FEJÉR-RIESZ INEQUALITY FOR HOLOMORPHIC FUNCTIONS OF SEVERAL COMPLEX VARIABLES

Morisuke Hasumi and Nozomu Mochizuki

(Received August 1, 1980)

1. Introduction. If $f(z)$ is a holomorphic function on the closed unit disc $|z| \leqq 1$, then the inequality

$$
\begin{equation*}
\int_{-1}^{1}\left|f\left(\rho e^{i \theta}\right)\right|^{p} d \rho \leqq \frac{1}{2} \int_{0}^{2 \pi}\left|f\left(e^{i t}\right)\right|^{p} d t \tag{1}
\end{equation*}
$$

holds for any $\theta, 0 \leqq \theta<2 \pi$, and any $p>0$, where the constant $1 / 2$ is the best possible. This is the inequality mentioned in the title and was obtained by Fejér and Riesz [3]. The purpose of this note is to extend this result to holomorphic functions defined on the unit ball of the complex n-space \boldsymbol{C}^{n} and then to apply it to obtain a certain geometric property of quasiconformal holomorphic mappings.

For the points of C^{n} we shall use the notation $z=\left(z_{1}, \cdots, z_{n}\right)$, where $z_{k}=x_{2 k-1}+i x_{2 k} \in \boldsymbol{C}, 1 \leqq k \leqq n$, and $x_{l}, 1 \leqq l \leqq 2 n$, are real variables. Under the correspondence $\boldsymbol{z} \rightarrow\left(x_{1}, \cdots, x_{2 n}\right)$ the space \boldsymbol{C}^{n} is identified with the real Euclidean space $\boldsymbol{R}^{2 n}$. The inner product $\langle z, w\rangle$ in \boldsymbol{C}^{n} is defined by the expression $\sum_{k=1}^{n} z_{k} \bar{w}_{k}$. When z, w are viewed as vectors in $\boldsymbol{R}^{2 n}$, their inner product $\langle z, w\rangle_{r}$ is given by the real part of $\langle z, w\rangle$, i.e., $\langle z, w\rangle_{r}=\operatorname{Re}(\langle z, w\rangle)$. Let B be the open unit ball $\left\{\left.z \in C^{n}\left|\sum_{k=1}^{n}\right| z_{k}\right|^{2}<1\right\}$ of C^{n} and ∂B be the boundary of B. The surface area element of the sphere ∂B will be denoted by $d \tau$. For any $p, 0<p<\infty$, the Hardy space $H^{p}(B)$ is then defined as the set of holomorphic functions f on B such that

$$
\sup \left\{\int_{\partial B}|f(r z)|^{p} d \tau(z) \mid 0<r<1\right\}<\infty .
$$

For $f \in H^{p}(B)$ the radial limit $f^{*}(z)$ is known to exist for almost every point $z \in \partial B$ and the resulting function f^{*} belongs to the L^{p}-space on ∂B with respect to the measure $d \tau$ (cf., Stein [6; Chapter II, Section 9]). In §2 we shall prove the following

Theorem 1. Let L be any hyperplane in the space $\boldsymbol{R}^{2 n}$ passing through the origin, d σ the surface area element of L, and w a unit vector in \boldsymbol{C}^{n} which is orthogonal to L with respect to the real inner
product \langle,\rangle_{r}. Then the inequality

$$
\begin{equation*}
\int_{L \cap B}|f(z)|^{p} d \sigma(z) \leqq \frac{1}{2} \int_{\partial B}\left|f^{*}(z)\right|^{p}|\langle z, w\rangle| d \tau(z) \tag{2}
\end{equation*}
$$

holds for any $p, 0<p<\infty$, and any $f \in H^{p}(B)$. In particular, we have

$$
\begin{equation*}
\int_{L \cap B}|f(z)|^{p} d \sigma(z) \leqq \frac{1}{2} \int_{\partial B}\left|f^{*}(z)\right|^{p} d \tau(z) \tag{3}
\end{equation*}
$$

