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CLASSICAL SOLUTIONS OF THE STEFAN PROBLEM

Ei-IcHI HANZAWA

(Received August 22, 1979, revised October 13, 1980)

Introduction. The purpose of the present paper is to prove the local
(in-time) existence of the classical solutions for the initial value problem
of the one-phase multidimensional Stefan problem, by using Nash’s im-
plicit function theorem.

The Stefan problem is a mathematical model for melting of a body
of ice in contact with water. The initial value problem for the one-phase
Stefan problem is formulated as follows:

(S-1) The unknowns are the thermal distribution in water and the
shape of ice. The initial data are prescribed.

(S-2) The temperature of ice is maintained at 0°C. (The problem
in which one considers the thermal distribution in ice is called the two-
phase problem, which is not discussed in this paper.)

(S-3) The thermal distribution u satisfies the heat equation (6,— 4)u =0,
where ¢ is the time variable and 4 stands for the Laplacian with respect
to the space variables z = (x,, - - -, x,).

(S-4) The body of ice melts, at each point of the interface, with
velocity in proportion to the normal gradient of u. The locus of the
interface in the (z, t)-space is the free boundary to be determined.

(S-5) The region occupied by water has possibly another connected
component of the boundary. This component is fixed as ¢t varies, and
the heat may be supplied through it. The temperature is always non-
negative.

This is a naive and typical free boundary problem, posed by Stefan [36]-
[39].

In the one dimensional case, this problem (and also the two-phase
problem) has been extensively studied. The problem of existence and
uniqueness of the classical solution was settled by Rubinstein [27], [28].
It has also been proved that the classical solutions exist globally in time,
for the initial and boundary data in various classes of function spaces
(Rubinstein [29]; Friedman [10]; Cannon and Hill [5]; Cannon, Hill and
Primicerio [6]; Cannon and Primicerio [7]). An excellent historical survey
for the result before 1967 is provided by a monograph by Rubinstein
[80]. See also Nogi [25] and Yamaguti and Nogi [40].
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On the other hand, in the multidimensional case, as the ice melts, it
may possibly break into two or more pieces in a finite time. This means
that the classical solutions may not exist for all time in general, even
if the given data are sufficiently smooth.

Let us briefly refer to studies in the multidimensional one-phase
Stefan problem. The classical solutions are not expected to exist for all
time. This fact motivates the study of the solutions in a generalized
sense, i.e., the weak solutions. In [17], Kamenomostskaja introduced the
notion of the weak solution of this problem, and proved its global exist-
ense and uniqueness. Her work was generalized by Oleinik [26] and
Friedman [11]. The formulation of the problem as a parabolic variational
inequality was initiated by Duvaut [9]. This method was developed by
Friedman and Kinderlehrer [12], Caffarelli [1]-[3], Caffarelli and Friedman
[4] and Kinderlehrer and Nirenberg [18], [19]. In [1]-[4], the Lipschitz
continuity of the free boundary and the continuity of the thermal dis-
tribution up to the free boundary have been proved. Since the free
boundary of the classical solution should be of C'-class and the thermal
distribution u of the classical solution should have the derivatives 4,u
which are continuous up to the free boundary, the type of such conclu-
sions as in [1]-[4] is slightly weaker than the required one. In [12]
and [19], a case in which we can obtain the C= solution is posed. To
formulate the problem as a variational inequality, one needs the posi-
tivity of the initial and boundary data. Further, in order to obtain the
smoothness result in [12] and [19], they need a restrictive geometrical
assumption on the initial and boundary data which assures that the
melting is rapid and free from the breaking (see [12] and [19]). With
assumptions of such kind, one may get around the difficulty, explained
later in this introduction, in the multidimensional Stefan problem. In
the case in [12] and [19], however, the smoothness up to the initial time
was not proved.

What we do in the present paper is to construct the classical solu-
tions in a sufficiently small time interval in general. Our proof has an
advantage in revealing the character of the difficulty in the multidimen-
sional problem.

In order to state our result, we introduce the following notations.
Let 2, be a bounded domain in R*, n = 2, with C~ boundary. The domain
2, is regarded as a region occupied by water. Suppose the boundary 092,
has two connected components I', and .J,, where the exterior boundary
I’y is in contact with ice, and the heat is supplied through the interior
boundary J,. Given 0 < T, < o, we set, for 0 < T < T,, 2, = 2, x [0, T'],
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Jr=Jy, X [0, T], I'y =1, %[0, T]. As the ice melts, the interface I,
varies and forms a free boundary, which will be diffeomorphic to I';, as
long as T' is small enough. We shall parametrize this free boundary by
the distance function p from 77, (in R"), and denote it by I',,. The
corresponding space-time domain in R* x R, which will be diffeomorphic
to 2,, is denoted by 2,,. The one-phase Stefan problem is a problem
determining the free boundary I, , and the thermal distribution % in the
region £, , occupied by water. By the preceding formulation (S-1)-(S-5),
we are led to the following equations for (o, u):

(1) @, —DHu=0 in 2,,.

(2,) Uliso = @y -

(3.) u==4, on J,.

4.) u=0 on I,,.

(5,) 0,9, — c,{grad @®,, graduy =0 on I,,.

Here a, (resp. b,) is a nonnegative function on 2, (resp. J,), @, is a
defining function of I", , and ¢, is a positive (because of its physical mean-
ing) constant. The equation (5,) is the so-called Stefan condition which
makes the problem complicated. Now our result is as follows (for the
precise statement, see Section 1).

THEOREM. If a, and b, are sufficiently smooth and satisfy some
compatibility conditions, them, for a sufficiently small T, there exists a
classical solution (o, w) of (1,)-(5,).

The above theorem is obtained by using Nash’s implicit function
theorem. Recently, several articles have appeared on the applications
of Nash’s implicit function theorem (Guillemin [13], in differential geo-
metry; Hamilton [15], in complex analysis; Hormander [16] and Schaeffer
[31]-[38], in free boundary problems; Klainerman [20], in the theory of
nonlinear wave equations; Zehnder [41], in Hamiltonian mechanics). How-
ever, Nash’s theorem and its character are not so popular yet. Hence,
before explaining why and how this theorem is used in our proof, let
us sketch the idea of this theorem.

The classical implicit function theorem or the inverse function theo-
rem in the finite dimensional Euclidean space asserts the existence of the
local inverse of a smooth mapping with the nonzero Jacobian determinant.
This theorem extends to a Fréchet differentiable, i.e., a linearizable,
mapping between infinine dimensional Banach spaces, provided the Fréchet
derivative, i.e., the linearized operator, has the bounded inverse, namely,
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Banach’s implicit function theorem. However, it is sometimes possible
that the linearized operator has merely an unbounded inverse. In the
case that the Banach spaces considered are certain function spaces, e.g.,
the set of functions of C*-class, and that the given mapping corresponds
to a nonlinear differential equation, such a phenomenon happens when
the operator solving the linearized problem does not gain the differenti-
ability of the same order as that of the equation. In such a case, the
original problem is said to have a derivative loss. Nash encountered
such a problem with derivative loss in his work [23] on the isometric
embedding problem for Riemannian manifolds and overcame this difficulty
by establishing a new method, Nash’s implicit function theorem.

The statement of Nash’s implicit function theorem is somewhat
complicated. The following is the simplified version due to Moser [22].
Consider two finite scales of Banach spaces E,D E D ..- D E, and
F.oF,D>-..-D>F, eg.,, E,=C™" F,=C™" with p > q and m > 0.
Let .# be a nonlinear operator defined in a neighborhood V of 0 of E,
into F, such that F#(p)e F; for pc V N E,. Nash’s theorem asserts that
the equation .# (o) =0 has a solution peV, provided the following
assumptions are satisfied (for the exact statement, see Section 5):

(N-1) An operator .&: B, —» E, with parameter § = 1 is defined so
that for 0 <1< 7 <k,

| S e; = CO | fle, s | f— Sfle, = CO2[flg; -
This .&4 is called a smoothing operator.

(N-2) The operator # is Fréchet differentiable, i.e., .# is linear-
izable.

(N-3) The linearized equation D.#(p)dp = 0G can be solved possibly
with derivative loss for each peV, i.e., there exists a linear operator
F(0): F,— E,_, for 1 >1 and peV N E, which is a right inverse to
D.7 (p).

(N-4) For i=1and peVNE,

|2 (0)F (0)|s,_, = C(A + |plg,) -

(N-5) The value | #(0)|;, is sufficiently small.

The assumptions (N-2, 3,5) will be in no need of explanation. In
contrast to these, it seems that the assumptions (N-1) and (N-4) are
artificial and indistinet, though it is obvious from the proof of Nash’s
theorem ([16]; [22]; [23]; Schwartz [34]; Sergeraert [35]) that they are
essential and indispensable. Later in this introduction, we will give a
short account for (N-1) and (N-4). Further, we add that the present paper
has two mathematical cores, which are to solve the linearized Stefan
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problem and to introduce a logical frame of a general character in which
the assumptions (N-1) and (N-4) can be verified.

Returning to our Stefan problem, let us sketch briefly how the
problem is rewritten as a nonlinear operator equation .# (o) = 0 and the
essential feature of solving the linearized Stefan problem D.&# (p)ip = 6G.
Regarding the thermal distribution % as an auxiliary unknown determined
from the distance function p with (1,)-(4,) and introducing an operator
% which transforms p to the pull back of the function 9,92, — ¢,{(grad @,,
grad u) on the free boundary I, , to the function on the flattened bound-
ary I';, we are led to a nonlinear equation .# (p) = 0 which is equivalent
to (1,)-(5,). This equation can be linearized and the concrete form of
the linearized problem D.# (p)dp = 0G consists of two parts, as follows.
The first part, corresponding to (1,)-(4,), is an initial boundary value
problem of the Dirichlet type for a linear second order parabolic equation
in 2,, where the unknown is an auxiliary one corresponding to the formal
Fréchet derivative of u, and given data are p and do. The second part,
corresponding to the Stefan condition (5,), is a linear first order equation
of hyperbolic type for do on the flattend boundary I';, with the data
containing the normal derivative of the unknown of the first part. To
solve the above linearized problem, we eliminate do from the system,
by substituting the solution dp of the latter hyperbolic equation for the
data dp in the former initial boundary value problem of parabolic type.
Then, introducing a new unknown 6X for convenience, we find that the
essential point in solving the above system without dp is to solve a
linear parabolic initial boundary value problem for 06X in 2, whose
boundary condition on I', is given by a linear hyperbolic first order
equation. We extend this first order operator to one in the domain 2,.
Then, to invert this first order operator, we need the nonnegativity of
the coefficients of the normal derivation in this operator on the boundary
I';,. In fact, this condition assures that the characteristic curves start-
ing from points on the domain £, at the initial time cover the cylinder
2,. Inour case, by using the maximum principle of the heat equation,
we can prove the required nonnegativity because the temperature on 2,
at the initial time and on the fixed boundary J, are nonnegative (namely,
this physical requirement has also a natural mathematical meaning). Then,
after a technical deformation, the above problem for 6X is solved by
decomposing it to a parabolic initial boundary value problem of Dirichlet
type and an initial value problem for the above first order operator in
2,. Consequently, the solution dp of the linearized Stefan problem
D.Z#(p)op = 0G is obtained as a linear combination containing the normal
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derivative of 6X.

