r(\og D) and is called
the sheaf of germs of differential 1-forms with logarithmic poles along D.

DEFINITION. For a subcomplex ΞaΓ(vr) and ζeΞ, let D(ξ) be the
reduced effective divisor of V(ξ) = Spec(fc[ikf Π ξ]) defined by D(ζ) =
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Σ? V{V)> where ΎJ runs through the codimension one faces of ξ (cf.
(1.5)).

In connection with this, we will have occasions later to need the
decomposition

when 8 is Λ-spherical and βe8d_x as follows (cf. (1.11)):

DEFINITION. Suppose 8 is d-dimensional and fc-spherical with vf
nonsingular. For β e Ξd_1 and v ^ 3, we denote by Dυ(β) the divisor of
V(β) defined by Dv(β) = ΣrV(τ), where 7 runs through the v-valent
(d — 2)-dimensional faces of β.

To an element n of the Z-module N dual to M, we have a λ -deriva-
tion δn of fc[M] defined by

δn(e(m)) = (m, n)e(m)

for all meM. We see easily that the map n^δn induces an isomorphism
from k®zN to the Lie algebra Lie(Γ) of T. More concretely, let {mlf

• , mr) be a Z-basis of M and let {nl9 - , nr) be the dual basis of N.
Then in terms of the coordinates tt — e(m%) of T, we have δn. = ^3/9^.

The fc-derivation dn obviously preserves the subring k[M Π tεr] and
its lί-homogeneous prime ideals p(ξ) = &[ikί Π tsr \Λf Πί] defining F(f) for
ξ e Γ(tar) (cf. (1.5)). Thus δM induces a global section of Θv{ξ). The divisor
D(ξ) on F(f) is defined by the ideal k[M (Ί (the relative interior of ξ)] of
k[M Π ξ]f which is preserved by δn. Thus we have a canonical homo-
morphism

z

which kills the elements of έ?v{ξ) (g)z(NPi ξL). We have:

PROPOSITION. For ξeΓ(τf), there are canonical isomorphisms

^v{ξ) <g> (N/N n ί1) ^ θv{ζ)(-\og D(ξ))
z

£V(f) ® Z(Λf Π ξ) ^ Ω\rW(\og D(ξ)) .
z

PROOF. It is enough to prove the isomorphy of the first homo-
morphism on the ring level for A = k[MΠ £]. Let / c i be the ideal
defining D(ξ). Then we have / = px Π Π ps, where ηu , ηs are the
codimension one faces of ξ and pl9 , ps are the corresponding M-
homogeneous height one prime ideals of A defined by pt = k[MΓ\ξ\Mnyt].
There exist primitive elements nu , ns in N, having nonnegative
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values on ς and being uniquely determined mod N f] ξ1, such that rji =
ξ ΓΊ {nt}

L. By [MO, p. 18, Remark], we see that for each meMftξ, we
have a primary decomposition

Ae(m) = #™ Π Π PTs) ,

where p{μ) is the μ-th symbolic power of p and μt = <m, w<>. Clearly a
^-derivation <5 of 4̂. with δ(I) c / preseves the symbolic powers. Thus
we have δ(e(m)) = u(m)e(m) for an element u(m) e A. Obviously u is an
additive semigroup homomorphism from Mf]ξ to A. Thus u can be
uniquely extended to a group homomorphism from Z{M Π ξ) to A, hence
to an element of A ®Z(N/Nn f1).

(1.13) Let ΞaΓ(vr) be a d-dimensional subcomplex for a convex
rational polyhedral cone vr. Ξ, considered as an ordered set is almost
never a directed set. Nevertheless, we can consider the protective system
{έ?vπ)}ξeB of ^V(*)-algebras with the restriction maps ^V^-^^Vm for ξ>V
as the transition homomorphisms. Sometimes convenient is the following
fact, whose proof can be easily carried out on the ring level:

PROPOSITION. For a subcomplex Ξ c Γ(vf) for a convex rational
polyhedral cone vf, we have a canonical isomorphism

^YiΞ) ^ proj lim έ?vm .
ξeS

Ishida [I3, Corollary 3.5] showed, in the dual formulation, that Y(Ξ)
is Cohen-Macaulay if and only if

flyίStarc (Ξ), k) = 0

for all ζ G Ξ and all j Φ d — dim Ξ. If this condition is satisfied, we call
Ξ k-Cohen-Macaulay. Thus ά-semispherical Ξ is ά-Cohen-Macaulay (cf.
(1.8)). Note that if 8 is A -Cohen-Macaulay, then it is equidimensional,
i.e., for each ξeS, there exists aeBd with a > ξ. In the ifc-Cohen-
Macaulay situation, the protective limits taken over Ξ is determined by
the information on codimensions zero and one as follows:

LEMMA. Let {Xξ}ξeΞ be a protective system of sets with the transition
maps fvξ: Xξ —• X? for ξ > TJ. If Ξ is d-dimensional k-Cohen-Macaulay,
then there exists a canonical bisection

proj lim Xξ —> proj lim Xv .

PROOF. We have canonical maps fη\ projlim f 6 5.X^ —> Xη, hence

proj lim Xξ —> proj lim Xη .
ξeΞ μeSd[jΞd_1
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We first claim / to be injective. Indeed, if x = (xξ) and x' — (x'ξ) are
in proj lim ί e 5 Xξ with χη = χ'η for each ηeΞd\JΞd_19 then xζ = x'ξ for
each ξeΞ since by the equidimensionality, there exists aeΞd with
a > ξ. Let us show the surjectivity of /. Let x = (xη) be an element
of the protective limit for Ξd U Ξd_±. Each ζ e Ξ is a face of some
rf e Bd U Ξd_λ by the equidimensionality. Let us fix one such rf for
each ζ and define xζ to be /W/(av) We claim that xζ is independent of
the choice of η', hence Oc) is an element of the protective limit for Ξ.
Indeed, consider the subsets of Starts) defined by

Ξ' = [η 6 Bd U ^_ x ; ί? > ζ, /„(&,) = xζ} ,

Ξ" = [η e Ξd U ^ ^ ί? > ζ, /„(&,) ^ a J .

Then we obviously have Ξ' Π S"' = 0 and S" U S"' = ( ^ U Ξd_J f] Star^S).
S' is nonempty, since it contains η'. Thus by Ishida [I3, Proposition 5.3],
we conclude that S" = 0 and Ξr = (Ξd U S^.i) Π Starts').

Combining our Proposition and Lemma, we have:

COROLLARY. // Y(Ξ) is d-dimensional and is k-Cohen-Macaulay,
then we have a canonical isomorphism

<i?Yw ^ proj lim έ?vιη) .
yeΞdl)Ξd_ι

(1.14) Let X be a λ -scheme. Illusie [IJ defined the cotangent complex
Lf of ^-modules using the homotopical algebraic technique. This
complex plays the following role in the theory of infinitesimal deforma-
tions of X.

Let R be an Artin local fc-algebra with the residue field k. Then
a deformation of X over R is an i2-scheme XR, flat over R, such that
XB®k = X. Let R' be another Artin local ά-algebra with a surjective
local fc-homomorphism R'-*R whose kernel has length one. Given a
deformation XR of X over R, the obstruction for lifting XR to a de-
formation XB, over Rf lies in the second hyperextension group

When the obstruction vanishes, the set of liftings XR, of XB to Rr is a
principal homogeneous space under the first hyperextension group

Incidentally, the set of ϋ?'-automorphisms of XB, inducing the identity
on XR is the group
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The computation of these hyperextension groups is reduced to that of
the local hyperextension sheaves

^ ( L f , ^ x ) i = 0,l,2

via the local-global spectral sequence

H\X, %<sJz{L*, <?z)) => Exti+

z\Lft <?z) .

Fortunately, by Rim [R], we can compute these local hyperextension
sheaves as follows:

( 0) %*s°x(L?, <7Z) = β^^z(ΩZf &z) = ^ f c ( ^ ) .
(1) If X is reduced, then c^ι

χ(L*, έ?z) = %*sϊz(ΩZf έ?z) (cf. Artin
[A, Proposition 6.1]).

(1') Suppose X = Spec(S) is affine. If S = P/J for a polynomial
fc-algebra P and an ideal J of P, then the ^-module corresponding to
the S-module

Ext^Lf, S) = coker [Derfc(P, S) -> Hom5(J/J2, S)]

is exactly &^χ(Lf9 έ?z).
(2) Let X = Spec(S) with S = P/J as above. Suppose theίe exists

a surjective P-homomorphism F -> J -> 0 from a free P-module F of finite
rank. Consider the Koszul complex constructed out of this surjection

Kosz = [ > ΛdF-^ Λ2F-> F -^ P ] .

Then ί£/^χ(Lf, < x̂) is exactly the ^-module corresponding to the S-module

Ext|(Lf, S) = coker [jff̂ Kosz, S) -^ Hom^iϊ^Kosz), S)]

= coker [HomP(F, S) -> Homp^^Kosz), S)] .

2. The announcement of the main results. We are ready to state
our main theorems and their consequences, whose proofs will be completed
at the end of the paper.

We need much less condition on Y for our description of the zeroth
hyperextension sheaf &*n(έ?γ) than for that of the higher hyperexten-
sion sheaves.

THEOREM 2.1. Let ΞczΓ(xsf) be a subcomplex for a convex rational
polyhedral cone vf. Then we have a canonical in jective homomorphism

proj lim θ F ( ί ) (- log D(ξ)) — ^k(έ?γ{Ξ))
ξeS

which is an isomorphism if and only if one of the following equivalent
conditions are satisfied:

(1) Each Ύ] e Ξ is the intersection of all the maximal elements ξ e Ξ
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satisfying ξ > ΎJ.
(2) The cardinality of Star̂ JS?) is not two for each ηeΞ.

COROLLARY 2.2. If Ξ aΓ(vf) is a d-dimensional k-Cohen-Macaulay
subcomplex (cf. (1.13)) for a convex rational polyhedral cone vf and if
Hd(StSLTβ(Ξ)9 k) Φ 0 for any βeΞd_19 then we have canonical iso-
morphisms

^*-k(^γ(Ξ)) ̂ ~ proj lim θF(e)( —log D(ξ))
ξeΞ

—> proj lim θvm( — log D(rj)) .

REMARK. This is, in a sense, a generalization of a result obtained
by Nakamura [Nlf Proposition 2.5]. Note that by (1.8), the conditions
in Corollary 2.2 are satisfied if Ξ is fc-spherical. See Ishida [I4] for a
long exact sequence extending the isomorphism in Corollary 2.2.

EXAMPLE. Let X be an algebraic surface over k with an ordinary
double curve C as the only singularity. Let v\ X —• X be the normaliza-
tion. If C is nonsingular, then v~\C) is the disjoint union of iso-
morphic nonsingular curves C and C" on X isomorphic to C via v.
We have an exact sequence

0 -* θ-K-log(C + C")) -> θi -> ΛrCΊX 0 ^TC.ΊZ -> 0 .

By an easy local calculation, we have a canonical isomorphism

+ C")) -> θc] ,

where the homomorphism is the difference of the two obvious restriction
maps. Our result generalizes this to special but combinatorially more
complicated varieties of the form Y(Ξ). Obviously, X above is locally
isomorphic to Y(Ξ) for a very simple Ξ.

Recall that for a closed subscheme W of a scheme V, we denoted
by Λ^r/v the normal sheaf of W in V (cf. (1.12)). In stating our des-
cription of r£^χ{L*, έ?γ) = $£es£Y(QY, έ?γ)9 we need the following:

DEFINITION. For a convex rational polyhedral cone tsr, let Ξ cz Γ(vf)
be a d-dimensional ά-spherical subcomplex with Y(Ξ) having the nonsingular
normalization.