As is well known, the classical Fejér-Riesz theorem has a simple geometric meaning. Namely, if a univalent holomorphic function maps the unit disc $|z|<1$ onto the interior of a domain bounded by a rectifiable Jordan curve C, then the image of any diameter is shorter than the half of the length of C. As an application of Theorem 1 it is possible to prove an analogous geometric result for K-quasiconformal holomorphic mappings from the closed unit ball in $\boldsymbol{C}^{n} . \S 3$ is devoted to the proof of the following

Theorem 2. Let F be a univalent holomorphic mapping of the closed unit ball \bar{B} into \boldsymbol{C}^{n}, which is K-quasiconformal with a constant $K \geqq 1$ in the sense of $W u$ [7] (cf., §3 of this note). Let Area (Γ) denote the real $(2 n-1)$-dimensional volume of a hypersurface Γ in the space $\boldsymbol{R}^{2 n}$. Then, for the hyperplane in $\boldsymbol{R}^{2 n}$ of the form $L_{n}=\left\{z \in \boldsymbol{C}^{n} \mid \operatorname{Im} z_{n}=0\right\}$, we have

$$
\begin{equation*}
\text { Area }\left(F\left(L_{n} \cap B\right)\right) \leqq 2^{-1} K^{2 n}\left(1+(2 n-1) \alpha_{K}\right)^{1 / 2} \operatorname{Area}(F(\partial B)) \tag{4}
\end{equation*}
$$

where the consant $\alpha_{K}, 0 \leqq \alpha_{K}<1$, is determined by the equation

$$
\left(1-\alpha_{K}\right)^{2 n-1}\left(1+(2 n-1) \alpha_{K}\right)=K^{-4 n}
$$

In general, for any hyperplane L in $\boldsymbol{R}^{2 n}$ passing through the origin, we have

$$
\begin{equation*}
\text { Area }(F(L \cap B)) \leqq 2^{-1} K^{\prime 2 n}\left(1+(2 n-1) \alpha_{K^{\prime}}\right)^{1 / 2} \operatorname{Area}(F(\partial B)) \tag{5}
\end{equation*}
$$

where $K^{\prime}=K\left(1+(2 n-1) \alpha_{K}\right)^{1 / 2}$.
2. Proof of Theorem 1. First we shall prove a slightly more general result as a lemma. For $z=\left(z_{1}, \cdots, z_{n}\right) \in C^{n}, n \geqq 2$, we set $\widetilde{z}=$ $\left(z_{1}, \cdots, z_{n-1}\right)$ and $\|\widetilde{z}\|=\left(\sum_{k=1}^{n-1}\left|z_{k}\right|^{2}\right)^{1 / 2}$.

Lemma 1. Suppose that the function $f(z)$ is continuous on the closed unit ball \bar{B} and, for each fixed $\widetilde{z} \in C^{n-1}$ with $\|\widetilde{z}\|<1$, the function $z_{n} \rightarrow$ $f\left(\widetilde{z}, z_{n}\right)$ is holomorphic on the disc $\left|z_{n}\right|<\left(1-\|\widetilde{z}\|^{2}\right)^{1 / 2}$. Let $d \sigma_{n}$ be the surface area element of $L_{n}=\left\{z \in C^{n} \mid \operatorname{Im} z_{n}=0\right\}$. Then

$$
\begin{equation*}
\int_{L_{n} \cap B}|f(z)|^{p} d \sigma_{n}(z) \leqq \frac{1}{2} \int_{\partial B}|f(z)|^{p}\left|z_{n}\right| d \tau(z) \tag{6}
\end{equation*}
$$

for every $p, 0<p<\infty$, where the constant $1 / 2$ is the best possible.
Proof. Note that the case $n=1$ in (6) is the original Fejér-Riesz inequality (1), which is assumed to be known.