Since, except in the one-dimensional case, the operator 6G — 6X gaing
only the same regularity in the weighted Holder spaces, standard in the
theory of parabolic equations, the linearized Stefan problem can be solved,
but actually with an essential derivative loss. This is the reason why
we need Nash’s implicit function theorem.

From the above consideration on solving the linearized Stefan problem,
we find that the reason why derivative loss occurs in the multidimen-
sional Stefan problem consists in the following fact: Since the mapping
solving the linear first order equation of hyperbolic type which corresponds
to the Stefan condition (5,) gains the regularity only along the charac-
teristic curves, it cannot cover the bad influence of the diffusion effect,
i.e., the normal derivative of 6X. This seems to be a new observation
showing why the multidimensional Stefan problem is difficult.

In the one-dimensional case, since direction of the diffusion can be
covered by the characteristic curve, we can solve the linearized problem
without derivative loss. Therefore, the local existence theorem for clas-
sical solutions is obtained by usual Banach’s implicit function theorem,
because, in an appropriate setting, the norm |.#(0)] can be taken small
if T is sufficiently small.

Now, we account for the remaining assumptions (N-1) and (N-4).
The general principle to verify the assumption (N-4), i.e., the estimate
| Z(0)F(0)]i-s = CA + | pl,), is as follows: This estimate is automatically
obtained if we prove that each of all mathematical operations constructing
Z and _# is a “balanced” operator. Here the meaning of the term
“balanced” will be illustrated by the following examples. In the weighted
Holder spaces, addition, multiplication, division, composition and to take
the solution u of a parabolic initial boundary value problem

(0, — >, Aijaxiaz‘j - Aiaxi —Au=f in 2, ulo=a, u|a!)T =b,
are balanced operations, because we have estimates of the following type:

f 4 0lm = [ flm + 19l 1S9l = CUFlnlglo + [ flolgl)

1 flgln = ClIfln + A + gl flo), if infg=B>0,

[ foglm = CUflm + [flwlglw), if =1 and |g|, =B,
(Ui = Ol T Auilin + 21 Ailn + TAol))( L + 1@ ]iesn + [0]ern)

+ 1l + @i + [0l
if r=ze>0, » and ¢ are not integers and

IAiJ'l(e) ’ ‘Ail(s) ’ ‘Aol(s) é B ’
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where | |, is the weighted Holder norm of »-th order. Now the preced-
ing “general principle” is an ovbious fact. This “principle” is consciously
used, e.g., in [16] and [31]-[33]. Further, e.g., in [16], in place of the
parabolic boundary value problem and the weighted Holder norm, with
an elliptic boundary value problem and the usual Holder norm, .# and
.7 are constructed only by operations listed in the above examples.
Then, with the fact that to construct smoothing orerators on a usual
Holder space is not so difficult, the above consideration is sufficient to
apply Nash’s theorem to the problem in [16]. Moreover, it seems that
the above consideration is also sufficient for the other applications of
Nash’s theorem listed above in this introduction.

Our new trouble on the verification of (N-4) in the Stefan problem
lies in the fact that, to invert the linearized problem, we had to take
the Neumann series to solve linear integral equations of Volterra type
several times. If an operator norm is less than 1 and we can complete
the proof by taking Neumann series only once, then to prove (N-4) is
not so difficult (see [33, Lemma 8.1]); however, both cannot be expected in
our proof. The method adopted in the present paper is as follows. Instead
of the usual weighted Holder spaces C’, (r denotes the order of regu-
larity), we can use C,” spaces each of which consists of all C” functions
whose derivatives up to 7-th order are vanishing at the initial time,
because the considered problem is a linearized one, i.e., a variational

t
one. In C/” spaces, the integral operator S commutes with the norm, i.e.,
t T 0
S f l < S | flm,:dt, where the subscripts T and ¢ denote the width
0 (r),T 0

of the time intervals. It should be noted that this commutativity does
not hold in C™ spaces. Now, in C/” spaces, by using the iterated esti-

St e St f‘ = @/ fl», it is obvious from the standard argu-
0 0 (r)

ment that the operator solving a linear integral equation of Volterra
type is a balanced one.

Then, we account for the assumption (N-1) on the existence of smooth-
ing operators. Since we are working in the setting of C,” spaces, we
have to construct smoothing operators on C/” spaces. It is known that
for C™, m is an integer, Sobolev and usual Holder spaces, smoothing opera-
tors can be constructed as integral operators whose kernels are defined
by using Fourier transform (see, e.g., [16] and [23]). In the same method,
we can construct smoothing operators on C spaces; however, these
operators do not preserve the C,” property, i.e., the image of a C/”
funection is not necessarily a C/” function. Therefore the above method
cannot be used in our setting. On the other hand, in his work on the

mate
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isometric embedding problem for analytic Riemannian manifolds [24], in
order to get smoothing operators which do not shrink the radii of con-
vergence of real analytic functions at each point in the domain, Nash
introduced a new method to construct smoothing operators. In [24],
smoothing operators are constructed as integral operators, but their
kernels are defined not by using Fourier transform, but by taking a
linear combination of functions each of which is obtained from the heat
kernel with an appropriate coordinate transform. (See also Gromov [14,
Section 3] whose exposition may be more precise than that in [24].) Then,
though the appearance of the problem is different from that in [24] and
we must take a G/ function instead of the heat kernel, we can con-
struct smoothing operators on C,” spaces by using the method in [24].

The finite scale with C/” spaces and the smoothing operators con-
structed in the above method constitute the logical frame, announced in
this introduction, in which the operator solving a linear integral equa-
tion of Volterra type becomes a balanced one. This frame seems to
be natural and useful in applying Nash’s theorem to initial value
problems.

The outline of this paper is as follows. In Section 1, we give the
exact statement of our result and define the weighted Holder spaces
with which our theorem is formulated. In Section 2, we add a technical
assumption to our theorem to simplify the account of the proof and
restate our theorem by using some notations which are also introduced
in this section. The elimination of this technical assumption will be
carried out in Section 10. In Section 3, we collect together some funda-
mental lemmas which assure that multiplication, division, composition
and to take the solution of a parabolic initial boundary value problem
are balanced operators, in the weighted Holder spaces. In Section 4, we
introduce a nonlinear operator .&# by which Theorem’ in Section 2 is
restated as the equation .#(0) = 0. We apply Nash’s implicit function
theorem to this operator equation. In Section 5, we state Nash’s theorem
and pose two finite scales of Banach spaces on which Nash’s theorem is
applied. In Section 6, smoothing operators in our setting are constructed;
in other words, the assumption (N-1) is verified. In Section 7, the Fréchet
differentiability of &, i.e., the fact that the problem is linearizable, is
proved; in other words, the assumption (N-2) is verified. In Section 8,
we again collect together some technical lemmas, which include two key
lemmas to our proof. One of the two lemmas assures that in C{” spaces,
the operator solving a linear integral equation of Volterra type is a
balanced one (see Lemma 8.A.4). The other lemma asserts that we can
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solve a linear parabolic initial boundary value problem whose boundary
condition is given by a first order equation such that the coefficient of
the normal derivative is nonnegative. This lemma also asserts that the
operator solving the problem is a balanced one (see Lemma 8.B.9). In
Section 9, by using the lemmas in Section 8, we solve the linearized
problem D.7#(0)p = 0G and observe that the solution Jp satisfies the
assumptions (N-3) and (N-4). Section 9 contains the key fact which en-
ables us to prove the result of this paper, that is, the fact that the
coefficient corresponding to the one in the lemma in Section 8 on the
solvability of a parabolic initial boundary value problem is, in fact, non-
negative (see (9.16)). At the end of Section 9, the assumption (N-5) is
verified, so that the proof of Theorem’ in Section 2 is completed. In
Section 10, we sketch how our proof is modified when the technical as-
sumption in Section 2 is replaced by the general compatibility condition
in Theorem in Section 1.

The author would like to thank the referee for his advice on the
style of this paper and on the literature on the Stefan problem.

1. The result. In this section, we state our result. At the begin-
ning, we prepare some notations.

(A) Let n be an integer with n = 2. Let 2, be a bounded domain
in R" whose boundary consists of the outside component I", and the inside
one J,. Suppose I', and J, are C~. Let T, be a positive constant. For
Te©, Ty, let 2, =2, x[0, T, ' =1I,x[0,T], and J, = J, x [0, T].

(B) We define the Holder spaces.

DErFINITION 1.B.1. Let d be a positive integer. Let D be a domain
with C~ boundary in R or D = R*. Let » = 0. Then C7(D) is the set
of real-valued functions f on D such that:

(i) The derivatives 05f with |a| < [r] are continuously extended
to D, where a = (a,, - -+, a,) denotes a d-tuple of non-negative integers,
0, =051 -+ 05, |l = D31, a;, and [r] is the greatest integer not greater
than 7.

(ii) The norm |f|, is finite.

Here |f|, is defined by:

(1) |fl, = Ziais, sup.e5 |05 f(@)] if r is an integer.

(it) [fl, = Xiaistn SUPse5 | 02/(®) |+ Xiai=1,SUP,,y e 5 | 02.1(2) — 05 f(y) |/ —
y|"~ if r is not an integer where |x — y| denotes (3%, |x;, — ¥, [)">.

DEFINITION 1.B.2. Let d be a positive integer. Let I be an interval
in R. Let D be a domain with piecewise-C* boundary in R? x I. Let
r =2 0. Then C”(D) is the set of real-valued functions f on D such that:
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(i) The_derivatives 050t f(x, t) with |a| + 2a < [r] are continuously
extended to D.

(ii) The norm |f|,, is finite.
The norm |f|, is defined by:

(1) [flm = iz {fYw if r is an integer.

(it) [flm = XD <{fw + () if 7 is not an integer.
Here {(f)>, and {f>, are defined by:

(1) o = Diairea=i SUPw, 05| 0501 f(®, 1) + Diairsamics SUDPG, 0, mneDd
|050¢f(x, t) — 050:f (x, 8)|/|t — s|¥* if 1 is an integer.