(1) For β e Ξd_lf let a, a! be the two distinct elements of Ξd satisfy-
ing a > β and af > β. Then we define an invertible ^V(/3)-module
by
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- Σ

(2) For 7 e £Γd_2, we define a locally free ^Vσ)-module ^ (7) as
follows: If 0(7) ^ 5, then we let gf (7) = 0. If 17(7) = 4 and βlf ft, ft, ft
are the distinct elements of Ξd^ satisfying βt > 7 and ft U ft, ft U β± ί
£*, we let

gf (7, A) =

gf (7, A) =

Then

S (̂7) = {Sf (7, ft) 0 gf (7, /33)}/diagonal

0 {gf (7, ft) 0 gf (7, ft)}/diagonal.

Finally, for r(7) = 3, let ft, ft, ft be the distinct elements in Ed_x with
ft > 7. Let

gf (7, ft) = gf (7, ft) - gf (7, ft)

Then

gf (7) - {gf (7, ft) 0 gf (7, ft) 0 gf (7, /3a)}/diagonal .

( 3 ) We define an ^F(sΓhomomorphism

ε: φ gf(/9)
^ 5

as follows: Let /3 6 Ξd_x and 7 e S .̂g. The (ft 7)-component of ε is zero
if either β > 7 or 1̂ (7) ^ 5 . If 17(7) = 4 and β > 7, then /3 = ft for some
ΐ — 1, 2, 3, 4 as above. In this case, the (ft 7)-component of ε is the
composite gf (β) -> ̂ F<r> (8) ̂ (/S) —̂  ̂ ( 7 , /3) —> ^(7) of the restriction map,
the obvious injection and the map induced by the inclusion into the
(7, ft)-factor. Finally if v(y) = 3 and β > 7, then β = ft for some i —
1, 2, 3. In this case, the (ft 7)-component of ε is the composite &(β) —>
^Vσ) <8) ̂ (/S) -» ^ ( 7 , /5) -> ^(7) exactly as above.

THEOREM 2.3. Let vf be a convex rational polyhedral cone. For a
d-dimensional k-spherical subcomplex ΞaΓ(vf) with Y(Ξ) having the
nonsingular normalization, we have a canonical isomorphism

gf(/3) Λ 0 gf(7)l .
1 reS d _ 2 J

REMARK. This is a generalization of a result obtained by Nakamura

l f Section 5].
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THEOREM 2.4. For a Z-basίs {ml9 , mr} of M, let vr = R^om1 +
• + R^omr and let Ξ c Γ(vf) be a d-dimensional k-spherical subcomplex.
Then we have

^ γ { s μ / * \ ^Y{Ξ)) = o
if and only if Hd_ι{Φ{sf, s"), k) — 0 for all s' e Ξ and s" e Γ{vf) satisfying
s' (Ί s" — {0} and \s"\ ^ 2, where by freely identifying the elements of
Γ(τf) with the subsets of {1, " ,r) as in (1.9), we define | s" | ίo 6e ίfee
cardinality of s" α^d

Φ(s', s") = {f 6 ff; ξ > s', f U s"\{l} e Ξ for all I e s"} .

When d = dim Ξ ^ 3, we can simplify this condition further in the
following way, where by (1.10), we identify Ξ with ΞA for a (d — 1)-
dimensional finite simplicial &-homology sphere z/, which is nothing but
a triangulation of the ordinary (d — l)-sphere now:

COROLLARY 2.5. For d ^ 3, ίeί Δ be a combinatorial triangulation
of the (d — l)-sphere. Then for Y = Y(ΞJ), we have

if and only if one of the following is satisfied:
(1) d^l.
(2) d = 2 and v({0}) <; 5, i.e., Y is an elliptic polygonal r-cone with

r ^ 5.
(3) d = 3 and the stereographic projection, from one of the ver-

tices, of A to the plane looks like one of the diagrams except [8-14]
in Figure 1, where the names [4-1] through [8-14] are those used in
[MO, p. 77].

REMARK. Among those listed in Corollary 2.5, only the following
are complete intersections (cf. (1.10) and below), hence the vanishing of
the &/2 in these cases are already known:

(1) always.
( 2 ) with v({0}) = 3 or 4.
( 3 ) [4-1] S = k[xu , x^]/(x1x2xsxA)

[5-1] S = k[xlf •-, XtΪKxfoXs, x*x6)

[6-1] S = k[xu ", x^liXiX*, a^4, ^5^6).

REMARK. AS we see in Proposition 6.3, the eleven triangulations
[4-1] through [12] in Figure 1 are exactly those for which each vertex
is incident to five or less edges.
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[4-1] [5-1]

[6-1] [6-2] [7-1]

The triangulations of the 2-sphere with all the vertices having
the valency ^ 5.

FIGURE 1

3. Barycentric subdivisions. In computing the higher hyperexten-
sion sheaves in question, we will later need the results in this section
on the barycentric subdivision, which is an adaptation of the usual one
to our situation.

Let Φ be a partially ordered set. Later, we will be mainly concerned
with the case where Φ is a local subcomplex of Γ(vf) for a convex
rational polyhedral cone vf.

DEFINITION. For i ^ 0, define the set Sd,(Φ) as follows: Sdo(Φ) is
the one-element set consisting of the symbol ( ). For i ^ 1, Sd^Φ) is
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the set of strictly increasing sequences (£λ S ζ2 S S £<) of length i in
Φ. Sd(Φ) = ILέo Sdέ(Φ) is called the barycentric subdivision of Φ. We
regard it as an abstract complex by taking faces to be subsequences. The
chain complex of Z-modules C (Sd(Φ)) is defined by letting Cΐ(Sd(Φ)) to be
the free Z-module with the basis Sd^Φ) and by letting the boundary
map 3: Ci+1 —> Ct to be

We define the homology group if (Sd(Φ)), the cohomology group if'(Sd(Φ))
and if (Sd(Φ), k), iΓ(Sd(Φ), k) for a field k in the usual manner. We call
Sd(Φ) homologically trivial (resp. λ -homologically trivial) if if (Sd(Φ)) = 0
(resp. if (Sd(Φ), k) = 0).

It is easy to see that if Φ is empty, then we have

[Z ί = 0

(0 iΦO,

while if Φ is nonempty, then we have ifo(Sd(Φ)) = 0.

REMARK. It is sometimes more convenient to consider, instead, another

barycentric subdivision Sd(Φ) consisting of all the nondecreasing sequences

(£1 < £2 < < £i) in Φ. Thus Sd(Φ) is a subcomplex of Sd(Φ). It is

standard to show that the induced map C (Sd(Φ)) -> C (Sd(Φ)) is a quasi-

isomorphism, i.e., the complement D(Φ) = Sd(Φ)\Sd(Φ) consisting of the

degenerate sequences is homologically trivial. Just define the chain

homotopy for C.CD(Φ)) by sending (& < . . . < ξt) to (-l) ϊ + 1(£i < ••• <

ζι = ζι < ξι+ί < < £0, where I is the smallest j such that ξ3- = ξj+1.

The following lemmas are standard and useful below.

LEMMA 3.1. Let Φr be a subset of an ordered set Φ. Suppose there
exists an order preserving retraction map p:Φ-^Φ\ i.e., p°i = idφ/ for
the inclusion map i: Φ' —> Φ. If either (1) p(ξ) > ξ for all ξeΦ or (2)
P(ζ) < £ for all £ e @> then i induces an isomorphism

i+: if.(Sd(Φ')) ̂  if.(Sd(Φ)) .

PROOF. By the above remark, we may replace Sd by Sd allowing
nondecreasing sequences. Then, as usual, we construct the chain homotopy
8 for C (Sd(Φ)) connecting iop and idφ by sending (£i < < £, ) to sfe <
• < ξi) = Σ i ^ ^ i (- l) ' ( ί i < < ξι < p(ζι) < •- < ρ(ζj)) in case (1), and
to sfe < « < ζj) = Σi^ί^i ( — l)\p(ξi) < < |θ(£i) < £ i < < £ j) in case
(2).
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LEMMA 3.2. // Φ has either the smallest element or the largest
element, then Sd(Φ) is homologically trivial.

PROOF. Apply Lemma 3.1 (1) (resp. (2)) to the subset Φ' consisting
of the largest (resp. smallest) element only, with p sending every element
of Φ to the unique element of Φf. We are done, since Sd(Φ') is obviously
homologically trivial.

The proof of the following lemma is left to the reader.

LEMMA 3.3. Let Ξr be a subcomplex of a local subcomplex Ξ a -Γ(tar)
for a convex rational polyhedral cone tsr. Let dr = dim Ξf and d = dim 3.
Then we have the following:

( i ) There is a decreasing filtration

8ά(Ξ\Ξ') = Fd'+1 c Fd' c - - c Fj+1 c ^ c c Sd(ff)

by the subcomplexes defined by Fj = {(& S S ξt) e Sd(ϋΓ); either ξt 0 Ξ',
or ςx e Ξ' and dim ξt ^ j}. In particular, Fj — $ά(Ξ) if j ^ min{i; Ξ[ is
nonempty). Moreover, the quotient complex CχFj\Fj+1) is of the form

0 i = 0
Q(Fj\Fj+1) = ,

θ C
ζ eΞf ,άiτnζ = j

(ii) There is an increasing filtration
Sd(S') c c F's c F'ί+1 c c Fί = Sd(S)

by the subcomplexes defined by Fj — {(fx S S ξι)^ Sd(S); either ξt eΞ',
or & 0 Ξf and dim^ ^ j}. In particular, Fj = Sd(S') if j < min{ί; S ; \ S !
is nonempty}. Moreover, the quotient complex CXF'^F^) is of the form

Λ y y " J " ( θ CU$d(Ξ n Γ(ζ)\{ζ})) i ^ 1

When £? c Γ(τzr) is a local subcomplex with the smallest element for
a convex rational polyhedral cone tar, we can relate the homology group
of the barycentric subdivision and the homology group in (1.6) as follows.
It is just the usual comparison theorem in disguise between the homology
group of a finite simplicial complex and that of its barycentric subdivision.

LEMMA 3.4. Let Ξ a vf be a local subcomplex for a convex rational
polyhedral cone tar. If Ξ has the smallest element φ, then we have
canonical isomorphisms for all i

sd : H&Ξ) ^ iJ,_di
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where the left hand side is the homology group we defined in (1.6).

PROOF. AS we saw in (1.6), we have the incidence number [ξ: rj\ =
0, 1 or —1 for ζeΞt and ηeΞ^ so that duξ = Σ ^ e ^ [ξ: y]uη for a Z-
basis uξ of detZ(MΠξ). We define the map

sd,: Ct(Ξ) -+ C^Λlmφ(βd(Ξ\{φ}))

by sdo(uφ) = ( ) and, for £ e Ŝ  with i ^ 1, by

Sd,(tte) = Σ 0"(£dlm#+i ^ * * ^ f<)(fdiπnJ+i S * * * ^ ξi) ,

with the summation taken over all (£dim0+i ̂  Sίf*) e Sd(^\{^}) satisfying
ίi — f > where σ(«fdimί5+1 ^ S ί*) e Z is defined as follows: Denoting
ξι = φ if = dim ^, we let

Note that dim ξt = I for all dim φ <, I <L i. It is easy to check that
sd^od = dosd*, since for any ζeff^ and ξeΞt with ξ > ζ, there exist
exactly two 17,77' e Ξ^ such that f > η > ζ and f > rf > ζ and that
[f: >?][̂ : C] + [£: ̂ ] [^ : ζ] = 0 (cf. Ishida [I3, Lemma 1.4]). We thus have
the induced homomorphisms sd: Ht(Ξ) -*Ht_dlmφ(Sd(Ξ\{φ})). We now show
these to be isomorphisms by induction on the cardinality of Ξ.

