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1. Statement of the result. In this paper we shall prove some
finiteness theorems of holomorphic mappings into a certain compact
complex analytic space which is hyperbolic in the sense of Kobayashi
[8]. Complex analytic spaces (or manifolds) are always assumed to be
reduced, connected and countable at infinity, and Hoi (X, Y) stands for
the set of all holomorphic mappings of a complex analytic space X into
another Y. In Sections 3 and 4 we shall show the following.

THEOREM 1. Let Y be a Car atheodory-hyperbolic compact complex
analytic space (cf. Section 3). Then, for any compact complex analytic
space X, there are at most finitely many holomorphic surjections of
X to Y.

COROLLARY 1. Let X and Y be as in Theorem 1. Then, for any
compact connected complex analytic subvarieties A of X and B of Y,
the set

{/6Hol(X, Y); f(A) = B}

is finite.

THEOREM 2. Let X be a compact complex analytic space and A a
compact connected complex analytic subvariety of X. Let M be a
complex analytic manifold with a complete hermitian metric ds2

M whose
holomorphic sectional curvature is bounded above by a negative constant.
Let B be a compact connected complex analytic subvariety of M. Then
the set

{feRol(X,M); f(A) = B)

is finite.

Immediately from Theorem 2 we obtain

COROLLARY 2. Let M be a compact complex analytic manifold
with a hermitian metric ds\ whose holomorphic sectional curvature is
negative. Then, for any compact complex analytic space X, there are
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at most finitely many holomorphic surjections of X to M.

Our proof of Theorem 1 is based on the complex analytic structure
of the space Hoi (X, Y) and the pseudoconvexity of the Caratheodory
pseudometric Eγ, on the universal covering space Yf of Y. In the
proofs of Theorems 1 and 2, Proposition 1 in Section 2 is the key.
Further we shall prove the following in Section 5.

THEOREM 3. Let M be a compact complex analytic manifold whose
holomorphic tangent bundle T(M) is negative in the sense of Grauert.
Then, for any compact complex analytic space X, there are at most
finitely many nonconstant holomorphic mappings of X into M.

For example, assume that M is a compact quotient of the unit
open ball B of the complex Euclidean space Cn by a properly discon-
tinuous group acting freely on B. As is well known, M admits a Kahler
metric of negative holomorphic bisectional curvature. Hence the holo-
morphic tangent bundle T(M) is negative in the sense of Grauert (cf.
[5, p. 208]). In this case Theorem 3 slightly generalizes Proposition 4
of Sunada's paper [14].

2. Holomorphic surjections. Let X be a compact complex analytic
space and Y a complex analytic space. It is well known that Hoi (X, Y)
equipped with the compact-open topology admits a universal structure
of a complex analytic space (not necessarily connected) such that the
canonical mapping

Φ:Xx Hoi (X, Y) -> Y

defined by the formula Φ(x, f) = f(x) for each (x, f) e X x Hoi (X, Y) is
holomorphic (cf. [7]).

LEMMA 1. Let X and Y be compact complex analytic spaces.
( i ) Let Xo {resp. Yo) be an irreducible component of X (resp. Y).

Then the set {/ 6 Hoi (X, Y); /(Xo) = Fo} is open and closed in Hoi (X, Y).
(ii) Let S be the set of all holomorphic surjections of X to Y.

Then S is open and closed in Hoi (X, Y) and, consequently, S is a com-
plex analytic subvariety of Hoi (X, F).

PROOF. Since Y is compact and connected, there exists a distance
p on Y which induces the topology of Y. Define the distance d on
Hoi (X, Y) by

d(f, g) = sup {ρ(f(x), g(x)); xeX}

for /, #eHol(X, Y). Then the compact-open topology of Hoi (X, Y)
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coincides with the metric topology associated with d on Hoi (X, Y). Put
H={feΈol(X,Y); f(X0)=Y0}. By virtue of Remmert's proper
mapping theorem, the closedness of H and S, i.e., the openness of
Hol(X, Y)\H and Hol(X, Y)\S, in Hoi (X, Y) follows from arguments
using the metric d on Hoi (X, Y).