Let $n \geqq 2$. We define polar coordinates for ∂B as follows:

$$
\begin{align*}
& x_{1}=\cos \theta_{1}, \\
& x_{2}=\sin \theta_{1} \cos \theta_{2}, \\
& \ldots \ldots \tag{7}\\
& x_{2 n-1}=\sin \theta_{1} \sin \theta_{2} \cdots \sin \theta_{2 n-2} \cos \theta_{2 n-1}, \\
& x_{2 n}=\sin \theta_{1} \sin \theta_{2} \cdots \sin \theta_{2 n-2} \sin \theta_{2 n-1},
\end{align*}
$$

where $0 \leqq \theta_{1}, \cdots, \theta_{2 n-2} \leqq \pi$ and $0 \leqq \theta_{2 n-1}<2 \pi$. The surface area element of ∂B with respect to this parametrization is given by $d \tau=$ $\prod_{k=1}^{2 n-2} \sin ^{2 n-1-k} \theta_{k} d \theta_{1} \cdots d \theta_{2 n-1}$. Choose an arbitrary $\widetilde{z} \in \boldsymbol{C}^{n-1}$ with $\|\widetilde{z}\|<1$, which is fixed for a moment. If $z=\left(\widetilde{z}, z_{n}\right) \in \partial B$, then $z_{n}=(1-$ $\left.\|\widetilde{z}\|^{2}\right)^{1 / 2} \exp \left(i \theta_{2 n-1}\right)$ for a unique $\theta_{2 n-1}, 0 \leqq \theta_{2 n-1}<2 \pi$, where $z_{k}=x_{2 k-1}+i x_{2 k}$, $1 \leqq k \leqq n-1$, and $\theta_{k}, 0 \leqq \theta_{k} \leqq \pi$, are fixed for $k, 1 \leqq k \leqq 2 n-2$. Now consider the function $\zeta \rightarrow f\left(\widetilde{z},\left(1-\|\widetilde{z}\|^{2}\right)^{1 / 2} \zeta\right)$ of a complex variable ζ. Since this function is holomorphic on the disc $|\zeta|<1$ and continuous on $|\zeta| \leqq 1$, the Fejér-Riesz inequality (1) implies that

$$
\int_{-1}^{1}\left|f\left(\widetilde{z},\left(1-\|\widetilde{z}\|^{2}\right)^{1 / 2} t\right)\right|^{p} d t \leqq \frac{1}{2} \int_{0}^{2 \pi}\left|f\left(\widetilde{z},\left(1-\|\widetilde{z}\|^{2}\right)^{1 / 2} \exp \left(i \theta_{2 n-1}\right)\right)\right|^{p} d \theta_{2 n-1}
$$

Putting $z_{n}=\left(1-\|\tilde{z}\|^{2}\right)^{1 / 2} \exp \left(i \theta_{2 n-1}\right)$ and $\left|z_{n}\right| t=x$, we have

$$
\begin{equation*}
\int_{-\left|z_{n}\right|}^{\left|z_{n}\right|}|f(\widetilde{z}, x)|^{p} d x \leqq \frac{1}{2} \int_{0}^{2 \pi}\left|f\left(\widetilde{z}, z_{n}\right)\right|^{p}\left|z_{n}\right| d \theta_{2 n-1} \tag{8}
\end{equation*}
$$

Let $x=x_{2 n-1}=\sin \theta_{1} \cdots \sin \theta_{2 n-2} \cos \theta_{2 n-1}, 0 \leqq \theta_{2 n-1} \leqq \pi$, so that the lefthand side of (8) is equal to

$$
\int_{0}^{\pi}\left|f\left(\widetilde{z}, x_{2 n-1}\right)\right|^{p} \sin \theta_{1} \cdots \sin \theta_{2 n-1} d \theta_{2 n-1}
$$