First of all, suppose Ξ has the largest element ξ. We claim that
sd are isomorphic in this case. If ξφφ, then ^\{^} also has the largest
element, and the right hand side is trivial by Lemma 3.2. If ξ = φ,
then ^M^} is empty, hence the right hand side is Z for i — dim^ and
zero otherwise, as we saw at the beginning of this section. On the
other hand, if ξ Φ φ, then the left hand side is trivial, since Ξ consists
of all the faces of ξ containing φ (cf. (1.7) and, for instance, Ishida [I3,
the comment immediately after Corollary 2.3]). If ξ — φ, then Ξ = {φ}
and the left hand side is Z for ί = dim φ and zero otherwise. Moreover,
uφ is sent by sd to ( ) by definition.

In the general case, let ξ be an element of the largest dimension in
Ξ. We may assume ξ Φ φ, by what we saw above. The SM^} is a
subcomplex of Ξ with fewer elements. Apply Lemma 3.3 (ii) to the
subcomplex SXff, φ) of #\{0}. Since the complement consists of ξ only,
we see that the increasing filtration is of the form Sd(i?\{£, φ}) =

with j = dim φ. Hence we have

C(F'\F> )=\°

Similarly, Lemma 3.3 (ii) applied to ΞnΓ(ξ)\{ζ, φ}aΞΓ)Γ(ζ)\{φ} yields an
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increasing filtration Sd(ΞnΓ(ξ)\{ξ, φ}) = F'/^aF'/ = Sd(SΊΊ Γ(ξ)\{φ}) with
j = dim ς. Hence

C1 (Frf\ F" } J
j " (cu(Sdos n r(ξ)\{ξ, φ})) ί ^ l .

Thus the homomorphism CXF^Fj'^) -• CXF-XF-^) induced by the in-
clusion is an isomorphism. We are done in view of the diagram

sd Ld sd

whose first column is a quasi-isomorphism by the induction hypothesis,
and the diagram

0 +C.(ΞΓlΓ(ξ)\{ξ\) >C.(ΞΠΓ(ξ)) >€.({£})

I sd I sd jsd

the first and second columns, hence the third column, of which are
quasi-isomorphisms by the induction hypothesis and our result at the
beginning of this proof applied to the complex Ξ ΓΊ Γ(ξ) having the largest
element ξ.

The following is a modification in our context of the usual Alexander
duality theorem.

PROPOSITION 3.5. For a convex rational polyhedral cone tsf, let
ΞczΓ(Ξ) be a d-dimensional k-spherical local subcomplex with the small-
est element φ. Then for subcomplexes ΞZD Φ D Φ'', we have a canonical
isomorphism

Hj(Φ\Φ', k) Z Hd+1_s(8d(Ξ\Φ')\8d(Ξ\Φ), k)

for all 0 ̂  j ^ d. In particular, we have a canonical isomorphism

H*(p, k) ̂  Hd_j(Sά(Ξ\Φ\ k) for all j .

PROOF. The second part is the special case of the first with Φf empty,
since the long exact sequence arising from the inclusion Sd(Sτ\Φ)cSd(S')
induces a homomorphism Hd+1_d(Sd(Ξ)\Sd(Ξ\Φ), k) -^ Hd_j(Sd(Ξ\Φ)f k),
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which is an isomorphism by the λ -homological triviality of Sά(Ξ) in
Lemma 3.2.

Let us now construct a canonical duality homomorphism

D: Cj(Φ\Φ', k) -> C d + w(Sd(S\Φ')\Sd(£\Φ), k) .

Since Ξ is d-dimensional and Λ-spherical, we have Hd(Ξ, k) = k. Hence
by Ishida's result quoted in (1.8), there exists a map e:Ξd—>k*, the
orientation, such that for any ζeΞ, the element Σαε(α)uα with a
running through the d-dimensional cones of Starc(J?) gives rise to the
fc-basis of Hd(Staτζ(Ξ), k). In particular for any βeΞd_19 we have
e(a)[a: β] + ε(a!)[a': β] = 0 for the two d-dimensional cones a, a' satisfy-
ing a, a' > β. Let {uf} be the &-basis of C'(Φ\Φ', k) dual to {uζ}. Then
for ζ£Φ\Φr with dimf = j , we let

D(uf) = Σ e(ξj S S &)(fy S - S ζd)

with the summation taken over all (ξj S - - S ξd) in Sά(Ξ\Φ')\Sd(Ξ\Φ)
satisfying ξd = ξ, where e(ζs S S ζd) € fc is defined as

Π [£i+i; ξι] .

Note that dim f, = ί for all j ^ i <̂  cί. It is easy to check as in Lemma
3.4 that doD = Dod, where δ is the coboundary map of C'(Φ\Φ\ k) defined
by

for ./-dimensional ζeΦ\Φ', with the summation taken over all 0' + 1)-
dimensional ηeΦ\Φ'.

To prove that the above D induces the required isomorphism in the
proposition, we may restrict ourselves to the case where Φf is empty,
in view of the long exact sequence arising from the inclusion
Sd(S)\Sd(£\Φ')cSd(S)\Sd(£\Φ). Thus we now show that D induces
an isomorphism

f P ( Φ , k) Z H d + ι _ i ( S ά ( Ξ ) \ 8 ά ( Ξ \ Φ ) f k) f o r a l l O ^ j ^ d

by induction on the cardinality of Φ.
If Φ is empty, then both sides vanish, and we are done. If Φ is not

empty, let ζ be an element in Φ of the largest dimension and let Φ' =
Φ\{ζ}, which is a subcomplex of Φ. Since D is canonical, we have a
homomorphism from the long exact sequence arising from Φ'aΦ to that
arising from Sd(Ξ\Φ')\Sd(Ξ\Φ) aSd(Ξ)\Sd(Ξ\Φ). Thus by the in-
duction hypothesis applied to Φ', it is enough to show that D induces
an isomorphism
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( * ) &({Q, k) ̂  Hi+1_i(Sd(Ξ\Φ')\Sd(Ξ\Φ)f k)

for all 0 <Ξ j ^ d. The left hand side of (*) is zero for j Φ dim ζ and
is kut for j = dim ζ. Moreover, D(v%) = Σ ε(£i ^ * * S &)(£/ S " S ζd)
with the summation taken over all (ξ3 S S ξd) satisfying ξd = ζ.

As for the right hand side of (*), we have two isomorphisms

sd

Hd_i+Λlmζ(8t*τζ(S), k) ^ ^ _ 3 (Sd(Starc(S)\{ζ}), k)

t Hi+1_j(Sd(Ξ\Φ')\Sd(Ξ\Φ), k) .

Indeed, the first isomorphism sd was obtained in Lemma 3.4. Hence,
moreover by the A-sphericity of Starts'), we see that the right hand
side of sd is nonzero only when j = dim ζ, and then has the A -basis

sd(Σ e(α)tθ = Σ e(ξd)σ(ξi+1 S S ξd)(ζj+ί S • S ξd) •
a

Here the summations are taken over all d-dimensional a in Starζ(£Γ) and
over all (ξj+1 S * * S ξd) in Sd(Starζ(i5

τ)\{ζ}), respectively. On the other
hand, the second isomorphism / is induced, up to sign, by the natural bi-
jection from Sd(Starζ(S)\{ζ}) to Sd(Ξ\Φ')\Sd(Ξ\Φ) sending (ΎJ^ SVi)
to (ζ S V, S S Vi).

Finally, since ε(^$f,+1 S Sξd)= (-l){d-j){d-j-ime(ξdMξj+1 S--Sζd)
for j = dim ζ, we have

D(u*) = ( - l ) ( ^ ) (d^-1)/2/o

hence (*) is an isomorphism.

The following Propositions 3.6 and 3.8 will play a crucial role in
Sections 5 and 6, where we compute the hyperextension sheaves in
question. At the preliminary stage of our formulation, the discussion
with Hiroshi Sato was useful.

PROPOSITION 3.6. For a convex rational polyhedral cone vf, let Ξ c
/'(tar) be a d-dimensional k-spherίcal local subcomplex with the smallest
element φ. For s', s" e /(tar) satisfying s' Π s" = φf s

f > φ and s" > φ, we
define a local subcomplex Ξ(s\ s") of Ξ by

3(8', s") = {ζ e Ξ; s' U ξ e Ξ, ζ n s" = φ, ξ U a" ί Ξ) .

// either sf $ Ξ or s" — φ, then Ξ(sf, a") is empty. On the other hand,
if S ' G S αwώ a" ^ φ, then the barycentric subdivision Sd(Ξ(s', a")) â
k-homologically trivial, hence, in particular, Ξ(s', a") ia nonempty.
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PROOF. Obviously, it suffices to prove the fe-homological triviality
of Sd(Ξ(8', s")) when s' e Ξ and s" Φ φ. If s" £ Ξ, then Ξ(s', s") contains
the smallest element φ, hence we are done by Lemma 3.2. Henceforth,
we thus assume s\ s" e Ξ, s' Π s" = ^ and β" =£ 0. Let Φ = {ξ e Ξ; s' U ξ e
Ξ,ξn s" = φ) and Φ' - {ζ 6 Ξ; β' U ζ 6 £, ζ n β" = φ, ζ U β" e Ξ}. Obviously,
Φ'cΦ are nonempty subcomplexes of 3 and Ξ(s', s") = Φ\Φ'. We now
apply Lemma 3.3 (i). Consider the decreasing filtration F' of Sd(Φ) by
subcomplexes F* = {(^ ^ ^ f,) e Sd(Φ); either ^ g Φ', or fx 6 Φ' and
dim fx ^ i}. Then Fi+1czF\ Fd+1 = Sd(Φ\Φ') and ί70 = Sd(Φ). Combining
Lemma 3.3 (i) and Lemma 3.4, we see that

H-(F*\Fi+1 k) — J ^ ~~

.P0 = Sd(Φ) is Λ-homologically trivial by Lemma 3.2, since Φ contains the
smallest element φ. Hence in view of the long exact sequences arising
from the inclusions Fί+1 c F\ we have thus reduced the λ -homological
triviality of Sd(Φ\Φ') = Sd(Ξ(s', s")) to that of Starζ(Φ) for each ζ e Φ'.

For ζ e Φ', however, we have s' U ζ, ζ U β" e Starc(£), (s' U ζ) Π (ζ U s") =
ζ, ζ U «" =* ζ and Starζ(Φ) = {f e Starζ(£); (s' U ζ) U ξ e Starc(ff), f ΓΊ (ζ U s") -
ζ}. Thus replacing Starζ(^) by Ξ, ζ by ^, s' U ζ by s' and ζ U s" by s",
we have reduced ourselves to (ii) of the following:

LEMMA 3.7. For a convex rational polyhedral cone vf, let Ξ c Γ(Ή)

be a d-dimensional k-spherical local subcomplex with the smallest element
φ. For s', s" e Ξ with s' Π s" = φ, let

TS,,ΛΞ) = {ξ e Ξ; s' U ξ e Ξ, ς n s" = φ} .

Then Tl>,s"(Ξ) a^s,(Ξ) are subcomplexes of Ξ and we have:
( i ) %S8'(Ξ) is k-semίspherical with respect to p = s\ In particular,

if s' Φ φ, then ^S,(Ξ) is k-homologically trivial.
(ii) Vl>)S"(Ξ) is k-homologically trivial unless s' = s" = φ.