( i ) Take any feH and suppose .that limn/n = / in Hoi (X, Y).
We denote by Sg(F0) the set of all singular points of the complex
analytic space Yo. Put m — dimc Yo. Since / \XQ: XO —> Yo is a proper
holomorphic surjection, / is of maximal rank m at some nonsingular
point of Xo\f-\Sg(Yo)) (cf. [11, Chap. VII]). Hence fn is of maximal
rank m at some nonsingular point of X0\f~1 (Sg (Fo)) for sufficiently
large n's. By the proper mapping theorem fn(XQ) is a compact irre-
ducible complex analytic subvariety of Y such that dimc/n(X0) = m for
sufficiently large n's. Consequently fn(X0) = Yo, i.e., fneH for suf-
ficiently large n'&. This means that H is open in Hol(X, Y).

(ii) Take any feS and suppose that l i m n / n = / in Hoi (X, Y).
Take any irreducible component YQ of Y. Then we can take an irredu-
cible component Xo of X such that /(Xo) = Yo. By (i) above we see
that fn(X0) = YQ and, consequently, fn{X) 3 Yo for sufficiently large n's.
Since Y has finitely many irreducible components, we see that fn(X) —
Y, i.e., fneS, for sufficiently large n's. This shows that S is open in
Hoi (X, Y).

Take any complex analytic space X. Throughout this paper we
denote by T(X) —> X the tangent (complex-linear) space over X in the
category of reduced complex analytic spaces (cf. [6], [13]). Each fiber
TX(X) in T(X) is the Zariski tangent space of X at xeX. We note
that, given any holomorphic mapping / : J5Γ—> Y between complex analytic
spaces X and Y, the differential /*: T(X) —> T{Y) is holomorphic. Let
7 be a complex analytic space and H a complex analytic subvariety of
Hoi (X, Y) assuming that X is compact. We want to describe the
differential Φ*: Γ(Xx H) -> T(Y), where Φ: X x jff-> Y is the restriction
of the canonical mapping Φ: X x Hoi (X, Γ) -> Γ. Consider the (complex-
linear) fiber space T(X) x T(H) > Xx H over Xx H. This fiber

space is naturally identified with the tangent space T(X x JT) over Xx
iϊ. In this situation, for any (£, ̂ ) 6 T(X) x Γ(iϊ) with (τx x τπ)(ξ, η) =
(x, h) e XxH, we have

( 1 ) Φ*(£, 7) = Λ*£ + (Φβ)*7 ,

where Φ,.: if—> Y (x e X) is the holomorphic mapping defined by Φx(h) =
for each fee if.
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In this paper we denote by N(X) —> X the normalization of a com-
Ίflz

plex analytic space X.
PROPOSITION 1. Let X and Y be compact irreducible complex

analytic spaces. Suppose that dimc S > 0 for the complex analytic sub-
variety

S = {/6Hol(X, Y); f(X) = Y}

of Ή.o\(X, Y). Then there are compact irreducible complex analytic
sets Γ of T(Y) and Λ of T{N{Y)) which satisfy the following conditions:

( i ) rF(Γ) = Y.
(ii) Γ Π (T(Y)\ 0) is not empty, where 0 denotes the zero section

of T{Y).
(iii) wr*(Λ) = Γ for the differential nYif: T(N(Y)) -> T(Y).

PROOF. Using Hartogs' theorem of holomorphy (cf. [4]), we see
easily that N(X) x N(S) is normal. Hence N(X) x N(S) > Xx S

Ύlχ X Us

is the normalization of X x S by the uniqueness of the normalization
of the complex analytic space X x S. Then we have a unique holomor-
phic mapping Φ: N(X) x N(S) —> N(Y) such that nγoφ = φo(nx x ns) on
N(X) x N(S) for the canonical holomorphic mapping Φ: X x S>—> Y (cf.
[6, Lemma 1]). Since d i m c £ > 0, we can take a point x0 of X, a non-
singular point h of S and an η Φ 0 in ΓA(JS) such that (ΦXQ)*i] Φ 0 in
T{Y)\ if not so, every irreducible component of S is zero-dimensional
and, consequently, dim cS = 0. We define the mapping a: X-+ T(Y) by

a{x) = {ΦX)*Ύ)

for each x e X. From (1) we see that a is holomorphic on X. Hence
a(X) is a compact irreducible complex analytic set of T(Y). Clearly
τΓoα(X) = h(X) = Yand (Φ.o)*3? ea(X)n (Γ(Γ)\O). Thus Γ = α(Z) satis-
fies the conditions (i), (ii) of the proposition. Now, take a point p0 of
N(X) such that nx(p0) = xQ. Since fc is a nonsingular point of S, there
exists a nonsingular point fe of N(S) and an ^ e Ti(N(S)) such that