On the other hand, the mapping $\left(\theta_{1}, \cdots, \theta_{2 n-1}\right) \rightarrow\left(x_{1}, x_{2}, \cdots, x_{2 n-1}\right)$ in (7) with $0 \leqq \theta_{1}, \cdots, \theta_{2 n-1} \leqq \pi$ defines a parametrization for $L_{n} \cap B$, in which we can write $d \sigma_{n}=\prod_{k=1}^{2 n-1} \sin ^{2 n-k} \theta_{k} d \theta_{1} \cdots d \theta_{2 n-1}$. It follows that
(9) $\int_{L_{n} \cap B}|f(z)|^{p} d \sigma_{n}(z)$

$$
=\int_{0}^{\pi} \cdots \int_{0}^{\pi}\left(\int_{0}^{\pi}\left|f\left(\widetilde{z}, x_{2 n-1}\right)\right|^{p} \prod_{k=1}^{2 n-1} \sin \theta_{k} d \theta_{2 n-1}\right) \prod_{k=1}^{2 n-2} \sin ^{2 n-1-k} \theta_{k} d \theta_{1} \cdots d \theta_{2 n-2}
$$

$$
\begin{aligned}
& \leqq \int_{0}^{\bar{z}} \cdots \int_{0}^{\pi}\left(\frac{1}{2} \int_{0}^{2 \pi}\left|f\left(\widetilde{z}, z_{n}\right)\right|^{p}\left|z_{n}\right| d \theta_{2 n-1}\right) \prod_{k=1}^{2 n-2} \sin ^{2 n-1-k} \theta_{k} d \theta_{1} \cdots d \theta_{2 n-2} \\
& =\frac{1}{2} \int_{\partial B}|f(z)|^{p}\left|z_{n}\right| d \tau(z)
\end{aligned}
$$

Finally, let $p>0$ and let $\varepsilon>0$. Since $1 / 2$ is the best possible in the case $n=1$, there exist a holomorphic function $h(z)$ on the disc $|z| \leqq 1$ and a constant $\rho_{0}, 0<\rho_{0}<1$, such that

$$
\int_{-1}^{1}|h(\rho t)|^{p} d t>\left(\frac{1}{2}-\varepsilon\right) \int_{0}^{2 \pi}\left|h\left(\rho e^{i \theta}\right)\right|^{p} d \theta
$$

for all $\rho, \rho_{0} \leqq \rho \leqq 1$. Define a function f with $\varepsilon^{\prime}>0$ by

$$
f\left(\widetilde{z}, z_{n}\right)=h\left(\left(1+\varepsilon^{\prime}-\|\tilde{z}\|^{2}\right)^{-1 / 2} z_{n}\right) .
$$

Clearly, f satisfies the stated assumptions. Take $\widetilde{z},\|\tilde{z}\| \leqq \delta, \delta=$ $\left(\left(1-\left(1+\varepsilon^{\prime}\right) \rho_{0}^{2}\right)\left(1-\rho_{0}^{2}\right)^{-1}\right)^{1 / 2}$, and consider $z=\left(\widetilde{z}, z_{n}\right)$ on ∂B. Then

$$
\int_{-\left|z_{n}\right|}^{\left|z_{n}\right|}|f(\widetilde{z}, x)|^{p} d x>\left(\frac{1}{2}-\varepsilon\right) \int_{0}^{2 \pi}\left|f\left(\widetilde{z}, z_{n}\right)\right|^{p}\left|z_{n}\right| d \theta
$$

where $z_{n}=\left|z_{n}\right| e^{i \theta}$. Now divide ∂B into S_{1} and S_{2}, where $S_{1}:\|\widetilde{z}\| \leqq \delta$ and $S_{2}:\|\widetilde{z}\|>\delta$. It can be seen just as in the inequality (9) that

$$
\begin{aligned}
& \int_{L_{n}: B}|f(z)|^{p} d \sigma_{n}(z)>\left(\frac{1}{2}-\varepsilon\right) \int_{S_{1}}|f(z)|^{p}\left|z_{n}\right| d \tau(z) \\
& \quad=\left(\frac{1}{2}-\varepsilon\right)\left(\int_{\partial B}|f(z)|^{p}\left|z_{n}\right| d \tau(z)-\int_{S_{2}}|f(z)|^{p}\left|z_{n}\right| d \tau(z)\right),
\end{aligned}
$$

