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An AI7*-algebra M is a C*-algebra with the following two properties:
(a) in the set of projections Mp in M, every orthogonal collection has a
least upper bound, (b) every maximal abelian *-subalgebra is generated
by its projections [2].

Kaplansky ([2], [3], [4] (see also [1])) showed that much of the "non-
spatial theory" of von Neumann algebras can be extended to AW*-
algebras. Above all, he showed that Mp is a complete lattice.

One of the difficulties in treating APT*-algebras is that, because of
the lack of the strong topology as in von Neumann algebras, there is
no guarantees for the fact that whenever {fβ} is an increasing net of
projections with the supremum / in Mp, then / is the supremum of {fβ}
in the partially ordered space Mh of the hermitian part of M.

An AW*-algebra M is said to be normal if, for every increasing
net {ea} of projections in M with the supremum e in Mp, e is the
supremum of {ea} in Mh (that is, if aeMh such that a ^ ea for all α,
then a ^ e) [8].

It is known that every monotone complete C*-algebra (a von Neumann
algebra, a type 1 A17*-algebra) is normal. In [8], Wright proved the
following interesting result, by using the regular ring, to the effect that
every finite ,4.17*-algebra is normal (a similar result was also proved by
Hamana by using the regular monotone completion of .A ΫP*-algebras [9]).

We say that an increasing net {ea} of projections with the supremum
e in Mp in a C*-algebra M is well-behaved if, whenever x (in Mh) satisfies
eaxea ^ 0 for all α, then exe ^ 0.

In this paper, by using the above concept, we shall show the follow-
ing theorem which is a nominally more general result on the one hand
and is a simple alternative proof of the theorem of Wright and Hamana
on the other (see Corollary).

THEOREM. Let M be an AW*-algebra. Then M is normal if and
only if every increasing net of projections in M is well-behaved.

* } This research was partially supported by National Science Foundation grant MCS
79-03041 (U.S.A.).
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This is, however, an easy consequence of the following proposition:

PROPOSITION. Let Mbe an AW*-algebra and let {ea} be an increasing
net in Mp with the supremum e in Mp. Then e is the supremum of {ea}
in Mh if and only if {ea} is well-behaved (the "if" part is valid for a
general (unital) C*-algebra).

We shall break up the proof of Proposition into a sequence of
lemmas.

LEMMA 1. Let M be a C*-algebra and let {ea} be an increasing net
in Mp with the supremum e in Mp. Suppose that {ea} is well-behaved.
Then e is the supremum of {ea} in Mh.

PROOF. We have only to check that ea ^ a for all a for some a in
Mh implies e ^ a. Let bn = (1/n + a)~ιam (see [5]) for each positive
integer n (note that a ^ 0). Then for every pair a and n,

(ejbn)*(ejbn) = a1/2(l/n + aYιea(l/n + a)~W/2 ̂  am(l/n + a^

= (a(l/n + a)"1)2 ^ 1 .

Thus we get that ||eα6n|| ^ 1 and (ej>n)(ejbn)* ̂  1 for every a and n,
that is, eJX — bnb*)ea ̂  0 for every a and n. Since {ea} is well-behaved,
this implies that e(l — bnb*)e ^ 0 for all n, that is, for each n, 1 ^ e ^
(ebn)(ebny.

On the other hand, since, for all n,

\\ea(e - ebna^)\\* = ||eβ(l - (1/n + aΓa)^

= ||(1 - (1/n + αΓαK(l - (1/n + α)"^)!!

^ ||(1 - (l/n + aYxa)a{χ - (ί/n + a^a)]]

^l/n'Wain + a)-1]] £ l/n ,

we see that

eJX/n ~{e- ebna
1/2)(e - ebna

m)*)ea ^ 0

for all a and n. Thus, by the same reasoning, we have that for all n

e(l/n - (e - ebna
1/2)(e - ebna

1/2)*)e ^ 0 .

This implies that for each n

and that

| |β - (β6 n α 1 2 )*(βδ w α 1 2 ) | | ^ | |(β - e6

^ Z{l/n)m
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for all n.
Combining these estimates, we see that

e ^ 3(l/w)ι/2 + (ebna
1/2)*(ebna

m) = 3(l/n)1/2 + αV2(eδJ*(Λn)α1'"2

<; 3(l/w)1/2 + a (because || ebn || ^ 1)

for all n, that is, e ^ α and the lemma follows.

The next lemma is due to Hamana ([9]) and is included only for
completeness.

LEMMA 2. Let M be a C*-algebra and let {ea} be an increasing net
in Mp with the supremum e in Mp. If e is the supremum of {ea} in
Mh, then for every non-negative a in M, {aeaa} has the supremum aea
in Mh.

LEMMA 3. Let M be an AW*-algebra and let {ea\ be an increasing
net in Mp with the supremum e in Mp. Suppose that e is the supremum
of {ea} in Mh. Then {ea} is well-behaved.

PROOF. We must show that exe ^ 0 for every x (in Mh) with eaxea ^ 0
for all a. To prove this, we may assume that \\x || ^ 1 and e = 1 with-
out loss of generality because {ea} has the supremum e in (eMe)k.

Since (1 + x)(l - ea)(l + x) - (1 - x)(l - ea)(l -x) = 2&(1 - ea) + 2(l-ea)x,
we see that

eaxea-x = (l-ea)x{l-ea)-(l-ea)x-x{l-ea)

= (1/2)((1 - aθ(l - ea)(l -x)-(l + x)(l- ea)(l + x)) + (1 - ea)x(l - ea)

^ (l/2)(l-x)(l-ea)(l-x) + l-ea (because | |aj| |^l and xeMh) .