%(Λ) = h , %„$ = η ,

where wΛ: T(N(S)) -> Γ(S) is the differential of ^ 5 : iV(S) -> S. Define
the mapping a: N(X)-+T(N(Y)) by &(p) = (Φ9)j) for each peN(X),
where Φp: N(S)-+N(Y) (peN(X)) is the holomorphic mapping defined
by ΦP(q) — Φ(p, q) for each qeN(S). Obviously a is holomorphic on
N(X). We regard KeN(S) as the holomorphic mapping Φ( ,h) of N(X)
into N(Y). Since ^Foφ = φo(^Γ x ^5) on N(X) x JY(JS), we have
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nγoh = honx

%o« = a°nx on N(X) .

Hence τmY)o&(N(X)) = h(N(X)) = N(Y). Further, for the compact
irreducible complex analytic set Λ = ά(N(X)) of T(N(Y)), we have
nγXΛ) = Γ in T(Y). This completes the proof.

LEMMA 2. Lei X be a pure-dimensional complex analytic space and
Y an irreducible complex analytic space. Let f:X—>Y be a proper
holomorphic surjection with finite fibers over Y. Then there exists a
nowhere dense complex analytic subvariety A of X which satisfies the
following conditions:

(a) f-'fiA) = A in X.
(b) X\A and Y\f(A) are nonsingular.
(c) f\τ\A-X\A-+Y\f(A) is a locally biholomorphic covering of

Y\f(A).

PROOF. By Holmann [6, Proposition 5], B = {xeX; corank,, (/) > 0}
is a complex analytic subvariety of X. Since f:X—>Y is a proper
holomorphic surjection with finite fibers over Y, dimc X = dimc Y and /
is of maximal rank at some nonsingular points of each irreducible com-
ponent of X (cf. [11, Chap. VII]). Hence B is nowhere dense in X. Put

in X, where Sg (X) (resp. Sg(F)) is the set of all singular points of X
(resp. Y). Then A is the required complex analytic subvariety of X.

3. Caratheodory-hyperbolic complex analytic spaces. Let X be a
complex analytic space. We denote by Δ(X) the set of all holomorphic
functions on X which take values in the unit open disc Δ of the com-
plex line C. The Caratheodory pseudometric Ex on T(X) is defined by

(2) ^ ( f ) = sup{ |Λ£| ;/eJ(X)}

for each ξ e T(X), where | | is the norm associated with the Poincare-
Bergman metric ds2 — dzdzfti. — zzf on Δ. Ex is a real-valued continuous
function on T(X) (cf. Reiffen [12]). Further we have the following (cf.
[10]):

(A) Given any holomorphic mapping f:X-^Y between complex
analytic spaces X and Γ, we have Eτ(f*ζ) ^ Ex(ξ) for every ςe T(X).

(B) Ex is invariant under the action of the holomorphic automor-
phism group of X.

(C) Ej=\ I on T(Δ).
Recall that a real-valued upper semicontinuous function % on a
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complex analytic space Z is said to be pseudoconvex on Z if and only
if, for any φ e Hoi {Δ, Z), u°φ is subharmonic on Δ (cf. [1]). We notice
that the continuous function | | is pseudoconvex on T(Δ) = Δ x C.
Hence, for any φ e Hoi (Δ, T(X)), Exoφ = sup {\f*φ\ fe Δ{X)} is sub-
harmonic on Δ. Thus we have:

LEMMA 3. Ex is pseudoconvex on T(X).