where the second term tends to 0 as $\varepsilon^{\prime} \rightarrow 0$. It follows that

$$
\int_{L_{n} \cap B}|f(z)|^{p} d \sigma_{n}(z)>\left(\frac{1}{2}-2 \varepsilon\right) \int_{\partial B}|f(z)|^{p}\left|z_{n}\right| d \tau(z)
$$

for a sufficiently small ε^{\prime}.
Proof of Theorem 1. Choose a unitary transformation U in C^{n} in such a way that $U w=(0, \cdots, 0, i)$. Then we have clearly $U(L)=L_{n}$. First assume that f is holomorphic in a neighborhood of the closed ball \bar{B}. In view of Lemma 1 we have

$$
\int_{L_{n} \cap B}\left|\left(f \circ U^{-1}\right)\left(z^{\prime}\right)\right|^{p} d \sigma_{n}\left(z^{\prime}\right) \leqq \frac{1}{2} \int_{\partial B}\left|\left(f \circ U^{-1}\right)\left(z^{\prime}\right)\right|^{p}\left|z_{n}^{\prime}\right| d \tau\left(z^{\prime}\right) .
$$

Since $\left|z_{n}^{\prime}\right|=\left|\left\langle z^{\prime},(0, \cdots, 0, i)\right\rangle\right|=|\langle U z, U w\rangle|=|\langle z, w\rangle|$ with $z^{\prime}=U z$ and since unitary transformations in \boldsymbol{C}^{n} do not change the surface area element of any surface, we have

$$
\begin{equation*}
\int_{L \cap B}|f(z)|^{p} d \sigma(z) \leqq \frac{1}{2} \int_{\partial B}|f(z)|^{p}|\langle z, w\rangle| d \tau(z) . \tag{10}
\end{equation*}
$$

We now take an arbitrary $f \in H^{p}(B)$. Set $f_{r}(z)=f(r z)$ for $0 \leqq r<1$. Since f_{r} are holomorphic in neighborhoods of \bar{B}, the inequality (10) holds for these functions. If we set $F(z)=\sup \left\{\left|f_{r}(z)\right|^{p} \mid 0 \leqq r<1\right\}$ for $z \in \partial B$, then $F(z)$ is integrable with respect to the measure $d \tau$ as shown by Rauch [5; Theorem 1]. This implies that

$$
\int_{\partial B}\left|f_{r}(z)\right|^{p}|\langle z, w\rangle| d \tau(z) \rightarrow \int_{\partial B}\left|f^{*}(z)\right|^{p}|\langle z, w\rangle| d \tau(z)
$$

as r tends to 1 . Hence, by means of Fatou's lemma, we have

$$
\begin{aligned}
\int_{L \sim B}|f(z)|^{p} d \sigma(z) & \leqq \liminf _{r \rightarrow 1} \int_{L \cap B}\left|f_{r}(z)\right|^{p} d \sigma(z) \\
& \leqq \lim _{r \rightarrow 1} \frac{1}{2} \int_{\partial B}\left|f_{r}(z)\right|^{p}|\langle z, w\rangle| d \tau(z) \\
& =\frac{1}{2} \int_{\partial B}\left|f^{*}(z)\right|^{p}|\langle z, w\rangle| d \tau(z),
\end{aligned}
$$

as was to be proved.
3. An application to quasiconformal holomorphic mappings. Let D be a domain in \boldsymbol{C}^{n} and let $F: D \rightarrow \boldsymbol{C}^{n}$ be a holomorphic mapping, $F=$ $\left(F_{1}, \cdots, F_{n}\right)$, where F_{j} are holomorphic functions defined in D. We say that F is K-quasiconformal in D if there exists a constant $K>0$ such that

$$
\begin{equation*}
\left\|\partial F / \partial z_{k}\right\| \leqq K\left|\operatorname{det} J_{F}\right|^{1 / n} \tag{11}
\end{equation*}
$$

on D for $1 \leqq k \leqq n$. Here, \| \| denotes the Euclidean norm of C^{n}, $\partial F / \partial z_{k}=\left(\partial F_{1} / \partial z_{k}, \cdots, \partial F_{n} / \partial z_{k}\right)$ and J_{F} is the complex Jacobian matrix $\left(\partial F_{j} / \partial z_{k}\right)$ of F (cf., Wu [7; p. 229]).