(ii)  {fw = Diai+2=1r1 SUD (0,01, .0 ¢ 5 |020:1(@, 1) — 0501y, B)|/|x—y [+
Zlal+2a:['r] SUPz,1), (2,806 D laga?f(x, t) - agagf(xr S)I/lt - sl(r—[r])/Z + ZlaH-Za:[r]—l
SUD 1), (5,00 7 | 0306f(X, ) — 0%0if(z, 8)|/|t — 8]~ "1*02 if ¢ is not an integer.

DEFINITION 1.B.3. Let M be a compact C~ manifold (with or with-
out boundary). Let I be an interval in R. Let » = 0. Then the set
C"(M x I) and the norm | |, in it are defined by using a finite cover-
ing of M by coordinate neighborhoods and a C~ partition of unity sub-
ordinate to it.

REMARK 1.B.4. All the normed spaces in Definitions 1.B.1-1.B.3 are
Banach spaces.

(C) Let n, be the outward unit normal at weI,. Let v, be a posi-
tive constant so small that a mapping «: Iy X [—"7,, 7.] — R" defined by
(w, M) — ® + An, is regular and one-to-one. Let

N, = {z(@, N); (0, M) € I’y X [—%, 7o}
and

Ny = {2(@, N); (@, \) e I'y X [—, 0} .
We denote the inverse mapping of x on N, onto I’y X [—7,, Y] by z+—
(w(x), Mx)). Clearly the mappings 2(®, \), @(x) and \(x) are C~. We
often use (w,(x), ---, ,_,(x)) as local coordinates of x € N,, where w, is
the i-th component of @ with respect to local coordinates in I,.

(D) For peC'(I’y) with |pl, < 7, let
[‘P,T = {(x(wy P(a); t))y t)! (CD, t) € FT}

and let 2,, be the domain in R x [0, T'] bounded by I',, and J,. For
o€ C(I'y) with |pl, < v, and for (x,t)e N, x [0, T], let
(1.1 Dy(x, 1) = M) — p(o(2), 1) .

Note that
Ipp={xt)eN, x [0, T]; Do(x, t) = 0} .
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(E) Now our result can be stated as follows.

THEOREM. Let r, = n, + &, where m, is an integer with n, = 7 and
0<e <1. Suppose that:
(A1) a,eC*(2,) and b, < Crot®(Jy,).

(A.2) The pair {a, b,} satisfies the compatibility condition up to
order [(r, + 39)/2] of the Dirichlet problem for the heat equation, on J,.
(A3) a, =0 on 2, b,=0 on Jy, and ¢, is a positive constant.

(A.4) The function a, satisfies the compatibility condition wup to
order [(r, + 39)/2] of the Stefam problem (see Remark 1.E.4 in the follow-
ng).

Then, for a sufficiently small Te(0, T, there exist peC"(I'y) with
Plizo =0 and |p|, < 7, and u e C"(2,,) which satisfy:

(1,) 0, — DHu =0 1in 2, .

(2,) Wlpey = @+

(3.) u==b on Jr.

(4.) u=0 on I,p.

(5,) 0,9, — c,{grad @,, graduy =0 on I,,.

Here 4 = >3, 0;, grad = (9,, -+, d,,) and {x, y) = 3, vy, for x, y € R".

REMARK 1.E.1. The numbers 43 and 39 appearing in our theorem
have no specific meaning. They come out because we employ Moser’s
version of Nash’s implicit function theorem [22], which is the most pop-
ular one. Nash’s original version [23] or Hormander’s version [16] pro-
vides smaller numbers, but such a refinement may not be essential.

REMARK 1.E.2. Consider the mixed problem of the heat equation
(0, — A)u = 0 with the initial condition w = & and the boundary condition
% = b (resp. 0,u = b where n is the outward unit normal of the boundary).
The compatibility condition up to order ¢ of the above problem requires
that 0ib = 4’a (resp. 0ib = 9,4%a) on the boundary at ¢ = 0 for 5 =0, .-, .
For other mixed problems of parabolic type, analogous definitions are
adopted. (For details, see, e.g., Ladyzenskaja, Solonnikov and Uralceva
[21, p. 319-320].)

REMARK 1.E.3. The assumption (A.3), which is natural in the physi-
cal sense, enables us to solve the linearized Stefan problem (see (9.16)).

REMARK 1.E.4. Let ¢ be a nonnegative integer and let (o, u) be a
C* solution of the above system (1,)-(5,) with p|,., = 0. Because of
(4,), on Iy at ¢t =0, the time variable derivatives up to order 7 of u
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along I', , vanish. Therefore, we have algebraic relations of u, du, ---,
iw and 0,0, ---,0;0 on I, at ¢t = 0. On the other hand, in view of (1,),
(2,) and (5,), all of the above derivatives are determined only by a,.
Then, we have algebraic relations of the derivatives 0%a, with |a| < 27

on I',. These relations constitute the compatibility condition up to order
1 of the Stefan problem.

REMARK 1.E.5. As is mentioned in Introduction, the uniqueness of
the solution has been established even in the class of weak solutions.

REMARK 1.E.6. The author does not know whether we can take
r,=-co in the above theorem. However, when the melting is rapid, our
solution (o, u) is of C=-class at least for 0 < ¢t < T, according to the
regularity theorem for classical solutions by Kinderlehrer and Nirenberg
[18], [19].

REMARK 1.E.7. The width T of the existence interval is determined
only by |a0|r0+431 100 | (g5 and the shape of I',.

2. Technical assumption. We shall first prove our theorem, assum-
ing the technical assumption
(T) 0a,=0 on I, if |a|Z][r, + 39].

The elimination of this assumption will be carried out in Section 10. In

this section, assuming (T) and introducing a few new notations, we re-

state our result in somewhat different form from that in Section 1.
(A) We introduce a new class of Holder spaces.

DEFINITION 2.A.1. Let d be a positive integer. Let » = 0. For
Te (0, T,] and for a domain D with piecewise-C' boundary in R*x[0, T,
we set

C'(D) = {f e C"(D); (0:f)|i=o = 0 for a =0, ---, [»/2]} .

Further, for T € (0, T,] and for a compact C~ manifold M (with or without
boundary), C{"(M x [0, T']) is similarly defined. In these cases, when we
emphasize that the interval of the “time variable” ¢ is [0, T'], we denote
the norm |f{u by |flw,r-

REMARK 2.A.2. The above normed spaces are Banach spaces.
(B) For Te(0, T, we set
Ve = {Pe Cio(I'y); I.OI(rO) < 0o}

where 0, is a positive constant so small that:
(1) 40, = 7o
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(ii) There is a positive constant ¢, such that
g, ?:411 g= MZ;.I A, (o, )EE; = O'Oizga &

for peV,, (x,t)c2;, and ¢c R*. Here A,,; are the coefficients of the
second order derivations in the operator <, defined in (D) in this section.

(iii) There is a positive constant B, such that

S,(w, t) = B;*

for peV, and (w,t)el’;,. Here S, is the function defined in (D) in this
section.
This constant o, is determined only by the shape of I,.

(C) Choose a function X, e C3(R) so that:

(i) %) =1if [N =0,

(ii) X,) = 0 if |n| = 30,.

(iii) |0 X,(\)| < 3/40, for ne R.
For pe V,, define a diffeomorphism ¢,: R* x [0, T'] — R" x [0, T'] by:
2.1L1)  elx(w, \), ) = (x(w, M + LMo, 1)), t)

for (x,t) = (x(w, \), t)e N, x [0, T] .

(2.1.i1) e(x,t) = (x,t) for (x,t)e(R*— N, x [0, T].
Note that e,(2;) = 2,7, ¢,(I'z) = s, and e,|,—, is the identity mapping.

Define a function 7: R X [—d,, 0,] = R by n(\, &) + X\, )t = N
for (\, ) e R X [—0,, 6,]. Since [9;X,(\)| =< 3/(40,), the function 7 is well-
defined and C~. We easily observe that:
(2.2.1)  e'(x(w, N), t) = (2(w, (N, p(@, 1)), )

for (x,t) = (x(w, N), t)e N, x [0, T] .

(2.2.i1) e;'(x,t) = (x,t) for (x,t)e(R"— N, x [0, T].
(D) We define the operator &%, and the function S, by:
(2.3.1) AV =0, — A)(Voe;Y]oe, for VeC2,) .

(2.3.ii) [(grad @,, grad (Voe,"))]oe, = (0;V)S, on I,
for VeCY2, with V|, =0.

For the explicit expressions, see Section 4.
(E) Now our restricted and modified theorem is as follows.

THEOREM'. Assume the assumptions (A.1)-(A.3) and (T). Then, there
exist pe V, and ue C"(2,,) which satisfy (1,)-(5,).

REMARK 2.E.1. When we assume (T), we can replace the assumption
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a, € C+¥(2,) by a weaker one a,c C**(2,).

3. Technical lemmas I. We collect together some lemmas which
are used in the following sections. Throughout this paper, “X is bounded
with Y” means that X is bounded when Y is.

(A) We begin with the following fact. By the term “a manifold”,
we mean both one with boundary and one without boundary.

LEmMA 3.A.1. Let M be a compact C* manifold. Let v <d and
0<p=<q=7r. Let fbelong to C”"(M X [v, 6]). Then
[flw = CLAIG/ P flE2/ o2
Here C is a constant bounded with r and (6 — ).

Lemma 3.A.1 can be proved in the same way as [16, Theorem A.5]
or [32, Corollary 1.3] (with [21, Lemma 3.2, p.80]), which are analogues
for C" spaces.

COROLLARY 3.A.2. Let g and h belong to C*""(M x [v, 6]). Then

191l = CUGlgenlhlo + 1glo Bl gin) -
Here C 1s a comstant bounded with q¢ + r and (6 — v)™".

ProOF. From Lemma 3.A.1 and the obvious inequality a'~#b* <
(1 — p)a + pb for a, b = 0 and £ €0, 1], the corollary follows immediately.

COROLLARY 3.A.3. Let g and h belong to C”(M X [v, 61). Then their
product fg belongs to C™(M X [v, 6]) and satisfies

[f9] = C(flnlglo + [ lolglem) -
Here C is a constant bounded with » and (6 — ).

ProOF. From Definitions 1.B.2, 1.B.3, Leibnitz’s formula and Corol-
lary 3.A.2, the corollary follows immediately.

REMARK 3.A.4. Corollary 3.A.3 implies that C"'(M x[v, é]) is a ring
and C{”(M x [0, T]) is an ideal in C"'(M x [0, T]).

We introduce a special class of functions.

DEFINITION 3.A.5. Let M be a compact C* manifold. Let I be a
subset of nonnegative real numbers having the maximal element. Let
G = 1. Then, for Te(0, T,], EX(M x [0, T]) is the set of functions fe
C™=0(M % [0, T]) having an extension feC™>*"(M x [—T, T]) such
that | |, < G|f|p for ge I. We call the above f an E/-extension of f.