PROOF. The &-semisphericity of %f8,(Ξ) is immediate by definition.
The second part of (i) was shown by Ishida, as we pointed out in (1.8).
We now prove (ii) by induction on the codimension of φ in Ξ. If it is
zero, then 3 = {φ} and there is nothing to prove.

Consider the increasing filtration 3^' of ^S>{Ξ) by the subcomplexes
Tι = {ξeΞ; s 'UfeS 1, dim(f Π s") ^ i}. Obviously, Tι c T^\ Tάivaφ =
Tt ,AB) a n d Tdiuls"= %SAΞ). The complement Γ x Γ " 1 is the disjoint

union of its subcomplexes {ξ e Ξ; s' U ξ e 3, ξΓ\s" = ζ} with ζ running through
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the elements in £?, satisfying s">ζ and s' Uζ e Ξ. But these subcomplexes
coincide with 3^uc."(Starζ(£)) = {ξ e Starc(ff); (s' U ζ) U ξ e Starζ (S), f n s" =
ζ} with s'Uζ, s" estates '). If ζ ̂  0, then the codimension of ζ in
Starc(£?) is smaller. Hence by the induction assumption, we see that if
ζ Φ φ, then 3^,uζ,S"(Starζ(£Γ)) is λ -homologically trivial unless s' U ζ = s" =
ζ, i.e., s' = ̂  and ζ = β". Note that Starc(S) is fc-spherical by (1.8).

Thus if 8f Φ Φ, the long exact sequences arising from the inclusions

Ti-i c τ ι y i e l d t h e isomorphisms HX TS',S»(Ξ), k) = Hχτdiτaφ, k) ̂  -^

Hprκ™"f Jc) = H£%fa,(S)f fc), which vanishes by (i).
It remains to consider the case *' = ̂ . We have ^ d i m s " =^/β/(£f) = Ξ.

Even in this case, the long exact sequences arising from the inclusions
T1-1 c Tι yield the isomorphisms i ϊ ( TΦ,AΞ), k) = Hχτdlmφ, k) ̂  -^
^^dim."-^ ^ a s w e l l a s t h e l o n g e χ a c t sequence • H^T*1™"-1, k) ->

fly(S, fc) —> fly(Starf// (S7), k) -> , since for s' = φ and ζ = s", we have
5^,uζ)8,,(Starζ(V)) = Star.//(S). Since Star.^S1) is A -spherical, we see that

Hd(Bf k) = HAStzrΛB), k) { ^ ^
(0 otherwise .

Moreover, the induced map Hd(Ξ, k) —• Hd(Sta.ra,,(Ξ, k) is an isomorphism
by a result of Ishida, as we pointed out in (1.8). Hence we are done.

PROPOSITION 3.8. For α Z-bαsis {mu , mr} of M, let trr = R^Qmι +
• + Rϊ>omr and let Ξ c Γ(τf) be a d-dimensίonal k-spherical subcomplex.
By freely identifying the elements of Γ(vf) with the subsets of {1, , r}
a s m (1.9), let Ξ\s\ s") = {ζ eΞ; s' Όξ eΞ, ξ Πs" = 0, £ Us"\{£} ί ff for some
ies"} /or s', s" eΓ(vf). On the other hand, let

φ(s', s") = {ξ 6 Ξ; ξ > s', ξ U s"\{l} 6 ff for all I e s"} .

Then we have a canonical isomorphism

H>X8ά(B'(8', s")\ k) ̂  Hd^(Φ(s\ 8"), k) .

PROOF. For simplicity, let Ψ = {ζeΞ; ζ > s\ ζ\Js"\{l}&B for some
I e s"} and W = {η e 8; η > s\ η Π 8" = Φ, V U s"\{l} £ Ξ for some I e s").
Then Ψ' is a subset of iS"(s', s") with the order preserving retraction p
sending ξeΞ'(s',s") to p(ξ) = s' U f > ζ. Hence by Lemma 3.1 (1),
flΓ.(Sd(r)f Λ) is isomorphic to JΪ.(Sd(Sf(β', s")), fc). On the other hand, Φ is
a subset of f with the order preserving retraction p sending ζeΨ to
^(ζ) = ζ \ s " < ζ. Hence by Lemma 3.1 (2), iϊ.(Sd(?Γ'), fc) is isomorphic to
H+Sά(Ψ), k).

Thus HχSd(Ξ'(s', s")), k) is isomorphic to 2-Γ.(Sd(F), fc). But obviously,
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φ = Φ(s\ s") is a subcomplex of d-dimensional λ -spherical S tar t s ) with
the smallest element s' and Ψ = Star,,(ί?)\Φ. Hence by Proposition 3.5,
we are done.

4. The proofs of Theorem 2.1 and Corollary 2.2. Compared with
those of Theorems 2.3 and 2.4, the proofs of Theorem 2.1 and Corollary
2.2 are much simpler.

Le ΞdΓ{vr) be a subcomplex for a convex rational polyhedral cone
vr. Let us simply denote Y(Ξ) by Y. By Proposition in (1.13), we have

a canonical isomorphism έ7γ —> proj limίe^ V̂(e>> where, moreover, the
transition homomorphisms on the right hand side are all surjective. On
the other hand, in view of Proposition in (1.12), the restriction map for
ξ,η eΞ with ξ > η induces a homomorphism

θF(*>(-log D(ξ)) -> βF W )(-log £()?)) ,

hence we have the protective limit

proj limθF ( ί )(-log D(ζ)) .

Since an element in this limit gives rise to a compatible system of k-
derivations on the projective system {έ?Viξ)}ξeS, we obviously have a
canonical homomorphism

proj lim <9F(f)(-log D(ξ)) — &Uh{<?τ) ,
ζeΞ

which is easily seen to be injective by the surjectivity of <^γ —> ^V(ί) for
all ζ e B.

We now prove that (1) in Theorem 2.1 implies the isomorphy of the
canonical homomorphism above. It suffices to prove the corresponding
assertion on the ring level. Let us denote P = k[M Π ΈT], J = J(β) and
S = S(B). Then q(£) = t>(f)/J is the prime ideal defining F(f) in Γ, where
|>(f) = fc[J|fn tar\Λίn ί]. Obviously, q(f)'s with f running through the
maximal elements of Ξ are exactly the minimal prime ideals of S. It is
well known that a derivation automatically preserves each minimal prime
ideal. On the other hand by (1), each η e Ξ is the intersection of the
maximal ζ'& in Ξ with ξ > η. Hence we have q(^) = Σ? Q(f) with the
summation taken over the maximal elements ζ in Ξ with f > 37. Thus
a yfc-derivation δ of S preserves q(^) for each η e Ξ, hence induces a fc-
derivation δη of S/q(̂ ) = k[M Π ̂ 7]. By definition, the ideal defining #()?)
in V(rj) is Πc (qCO/QĈ ))? where ζ runs through the elements of Ξ with
57 > ζ and dim 97 — dim ζ = 1. Hence δ̂  automatically is a fc-derivation
with logarithmic zeros along D(η), and we are done.
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We next show that (2) implies (1). Let η be an element of Ξ. We
prove (1) is satisfied by induction on dim η. If η is maximal in Ξ, then
there is nothing to prove. If it is not, then by (2), either (i) there
exists ξeS with ζ > η and dim ζ — dim η ^ 2 or (ii) there exist distinct
η', rf' e Ξ with rf > η, rj" > η and with dim rf — dim η = dim rf' — dim η = l.
But in case (i), there certainly exist faces rf and η" of ξ satisfying the
properties of (ii). Thus we are in case (ii) anyway. Then obviously,
η = ηf η rf'. Applying the induction hypothesis to rf and η", we are done.

It remains to show that the isomorphy of the canonical homomorphism
implies (2). Suppose there exists ηeΞ such that Starts) consists of η
and ζ S V' Then we necessarily have dim ξ — dim η — 1, and U =
V(ζ)\\JζV(ζ), with ζ running through the faces of ξ different from ξ and
r), is an affine open set of Y (cf. [MO, (5.5)]). Under the Injection

Star, (Γ(τf)) -^ Γ(vϊ + Rη) in (1.7), however, Starts1) is sent to {Rη, ξ + Ry).
Hence U is easily seen to be isomorphic to the product of the affine line
and an algebraic torus. Obviously, the restriction to U of the canonical
homomorphism is not surjective.

We now prove Corollary 2.2. The second isomorphism follows easily
from Lemma in (1.13). Thus it suffices to show that (2) of Theorem 2.1
is satisfied if Ξ is d-dimensional fc-Cohen-Macaulay and if Hd(Sta.Tβ(Ξ)f k) Φ
0 for any β e Ξd_λ. Let rj be an element of Ξ. If dim rj — d, then there
is nothing to prove. If dim rj <̂  d — 2, then there exists aeΞd with
a > η by the equidimensionality. Then there exists at least one β e Ξd_x

with a > β > rj. It remains to consider the case dim)? = d — 1. If the
cardinality of Star,(5') were two, then it would consist exactly of Ύ] and
aeΞd with a > η. Thus Hd(βta.τη(Eί), k) = 0, a contradiction to the as-
sumption.

5. Homogeneous components of the hyperextension modules. As a
preparation for the proofs of Theorems 2.3 and 2.4 in the next section,
we reduce the computation, reviewed in (1.14), of the hyperextension
sheaves in question to that of certain combinatorial cohomology groups
with coefficients in k.

Throughout, we fix a Z-basis {mlf , mr) of M and the nonsingular
convex rational polyhedral cone vr = R^Qm1 + + R^mr, which thus
satisfies vf f] ( — vr) = {0}. As in (1.9), we freely identify ξ eΓ(vf) with
the subset {i; 1 ^ i ^ r, mt e ζ). Thus, in particular, φ = {0} is identified
with the empty set. The advantage in the nonsingular case lies in the
fact that for ξ, η e /'(tar), there exists a unique rf e Γ(τr) satisfying ζ =
(f Π rj) U rf and (ζ Π rf) Π 3/ = {0}, i.e., 57' is the set-theoretical difference
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ξ\η in the above identification. Henceforth, we always denote rf by ξ\η.
The advantage also lies in the fact that P = k[M Π tar] = k[tl9 , tr] is
a polynomial ά-algebra, where tt = e(mϊ). Thus we can apply the compu-
tation process described in (1.14) to this P.

We also fix a subcomplex Ξ aΓ(vf) and simply denote J = J(ι£?) and
S = S(S) = P/J.

DEFINITION. For λeΓ(iar), we denote by |λ| the cardinality of λ
and let m(λ) = Σie* m<. For m e i k ί Π ^ , let supp (m) = {i; 1 ^ i ^ r,
<m, %> ̂  0}, where {nlf - - -, nr) is the Z-basis of N dual to {mx, , mr).
The canonical decomposition for m e ikf is the unique expression m = m'— m"
with m\ m"eikί(Ί ^ such that supp(m') and supp(m") are disjoint.

In particular, we have supp(m(λ)) = λ.

DEFINITION. For simplicity, we denote by A = Γ(τf)\Ξ the com-
plement of Ξ in Γ(τar). We denote G = Mf] vf and G' = \J^8{MC[ ξ).

Hence {m(x)}λe generates the semigroup ideal G\G' of G, i.e., G\G' =
{m e M Π tar; supp(m) g ^} = U u < (m(λ) + G). Thus {e(m(X))}λeΛ generates
J as an ideal of P.