We note that the K-quasiconformality has an equivalent formulation in terms of real coordinates. Namely, D can be considered as a domain in $\boldsymbol{R}^{2 n}$, denoted by D_{R}, and F_{j} are expressed by real-valued functions $G_{l}\left(x_{1}, \cdots, x_{2 n}\right), 1 \leqq l \leqq 2 n$, with the domain D_{R} such that

$$
F_{j}\left(z_{1}, \cdots, z_{n}\right)=G_{2 j-1}\left(x_{1}, \cdots, x_{2 n}\right)+i G_{2 j}\left(x_{1}, \cdots, x_{2 n}\right), \quad 1 \leqq j \leqq n
$$

Setting $G=\left(G_{1}, \cdots, G_{2 n}\right)$, we get a mapping of D_{R} into $\boldsymbol{R}^{2 n}$. Then F is K-quasiconformal if and only if the mapping G is K-quasiconformal in the sense that

$$
\begin{equation*}
\left\|\partial G / \partial x_{l}\right\| \leqq K\left|\operatorname{det} J_{G}\right|^{1 / 2 n} \tag{11'}
\end{equation*}
$$

on D_{R} for $1 \leqq l \leqq 2 n$, where $\left\|\|\right.$ denotes the Euclidean norm of $\boldsymbol{R}^{2 n}$, $\partial G / \partial x_{l}=\left(\partial G_{1} / \partial x_{l}, \cdots, \partial G_{2 n} / \partial x_{l}\right)$, and J_{G} is the Jacobian matrix $\left(\partial G_{m} / \partial x_{l}\right)$ of G. Indeed, it is easily checked by means of Cauchy-Riemann equations that $\left\|\partial G / \partial x_{2 k-1}\right\|=\left\|\partial G / \partial x_{2 k}\right\|=\left\|\partial F / \partial z_{k}\right\|, \quad 1 \leqq k \leqq n, \quad$ and $\quad\left|\operatorname{det} J_{G}\right|=$ $\left|\operatorname{det} J_{F}\right|^{2}$. So (11) and (11') are equivalent. In order to prove Theorem 2 we need the following

Lemma 2. Let A be a nonsingular $N \times N$ matrix with real entries and regard it as a linear transformation in the real Euclidean N-space \boldsymbol{R}^{N}. Let $\boldsymbol{a}_{j}, 1 \leqq j \leqq N$, be the j-th column vector of A so that $A=$ $\left(\boldsymbol{a}_{1} \cdots \boldsymbol{a}_{n}\right)$. The transformation A maps the unit sphere of \boldsymbol{R}^{N} onto a hyperellipsoid, which is denoted by Σ_{A}. Let $l(A)$ be the length of maximum semi-axes of Σ_{A}. Given two numbers $J>0$ and $K \geqq 1$, we denote by $l(K, J)$ the maximum of $l(A)$ when A varies over the collection of matrices satisfying the condition

$$
|\operatorname{det} A|=J \quad \text { and } \quad\left\|\boldsymbol{a}_{j}\right\| \leqq K J^{1 / N} \quad \text { for } \quad 1 \leqq j \leqq N
$$

Then we have

$$
l(K, J)=K J^{1 / N}\left(1+(N-1) \alpha_{K}\right)^{1 / 2},
$$

where α_{K} is determined by the condition

$$
\begin{equation*}
\left(1-\alpha_{K}\right)^{N-1}\left(1+(N-1) \alpha_{K}\right)=K^{-2 N}, \quad 0 \leqq \alpha_{K}<1 \tag{12}
\end{equation*}
$$