LEMMA 3.A.6. Let M be a compact C° manifold. Let »r = 0. Then
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we have:
(i) CG(M x [0, T])c EP(M x [0, T]).
(ii) If r < 2, then C"(M x [0, T)) = E*" (M x [0, T)).
(iii) If r = 2, then

{£feC”(M x [0, T]); 0.f € Cy~"(M x [0, T} < E*" (M x [0, T]) .

PROOF. In the above cases, we can construct an E!"-extension f
of f by putting f(x, t) = f(z, 0) for (x,t)e M x [T, 0]. This proves
the lemma.

LEMMA 3.A.7. Let M be a compact C* manifold. Let 0 < p,q < 7r
and G=1. Let o and B be n-tuples of nonnegative integers. Suppose
that:

(i) feEgpptetortiate(3f x [0, TY).

(ii) ge Egtsitvrrisinf < [0, T).

Then the product (3507 f)(0%0%9) belongs to C”'(M x [0, T]) and satisfies

10507 £)(050:9) | ) = CUf lrtiai+al 9l aripren + 1 losiaisal 9lesisen) -
Here C is a constant bounded with », |a| + a, |B] + b, and G.

ProoF. From Corollary 3.A.3 and Definition 3.A.5, the lemma fol-
lows immediately.

REMARK 3.A.8. In Lemma 3.A.7, the constant C is independent of
Te(0, T,], when G is.

LEMMA 3.A.9. Let d, and d, be positive integers. Let D, (resp. D,)
be a bounded domain with C> boundary in R* (resp. R%). Let r =1
and G = 1. Suppose that:

(i) feEH(D, x [0, T).

(ii) The components g, ---, gs, of @ mapping g¢: D, X [0, T]— D,
belong to E&H™(D, x [0, T)).

(iii) Z?il lg:lw = B. B
Then the composed function (x,t) — f(g(x, t), t) belongs to C'(D, x [0, T])
and satisfies

£(0@, 0, Ol = C(1F 1o + (£l 3 19:0)

Here C is a constant bounded with r, G, and B.

Lemma 3.A.9 can be proved in the same way as [16, Theorem A.8]
or [32, Lemma 1.6], which are analogues for C" spaces.

Finally we state the following fact, which follows immediately from
Definitions 1.B.2 and 1.B.3.
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LEMMA 3.A.10. Let M be a compact C* manifold. Let v <6 and
r=0. Let B>0. Suppose that:

(i) feC”(M X [v, a)).

(ii) | f(z, t)| = B~ for (x,t)e M X [v, d].
Then the function (z,t)— 1/f(x, t) belongs to C(M X [v, 6]) and satisfies

[11flm = CA + [ flin) -
Here C 1s a constant bounded with r and B.

(B) Throughout (B), let &~ be a differential operator on 2, of the
form

P =8, — 3 Ay, 09.9.; — > Alw, 100, — Afw, 1) for (x, )€l .

5=

DEFINITION 3.B.1. Let 0 < k < ». Let o and B be positive constants.
We say that & is a (k, r, o, B)-§-parabolic operator if:

(i) Ay A, A, eC”(@Q,) for i,5=1, ---, n.

(ii) If » = 2, then 4,4, 0,4, 0,A,€ C2(2,) for 4,5 =1, ---, n.

(iii) ;’Zb,j——‘l |Ai:i|(k) + Z?=1 IAil(k) _'_ IA()](k) é B'

(iv) ii=1 [(Aile=o) | + 2 [(Aile=o) |, + [(Aolizo) |, = B. _

(v) o7 3k & = 2 Ay, 68 = 030, & for (x, t)e2, and
e R".

LEMMA 3.B.2. Let 1 be a nonnegative integer. Let o and B be posi-
tive constants. Suppose that:

(i) The operator & 1is (e, & + 1, 0, B)-#-parabolic.

(ii) feCFr(2,).

(iii) w e Clori(Q,),

(iv) Lu = f in 2.
Then w belongs to E/hcoteotd oty Here G is a constant bounded
with 1, o, and B.

Proor. Let A,,, A,, and A, be extensions of A,,|,—o, 4,;—0, and A,|,_,
to R*, respectively, such that:

(i) Ay, A, A e Co™(R"). ~ N

(11) IAghIeo+j é Cll(Agh]t=0)|eo+j’ ,AgIeOA—j é Cli(Ag|t=0)|eo+jy |A0|50+j é
Cil(Aoli=) legrsr for 5 =0, -, 7.
Here g, h =1, ---, » and C, is a constant bounded with 4. (This is possible
by the Hestenes-Whitney technique. See, e.g., [21, p. 296-297].) Let 2,
be a domain with C* boundary in R” such that:

(i) 2,c Q.

(i) (20)" 21 & < S i Ap(@)E,6n < 20 301, & for v € 2, and ¢ € R™.
The domain 2, is determined only by 2,, o, and B. Let @ be an extension
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of ul,_, to 2, such that:

(i) suppd C 2.

(i) &@eCor+y(Q,).

(iii) |d|eo+:‘+2 = C2|(u'|t=0)iso+i+2 for j =0, ---,1.
Here C, is a constant bounded with 7, o, and B. Let 62, be the boundary
of 2,. Let w be the solution of the mixed problem:

(1) (30— 2 As@0.0.; — 3 Ao, — A@)w =0 in 2, x[0, T].

(2) ’LUIt=0=5:.
(3) w=0 on 02 %[0, T].

It is known that w exists in C“**?(Q, x [0, T,]) and satisfies |w|, <
Cja|, for ¢ =0, +2,6 +3,---,¢,+ 17+ 2. Here C, is a constant
bounded with ¢. (See [21, Theorem 2.3, p.16-17] and [21, Theorem 5.2,
p. 320].) We easily observe that:

(i) (a{w)lmo = (0ju)],—, on ‘Qo for j =0, -- - [+ 2)/2].

(i) [wlgr = CCslu|q,r for ¢ =0,6 + 2,6 + 3, .-+, & + 7 + 2.
Let @ be the Hestenes-Whitney extension of w to 2,x[ — T, T,]. Now
we can construct an E/»cotnotd wotit?l_extension @ of u by setting %(x, t)=
Wz, t) for (x,t)e2, x [—T, 0]. This proves the lemma.

LEMMA 3.B.3. Let © be a nonnegative integer. Let o and B be posi-
tive comstants. Suppose that:

(i) The operator & 1is (&, & + 1, 0, B)-#-parabolic.

(i) feC(2,).

(ili) @€ Cori+¥(Q,).

(iv) b€ Clotita( ] ).

(v) b€ Cloti(I ) (resp. b, € C(eo+i+1)(FT)).
Consider the following mixed problem:

(1) ZFu=f in 2.
(2) Uleog = @ .

(3) u==>o on J,.

(4) u==>b, (resp. ou==b) on I,.

(Here 0, 1s the partial differentiation with respect to \ in the (@, ---,
®,_, M) coordinates.) Suppose that:

(i) The set {a,b} satisfies the compatibility condition of order
[(G + 2)/2] of the Dirichlet problem for the equation Fu =f on J, at
t=0.
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(ii) The set {a, b} satisfies the compactibility condition of order
[(z + 2)/2] (resp. [(1 + 1)/2]) of the Dirichlet (resp. Neumann) problem
for the equation Fu =fon I'y at t = 0.
Then the problem (1)-(4) has a umique solution w in C“™+(Q,) which
satisfies

[@ligrern = (33 [Anlieo + 35 1 Aulgen + [Aolirn)
X (‘f[(eo) + ]a’lso+2 + |b1[(50+2) + |b2l(50+2))
+ (If|(50+i) + Ia’|so+i+2 + 'bxl(eo+i+z) + lbzl(e0+i+2)]

(resp. |U|iprito SO0 =1 | Agn legrn + 220=1 [ A liegen +1 Aol(eo+i>)(|fl<so) +@lerat
|b1|(eo+2) -+ leI(eo+1)) + (|f|(50+i) + |aleo+i+2 + Ib1|(50+i+2) + leI(so+i+l))])- Here C
1s a constant bounded with 1, o, and B.

For the proof, refer to [16, Theorem A.14] which is an analogue for
the elliptic boundary value problem. With the aid of [21, Theorems 5.2,
5.3, p. 320-321], [21, Theorem 2.3, p. 16-17], Lemmas 3.A.6, 3.A.7 and
Lemma 3.B.2, we can prove Lemma 3.B.3 in a manner similar to the
proof of [16, Theorem A.14].

4. Reformulation of the problem. In order to apply Nash’s implicit
function theorem, we reformulate Theorem’ (in Section 2).

(A) For peV, by using the notations &, and S, introduced in
Section 2 and by setting U = w-e,, we can reformulate (1,)-(5,) as follows:

1) SU=0 in Q.
(20) Ulieo = a, -

(3v) U=b, on J,.

(4,) U=0 on I,.

(5v) 0,0 + ¢(3;U)S, =0 on TI;.

Let us express & as
% = at - i%l AP,ij(x, t)amiaz,‘ - Zf AP,i(xy t)azi
for (w,t)eQ2, with A,.,; = A4,;. By (2.1)-(2.3), a routine calculation
gives us:
(4'1‘i) Apyij(x! t) = Aij(xy p(w(x); t)y awlp(w(x), t); Y awn_l‘o(w(x), t))

for ¢,5=1,---,n and (x, t) e Ny x [0, T], where (®,, -+, w,_,) are local
coordinates in I.
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(4.1.ii) A, i, ©) = 045
for 4,7 =1, ---,n and (z,t)e (2, — N;7) x [0, T], where §,; is Kronecker’s
delta.
(4.1ill) AP,i(xy t) = Ai(x) P(w(x), t), amlp(w(x)y t), ) amn_lp(w(x)y t)7
atp(a)(x), t); az;p(w(x)y t), awlawzlo(w(x)’ t)y )
0o, 0(@(2), 1))
for i=1, .---,n and (x, t)e N, x [0, T].
(4.1.iv) A, (x,t)=0 for ¢=1,---, % and (x, t)e(2, — N;) x [0, T].
Here A,; (resp. A;) are C= functions on N, X [—d, 0,] X R** (resp.
N; X [—0,, 6] x R"*""), We easily observe that if pe V, N G (I";) for
r = 7, then & is an (», — 2, r — 2, 0,, B)-#-parabolic operator (see (B) in
Section 2). Here B is a positive constant.
On the other hand, express S, as

(4.2) Se(w, t) = S(w, p(w, t), 6,0, t), ---,0,, 0,1))
for (w,t)el';,. By (1.1), a routine calculation gives us
S(@, p(®, 1), 0.,0(®, t), - -+, 6,,_0(®, 1))
3 o.M, 0@, 1) = 3, [0.,0(0, D][0.@,((@, @, ]}

for (w, t)e I';. As is assumed in Section 1, the function S, has a positive
constant B;™* as a lower bound. Note that grad » #= 0 on I'; because I,
is embedded in R"* without critical points. We easily observe that if
eeV,nC" ;) for » = r, then 4,(S,) € G ().