If x = x+ - x~ (x+x~ = 0, x+ ^ 0, x- ^ 0) and x~ Φ 0, then by the
spectral theory, we can find a non zero projection q in M and a positive
number ε such that x~ ^ εq and (1 — q)x+ — x+. By the above estimates,
it follows that

qe*xeaq - qxq ^ (l/2)g(l - x)(l - ea)(l - x)q + q(l - ea)q .

Thus, noting that qeaxeaq ^ 0 for all α, we have

εq ^ qx~q = -qxq^ qeaxeaq - qxq <; (l/2)g(l - x)(l - ea)(l - x)q + g(

for all a. Since {(1/2)#(1 — x)(l — βα)(l — cc)g + g(l — O^} ^ a s the infimum
0 in Mh (by Lemma 2), we see that εq ^ 0 and # = 0. This is a con-
tradiction. Thus x~ = 0 and cc = x+ ^ 0. The lemma follows.

Combining Lemmas 1 and 3, we get Proposition (and Theorem follows
immediately from Proposition).
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COROLLARY. ([8], [9]). Let M be an AW*-algebra and {ea} be an
increasing net in Mp with the supremum e in Mp. Suppose that e — ea

is finite for all a. Then e is the supremum of {ea} in Mh. In particular
if M is finite, then M is normal.

PROOF. By Lemma 1, we have only to show that {ea} is well-behaved.
To prove this, we may assume that e = 1. Suppose that x in Mh satisfies
eaxea ^ 0 for all α.

If x~ Φ 0, then there are a non zero projection q in M and a posi-
tive number ε such that x" ^ εq and (1 — q)x+ = x+. Putting fa = eaΛ q,
we have

0 ^ faeaxeafa = faxfa = faqxqfa = -fax~qfa ^ -efaqf«

for all a and qfa = 0 for all α. Thus it follows that ea Λ q = 0 for all
a a n d q = q — ea Λ q ~ eaV q — ea ^ 1 — ea fo r all a. S ince 1 — ea is
finite for all α, this implies that q — 0, because 1 — ea | 0. This is a
contradiction. Thus cc ̂  0 and {ea} is well-behaved. This completes the
proof.

REMARKS. ( 1 ) Let M be an AW*-algebra and suppose that when-
ever {ea} is an orthogonal family of projections in M with the supremum
e in Mp, then e is the supremum of {ea} in Mh. Then M is normal.
(Note that M is normal if and only if M is an AW*-subalgebra of its
regular monotone completion M ([8], [9])). In fact, we have that e is
the supremum of {ea} in (M)p (see [9]) and M is an APF*-subalgebra of
M. Thus, by Corollary 3 of [8], M is normal. The fact that if M is
normal, then M is an AΫF*-subalgebra of M was proved in [9].

( 2 ) Let M be a normal, semi-finite A"FF*-factor and suppose that
M has a faithful state. Then M is a PΓ*-algebra. In fact, for each
increasing sequence of projections {en} in M with the supremum e in
Mp, it follows that for all p in ikfp, {penp} has the supremum pep iR ^
Thus by Remark after the proof of Theorem 1 in [7], we can prove the
above statement.
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ADDED IN PROOF (Received November 6, 1981). Proposition still holds
for general unital C*-algebras. To prove this, we have only to check
that Lemma 3 is valid under the condition that M is a unital C*-algebra.
In fact, in the same way as that in the first half of the proof of Lemma
3, we conclude that for every α, eaxea —#<;(1/2)(1 — x)(l—ea)(l—x) + l — ea,
because \\x\\^l a,nάxeMh. Take y = (l/2)((x2)m + x) and z = (l/2)((x2)1/2-x).
We see that x — y—z, y, zeMh, zy = Q and 2^0, y^Q. Moreover, y and
z commute with x. Hence, it follows from the above inequality that

zeαxeαz — zxz <; (1/2)2(1 — x)(l — eα)(l — x)z + z(l — eα)z .

Thus, since zeαxeαz ^ 0 for all α and zxz = —z\ we see that z* ^
(l/2)z(l — x)(l — eα)(l — x)z + z(l + eα)z for all α and, by the same rea-
soning as that in Lemma 3, it follows that z% ̂  0, that is, 2 = 0. The
proof is completed.

Using this, we can give a simple proof of the following corollary
(the special, but important, case for Corollary 4.10 in [9]).

COROLLARY A. Let A be α unital C*-algebra. Then for an increas-
ing net {ea} of projections in A with the swpremum e in Ap, suppose
that e is the supremum of {ea} in Ah (or equivalently that {ea} is well
behaved). Then xex* is the supremum of {xeax*} in Ah for each xeA.

We have only to show that xeax* ^ a for all a for some aeAh implies
that xex* ^ a. xeax* ^ a implies that

(α + l/n)-1/2xeax*(a + l/n)-1/2 ^ 1

for each a and n because a ^ 0. Thus we get that | |(α + l/n)~mxea\\ ^ 1
for each a and n. This implies that ea{e — ex*(a + ljn)~1xe)ea ^ 0 for all
α. Since {ea} is well behaved, it follows that

e[e — ex*(a + l/n)~1xe)e ^ 0

and ]]ecc*(α + ljn)~1xe\\ ^ 1 for all n. Thus we conclude that

(α + l/n)-1/2xex*(a + l/n)~ί/2 £ 1



572 K. SAiTό

for all n. This implies that xex* <ί a + 1/n for all n and xex* <i a. This
completes the proof.

The author would like to express his gratitude to Professor S. K.
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