Consider the Caratheodory pseudodistance cx and the inner pseudo-
distance c\ induced by cx on X (cf. [10]). Then c\ is given by

(3 ) cΣ(p, q) = inf J#γ(τ*(ί, d/dt))dt

for given points p, q of X, where the infimum is taken over the family
of all piecewise smooth curves y from p to q in X (cf. [10, p. 354]).
By virtue of [12, Satz 2] we see that cΣ is a distance on X if and only
if the Caratheodory pseudodistance cx on X is non-degenerate in the
sense that each point p of X has an open neighborhood U in X such
that cΣ(p, q) > 0 for every q (Φp) in U. A complex analytic space Xis
said to be Caratheodory-hyperbolic if and only if there exists a covering
space X' of X such that c\> is a distance on the complex analytic space
X' (cf. [10, p. 367]). It is easy to see that X is Caratheodory-hyper-
bolic if and only if, for the universal covering space X' of X, cΣ, is a
distance on the complex analytic space X'. Notice that any connected
complex analytic subvariety of a Caratheodory-hyperbolic complex analytic
space X is also Caratheodory-hyperbolic. From (3) we have:

LEMMA 4. Let X be a Caratheodory-hyperbolic, simply connected
complex analytic space. If φ: D —> X is a holomorphic mapping defined
on a domain D of C such that Ex(φ*{z, d/dz)) = 0 for every zeD, then
φ is constant on D.

EXAMPLE. Every bounded domain of Cn is Caratheodory-hyperbolic
(cf. [10]). And a compact quotient of a bounded domain D of Cn by a
properly discontinuous group acting freely on D is Caratheodory-hyper-
bolic.

Let X be a compact complex analytic space and X' —> X the universal
7Γ

covering of X. Then we have the covering transformation group on
X' for the universal covering X' —> X, i.e., the group of holomorphic
automorphisms / on the complex analytic space X' such that πof = π
on X'. By virtue of (B) we have the pseudometric Όx on T(X) such
that
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( 4 ) Ex, = Dxoπ^

on T(X'), where π*: T{Xf)->T{X) is the differential of π. By Lemma
3 we have the following:

LEMMA 5. For a compact complex analytic space X, Dx is continu-
ous and pseudoconvex on T(X).

PROPOSITION 2. Let X be a Car atheodory-hyperbolic, compact irre-
ducible complex analytic space. Let Γ be a compact irreducible complex
analytic set of T(X) such that τx(Γ) — X. Then Γ is the zero section
of T(X) over X.

PROOF. Since the function Dx is pseudoconvex on T{X) by Lemma
5, Dx takes a constant value c on the compact irreducible complex
analytic set Γ of T{X). Since τx\Γ: Γ —> X is a proper holomorphic sur-
jection with finite fibers over X, by Lemma 2 we can take a nowhere
dense complex analytic subvariety A of Γ which satisfies the following
conditions:

(a) Γ Π τγτΣ{A) = A, and τx{A) is nowhere dense in X.
(b) Γ\A and X\τx(A) are nonsingular.
(c) τx\Γ\A- Γ\A —> X\τx(A) is locally biholomorphic.
Assume that there exists a y eΓ\A such that 7 Φ 0 in T(X); if not

so, Γ is obviously the zero section of T(X). Then we can take an open
neighborhood U of 7 in Γ\A such that V = τx(U) is open in X\τx(A)
and such that τx\σ: U —> V is biholomorphic. We may regard ^ ^ ( T ^ I ^ ) " 1 :

V —> 17 c T(X) as a holomorphic vector field over V. Then there exists
a holomorphic mapping h: Δr —> V such that

Λ^^, 3/5s) = μ(h(z)) for every 2 e z ί r ,

where J r = {2; e C; \ z \ < r) for some positive number r. We can take a
holomorphic lifting g\Δr—>Xf of /ι for the universal covering X'-*X

of X Since Dx(h*(z, d/dz)) = c for every 2 e J r , by (4) we have
(d) EAg*(z,dldz)) = c

for every zeAr. Furthermore 7' = #*(0, d/dz) Φ 0 in T(Xr), because
TΓ̂ CT') = ft*(0, d/dz) = γ ^ 0 . By Lemma 4 we see that c > 0, because g
is nonconstant on Δr. Since Λ(X') is a normal family of holomorphic
functions on Xr, we can take a holomorphic function feΔ(X') such
that