(B) Define a mapping & : V, — C{**(I";) by

(4.3) F(p) = 0,0 + ¢[(0;U)[:=0]S, for peV,.

Here U, is the solution U of (1;)-(4,). This is possible by Lemma 3.B.3
and the assumptions (A.2) and (T) in theorem.
Clearly Theorem’ (in Section 2) is reformulated as:

1

THEOREM' (reformulated form). Under the same assumptions as in
Theorem' in Section 2, for a sufficiently small T e (0, T,], there exists
eV, with F(p) = 0.

Here we suppose o is the only unknown of the problem because u

is obtained once p is determined.
(C) By Lemmas 3.A.9 and 3.B.3, we have

(4.4) [Uslirgsn = C(L + |0liygenr) for =0, ---,89
and peV,NCH(Iy) .
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Here C is a constant bounded with |a,/, 15 and ol By (4.3), (4.4)
and Lemma 3.A.7, we have:
(4.5.1) F (Ve N Crti(y)) < Crot=2(I'y) for =0, ---, 40 .
(4.5.i)) [ F(0)lrgri-0 = C(1 + [0lirgra) for ¢=0,--- 40
and peV,n Crt(Iy,).
Here C is a constant bounded with |a,/, .5 and [bo] 0
5. Nash’s implicit function theorem. (A) We recall the well-known

version of Nash’s implicit function theorem due to Moser [22]. For the
proof, refer to [22], [34, Chapter 2] and [35].

NASH’S IMPLICIT FUNCTION THEOREM. Let E, E, ---, and E, (resp.
F,F, ---, and F,) be real Banach spaces such that:

(i) E,DE, D :--DFE, (resp. F,DF,D> ... DF,)

(ii) |x|z = )i Sfor 1= 0,---,11 and xe K, (resp. ly | = ly(iJrl
for i =1, .-, 11 and ye F,,,).
Here | |; denotes the morm im E, (resp. F,). Let 0 be a positive constant
and let V={xecKE;|x| <d}. Let F :V —F, be a mapping such that
FVNE)SF, fori=1, ---, 11.

Suppose that:

(1) There exists a “smoothing” linear operator .&: E,— K, for
0 = 1 which satisfies:
1.i) |Fe|; < Co x|, for 1,5 with 0=i<j=<11 and zeckE,.
(1.ii) lx — S|, < COY x|, for 1,7 with 01711

and xzekK;.

(II) There exists a “Fréchet derivative” limear operator D.7 (x):

E, — F, for x€V which satisfies:

(ILi) D (@)h|, < C|h|, for heE, .
(ALi)) |5 (@ + h) — 5 @) — D7 (@h|, < Ch} for hek,
with ©+ heV .

(III) There exists a “right inverse” linear operator .7 (x): F, — E,
for x eV which satisfies:

(II1.1) S@)F, S E,_, for i1=1--- 11 and xeVNE,.

(II1.ii) D7 (x)A(x)y =y for xeVNE, and yekF,.

(II1.iii) [ A @)yl < Clyl, for yekF,.

(IILiv) | A (@)7 (®)];., = CA + |x|) for i =1,---,11 and xeVNE,.
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Here C,, C,, and C, are constants.
Then there is a positive constant ¢ determined by C, C,, C; and 0
such that: If | #(0)], < e, then there exists x €V with & (x) = 0.

(B) We prove Theorem’ (in Section 4) by using Nash’s implicit func-
tion theorem. The setting in which we apply Nash’s implicit function
theorem is:

(i) E,= Cro—+(I'y) for 1 =0, ---, 11.

(ii) F, = Gjo-s-toat(p )y for 4 =1, .-+, 11,

(iii) 6 = 0, (so that V = V,).

(iv) The mapping & is the one defined by (4.3) (see (4.5.i)).

In the following sections, we show that the mapping & and the spaces
E,, F, together with 6 satisfy the conditions in Nash’s implicit function
theorem.

6. Smoothing operators. We verify the condition (I) in Nash’s
theorem. Choose a funection ¢, on R** X R so that:

(i) &eCr (R X R).

(ii) &y(x,t) =0 for xe R** and t < 0.

(i) Snn—wc"(“' t)dedt = 1, where do = [[22) da, .

Define a sequence of functions {{,, {, ---} by
Ci(x¢ t) = 1 - zi)Hl[Ci—l(x; t) - 2i+"+1Ci—1(2x; 4t)]
for 1 =1,2,--- and (x,¢{)e R~ x R. For i=0,1, ---, we can easily

verify that:
(i) L eCy(R* X R).
(ii) iz, t) =0 for xe R*" and ¢ < 0.
(iii) S L, dadt = 1.
R"—1xR
(iv) S ot (x, H)dwdt = 0 if 0 < |a| + 2a < 4.
R"—1xR
Let 4, = [r,] + 40. For § = 1, define a linear operator
S5 CO(R % [0, T — C{*'(R" x [0, T])
by
T _ — -
(52, 0 = | {1700 — o), ¢ — e)rte, )de}de
for feCO(R™ x [0, T]) and (z,t)e R x [0, T].

The fact that .%%f is in C§® follows from the property (ii) of {,. We
can verify that:

(1) |SAfl < COf|, for real numbers ¢, » with 0<¢g=7r =
7, + 40 and for fe C(R"* x [0, T']).
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(ii) |f— Sl = CO?|f|,, for real numbers q, » with 0 < ¢ <
r <71, + 40 and for fe C{"(R"* x [0, T']).

Here C is a constant determined by {,. For the proof, refer to [16,
Theorem A.10] where analogous inequalities are proved for C” spaces.
The above inequalities (i) and (ii) can be proved similarly.

Set # = 6¥*. Consider a finite covering of I, by coordinate neigh-
borhoods and a C= partition of unity subordinate to it. Then, for § =1,
we can construct a linear operator .&%: C{o—¥(I",) — C{r™*(I';) which
satisfies:

(1) S lirg-stais = COT| f|isg-sssny for 4,5 with 0 <7< j7=<11 and
fe Cro—++(T,).

(ii) [f = oS lirgmsrsr = CO9| f | iysqupy for 4,7 with0 <1< j <11
and f € C{ro—*(I'y).

Here C is a constant. This proves (I).

7. Fréchet differentiability of .&#. We verify the condition (II) in
Nash’s implicit function theorem.

(A) Let &,=0,— <. For peV, and doecC/Uy), let &, =

Pic1 (04,,i1)0,,0,; + 2it-1 (04,,)0,, on Q,. Here 6A,,;; and 04, are de-

fined by:
(7.1.) 04A,,; = [(8/0p)A;160 + hZ;{[a/a(awhp)]Aﬁ}awhép on N; x[0,T].
(7.1.ii) 04,,;,=0 on (2,— Ny) x [0, T].
(7.Liil) 04, = [(0/op)A:]op + g {[0(9.,0)149.,90 + {[0/0(3,0)]A:}0.90
+ > {[0/603.,0.,0]A)0.,0.,00 on Ni x [0, T].

1sgsh<n—1

(7.1.iv) 04,;,=0 on N; x[0,T].
(See (4.1).)

Let 60U, be the solution of the problem:
(15) F(0U,) = (0&,)U, in 2.
(250) 0Uulieo=0.
(350) 6U, =0 on J,.
(45) oU, =0 on I,.

Since dp belongs to Cy'(I';), the compatibility condition of order [r,/2]
of (1;,)-(4;,) is satisfied. Then, by Lemmas 3.A.7, 3.B.2 and 3.B.3 and
(4.4), the function 6U, is well-defined in C{?(2,) and satisfies

(7.2) IaUPI('rO) < C| 5.0l(ro> .
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Here C is a constant bounded with |a,/,, and |b,],,.
Further we observe that if p + dp belongs to V,, then

(7.3) |Uprso — Up — 0U, (9 = C] 00 4 -

Here C is a constant bounded with |a,l,, and |b,[,. In fact we have:

(1) ~%+5P(UP+5P—' UP_BUP)
= (Eora0 — Eo — 0E)Up + (Lpyso — &p)0U, on 2.

(2) (Up+ap_ UP_BUP)|1=0:0'
(3) Up+,§p - Up - BUP = 0 on JT .
(4) Up+ap—‘Up'—5Up:0 on FT'

By Lemmas 3.A.7, 3.B.2 and 3.B.3 and by (4.4), (7.1) and (7.2), we ob-
tain (7.3).
(B) Forpe V,, define a linear operator D.7 (p): Ci'(I'y) — C{~2(I'y) by

(14 DF(0)p = 390 + el B:U) 110108, + e 00U :-0}S,
for 6o e C{o(I';) (see (4.3)). Here
(7.5) 88, = [3/00)S13p + 3, {13/0(2.,0)S)0.,9 -

(See (4.2).) By (4.4), (7.2), (7.3) and (7.4), we have

(1) |DF(0)0p|ir-» = Clopli,y for ope Cyo(Iy).

(i) |F o+ 30) — F(0) — DF(0)0pliry-v < Clipl:,, for dpe Cro(Iy)
with o + dpe V.
Here C is a constant bounded with |a,|,, and |b,|.,. This proves (II).

8. Technical lemmas II. We prove some lemmas which are used to
verify (III). As in Section 3, by “a manifold”’, we mean both one with
boundary and one without boundary.

(A) We begin with the following fact.

LEMMA 8.A.1. Let M be a compact C* manifold. Let r = 0. Letf
belong to C"(M x [0, T']). Then the function (x,t)— St flx, T)dr belongs
to C"(M x [0, T]) and satisfies '

[ 7@, 0az| <[ 17lnede sor telo, 1.

Proor. Extend f to M x (—co, T] by setting f(x, t) = 0 for (z, t)e
M x (—o,0). Since feC;”, we have:
(i) The C” norm of f is preseved in the above extension.

(ii) a:ag(gz f(z, r)dr) - S:a:a?f(x, Dydr if |a| + 2a <[] .
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(iii) S:a:agf(x, T)dr = s:ai‘&?f(x, T —t+s)dr if |a|+2a¢ =Z[r] and
0<s<t=T.
By (ii) and (iii)
[} a0t fta, oyde — | azaiste, vy | fit = sl
< S (16%92f(, ©) — 8%9%f(@, T — t + 9)|/|t — s|“)de

ifla] +20=[r],0=s=<t=<Tand 0 < <2 Then the lemma follows
from (i).