PROPOSITION 5.1. For i ^ 0, iβί i^ 6e ί/ie M-graded free P-module
with the basis Sdi(Λ) and with (λx S * * * ^ λj e Sd^Λ) regarded as M-
homogeneous of degree m(λΐ) for i ^ 1, while ( ) e Sdo(/ί) ΐs regarded as
M-homogeneous of degree 0. .For i ^ 1, u^ii Ft—>iΓ'i_1 is ίfee homomorphism
of M-graded P-modules of degree 0 defined by uί_1((X1 S ••• Sϋ λ<)) =

E i ^ * - i ( - l ) I + 1 O W ^ ^ ^ λ , ) + ( - l Y + 1 e ( m ( X i \ \ _ 1 ) ) ( X 1 S - S λ , . , ) / o r
(λ,! ^ S \) in Sdi(Λ). The augmentation homomorphism u_λ\ Fo —• S
is defined by n_λ{{ )) = 1. The homomorphism v\Fι-^Ω1

P is defined by
v((λ)) = Σieλe(m(X\{i}))de(mί) for (λ) m Sdx(/ί), where d is the exterior
differentiation for P. T%e homomorphism w':Λ2F1->F1 is defined
by w'((X) A (μ)) = e{m(X))(μ) - e(m(μ))(X), for (λ), (μ)eSd1(Λ). Finally
w: Λ2 F1 -> F2 is defined by w((X) A (μ)) = e(m(X Π μ)) {(λ < λ U μ) —
(μ < λUj")}, /or (λ), (^) eSd^yί), witt ίfee convention that (X < XI)μ) = 0
(resp. (μ<X{Jμ) = Q)ifX = XUμ (resp. if μ = χ[j μ). Then w_i, v, w, w'
are M-homogeneous of degree zero by letting deg de{m%) = m f a-̂ cί deg (λ) Λ
(μ) = m(X) + m(μ), and we have the following:

( i ) (Fm, u) = {Fi9 ut\ i ^ 0} is an acyclic complex of P-modules with

w..! inducing the isomorphism H0(Fm, u) —> S, i.e.,

>Fi->Fi_1-+ >F1->F0->S-^0
is exact.

(ii) S (x)P v : S (x)P Fλ—* S (x)P Ω
γ

P factors through the canonical S-
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homomorphism J/J2 = S (x)P J —> S (x)P i2P.
(iii) u^w = w\

PROOF, (ii) and (iii) are trivial. Let us show (i). The fact 6̂̂_1ô 6i =
0 for i ^ 1 results from a straightforward computation. It suffices to
check the acyclicity for the homogeneous part of degree m for each
meM. If m ? G , then the homogenous parts (Ft)m and Sm vanish.
If me G'9 then we have (F0)m = ke(m){ ), Sm = ke(m) and (F,)m = 0
for i ^ 1, and w_x induces an isomorphism. Finally if meG\Gr,
then Sm = 0, while for ϊ ^ 0, (jPJm is the A -vector space with
the basis consisting of {e(m — m(Xi))(Xi S S* λ<); (λi ^ ^ λj e
Sd,(Λ), λ< c supp(m)}. It is obviously λ -isomorphic to Ct(β&(Λ Π Γ(supp(m))), k)
by sending e(m — m^JXλi ^ S \) to (λx ^ S λ<). Checking (ujm,
we see easily that (F., um)m is isomorphic to the complex C.(SdC4n
Γ(supp(m))), k). Since m eG\G', we see that supp(m) is in Λ9 hence yίΠ
Γ(supp(m)) has the largest element supp(m). Thus by Lemma 3.2, we
are done.

Since P is a polynomial ά-algebra, FQ = P and Fλ -» i 0̂ -^ S —• 0 is
exact, we can apply (1), (2) of (1.14).

LEMMA 5.2. Let E' = (0-^ E°-* E1-^ E2-> E3-> 0) be the cochain
complex of M-graded S-modules defined as follows: E° = HomP(42P, S),
E1 = HomptFi, S), ̂ 2 = HomP(i^2, S) α^d E3 = HomP(F3 0 Λ2 Fl9 S). More-
over, 8: Eι —> Eί+1 for i = 0, 1, 2 are £/̂ e homomorphisms induced respec-
tively by v, ut and (u2, w): Fd φ Λ2 Fx —> i^2. Tfcew ?ι;e feai e

Ext^Lf, S) = fί^E") /or i = 0, 1, 2 .

PROOF. Exto

s(Lf, S) = Όevk(S) = Hom^β1^ S) is well-known to be the
kernel of HomP(ώP, S) —> HomP(J, <S), while Ext^I/f, S) is its cokernel by
(1.14) (Γ). By Proposition 5.1 (i), (ii), uQ induces an isomorphism from
HomP(J, S) to the kernel of uΐ\ ΈLomP(Fl9 S) ->HomP(F2, S).

Finally, let Kosz be the Koszul complex built out of u0: F±-» J{ ) c
Fo = P. Then by (1.14) (2), we see that Ext|(Lf, S) is the cokernel of
HomP(Fl9 S)-> HomP(iϊ1(Kosz), S). By Proposition 5.1 (i), H^Kosz) =
keγ(uQ)/lm2Lge(w') = Image( 1̂)/Image(/M;') Since Image (uj is isomorphic
to coker(u2) again by Proposition 5.1 (i) and Image(w') is a quotient of
Λ2 F19 we are done in view of Proposition 5.1 (iii).

DEFINITION. Let Γ(τsr), Ξ9 A be as at the beginning of this section.
For disjoint s', s" e Γ(vf)9 we define the cochain complex A' = A\Ξ, s', s")
of λ -vector spaces as follows: A* = 0 for i Φ 0, 1, 2. A0 consists of such
k-valued functions a on {1, , r} that a(j) Φ 0 only if {j} > s" and s' U



TORUS EMBEDDINGS 367

O eB. A1 consists of such A;-valued functions b on Sά^Λ) = A that
δ(λ) Φ 0 only if λ > s" and β'U(λ\8w)eS. A2 consists of such &-valued
functions c on Sd2(/ί) that c0w^X2)^0 only if λ2 > s" and s'U(λ 2\s")e
5, that c(λi S λ2) = c(λί S λ2) for (λx ^ λ2), (X[ ̂  λ2) e Sd2(Λ) if λx > s" and
λί > s", and that the cocycle condition c(λ2 S λ3) — c(λx ^ λ8) + c(Xt ^ λ2) =
0 is satisfied for all (\ S\S λ3) GSd3(Λ) with λ3 > s" and s'U(λ3\s") e
2. δ: A0 -> A1 sends α e 4̂° to da e A1 defined by

fΣ aU) if λ > s" and s' U (λ\s") 6 Ξ
(3α)(λ) = f e^

lθ otherwise .

δ: A1 -^ A2 sends 6 e A1 to δb e A2 defined by

ίδ(λ2) - 6(λχ) if λ2 > s" and s' U (λ2\s") e S1

λ2) =

(0 otherwise .

With these definitions, we have:

PROPOSITION 5.3. For m e M with the canonical decomposition m =
m' — m", let s' = supp(m') and s" = supp(m") Then for i — 0, 1, 2, the
homogenenous part of Extι

5(Lf, S) of degree m is of the form

° ίf m"Φmis")

PROOF. By Lemma 5.2. it is enough to study the homogeneous part
of H\W). As usual, for M-graded P-modules F, F' of finite type, let
us regard HomP(F, Fr) as an M-graded P-module by letting f:F—>F'
to be homogeneous of degree m if f(Fμ) c F'μ+m for all μ e M. Since
Sm = ke(m) if meG' and Sm = 0 otherwise, we see that JE^ consists of
the homomorphisms α sending de{m^) to a{i)e{m + mj for 1 ^ ΐ ^ r with
α(i) G ky where a{%) Φ 0 only if m + m ^ G'. J^i consists of the homo-
morphisms 6 sending (λ) e Sdx(Λ0 to b(X)e(m + m(λ)) with δ(λ) e fc, where
δ(λ)^0 only if m + m(X) e G'. El consists of the homomorphisms c sending
(λi S λ2) e Sd2(/ί) to c(\ S \)e(m + m(λ2)) with c(λx ^ λ2) e fc, where c(λx ^
λ2) Φ 0 only if m + m(λ2) e G'. Finally, J^i consists of the homomorphisms
h sending (λx ^ λ2 ^ λ3) 6 Sd3(/ί) to h(Xλ S^S λ3)e(m + m(λ8)) with fe(λx ^
λ2 ^ λ3) e fc, where h(X1 S λ2 ^ λ3) Φ 0 only if m + m(λ3) 6 G' and sending
(λ) Λ (μ) to Λ((λ) Λ (μ))e(m + m(λ) + m(^)) with Λ((λ) Λ (^)) Gfc where
Λ((λ) Λ (^)) ^ 0 only if ra + m(λ) + m(μ) e G'. Thus obviously JBΪ = 0,
hence Hj(E')m = 0 for i = 0, 1, 2, if m" Φ m(s") Henceforth, we thus
assume that m" = m(s"). Then by the definition of the canonical decom-
position, we see the following: (i) m + mteGr if and only if {i} > s"
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and 8' U ({i}\s")eΞ. (ii) m + m(X)eG' if and only if λ > s" and s'U
(λ \ s") e Ξ. (iii) m + m(λ) + m(μ) G G' if and only if λ U μ > s" and s' U (λ n μ) U
(λUj«\s")eS ' . Hence we see easily that El —• A0 and EI-+A1 sending
α and 6 to their respective coefficients a and 6 are isomorphisms com-
muting with δ: El -> JS?i and δ: A0 -> A1. Moreover, Z\E')m consists of
c sending (λx S λ2) 6 Sd2(Λ) to c{X± S λ2)e(m + τn(λ2)) such that (iv)
c(λi ^ λ2) =£ 0 only if λ2 > s" and s' U (λ 2 \s") eΞ, that (v) c(λ2 ̂  λ3) —
c(\ ^ λ3) + c(λχ ̂  λ2) = 0 if (λx ^ λ2 S λ3) G Sd3(Λ) satisfies λ3 > s" and
s' U(λ 3 \s")GS τ and that (vi) c(λ < X\Jμ) = c{μ < XUμ) if Xϋμ > s" and
s' \J(\f)μ)\J(X\Jμ\8")eΞ. We claim that (iv), (v), (vi) are satisfied if
and only if c belongs to A2. Then we would be done, since δ: Ei, —>
Z2(Em)m is easily seen to correspond to δ: A1 —>A2. If c belongs to A2,
then c belongs to Z2(E')m. Indeed, (iv) and (v) are obviously satisfied.
Let us show (vi). For (λ) Λ (μ) with λ U μ > s" and s 'U(λί1 j«)U(λU
μ\s") G Ξ, we automatically have λ > s" and μ > s", since yl is the com-
plement of £\ Hence λx = λ, λί = μ and λ2 = λ U μ will do. Conversely,
if c belongs to Z2(E')m, then c belongs to A2. Indeed, in view of (iv)
and (v), it suffices to show c(Xλ S λ2) = c(λί S λ2) if λ2 > s", s 'U(λ 2 \s") e
Ξ, X, > s" and λί > s". If λx U λί > s", then c(λx ̂  λ2) = c(λx U λί S λ2) =
c(λί S λz) by (v) applied to (λx ^ λx U λί S λ2) and (λί S \ U λί ^ λ2) in
view of (iv). Suppose λx U λί > s". If s' U (λx Π λί) U (λx U λ ί\s") = λί' G Ξ,
then we are done by (vi) with λ = λx and μ = λί. It remains to
consider the case Xx U λί > s" and λί' e A. We then obviously have sf U
λ2 > λί' U λi > s" and λί' > s", since λx > s" and λ2 > s". Hence again by
(iv) and (v) applied to (λx < λί' U λ ^ s ' U λ2) and (λί' < λί' U λA S s' U λ2),
we have c(λx ̂  s' U λ2) = c(λί' U λx ^ s' U λ2) = c(X[' S s' U λ2). Similarly,
we have c(λί S &' U λ2) = c(λί' U λί ^ s' U λ2) = c(λί' ̂  s' U λ2). Hence
c(λjL ^ s' U λ2) = c(λί S sr U λ2). We are done, since c(λx S λ2) = c(λx ^
s' U λ2) - c(λ2 < s' U λ2) and c(X[ S λ2) = c(λί S s' U λ2) - c(λ2 < s' U λ2) by
(v) applied to (λx ^ λ2 < s' U λ2) and (X[ S λ2 < s' U λ2).