Furthermore, by (A) and (d), we have



580 T. URATA

\f*og^z, d/dz)\ £ EAvΛz, d/dz)) = c

for every z e Δr. Hence, for the holomorphic function φ = fog: Δr —> Δ,

\φ*(0,d/dz)\ = c

\Φ*(z, dldz)\ = | ^ ) | / ( 1 - IΦ(z)|2) ^c

for every z e Δr. Since | | — EΔ is pseudoconvex on T(Δ), the function
Iφ*('f d/dz)\ is subharmonic on Δr. By the maximum principle we have

\φ\z)\/(l- \Φ(z)\η = c

for every ze Δr. This implies that φ is constant on z/r. Hence c = 0.
This is a contradiction. Hence Γ is the zero section of T(X).

PROOF OF THEOREM 1. Let S be the complex analytic subvariety
consisting of all holomorphic surjections in Hoi (X, Y). Since Y is
Caratheodory-hyperbolic, Y is hyperbolic in the sense of Kobayashi (cf.
[10]). Hence Hoi (X, Y) is compact and so is S. If X and Y are irre-
ducible, Theorem 1 immediately follows from Propositions 1 and 2. In
the general case, take any irreducible component So of S and any
feS0. Then, for any irreducible component Yo of Y, there exists an
irreducible component Xo of X such that f(X0) = Y"o. Indeed #(Xo) = ^o
for every geS0 by Lemma 1. Since the subvariety Yo of Y is Cara-
theodory-hyperbolic, the set {heKo\(X0, Yo); h(X0) = Fo} is finite as
previously stated. By the connectedness of So we see that g = f on Xo

for every # 6 So. Since X is compact connected and Y is compact hy-
perbolic, by [15, Theorem 1] we see that So consists of a single element
in Hol(X, Y). This means that S is finite, because S has finitely many
irreducible components.

PROOF OF COROLLARY 1. Let A (resp. β) be a compact connected
complex analytic subvariety of X (resp. Γ). Put F = {/ e Hoi (X, Y);
f(A) = B}. Since the subvariety B of Y is Caratheodory-hyperbolic, by
Theorem 1 there are at most finitely many holomorphic surjections of
the space A to the space B. Hence, for an arbitrary point a of A,
there exists a finite subset Bo of B such that /(α) 6 Bo for every feF.
By [15, Theorem 1] we see that F is finite.

4. Proof of Theorem 2.

LEMMA 6. Let X be a complex analytic space and μ a holomorphic
vector field on X, i.e., a holomorphic mapping μ:X—>T(X) satisfying
τχoμ = identity on X. If μ(p0) Φ 0 in T(X) at pQ e X, then there exists
a nonconstant holomorphic mapping h: Δr —• X such that
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HO) = p0

h*(z, d/dz) = μ(h(z)) for every z e 4 ,

where Jr = {zeC;\z\ <. r} for some positive number r.

PROOF. It suffices to prove the lemma in the case that X is a
complex analytic sub variety of a domain of holomorphy D in C \ By
[13, Theorem 3.1] there exists a holomorphic vector field v on D such
that v\x = μ on X We may assume that po = OeXaD in C\ As is
well known, we can take local holomorphic coordinates zu --',zn in a
relatively compact Stein open neighborhood U of 0 in D such that v —
d/dzx on U. Here X f] U is given by the intersection of the zeros of
some holomorphic functions defined on U. Now, take any holomorphic
function /: U-* C such that / = 0 on I n U. Then μ(f) = df/dz, = 0 on
I ( Ί 17. We inductively see that dmf/dz? = 0 o n l n Ufor every positive
integer m. This means that {(z, 0, - , 0) eCn; ze Jr} aX for some
positive number r. Clearly /&(s) = (z, 0, , 0) (zeAr) is the required
holomorphic mapping.

Now, let M be a complex analytic manifold with a hermitian metric
ds2

]{. We denote by || || the norm associated with ds\ on T(M).

PROPOSITION 3. Suppose that the holomorphic sectional curvature
of (M, ds\t) is negative. Let f:D->Mbe a holomorphic mapping defined
on a domain D of C such that

UΛO&o, d/dz) || = sup {\\tez, d/dz) W zeD}

for some zQ e D. Then f is constant on D.