We introduce a special class of operators..

DEFINITION 8.A.2. Let M and M’ be compact C* manifolds. Let
0<k=<r. Let C and N be positive constants. We say that a linear

operator 2¢7: C"(M x [0, T]) > C(M' x [0, T]) is (k, r, C, N)-balanced
(resp. (k, r, C, N)-integral-balanced) if:

(1) 15T | S C1f e (68D |57 i S C |17l odr) for t &[0, T,
(i) [T e S O F e + ONI i oresp. | 527 Ve S C (£ 17 +
CNS |f lwdz) for te[o, T

LEMMA 8.A.3. Let M and M’ be compact C> manifolds. Let 0 <
k=<r. Let C and N be positive constants. Let
T C(M X [0, T — C"(M' x [0, T))
be a (k, r, C, N)-balanced linear operator. Define a linear operator
LGP (M x [0, T]) — C(M'" < [0, T')
by
(FF)w, ) = S (S f), Dde for (@, t)e M’ x [0, T] .

Then _Z is (k, r, C, N)-integral-balanced.
ProoF. The lemma follows immediately from Lemma 8.A.1.

LEMMA 8.A.4. Let M and M’ be compact C> manifolds. Let 0=
kE<r. Let C and N be positive constants. Let 2¢: C{"(M x [0, T]) —
C/O(Mx[0, T]) and 2¢": C(M'x [0, T]) — C"(M x [0, T']) be (k, r, C, N)-
integral-balanced linear operators. Let g belong to C"(M'x [0, T)). Then
the equation w — % u = 279 has a unique solution w € C{"(M x [0, T]).
Further the linear operator (I— 27 )" 2¢": C"(M' %[0, T]) —C"(M %[0, T'])
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18 (k, r, C', N)-integral-balanced, where I denotes the identity operator
and C’' is a constant bounded with C.

Proor. By induction on ¢, we have:

(1) 1579 glw. S €D | 1glwde for i=0,1, - and te
[0, 7. : ,

(i) 52927l < CHD) || 1910 e+ G+ DOPEDN | gl de
for i =0,1, --- and t€[0, T'].
Then, from the estimates of the Neumann seriesu = % "'g + %% "'g + -
the lemma follows.

(B) Throughout (B), we use the following notations.

(a) {U, ---, U} is a finite covering of I, by coordinate neighbor-
hoods and let (0)1, .-+, w,_,;) be local coordinates.

o) {n, --+, n} is a C= partition of unity subordinate to {U,, - - -, U}.

(e) (Ny), —{xeNO,a)(oc)eU}for y=1 .-+ K.

(d) Let = be a differential operator on FT of the form 57 = 0, +
i H, (w, t)d,, for v=1,--- £ and (w, t)e U, x [0, T].

(e) Let &7 be a diﬂ?erential operator on 2, of the form:

(e))  F=0,+ X)) g H, (%), t)0,, + X(Mx) Hy(@(®), £)0;

for v=1,---,k and (x, t)e(Ny), x [0, T]. Here X, is the function intro-
duced in Section 1 and 9, is the partial differentiation with respect to
®; in the (w,, ---, ®,_;, M) coordinates.

(e.ii) P.=d, for (x, t)e(@ — N7) %[0, T].

DEFINITION 8.B.1. Let 7 =0. Then |H|, = >, >t (0H, :lw,
where 7, H,, is regarded as a function on R"* x [0, T] in the canonical
manner.

DEFINITION 8.B.2. Let 0<k<r. Let B be a positive constant.
We say that 5# is a (k, », B)-fine operator if:
(i) nH,;eC(R*%x[0,T]) forv=1,---,kandi=1,---,» — 1.
(ii) [Hl|wm = B.
We say that & is a (k, r, B)-\n-fine operator if:
(i) nH,,eC(R*x[0,T]) forv=1,---,kand =1, ---,n — 1.
(ii) H,eC(Iyp).
(i) |Hlw + [Hilw = B.
(iv) Hyw,t) =0 for (w,t)e ;.
Here 7, H,, is regarded as a function on R"*' x [0, T'] in the canonical
manner.
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DEFINITION 8.B.3. Let 7 be a mapping of I', into I',, Then, for
i=1,..+,m, a function f; on I', is the i-th component of f when it is
regarded as a mapping of I, into R". Further, let » =0 and let
Ji» foy -+, Ju belong to C(I';). Then | fl,, = 30| filim-

DEFINITION 8.B.4. Let I be an interval in R. Let D be a domain
with piecewise-C' boundary in R* x I. Let » = 0. Let f be a mapping
of D into R™ whose components f,, f,, -+, f. belong to C~(D). Then
|f|m = 2?:1 |fi|(r)'

LEMMA 8.B.5. Let 2=k < r. Let Bbe a positive constant. Suppose
that 57, is a (k, r, B)-fine operator. Define a mapping ¢: I'n — Iy so that
the mapping t+— (¢, t),t) is the characteristic curve of 5% starting
from wel, at t =0. Define a mapping +: ', — Iy by ¢(y(w, t), t) = @
for (w,t)el'y. (Simnce I'y is a compact C= manifold without boundary,
¢ and + are well-defined.) Then we have:

( i ) Gyt 0y ¢,,€C(")([’T).

(i) 0upy, =+ +, 0upu € G 2(I'y).

Qi) |¢], = CA + |Hl,).

Here C is a constant bounded with r and B. Further, suppose that
0< T =< Ci* where Cy is a constant determined by B. Then we have:

() oo #a € COT).

(ii") ey, + -+, O € G2 (I'p).

(i) |vln =CQ + [ H|,).

Here C' is a constant bounded with r and B.

Proor. Let D be a bounded domain in R* with I’y c D. Extend
7 to D x [0, T] so that:

(i) The extended operator 57, is of the form 5% = 4, + S, H(, £)0.,,
with H,e C(D x [0, T]).

(ii) supp H, < D for i =1,

ity A = CIHly for go10,7]. N 3
Here C, is a constant bounded with » and |H|, = >, |H,|,. Define a
mapping ¢: D x [0, T] — R"* by:

(+.1) ddi(x, t) = Hi(g(z, 1), 1) ‘

for i=1,---,n and (x,t)e D x [0, T], where ¢, is the i-th component
of §.

(%.2) éx,0) =2 for xeD.

Clearly ¢ is an extension of ¢ with (D x [0, T]) = D. Since H,eC",
the mapping 4 is C'. By (+.1), we easily observe that: If 2<¢ =<7
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and ¢, -+, ¢,€CD x [0, T)), then 8,8,, - -, 3,4, € C&2(D x [0, T]).
Differentiating (x.1) and (*.2) with respect to z;, we have:

(1) 415,32, O = 3, [0, B, 0), 0. 4z, O] -
Hence we have
() g ) =0+ 3 | 0,6, 0, DN, B, Olde

for 9,7 =1,---,n and (=, t)e D x [0, T].
Let W be the vector space of continuous mappings of D x [0, T] into
R". Define a linear operator : W — W by

@@, ) = 3 | 10, 88@, 0, DL, Dldz

h=1

fori=1,---,nand (x,t)eD x [0, T]. Fori =1, ---, n, define a mapping
0; in W by &, t) = (0, ++-, 0;) for (x,t)eD x [0, T]. Then, by (xx),
we have 0,4 =9, + £0, + ©%, + ---. This and (x.1) give [¢|y = C..

Here C, is a constant bounded with B. Further, by Lemma 3.A.9 and
an argument similar to that in the proof of Lemma 8.A.4, we observe
thatif 1< ¢<r—1land g, ---,4,eCD x [0, T]), thena, g, ---, 0., 8. €
C(D x [0, T]) and |az¢$1(q) = G + |Hlgn + |95[(q))' Here C,; is a con-
stant bounded with » and B.

Note that if £, 3,7, -+, 0,,f, 0.f € C(D x [0, T]), then feC«(D x
[0, T]) and | f |0 = Cill f 9 + 2-1102,f |0 + |0:f |1)- Consequently, with
the aid of (x.1), wehave: If1<q¢=<r—1landg, ---,¢,€C?D x [0, T)),
then 51: ] ngn € C(q+1)(D>< [Oy T)h and |§$|(q+1) =C1+ lHl(qH) + ]5!(0))* Here
C, is a constant bounded with » and B. From this, we obtain (i)-(iii) in
the lemma at once.

Define a mapping +: D x [0, T] — D by
(#%%) Sz, t),t) =2 for (x,t)eR* x [0, T].

Clearly 4 is well-defined and is an extension of . Since H, is C’, the
mapping + is C*.

By@nmd@mwemmew=%+YE@%mﬂafwi:
1, :.--,n and (x,f)cR" x [0, T']. Hence there is a positive constant Cj
determined by B such that if 0 < T < C;?, then |det[d,,d;(x, ©)]| = 1/2
for (x,t)e D x [0, T]. On the other hand, by (xx*), we have:

( 1 ) 2’::1 [ath’;z('\‘;(x, t); t)][aa:j“}h(x; t)]zaw for 1:’ .7=1’ Y n and (xr t) €
D x [0, T].
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(i) X3a[0,,8(F (=, 1), ONo i, O)]+0.8.(F(x, t), t) =0fori=1, ---, n
and (x,t)eD x [0, T].
Further, note that 3,6,(y(x, t), t) = H,(3((x, t), t), t). Then, with the aid
of Lemmas 3.A.9 and 3.A.10, by an argument similar to that in the proof
of (i)-(iii) in the lemma, we obtain (i’)-(iii’) in the lemma. This com-
pletes the proof of Lemma 8.B.5.

LEMMA 8.B.6. Let2=<k =< r. Let Bbe a positive constant. Suppose
that 0 < T = C5* where Cy is a constant determined by B. Suppose that
Z, 18 a (k, r, B)-\-fine operator. Define a mapping ¢: 2, — 0, so that:

(i) The mapping t+— (4(x, t), t) is the characteristic curve of Z,
starting from x€2, at t = 0.

(ii) 2, ={,t); xe2, and tc[0, T,]}.

Here T, is the largest number in [0, T'| such that ¢(x, t) can be defined
on [0, T,]. (We may assume that the boundary of 2, in R* x [0, T] is
C.) Define a mapping ¥: 2, — 2, by ¢(y(x, t), t) = x for (x, t) € 2,. (Since
Hiy(w,t)=0 for (o, t) e I'y, the mapping + is well-defined.) Then we have:

(1) @y -\ 6,€C(Dp).

( “) at¢1’ ) at¢fn € Cér_z)(‘QT)-

(iii) [glm = CA + [H + [Hili).