We now study H3\A'(Ξ, s', s")) for y = 0, 1, 2 more closely. Note that
Ξ(s', s") in a more general context and Ξ\sf, s") below were already
defined in Propositions 3.6 and 3.8.

PROPOSITION 5.4. Let Ξ czΓ(τf) be as at the beginning of this section.
For disjoint s', s" G Γ(vf), we define local subcomplexes Ξ\s', s") aΞ(sf, s")
of Ξ by

Ξ(s', 8") = {ξ G Ξ; s' U ξ G Ξ, ξ Π s" = φ, ξ U s" $ Ξ}

Ξr(s', s") = {ξ e Ξ; s' U ξ G Ξ, ξ Π s" = φ, ξ U s" \{ί} g S1 /or some I e s"} .

ΓΛe^ we have the following, where we simply denote A' = A\Ξ9 s', s").
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(1) If s'ϊΞ, then H\A) = 0 for j = 0, 1, 2.
(2) If s' eΞ and s" = φ, then H°(A') = A° can be identified with

the k-vector space of k-valued functions on {i; 1 ^ i ^ r, sf (J {i} e #}, while
H'XA') = 0 /or i - 1, 2.

(3) If s' eΞ and | s" | = 1, ίΛew we fcαve canonical isomorphisms

H'XA') ^ H'XSά(Ξ(8', s"), k) for j = 0,l,2.

( 4 ) If s'eΞ and \s"\^ 2, then H\A') = 0, H\A') = ker[Z\Sd(Ξ(s',

)), &) ^ 2'1(Sd(S"(s', s")), A;)] canonically, and the following sequence

is exact: H\Sd(Ξ(s', β")), Λ) ̂ > H^Sd^ίβ', s")), Λ) -> H\A) -> i
s")), A;), where rest are £fce restriction maps induced by the inclusion
B'(8\8")(ZΞ{8't8").

PROOF. (1) and (2) are obvious, since there exists, for instance, no
xeΛ with λ > s" and s'UCλXs'OeS1 in these cases. Here, as before, Λ
is the complement of Ξ in Γ(vf). Let us now prove (3) and (4). We
first observe that there is a homomorphism of cochain complexes

e ' : A' -> Cm(8ά(Ξ(8', s")), k)

defined as follows: If s" consists of one element i, then ae A0 is deter-
mined by its value α(ΐ). In this case, we let (ε°α)(( )) = α(i), hence ε°
is an isomorphism. If | s" | ^ 2, then obviously A0 = 0 and we let ε° = 0.
For be A1 and c e A\ we let

(e^Xf) = δ(ί JL s") for (f) 6 S d ^ β ' , s"))

(ε2c)(f, ^ f 2) - c(f, JL 8" Sζ.M s") for fe ^ f 2) e Sά2(Ξ(s', s")) .

It is easy to check that ε' commute with the coboundary maps. We see
that ε1 is an isomorphism, since the map from Sd^Sfa', s")) to {(λ) e Sd^Λ);
λ > 8", 8'\J(\\8")eΞ} sending (ξ) to (λ) = (f JLs") is bijective. We also
see that the image of ε2 is contained in Z2(Sd(Ξ(s\ s")), k).

Thus, using the snake lemma, we easily get an exact sequence

0 -> Z\A') -> Z\Sd(Ξ(s', s")), k) -> ker (ε2) -> H\A)

-*H\Sd(Ξ(s',s")),k).

We now show that the third and the fourth arrows can be identified
with

Z\Sd(Ξ(s', 8'% k) -+ Z\Sd(Ξ\s', s")), k) -> H\A') ,

where the arrow on the left hand side is the restriction map induced by
the inclusion. Indeed, by definition, ker(ε2) consists of such Λ-valued
functions c on Sd2(/f) that
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c(λx S λ2) Φ 0 only if X, > s", λ2 > β" and s' U (λ2\s") e S ,

c(λx ^ λ2) = c(λl ^ λ2) if λx > s" and λί > s" , and

c(λχ ^ λ2) = c(λχ ^ λ8) if λx > s", λ2 > s" and λ2 < λ3 .

Then we obviously have the required isomorphism ker(ε2) —> Z*(Sd (£"(§',
«")), ft) by sending such c to c defined by

c (£) - c(5 A («"\ {I}) S ξ -11 β") for ξ e S'(β\ s") ,

where I is any one of the elements of s" satisfying ς JL (s"\{ί})ί^ on
which the value of c does not depend by the second defining condition
for c. We thus get (3) and (4). Indeed, the restriction map B\Sd(Ξ(s',
O ) , Λ)-> •B1(Sd(S"(8', O ) , *) is surjective. When |s" | = 1, we see, more-
over, that Ξ\s', s") is empty, hence Z\Sd(Ξ\sf

f s")), k) - 0. On the
other hand, ε1 maps B\A) onto B\Sd(Ξ(s', s")), ft) when | s" | = 1, while
B\A') = 0 when | s" | ^ 2 .

COROLLARY 5.5. Let Ξ czΓ(vf) be as at the beginning of this section.
For disjoint s', s" 6 Γ(vf)y the following are equivalent:

(1) H\A\Ξf 8', s")) Φ 0 only ifV e Ξ and s" = φ.
( 2 ) H°(8d(Ξ(8'f s")), ft) - 0 whenever s' e Ξ and \s"\ = 1.
( 3 ) Any s' e Ξ is the intersection of all the maximal elements ξ e Ξ

satisfying ξ > s'.

PROOF. By Proposition 5.4, (1) and (2) are equivalent. As we saw
at the beginning of Section 3, H°(Sd(Ξ(s', s")), ft) = 0 if and only if
Ξ(&\ s") is nonempty. Now by the definition of Ξ(s', s")> the equivalence
of (2) and (3) is clear.

REMARK. We see easily that Corollary 5.5 is nothing but Theorem
2.1 in the special case when Y(Ξ) has the nonsingular normalization.

6. The proofs of Theorems 2.3 and 2.4 and Corollary 2.5. For the
proofs we may assume, by (1.9), that vf = R^mλ + + R^mr for a
Z-basis {ml9'"9mr} of M and that ΞaΓ(τf) is a d-dimensional k-
spherical subcomplex (cf. (1.8)). In particular, φ = {0} is the smallest
element of Ξ. We again fix these notations throughout this section and
adopt the convention at the beginning of Section 5, e.g., we freely
identify ξ e Γ(ταr) with the subset {i; 1 <; i <̂  r, mt e ξ}. We also use the
notations in (1.11) for simplicity.

For the proof of Theorem 2.3, we first need to analyze the conse-
quences of Section 5, when Ξ is A -spherical. In this case, H\A\Ξ, s\ s")) Φ
0 only if s ' e S and | s" | ^ 2, by Propositions 3.6 and 5.4.
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LEMMA 6.1. Let Ξcz Γ(τf) be as above. For s'eΞ and s"eΓ(vf)
with \s"\ ^ 2 and s' Π s" = φ, we have H\A\Ξ, s', s")) = k if s' and s"
satisfy the following equivalent conditions (i), (i'), (ϋ), (iii) and (iv).
Otherwise, we have H1(A\Ξ, s', s")) = 0.

( i ) Ξ\sf, s") is empty, i.e., for any i e s " and any ξeΞ with s' U
ςeΞ and ξ Π s" = ψ, we have ζ U (s"\{l)) eΞ.

( i') For any ηeΞ with η > s' and for any I e s", we have η{Js"\
{l}eΞ.

(ii) For any aeΞd with a > s', we have \s"\a\ ^ 1. Moreover, if
s"\a\ = 1, then a U s"^{j}eΞ for any j eaf] s".

(iii) We have dim s' ^ d — 1. Moreover for any β e S ^ with β > s',
we have \sff\β\^2. If the equality is satisfied and s"\β = {j, /}, ίΛ,ew
α = /3U {i} α^d α' = j8U {i'} are exactly the d-dimensional cones in Ξ
containing β as a face. Moreover, in this case we have β n s" < {I e β;

(iv) Either (1) we focwe dims' = d — 1 α^d s" = {j, /} with a = s'U
{j}? α' = s' u {/} being exactly the d-dimensional cones in Ξ containing
s' as a face, or (2) dim s' <; cZ — 2 αweZ we /^αve £fce following: For any

yeΞd_2wίth 7>s',we have | β " \ 7 | ^ 3 . 7 / | s " \ 7 | = 3 and s"\y = {j, f, /'},
then necessarily υ(y) — 3 and /3 = τU {j}, /3' = τU {i'}, /3" = 7 U {i"} are
exactly the (d — l)-dimensional cones in Ξ containing y as a face. If
| s " \ 7 | — 2 and s"\7 = {j, j'}, then either v(j) = 3, or v(y) = 4 with
β = 7 u {j}, β' = 7 U {j'} e S1 α^d β\jβ'$Ξ.

COROLLARY 6.2. // Ξ and s', s" satisfy the equivalent conditions
(i) through (iv) m Lemma 6.1, £/ιew we /z,αve the following: dims' ^ cZ—
1. For /9 e S^.i with β > s' α^ώ |s"\/3| = 2, ieί α, a! be the d-dimensional
cones in Ξ containing β as a face. Then for d ^ 2, we have {I e β;
v(β\{l})^5}<s' and (αUα'\/9)<s" < (a Όa'\β) [J{1 e β; v(β\{l}) = 3}.
Furthermore if dim sf ^ d — 2, then for any two β, βf satisfying these
conditions, there exist a sequence β — βOf βu , βq = βr in Ξd^t with
βi > s', l^'X/Sj = 2 and a sequence yl9 - , yq in Ξd_2 with yt > s' and
/3Ϊ_I > 7i < βi such that either 0(7*) = 3 and | s " \ 7 ί | = 3, or 17(7*) = 4 wί£fc
&_! U /3, ί S.

PROOF OF LEMMA 6.1. By Proposition 5.4, we see that H\A\Ξ, s',

s")) = keτ[Z\Sά(Ξ(s', s")), Λ) ̂ > Z\Sd(Ξ\s', s")), &)]. Since ff is assumed
to be fc-spherical, we see by Proposition 3.6 that Z1 (Sd (Ξ(s'f s"), A;) =
B\Sd(Ξ(s\ s"), A;) = k. By definition, rest is not the zero map if £"(s', s")
is nonempty. Thus we have H\A\Ξ, s', s")) = & (resp. = 0) if Ξ\sf, s")
is empty (resp. nonempty).
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The equivalence of (i) and (i') is clear, while (i') ==> (ii) is obvious.
On the other hand, (ii) implies (i') Indeed, for any ηeΞ with η > s'
and 7] U 8" £ Ξ, there certainly exists aeΞd with a > η, since Ξ is equi-
dimensional. We then necessarily have a > s' and a U s" g Ξ. Hence by
(ii), we have s"\a = {/} for some j ' . Let j es". If j — j ' , then η U
8"\{j}<(χ\<i8"\{j} = aeΞ. If jφf, then jeaf)s". Hence by (ii) we
have 7} U s" \{j} < a U s" \ {j} e Ξ.