PROOF. In case ||/*(20, 9/9*011 = 0> clearly / i s constant on Zλ Assume
that ||/*0so, 9/9s) || > 0, i.e., f*(zQ, d/dz) Φ 0 in Γ(Λf). Then we can take
an open neighborhood U of zQ in D such that f*(z, d/dz) Φ 0 for every
ze U. Thus we have a nonsingular holomorphic curve /(Z7) of M. Since
f*ds\ = \\f*(z, d/dz)\\2dzdz on U, the Gaussian curvature K of the her-
mitian submanifold f(U) of M is given by

κ = , I L ^
\\

(z, d/dz)\

at each f(z)ef(U). Since the function ||/*( , 9/9s)||2 attains its maxi-
mum at zQe U, we have K — 0 at f(zo)e f{U). On the other hand, by
a theorem of Kobayashi [8, p. 39], the holomorphic sectional curvature
of the hermitian submanifold f(U) of M does not exceed that of M.
Hence K < 0 on f(U). This is a contradiction. This completes the
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proof.

We notice that a (complete) hermitian manifold (M, ds2

M) whose
holomorphic sectional curvature is bounded above by a negative constant
is (complete) hyperbolic in the sense of Kobayashi (cf. [8, p. 61]).

PROPOSITION 4. Suppose that the holomorphic sectional curvature
of (M, ds2

M) is negative. Let X be a compact irreducible complex analytic
space and Y a compact irreducible complex analytic subvariety of M.
Then the set S = {/ e Hoi (X, Y); f(X) = Y} is finite.

PROOF. Since Y is compact, we can take an open neighborhood M'
of Y in M such that the holomorphic sectional curvature of Mr is
bounded above by a negative constant. Since M' is hyperbolic, the
subvariety Y of Mf is also hyperbolic. Therefore the complex analytic
subvariety S of Hoi (X, Y) is compact. Hence it suffices to show
dimc S = 0.

Assume that dimc S > 0. Then, by Proposition 1, there are compact
irreducible complex analytic sets Γ of T(Y) and A of T(N(Y)) which
satisfy the following conditions:

( i ) zAΠ = Y.
(ii) Γ f] (T(Y)\O) is not empty for the zero section 0 of T(Y).
(iii) nγ£A) = Γ for the differential nγ;. T(N(Y)) -> T(Y).

Since Γ is compact, the continuous function || ||, restricted to Γ,
attains its maximum at some 70sΓ. Here τ0 Φ 0 in T(Y) by (ii) above.
Since nγχΛ) = Γ, there exists a λo6^1 such that nγ^X0 = γo Put p0 =
τv<r)(λo) in N(Y). Since τNiτ)\A: Λ-* N(Y) is a proper holomorphic surjec-
tion with finite fibers over N(Y), we can take an open neighborhood U
of λ0 in A which satisfies the following conditions:

(a) V — τN{Y)(U) is open in N(Y) and irreducible.
(b) τ = τvcnlf/: U-^ V is proper and surjective.
(c) τ-\p0) = {λ0}.

Since U is pure-dimensional, by Lemma 2 there exists a nowhere dense
complex analytic subvariety K of U such that τ\LΛK: U\K-+V\τ(K) is a
locally biholomorphic covering of V\τ(K). Then we have a holomorphic
vector field μ0 defined on V\τ(K) by the formula

Λ(P) = Σ λ (λ 6 τ~\p))

for each peV\τ(K). From the fact that τ is a proper holomorphic
surjection defined on a complex analytic subvariety U of TN\Y)(V), we
see that μ0: V\τ(K) -± T(N(Y)) is locally bounded on V. Since F is
normal, we have a holomorphic vector field μ defined on V such that
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i

ti\v\τ(κ) = A*o on F\τ(i£). Now, suppose that τ\LΛK: U\K-+V\τ(K) is an
s-sheeted covering of V\τ(K) for a positive integer s. Since nγχΛ) = Γ,
we see easily that

ll ^s | |7o| | on F .