(iv) Yy, oy Yu € C"(2y).

(v) 0wy, =--, at")bn'n € Cér_ﬁ(QT)-

(vi) |Pln = CA + [Hly + [ Halm)-

Here C 1is a constant bounded with r and B.

PrROOF. By an argument similar to the proof of Lemma 8.B.5, the
lemma is proved.
LEMMA 8.B.7. Let 2 k< ». Let B,C, and N be positive constants.

Suppose that:
(1) The operator 57 s (k, r, B)-fine.
(ii) A limear operator 22 : C{"(I'y) — C"(I'y) is (k, r, C, N)-balanced.
(i) g€CP Ty
(iv) 0< T <G
Here Cjy 1s the constant introduced in Lemma 8.B.5. Consider the Cauchy
problem:

(1) = Fu+g on Iy.
(2) u[t=0=0'

Then the problem (1)-(2) has a unique solution w <€ C"(I'y). Further the
linear operator (57 — 22°) " C'(I'y) — C"(I'y) is (k, r,C', 1 + N + |H|,)-
integral-balanced. Here C’' is a constant bounded with », B, and C.
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Proor. We use the notations in Lemma 8.B.5. For (w, t)e¢(U, X
[0, T]), we call the n-tuple (y,(w, t), Ty Pa_i(w, t), t) the characteristic
coordinates of (w,t). Here +, is the 1-th component of the mapping
¥ ¢(U, x [0, T]) — U, with respect to the local coordinates in U,. Asis
well known, in the characteristic coordinates, (1) in the lemma is an
ordinary differential equation. Then, from Lemmas 3.A.9, 8.A.3, 8.A.4
and 8.B.5, the lemma follows immediately.

LEMMA 8.B.8. Let 2< k< r. Let B, C, and N be positive constants.
Suppose that:
(i) The operator F, is (k, r, B)-\-fine.
(ii) A linear operator o7 : C{"(2,) — C"(2,) is (k, r, C, N)-balanced.
(iii) g€ C(2y).
(iv) 0< T< G
Here Cy 1s the constant introduced in Lemma 8.B.6. Consider the Cauchy
problem:
(1) FPu=Zu+g in £2,.
(2) Ulmg = 0.
Then the problem (1)-(2) has a unique solution u e C{"(2;). Further, the
linear operator (F, — 9¢°)*: C{"(2,) — C(2,) is (k, r,C', 1 + N + |H|,, +
| H;|(,)-tntegral-balanced. Here C' is a constant bounded with r, B, and C.

PrOOF. We can easily obtain modifications of Lemmas 8.A.83 and
8.A.4 for the C{"(2,) case. Then, by using Lemma 8.B.6 in place of
Lemma 8.B.5, the lemma is proved as in Lemma 8.B.7.

LEMMA 8.B.9. Let <~ be a differential operator on 2, which is ex-
pressed as in (B) in Section 8. Let k and © be integers with 2 < k < 1.
Let o, B, C, and N be positive constants. Suppose that:

(i) The operator &~ 1is (¢, + k, & + 1, 0, B)-%-parabolic.

(ii) The operator &, is (&, + k, & + 1, B)-\-fine.

(iii) A limear operator .27 : C{**"(Q,)— CH*(2,) is (& + k, & + 1,
C, N)-balanced.

(iv) g&Cw(Ty).

(v) 0<Tx=C5
Here Cy 1is a constant introduced in Lemma 8.B.6. Consider the problem:

(1) FLu=0 m 2.
(2) u,t=0=0'
(3) u=0 on Jr.

(4) FPu=2%u+g on I,.
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Then the problem (1)-(4) has a solution weC*(2,). Further, the
mapping g+ u, where u is the obtained solution of (1)-(4), is an (&, + k,
&+ 1% C, 1+ N+ [Alen + [Hlero + | Hilepra)-integral-balanced linear
operator on CEt(I'y) imto C*(2,). Here C' is a constant bounded with
i, 0, B, and C and lAl(eow) = D=1 [Aﬂh[(eo+i) + Dot [ Agligro + |A0|<eo+i)-

Proor. If u belongs to C{**"(2,), then u satisfies (1)-(4) if and only
if it satisfies:

(1) FLPu =L Plu in 2.
(2" (P |iee =0 .

(3") FPu=0 on J,.

(4") Pu=%u+g on I,.

Here [, <] denotes the commutator, i.e., [£ A] = LF, — F< By
Lemma 8.B.3, we observe that Pu is expressed as Fu = _Zu + _179.
Here _#:C{&™9(2,) — C&o™9(2,) (resp. A7 CEotd(Iy) — Cot9(2,)) is an
(6 + k, &+ 1, C, N + [ Alror + | Hliegrn + | Halern)-balanced (resp. (e + &,
& + %, C;, | Al +0)-balanced) linear operator where C, (resp. C,) is a con-
stant bounded with ¢, ¢, B and C (resp. 4, 0 and B). Then, the lemma
is proved by Lemma 8.B.8.

9. Inversion of D.# (p). Finally we verify the condition (III) in
Nash’s implicit function theorem.

We solve the equation D.&#(0)dp = 0G where p and oG are given
and dp is unknown. By the definition of D.#(p), the above equation
means:

) F0U,) = 0L, )U, in 2.

(25) 0U, |0 =0.

(3av) oU,=0 on J,.

4;r) oU,=0 on [,.

Bsv) 0,00 + ¢{(0:U,)08S, + [0:(0U,)IS,} = 0G on I

Throughout this section, suppose that:

(i) =1, ---,11.

(ii) peV,n G +e([y).

(iii) oG € G{"H(I,).
Under these hypotheses, we seek odp € C{*"(I';) which satisfies (1,,)-
(5,y) when 7 = 2 and set .7(0)0G = dp.

(A) We eliminate do from the problem.
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For 6p e C{o(I'y), define a mapping de,: 2, — R™ x [0, T] by:

(9.1.)  dey(x(w, N), t) = (B(w, M + X,(M)p(w, t))op(w, ), 0)
for (z,t) = (x(w, ), t) e Ny x [0, T] .

(9.1.ii) de,(x, t) = (0,0) for (x,t)e (2, — Ny) x [0, T].
(See (1.2).) Let
9.2) U = Uyoezt.
Let
9.3) oV = oU, — {(grad u,) o e,, de,y .
First we show that
9.4) FoV =0 in 2.

Fix p and dp. Let D be a relatively compact subdomain with C~ boundary
in 2,. Let ¢ be a sufficiently small positive number. By (7.3), (9.2),
and (9.8), Uoiesp© €oresp — Upo o — 0V — e{(grad u,) o e,, d¢,y = &'R,, where R,
is bounded in C"(2,). Hence, by (9.1),

9.5) Upteso © Coteso — Wp© €oreso — €OV
= —[Upo€pie0 — Upo€, — e(grad u,) o e,, de,)] + R,
=R on D,

where R! is bounded in C"—2(D). Note that 5, .p(Upieso©Coiesp) =
Frreso(Wpo€presp) = 0 on D. Hence, by (9.5), F.000V = R on D, where
R is bounded in C™-*(D). Taking ¢ — 0, we obtain (9.4).

Secondly we eliminate 6o from the boundary condition on I';. In
a neighborhood of Iy, we have U,(x(w, \), t) = u.le.(x(w, ), t), ) =
U(5(@, M+ p(@, 1)), 1), 50 that ((grad u,)oe, de,y = [(B:u,)oe,l00 = (3:U,)dp.
Hence (4;;) and (5;;) can be rewritten in the form:

(45) oV + (0;U,)00 =0 on I',.
(5av) SF80 + ¢,8,0,0V =0G on I,.
Here

(9.6) 5 = 0, + el@:Up) il 3, 110/06.,;018)0.,

+¢o{[(02U) |o=ol[(9/00)S] + [(33U,) [1-0]S} -
(See (7.5).) For geCI;), define 5% g by:
(1) SH(FT9) =g on Ty .
(2) (7P iz = 0.
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Then, by (5,;), we have
9.7 00 = — 94,7 (S,0:0V) + 247G .

Inserting this in (4,;), we eliminate o from the boundary condition on I,.
Consequently we have:

,) SV =0 in Q.
(25[/) 6Vlt=0 = O .
(35;/) BV = 0 on JT .

(45) OV — c(0:U,) 47 1(S,0:0V) = —(0,U,) 940G on Iy .

This completes the elimination of dp.
(B) Extend S, to 2, by:

(9.8.1) So(@(w, V), t) = L(MW)Su(®@, ) + 1 — X(\)
for (z,t) = (x(w, \), t)e Ny x [0, T] .
(9.8.ii) So(x,t) =1 for (x,t)e(2, — N;) x [0, T].

Note that the extended S, also has a positive constant lower bound.
Extend 5%, to 2, by:

©9.) 27 =0+ alVI@UD i 3 (100600800,

+ o AWN[(0:U0) [1=0][(8/00)ST + [(03U,) 11=0]S}
on Ny x[0,T].

(9.9.ii) 4 =3, on (2, — Ni)x [0, T].
(See (9.6).) For geC(2,), define 5%4'g by:

(1) SHFT'9) =g in Q.

(2) (7P == 0.

Set

(9.10) 0X = 277Y(S,60V) .

We transform (1,,)-(4,,) into a problem for ¢X.
First we transform (1,,) into an equation for 6X. By (2,,), we have
(#0X)|—o = 0. Hence, by (1), we have
(9.11) LbX = S, 56,592, (S,0V)
= 6,56, Lo X + 22,7 (S0 V)
= 26,726, L10X + 22,7 (£58,)S5 (20 X))

= 2567 30 A0 l0.,(SN0.,(S (70 XN} -

g, h=1
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Clearly

0.12)  3,[S7(E0X)] = — 8710, X)
+ 87[0,,, SEBX) + 574(553.,5X) .

Let 5%, be the homogeneous part of the first order of 5#. By the
obvious formula S£5(f9) = (2£,.f)9 + (5#.9), we obtain

(9.13) T (FG) = F(2£,7'G) — 26,7 (24, F)(S67'G)] .
By (9.11), (9.12) and (9.138), we have

(9.14) L X — (£S,)8,0X — 2g,;.221 Ap,1l0,,(S)]0.,(Sp)]S, 20X
+2 3 4,00.,(S)187(0,,0X)
= 5558, LK — (96, ZS)S; P
=2 3% [, Apn(0.,(S)) @2, (SHS; DX
=2 31 Ay 0., (SIS (0., 23102

+2 3, [, A0in 02, (SNSI0.,0 X0} -

This is the equation for §.X.
Denote the left-hand side (resp. right-hand side) of (9.14) by C_E%BX
(resp. #,0X). Define a differential operator &, on 2, by

(9.15.1) Gy = S5 — Coxoo\*)[(az Up)l/l:o]‘spal on Ny X [O; T] .
(9.15.i) F =3, on (@ — Ny)x[0,T].