Let us show (ii) ==> (iii). First of all, we have dim s' ^ d — 1. Indeed,
since \s"\ ̂ 2 and s' Π s" = 0, we would otherwise have dims' = d and
s"\s ' | = |s" | = 2, a contradiction to (ii). For any βeΞd_^ with β > s',

let α =£ α' be the d-dimensional cones in Ξ containing β as a face. If
α > s" or a'>8", then |s"\/3| ^ 1. We may thus assume aUs"gΞ
and α ' U s " ^ ^ . Hence by (ii) there exist j9 j ' es" with s"\a = {f} and
s"\a' = {j}. Since ana' = β, we have s"\/3 = {i, /}. If i = f, then
there is nothing further to prove. If j Φ j ' , then j ea and f e a\
Consequently, a = /3 U {i} and α' = ̂  U {/}. Furthermore for I e β n s", let
7 = /3\{i} be 'y-valent. If v ̂  4, then there certainly exists d-dimensional
α" > 7 different from a, ar with α" 9 i but a"$j',l. Hence s"\a" =
{j'f l}> a contradiction to (ii).

Let us now show (iii) => (iv). If dims' = d — 1, then since | s " | ^2and
s'Os" = φ, we have | s "\s ' | = |s" | = 2 by (iii). Thus we obviously have
(iv) (1). Now suppose dim s' ̂  d — 2. Let 7 e Sd_2 with 7 > s' be v-valent.
If | s " \ 7 | ^ 4, then for any one of the (d — l)-dimensional β > 7, we
have |s"\/3| ^ 3, a contradiction to (iii). Now suppose | s " \ 7 | = 3. Then
for any one of the (d — l)-dimensional cones β > 7, we necessarily have
\8"\β\=2. Hence 7 should be 3-valent. Finally, suppose | s " \ τ I =2 with
s"\7 = {jf j'}. If v = Z, then there is nothing more to prove. If v = 4,
then 7 U {j, j'} £ Ξ, since otherwise there would exist β > 7 with β g j , /
and β U {i} e 5, β U {/} ί S7, a contradiction to (iii). If v ^ 5, then again
there exists β > 7 with /3 g i, / , β U {i} e ^ / S U {i'} ί S , a contradiction.

It remains to show (iv) => (ii). Let aeΞd satisfy a > s'. If α > s",
then there is nothing to prove. Thus we may assume a U s" £ Ξ. If dims' =
d — 1, then s" = {j, /} and a = s'U{j}, say. Hence s"\a = {j'} and αU

s"\{j} = 8'u{^'} eΞ. Suppose dims' <: d — 2. Then there exists 7 € S ^
with α>7>s ' . Hence | s " \ 7 | ^ | s " \ α | ^ 1. Consequently if 8"\y = {j'}9

then s " \ α = {/}. Since \s"\ ̂  2 and s' Π s" = φ, there exists j e a n s"
with α\{i}>s'. Thus there certainly exists (d — 2)-dimensional 7' satisfy-
ing a\{j}>y'>8', hence | s " \ τ Ί ^ 2 . Thus replacing 7 by 7', we may
from the outset assume the existence of 7 e Ξd_2 with a > 7 > s' and
s " \ 7 | ^ 2. Then by (iv), either 7 is 3-valent, or is 4-valent with 7 U
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s" $ Ξ. Since a{j s" £Ξ by our assumption, we can easily check that
oί U s"\{;?} e Ξ for any j e a Π s".

PROOF OF COROLLARY 6.2. The first part can be seen as follows:
For β e Ξd_γ with β > s' and |s" \β \ = 2, let a, af be the distinct d-dimen-
sional cones in Ξ containing β as a face. Then by Lemma 6.1 (iii), we
have s" > a\Ja'\β. Let leβ with 7 = β\{l} being v-valent. If Zes",
then l$8f, hence 7 > s' and | s " \ 7 | = 3. Thus v = 3 by Lemma 6.1 (iv).
Suppose v ^ 5. Then again by Lemma 6.1 (iv), we cannot have 7 > s'.
Hence I e s'.

Let us now prove the latter half of Corollary 6.2. Let us call β, βr

with β > s\ β' > s' and |s"\/3| = |s"\/3' | = 2 equivalent, if there exist
a sequence β = /30, - - >f βq = βf in S 1 ^ and a sequence 7i, , 7g in ̂ _ 2

satisfying the following conditions: & > s', |s"\/3j = 2, / ^ > yt < βif

Ίi > s' and either i;(τ<) = 3 and |s"\7<| = 3, or v(yτ) = 4 with /3,_i U/3, g 51.
iS7. We need to show that any two /3's satisfying β > s' and |s"\/3| = 2
are equivalent in this sense.

Replacing Ξ by Starβ/(£?), we may assume sr = φ, hence d ^ 2 by
assumption. We have j? = {57 e S; η u s" ί ^} = Ξ \ Φ, with Φ = {77 e S1; 37 U
s"eS}. If s" g xS7, then Φ is empty. If s"eff, then Φ is fc-semispherical
with respect to s". Since s" ^ ^, Φ is fe-homologically trivial (cf. (1.8)).
On the other hand, Ξ is ft-spherical, hence Hd(Ξ, k) = Λ. Moreover, for
any /3 e Ξd_lf there exist exactly two a, a! e Ξd with a > β < α', since
51 is star closed in the A -spherical Ξ. Thus for any β, βr e Bd_19 there
exist a sequence β = β0, , βq = /3' in iS1^ and a sequence αx, , αff in
^rf such that βt_± < at > βt. Note that d ^ 2 by assumption and that
*>(£"\{ϊ}) = 3 or 4 for any β" e Ξd_, and any I e β" satisfying |s"\/3" | = 2.
We are thus reduced to showing the following (1) and (2):

(1) If β,β',a in Ξ satisfy β<a>β' and |s"\/3| = | s "\ i S' |=2, then
β and βf are equivalent. Indeed, if β Φ β\ then 7 = βΓ\β' is 3-valent by
Lemma 6.1 (iv), since | s " \ τ | ^ 3. Hence | s " \ 7 | = 3, and β is equivalent
to β'

(2) If a, a', β" in Ξ satisfy a φ a\ a > β" < a! and |s"\/3" | ^ 2,
then there exist /3 < a and /3' < a! with |s"\/3| = |s"\/3' | = 2 such that
/5 and β' are equivalent. Indeed, since | s " \ α | = | s " \ α ' | = 1 by Lemma
6.1 (ii) and |s"\/3"| Φ 2, we necessarily have s" \a = s " \ α ' = s"\/3" by
Lemma 6.1 (iii). Since |s" | ^ 2 , there thus exists jes"Γ)β". Let 7 =
/3"\{i} Then γUs" = /3" Us" ί S and | s " \ 7 | = 2 . Hence by Lemma 6.1
(iv), we easily see that 0(7) = 4. Then certainly, /3r=α\{j} and /5' = α'\U}
satisfy |s"\/3| = |s"\/3' | = 2 and β [j βf 0Ξ, hence they are equivalent.

PROOF OF THEOREM 2.3. By (1.9), we may assume ΞczΓ(vr) to be
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as at the beginning of this section. Let us work on the ring level for
S = S(Ξ). By Lemma 5.2, we have Exti(Lf, S) = H\E'). Let {(λ)*; λ e ^
be the P-basis of (ί\)* = Honip^, P) dual to the P-basis Sά^Λ) of Ft.

For β e Ξd_lf let a, a' e £fd be the distinct cones satisfying a > β and
α' > β. Then e(m(α (J α')) is an element of J — J(fJ). Thus we have a
degree zero homomorphism of M-graded P-modules Pe(m(a\J a'))-+Jf

which has the lifting Pe(m(a U a')) —> Fλ sending e(m(a U α')) to (a U α')
Consider the induced homomorphisms P/K/3) Θs Z\E') = HomP(J, P/p(β)) ->
P/p(β)®PE

1 = ϊlomP(FlfP/p(β))^Έ{omP(Pe(m(aUaf))fP/p(β))f the term
on the extreme right hand side of which is a free (P/£(/3))-module of
rank one with the basis h(β) defined by h(β)(e(m(a U a'))) = 1. Thus
άegh(β) = —m(a U α') (cf. the beginning of the proof of Proposition 5.3).
Obviously, the homomorphism P/p(β) (x)s E° = HomP(β^ P/P(β)) -> HomP(J,
P/P(β)) composed with the above homomorphisms gives the zero map.
Thus we have homomorphisms P/p(β) ® 5 H\E') -> P/p(β) ® s E'/BXE') ->
(P/P(β))h(β). The image of the composite homomorphism is contained in
(P/p(β)Mβ), where g(/3) - e(m({leβ; v(β\{l}) ^ 4}) + m({leβ; v(β\{l}) ^
5}))Λ(/3). Indeed, by Propositions 5.3, 5.4 and 3.6, the image of the first
homomorphism consists of the fc-linear combinations of elements of the
form

with |s" | ^ 2 and supp(m') = s', where 1 is the unit element of P/p(β).
Moreover, s' < β and ξ < β should be satisfied. The element e(m')e
(m(ξ))(l (x) (ξ M s")*) is mapped to a nonzero element of (P/p(β))h(β) only
if f Jl 8" < a U a9 and α U αf \ ( ί IL s") < /S. Then we have 51 ί | iL s" <
/βUs" < αUα f, hence /3Us" = αUα' and ^"X^l = 2. Thus by Corollary
6.2, we necessarily have {ίe/3; v(β\{l}^5})<s'<β and α U α ' \ / 3 < s " <
αUα'\{Ze/3; r(^\{Z})^4}. The element e(m')e(m(ξ))(l (x) (f JLs")*) is then
mapped to e(m')e{m(ξ))e(m{a U α '\ f iLs")W/3) = e(m')e{m{a U a'\8"))h(β),
which is thus a multiple of (̂/3).

Consequently, we have a homomorphism

where G(β) = (P/P(β))g(β). Obviously, the ^-module associated to G(/3)
is &(β). On the other hand, the ^-module ^(7) for 7 6 S ^ is associated
to the S-module G(y) described as follows: If v(y) = 4 and if βu β2, β3,
βi>Ύ are distinct with ftUft, β2 U/34 ί S, then ^ ( 7 , /Q<) is associated to the
free (P/J>(7))-module (?(7, βt) of rank one with the base 0(7, A) satisfying
deg 0(7, A) = deg 0(7, /33) - -m(/S2 U /94) and deg g(7, /52) - deg g(7, A) =
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— m{βι U /33). Similarly, if υ(i) = 3 and if βlf β2, βz > 7 are distinct, then
gf (7, βt) is associated to the free (P/p(y))-module G(y, βt) of rank one
with the base g(y, βt) satisfying degg(y, βt) = -m{β1 U β2 U /38). Then
the S-module G(7) is defined exactly as in the case of 2^(7). G(y) = 0
for 17(7) ^ 5.

For 17(7) = 4 and β > 7, we easily see that the (/3, 7)-component of
the homomorphism ε in Theorem 2.3 is induced by the map sending
g{β) to e(m({l e β; v(β\{l}) ^ 5}) + m({l e 7; v(β\{l}) ^ 4}))flr(τ, /3), since {£ e
/3; ι?(/S\{ϊ}) Φ 4} is obviously contained in 7. Similarly for 17(7) = 3 and
β > 7, we see that the (β, 7)-component of the homomorphism ε is induced
by the map sending g(β) to e(m({l e β; υ(β\{l}) ^ 5}) + m({l e β; v(β\{l}) ^
4}))^(7, /9), since {Z e β; v(β\{l}) ^ 4} is contained in 7.