Note that λ0 Φ 0 in T(N(Y)) because of wF,λo = To Φ 0. By Lemma 6
there exists a holomorphic mapping h: Δr —> F such that

p O f h*(zf d/dz) = μ(h(z))

for every 2 e zίr. Consider the holomorphic mapping g = nγoh: Δr —> Y c
M. Then we have

0,(0, 3/32) = sYo , || </*(*, 3/32) || - \\nτ.μ{h(z)) \\ £ s | | 7 o | |

for every zeAr. By Proposition 3, g is constant on Δr and hence 70 = 0.
This is a contradiction.

PROOF OF THEOREM 2. Note that M is hyperbolic in the sense of
Kobayashi and so is B. Hence S = {/eHol(A, B); f(A) = B) is a com-
pact complex analytic sub variety of Hoi (A, B). Take any irreducible
component So of S and any feS0. Then, for any irreducible component
2?o of 5, there exists an irreducible component Ao of A such that /(Ao) =
Bo. In addition, g(A0) = -Bo for every # e S 0 by Lemma 1. On the other
hand, since Bo is a compact irreducible complex analytic sub variety of
M, {he Hoi (Ao, Bo); h(AQ) = £0} is finite by Proposition 4. Therefore, by
the connectedness of So, we have g = / on Ao for every g 6 So. Then,
by [15, Theorem 1] and the connectedness of So, we see that So consists
of a single element in Hoi (A, B). This means that S is finite, because
S has finitely many irreducible components. Now, put F= {f e Hoi (X, M);
f{A) = B}. By the finiteness of S above, for an arbitrary point a of
A there exists a finite subset Bo of B such that /(α) 6 Bo for every
f eF. We notice that ikf is complete hyperbolic and so taut (cf. [10, p.
378]). Hence, by [15, Theorem 1], F is finite.

5. Proof of Theorem 3. Denote by 0 the zero section of T(M)
over the compact complex analytic manifold ikf. The negativity (in the
sense of Grauert) of T(M) means that there exists a smooth exhaustion
function φ on T(M) which is strongly plurisubharmonic outside the zero
section of T(M); in this case 0 is the only maximal compact connected
complex analytic sub variety of positive dimension in T(M). It has been
proved by Kobayashi [9] that a compact complex analytic manifold M
with the negative T(M) is hyperbolic. Here we give another proof of
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this assertion.

PROPOSITION 5. Let M be a compact complex analytic manifold
such that T(M) is negative in the sense of Grauert. Then M is hyper-
bolic in the sense of Kobayashi.

PROOF. Let f̂  be a hermitian metric on M. We denote by || ||
the norm associated with h on T(M). Let φ be a smooth exhaustion
function on T ( I ) which is strongly plurisubharmonic on T(M)\O.
Assume that M is not hyperbolic. Then, by a theorem of Brody [2],
there exists a nonconstant holomorphic mapping f:C-^M such that

for every zeC. Then Φ(f*(-9 d/dz)) is a bounded subharmonic function
on the complex line C, because {ξeT(M); \\ξ\\ ^1} is compact. Hence
this function is constant on C. Since φ is strongly plurisubharmonic on
T(M)\O, in consideration of small perturbations of φ on T(M) we obtain
that ||/*( , d/dz)\\ —0 identically on C. Consequently / is constant on
C. This is a contradiction.

Since M is compact and hyperbolic by Proposition 5, Hoi (X, M)
is compact and so every irreducible component of Hoi (X, M) is compact.
We notice that the set Ho of all constant mappings of X into M is a
connected component of Hoi (X, M). Let H be an arbitrary irreducible
component of Hoi (X, M) \ Ho such that dimcif > 0 . Then there exists
an xQeX such that ΦXQ:H-^M (see Section 2) is nonconstant. Further
we can take an heH and an ηeTh(H) such that (Φx)*ηφΰ in T(M).
Then, for the holomorphic mapping a:X-+T(M) defined by a(x) = (Φx)*η
for each x e X, a(X) is a compact connected complex analytic subvariety
of T(M) which is not contained in the zero section of T(M). Since
τMoa(X) = h(X) in M and h is nonconstant on X, we have dimcα(X)>0.
This contradicts the negativity of T(M). Hence dimc(Hol(X, M)\H0) = 0
and, consequently, Hoi (X, M) \ Ho is finite.
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