From (9.8) and (9.9), we observe that in a neighborhood of I';:

(1) 0x(Sef) = Sp(0:f)-
(ii) 0,24~ = 24570,
Then the problem (1,,)-(4;,) is transformed into the problem:

(Lox) FoX = #B6X in Q.

(2:x) 0X|,_o=0.

(3sx) 6X=0 on J,.

(46X) gyan = ——(a,z UP)SP%_I(SG on FT .

This is the problem for /X.
(C) By the assumption (A.3) in Theorem and the maximum principle

of the heat equation,



330 E.-I. HANZAWA

9.16) —¢(0:Un)S, = —&if(0:u,)0€,]S, =0 on Iy .

Now we can easily observe that:

(i) On Iy, if 7+ 11 (resp. © = 11), then 57, isan (r, — 1,7, — 5 +
44, B)-fine (resp. (v, — 1, r, + 38, B)-fine) operator. See (9.6) and the as-
sumption (T).

(ii) On @2, if 7 # 11 (resp. @ = 11), then 5%, ,isan (rr, — 1, 7, — 5 +
41, B)-\nfine (resp. (7, — 1, r, + 38, B)-A-fine) operator. See (9.9).

(iii) The operator cg%, is (ry — 8, 7, — T + 44, 0,, B')-#-parabolic. See
(9.14).

(iv) The composition 5#, %, is a spatial differential operator of the
second order whose coefficients belong to C{—*+(2,). See (9.14).

(v) If 2 11 (resp. ¢ = 11), then the homogeneous part of the first
order of &%, is an (r, — 1, 7, — 5 + 41, B)-\-fine (resp. (r, — 1, 7, + 38, B)-
A-fine) operator (see (9.15) and (9.16)).

Here B’ is a constant and B is a constant bounded with |a,|,, and |b[,,-

(D) Note that we can apply Lemma 8.B.9 to (1,,)-(4,;) if the right-
hand side of (1,;) is replaced by 0. To realize this idea, we introduce
three linear operators as follows. The compatibility of these definitions
is verified in (E).

Define a linear operator 2z/,: C{o="(2,) — C{ro-"+9(2,) by:

(1) G ZhX) = #H6X in Q.
(2,) (Z0X) |1 = 0.

32) 2,0X=0 on J,.
(42) 0(z,0X)=0 on I;,.

Here 6X belongs to C{-"""(2,). Define a linear operator %,: C{~"+9(2,) —
C£70—7+4i)(‘—Q—T) by:

(1) S(20X)=0 in 2.
(24) (2.0X));20=0.

(3s) 2,60X=0 on J,.

(42) T Z0X) = —2,60X on I,.

Here 06X belongs to C{~"**"(2,). Define a linear operator fz‘;;,,: Ciro=mH([ 1) —
C£r0—7+4i)(gT) by:

13) PAENG) =0 in 2.
(2;’) (%N’paG)lg=o = O .

(33 £0G =0 on J,.
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(42) FAZNR) = —(0,U,)S,57,0G on I, .

Here 0G belongs to C{ro-"+9([",).
Clearly, for 6X in Cyo~""(Q,), the problem (1,,)-(4;;) is equivalent
to the equation

(9.17) 0X = 20X + 2.0X + 2,06 .
(E) Let T be so small that:

(i) For 5%,,, we can use Lemmas 8.B.7 and 8.B.8.

(ii) For <% and the homogeneous part of the first order of K2
we can use Lemma 8.B.9.
First we consider (1,)-(4,). By Lemma 8.B.8,

9.18) [ R0 X (rp-ssart = ClI0X yrrane + (1 + [0]rp-tisn, ) 0K irya1,e]

for te[0, T]. Here C is a constant bounded with |a,|, s and |doi1s0-
By Lemma 3.B.3 and (9.18), the operator 7/, is well-defined and satisfies

(9‘19) | fz/PaXl('ro—7+4i),t é C[] 6‘Xl(ro-—7+4i),t + (1 + |‘0 I(r0—4+4i),T)| BXI('ro—a),t]

for t€[0, T]. The operator 2/, is (r, — 3, 7, — T+ 47, C, 1 + | 0|(sy—sts00.,17)-
balanced. Here Cis a constant bounded with |a,l, s and bl s From
(1,)-(4,) we obtain:

(1) G2 0X) =[5, 5612,0X in 2,.
(2) (2 dX) |1 = 0 .

(3) 72,0X =0 on J;.

(4) 02,0 X) =0 on I,.

Hence, by Lemma 3.B.3 and (9.19),

9.20) | 250700 X (—risne = Cll0X | (rp—rran,e + U+ | 0lrgmsran, ) 0X [ry—s1,e]
for te[0, T]. Here C is a constant bounded with [a,|, +5 and [bo](rsa0-
By Lemma 8.B.8 and (9.20),

t
O20)  1Zd Xy rion = O] || 10X p-reanede

t
SCERTIIL > .

for t€[0, T]. The operator 2/, is (1, — 8, 7, — T + 41, C, 1 + | 0| (sp—sr40r,7)-
integral-balanced. Here C is a constant bounded with |[a,l|, s and
| bo I (ro+30)

Secondly we consider (1,)-(4,) and (13)-(43). By Lemma 8.B.9 and
(9.20), the operator 2%, is well-defined and satisfies
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¢
(9.22) |%’3XI(1'0—7+41:),£ = C[So IaX](ro—7+4i),th

t
(@ 1Plpssiom) |, 10X pon ot |

for te[0, T]. Here C is a constant bounded with |a,|,, s and [Bo|,wsm-
By Lemmas 8.B.7 and 8.B.9, the operator ,%7,, is well-defined and satisfies

~ ¢
(9.23) | %BGI(rO—HM),t = Cl:go laGl(r0—7+4i),rdT

t
+ (L + [ 0lirg—sran,z) SO 'BGl(ro—a),rdT}

for te[0, T]. Here C is a constant bounded with |a,l, s and [by|q, sa-
Hence, by Lemma 8.A.4, (9.21), (9.22) and (9.23), we obtain the solu-
tion 6X of (9.17) which satisfies

(9-24) [6X|(1'0—7+4i),T = C[laGI(ro——7+4i),T + 1+ |p](r0—4+4i),T)I5G|(rg~3),T] .

Here C is a constant bounded with |al, 1 and [Bq] -
(F) Define a linear operator .#(): Ci~ (") — G{o=*+([",) by

(9.25) F(0)0G = —c0:0X + S£,710G
where 0.X is the solution of (9.17) in view of (9.7) and (9.10). By (9.24),
(9.25) and (4.5.i1), we easily observe that:

(i) DF(0)A(0)oG = 6G when ¢ = 2.

(ii) [ L(0)0G | ry-ssstr = ClI0G | (p—rianr + A + 1 0trg-sra0)| 0G | 1ry-n]-

(i) | S(0)F(0)|irp-sta0 = C(L + | 0] trg—san)-
Here C is a constant bounded with |a,|, s and |b|,, 4s. This proves
(III). On the condition 4 = 2 in (i), remember that we assume dp belongs

to C{(I'y) in (A).
REMARK. The “right inverse” .“#(p) thus constructed is also the
“left inverse” of D.7 (o).

(G) We have proved the conditions (I)-(III) in Nash’s implicit fune-
tion theorem for our setting. On the other hand, it is easy to see that
Ig-(p)l('ro—2—(so/2)),T = -9/’7_'(.0)l(ro—e),TTeo/4 ’
where C is a constant. Hence, by Nash’s implicit function theorem,

Theorem’ is proved.

10. Elimination of the technical assumption. Finally, in this sec-
tion, we show how our proof is modified when the assumption (T) in
Section 2 is replaced by the assumption (A.4) in Theorem in Section 1.
Let a, be a Hestenes-Whitney extension of a, to R*. Define a function
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%, on R* x [0, T,;) by solving
0, — Hu, =0

and w,|,—, = @,. Observe that the definitions of ¢,, S, and &%, in Sections
2 and 4 can be extended for peC"(I';) with small [p],. Recall that
a, € C*3(2). By the theory of nonlinear flrst-order equations (see e.g.,
Courant and Hilbert [8, Chapter 2]) and the weighted Holder estimate
for characteristic coordinate transforms (refer to Lemma 8.B.5), taking
T sufficiently small, we get p,€ C™™(I';) with small |p,|, such that
polt=o =0 and

0.0, + co[az(uooepo)]spo =0 on [,

because the right-hand side of the characteristic system (see [8, p.97])
consists of C"o**® functions. Then our problem is to seek peV, and

UeC(2,) which satisfy:

(1) FaU=0 in 2.
(2) Ulwy = a, -

(3) U=b, on J,.

(4) U=0 on I,.

(5) 0:(00 + ) + ¢(0:U)Sppsp =0 on Iy,

Here p, + p corresponds to p in Theorem in Section 1. Taking T and 4,
sufficiently small, we can suppose that & ., is parabolic and S, ., has a
positive lower bound for p€ V,. The assumption (A.4) implies that there
exists a solution Ue C"**(2,) of the above parabolic system (1)-(4) for
p€V,NCrt(I'y). Now we can define a mapping & : V, — C{**([";) by

7(.0) = 3:(()0 + P) + co(az U)Spo+p )

where U is the solution of the system (1)-(4). In this setting, replacing
the heat operator by &, and modifying the technical definitions and
lemmas slightly, the rest of the proof can be developed in the same
manner as in the case of the technical assumption (T).

NOTE ADDED IN PROOF. The author recently learned from the referee
and a few other persons that there exist two announcements “On the
classical solutions of the Stefan multidimensional problem, by B. M. Budak
and M. Z. Moskal, Dokl. Akad. Nauk SSSR Tom, 184 (1969), 1263-1266—
Soviet Math. Dokl., Vol. 10 (1969), 219-223” and “On classical solvability
of the multidimensional Stefan problem, by A. M. Meirmanov, Dokl. Akad.
Nauk SSSR Tom, 249 (1979)==Soviet Math. Dokl., Vol. 20 (1979), 1426-1429.”
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The former claims the local (-in-time) existence of the classical solutions
for the initial value problem of the two-phase multidimensional Stefan
problem, provided that the free boundary can be parametrized by flat
space variables. However, no proofs are given. Furter it seems that
the detailed proof has not been published yet. The latter claims that,
for the initial value problem of the two-phase multidimensional Stefan
problem, the local (-in-time) existence of the classical solutions can be
proved by parabolic regularization method, provided that the initial
normal gradient of the thermal distribution on the interface between
ice and water has a positive lower bound. Also no detailed proofs are
given.
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