For each m e M, let m = m' — m" be the canonical decomposition
with sf = supp(m') and s" = supp(m"). Then by Proposition 5.3 and
Lemma 5.2, we have Ext^Lf, S)m = H\K)m = H\A\Ξ, s\ s")) if m" =
m(s"), and is zero otherwise. By Propositions 3.6 and 5.4 and by Lemma
6.1, we have H\A\Ξ, s', s")) = fc if and only if s' eS, |s" | ^ 2 and the
equivalent conditions (iii) and (iv) of Lemma 6.1 are satisfied. Otherwise
it is zero. Thus by Corollary 6.2, we see that the homogeneous com-
ponent of degree m of

0 -+ H\K) -> e G(β) -+ e G(7)
βeΞd-l TeΞd_2

is exact and we are done.

PROOF OF THEOREM 2.4. Let us work on the ring level S = S(Ξ).
For meMy let m — mf — m" be the canonical decomposition with
supp(m') = β' and supp(m") = s". By Proposition 5.3, we have Ext|(Lf, S)m=
H2(A'(Ξ, s', s")) if m" = m(s") and is zero otherwise. Since Ξ is λ -spherical,
we have H%Sά(Ξ(s\ s")), k) = 0 for i = 1, 2 by Proposition 3.6. Hence
by Proposition 5.4, we have H*(A\Ξ, s', s") = flΓ^Sd^s', s")), fc) if s' e ^
and | s " |^2 and is zero otherwise. We are done, since fί1(Sd(ιS"(s/, s")), k) =
Hd_x{0{s\ s"), fc) by Proposition 3.8.

PROOF OF COROLLARY 2.5. By Theorem 2.4, we need to compute
H^iΦis', s"), k) for s'eΞ and s"eΓ(vf) satisfying s' Π s" = ^ and (s"| ^
2. The result (1) for d <S 1 is obvious.

(2) If d = 2, then A is a decomposition of the circle into r arcs by
the vertices 1,2, -- , r arranged in this order. Hr(Φ(s\ s"),k) vanishes
if s' Φ φ, by the result (1) applied to S t a r t s ) in view of (1.7). Moreover
Φ(Φ,s") is empty if |s" | ^ 3 . Thus we need to look at Hx{Φ(φf s"),k)
when \s"\ = 2, which, by an easy computation, is seen to be nonzero if
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and only if s" = {if j} with j - i Ξ£ 0, ± 1 , ±2 (modr). Such s" exists
only when r ^ 6.

(3 ) If d = 3, then J is a triangulation of the 2-sphere. H2(Φ(sr

9 s"), k)
vanishes if \s'\ ^ 2 again by (1) applied to Starβ/(S). If |s' | = 1, we see
that H2(Φ(s', 8")\ k) vanishes for all s" if and only if v{s') ^ 5 by (2)
applied to Starts').

Thus we first show the following:

PROPOSITION 6.3. There are exactly eleven combίnatorίally different
trίangulations A of the 2-sphere with only five or less edges being incident
to each vertex. Their stereographic projection onto the plane from one
of the vertices look like the diagrams in Figure 1 immediately after
Corollary 2.5.

PROOF. Here is a sketch of the proof. Let Δo be the set of the
vertices of A. Let us call Ύ e AQ v-valent and write υ(y) = v if there are
exactly v edges incident to the vertex y. Depending on the cases, let
us choose an appropriate γ0 € Ao and let yl9 , 7, e Ao be the vertices
adjacent to y0 in this circular order. Then the triangles in Δ not
containing y09 and their faces, give rise to a triangulation A', not sub-
dividing the circumference, of the v-gon 7i72 * * * 7*7i At each vertex
Ύi9 there are exactly u(7*) — 1 ^ 4 edges of A'. Each interior vertex
7 G / has v(y) rg 5 edges. Drawing the picture in each of the following
three cases, we can easily classify such A'.

Case (1). There exists a 3-valent τ0 in Δo. We thus have 3 ^ ι (Ti) ^
v(y2) ^ u(73) ^ 5. Then A is combinatorially equivalent to the following.

»(7i) = 3 => [4-1]

ϋ(7i) - i>(72) = 4 => [5-1]

v(Ύl) - 4, r(72) = 5 =>[6-2]

»(7i) = 5 => [7-5] or [8-14] .

Case (2). There exists no 3-valent vertex but there exists a 5-valent
70. Since i;(7z) = 4 or 5 for i — 1, , 5, we need to consider only the
following cases, by renumbering the vertices, if necessary.

*(72) = »(78) = 4 - [7-1]

r(7.) = 4, r(78) - r(7β) - 5 - [8-13]

vfa) = »(7β) - 4, r(72) - »(7*) - ι>(7β) = 5 =* [ 9 ]

17(70 = 4, ι;(72) - r(73) = ι;(7j = »(7β) = 5 =- [10]

o(7*) - 5 for all i => [12] .
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Case (3). Every 7 e Ao is 4-valent. Then [6-1] is the only possi-
bility.

PROOF OF COROLLARY 2.5 CONTINUED. By Theorem 2.4, Proposition
6.3 and what we have seen so far, we have

&*Jr(L?, <ί?γ) = 0

if and only if A is among the diagrams in Figure 1 and satisfies

H 2 { Φ ( φ , s " ) , k ) = 0 f o r | s " I ^ 2 .

For simplicity, we denote

Φ = Φ(φ,s") = {ξeΞ;ξ{Js"\{l}eΞ for all les"}

in the rest of the proof.
We may assume s '^j i jei? for all les", since otherwise Φ is empty.

Thus in particular we have 2 <: |s" | ̂  4. We consider the following five
cases separately and prove the following:

H2(Φ, k) = 0 if we are in

or

case
case

case

case

(1)

(2)

(3)

(4)

There exists some s" with H

case (5) |

s"
s"

s"

s"

s"

1 = 4
= 3

= 3

= 2

A;) Φ

o

and

and

and

0 in

and

s"

s"

s"

s"

eΞ

ZΞ

eΞ

£Ξ

if and only if A is [8-14].
Case (1). |s" | = 4. Since s"\{l) eΞ for all I es", we see easily that z/

is [4-1] and Φ = Ξ. Thus by the λ -sphericity of S1, we have H2(Φ, k) = 0
(cf. (1.8)).

Case (2). |s" | = 3 and s" eΞ. Suppose there exists ryeΦ1 with 7 <
V . Then J is [4-1], since ^ ' e S 1 and γU8 f /\{ί}e2 for all les". Hence
Φ — Ξ and we are done again. On the contrary, suppose every 7 e Φλ is
a face of s". Then Φ consists of all the faces of s", since Φ is a sub-
complex of Ξ. Thus Φ is homologically trivial (cf. Ishida [I3, the comment
immediately after Corollary 2.3]).

Case (3). \s"\ = 3 and s" ί S. Let s" = 7i U 72 U 73 with yl9 72, 73 e
iSΊ. Because of the conditions 7i U 72, 72 U 73, 73 1171^^ and 7i U 72 U 73 ί S

1,
we see that there are only four possibilities [5-1], [6-2], [7-5] and [8-14]
for A (cf. Figure 2).



378 M.-N. ISHIDA AND T. ODA

[5-1]

In case [5-1], we have Φ = Ξ, hence we are done. In the other three cases,
let To correspond to the vertex of A at infinity. Then Φ coincides with
{ξ e Ξ; ξ U To e Ξ}, which is Λ-semispherical with respect to τ0, hence is
Λ -homologically trivial (cf. (1.8)).

Case (4). |β" | = 2 and s"eΞ. Let s" = Ti U τ2 with τx, T2 in Ξ,.
Clearly, Φ contains W = {ξ e Ξ; s" U ζ e Ξ). Since obviously Φ 3 c ^ , there
are the following three possibilities.

( i ) Φ = ^ . Since this is yfc-semispherical with respect to s", we
are done.

(ii) There exists τ3 € Φ1 not contained in ^ . Since we have Ti U
T2, T2 U T3, T3 U Ti e S and Ti U τ2 U τ3 ί S7, we have the five possibilities in
Figure 3.

[7-5] [8-14]

FIGURE 3

In the cases [5-1] and [6-2]', we again have Φ — Ξ and we are done.
In the other cases [6-2]", [7-5] and [8-14], Φ corresponds to a triangulation
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of a simply connected closed subset of the 2-sphere (the shaded part of
each of the diagrams). Hence Φ is homologically trivial.

(iii) Φx is contained in <& and there exists β e Φ2 not in ^ . Let
β = 73 U 74 with y3, τ4 e Ξλ. We have γx U 73 U 74, 72 U 73 U 74 € S, since
β 6 Φ2. On the other hand, we have y1 U τ2 U 73, 7i U 72 U 74 e S, since 73,
74 e Φx c ^ . Furthermore, /3 U s" = 7i U 72 U 73 U 74 ί £?, hence 7i, 72, 73, 74

are mutually distinct and A is [4-1]. Thus Φ = Ξ and we are done again.
Case (5). | s" | = 2 and s" ί S. Let f be the subcomplex of Φ defined

by Ψ = {ζ e Φ; ξ Γ) s" = ψ}. Then we claim that there exists an isomorphism

H^Φ, k) ̂  Hi^Ψ, k) for all ί. Indeed, let Φ' = {£ e Φ ί U T ^ S } and Φ" =
{ξ e Φ; f U 72 6 S}. Since s" ί S, we see easily that Φ = Φ' U Φ" and ?Γ = Φf Π
Φ". In view of the Mayer-Vietoris exact sequence, it suffices to show
the ά-homological triviality of Φ' and Φ". But, for instance, the map
Ψ —> Φ'\Ψ sending ζ in Ψ to ξ U7i is bijective, hence so are the connecting
homomorphisms Hi(Φ'\Ψ, ft)—>2ϊi_1(?r, ft) in the long exact sequence arising
from the inclusion Ψ aΦ'. Hence Φ' is fc-homologically trivial.

Thus it remains to pick up those J's in Proposition 6.3 for which
Ψ = {ξ e Ξ; ξ n 8" = φ, ξ U s" \{ϊ} e Ξ for all ί 6 s"} satisfies the condition
if^r, &) = o whenever 7^ 72 e # and 7i U 72 ί S. The vanishing of J3Ί(?Γ, ft)
means that either Ψ consists of φ only or corresponds to a triangulation
of a closed connected subset of A.

We claim that each 7 eΨ1 is a face of some β e Ψ2. Indeed, since
7 U 7i, 7 U 72 e £*<>, 7i U 72 ί S and υ(y) ^ 5 , we have v(y) Φ 3 and there

FIGURE 4
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exists τ3 e Ξλ with 7 U 7i U τ3, 7 U τ2 U τ3 e i?8. Hence β = y\jjΆeΨ2 will do.
Thus if ι?(τ2) = 3, then either f* = {φ} or f* corresponds to a trian-

gulation of a closed connected subset. Hence HX(W9 k) = 0.
Furthermore, if Hλ{Ψ, k) Φ 0, then Δ is obtained by a triangulation

of the nonshaded part of one of the three possibilities, i.e., the first three
diagrams in Figure 4, where 72 corresponds to the vertex at infinity.
In view of the condition 17(7̂  <; 5, the only possible triangulation for
which H1(Ψf k) Φ 0 is the fourth diagram in Figure 4, which is easily
seen to be equivalent to [8-14].

Thus we have completed the proof of Corollary 2.5.
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