Outline of Proof. Let $A=\left(\boldsymbol{a}_{1} \cdots \boldsymbol{a}_{N}\right)$ be a matrix such that $l(A)=\|A \xi\|=l(K, J)$ for a $\xi=\left(\xi_{1}, \cdots, \xi_{N}\right) \in \boldsymbol{R}^{N}, \xi_{1}^{2}+\cdots+\xi_{N}^{2}=1$. Let $\Sigma^{\prime}=\Sigma_{A} \cap S^{\prime}$ where S^{\prime} denotes the subspace spanned by $\boldsymbol{a}_{j}, 1 \leqq j \leqq N-1$. We can write $\boldsymbol{a}_{N}=\boldsymbol{y}+\boldsymbol{b}, \boldsymbol{y} \in S^{\prime}, \boldsymbol{b} \perp S^{\prime}$, and $A \xi=\xi^{\prime} \boldsymbol{x}+\xi_{N} \boldsymbol{a}_{N}, \boldsymbol{x} \in \Sigma^{\prime}$, $\xi^{\prime}=\left(1-\xi_{N}^{2}\right)^{1 / 2}$, so that $\|A \xi\|^{2}=\xi^{\prime 2}\|\boldsymbol{x}\|^{2}+\xi_{N}^{2}\|\boldsymbol{y}\|^{2}+2 \xi^{\prime} \xi_{N}\langle\boldsymbol{x}, \boldsymbol{y}\rangle+\xi_{N}^{2}\|\boldsymbol{b}\|^{2}$. If $\xi_{N}\langle\boldsymbol{x}, \boldsymbol{y}\rangle<\left|\xi_{N}\right|\|\boldsymbol{x}\|\|\boldsymbol{y}\|$, then by rotating \boldsymbol{a}_{N} we could take $\boldsymbol{a}_{N}^{\prime}=\boldsymbol{y}^{\prime}+\boldsymbol{b}$, $\boldsymbol{y}^{\prime} \in S^{\prime},\left\|\boldsymbol{y}^{\prime}\right\|=\|\boldsymbol{y}\|$, so that $\xi_{N}\left\langle\boldsymbol{x}, \boldsymbol{y}^{\prime}\right\rangle=\left|\xi_{N}\right|\|\boldsymbol{x}\|\left\|\boldsymbol{y}^{\prime}\right\|$, hence $\left\|A^{\prime} \xi\right\|>\|A \xi\|$ with $\left|\operatorname{det} A^{\prime}\right|=|\operatorname{det} A|$, where $A^{\prime}=\left(\boldsymbol{a}_{1} \cdots \boldsymbol{a}_{N-1} \boldsymbol{a}_{N}^{\prime}\right)$. Thus $\xi_{N}\langle\boldsymbol{x}, \boldsymbol{y}\rangle=$ $\left|\xi_{N}\right|\|\boldsymbol{x}\|\|\boldsymbol{y}\|$, which means that \boldsymbol{x} and \boldsymbol{y} lie on one and the same straight line in Σ^{\prime}, and we have

$$
\begin{equation*}
\|A \xi\|^{2}=\left(\xi^{\prime}\|\boldsymbol{x}\|+\left|\xi_{N}\right|\|\boldsymbol{y}\|\right)^{2}+\xi_{N}^{2}\|\boldsymbol{b}\|^{2} . \tag{13}
\end{equation*}
$$

Now suppose $\left\|\boldsymbol{a}_{N}\right\|<K J^{1 / N}$. Then taking $\boldsymbol{a}_{N}^{\prime}=\boldsymbol{y}^{\prime}+\boldsymbol{b},\left\|\boldsymbol{y}^{\prime}\right\|^{2}=\left(K J^{1 / N}\right)^{2}-$ $\|\boldsymbol{b}\|^{2}>\|\boldsymbol{y}\|^{2}$, we could have $\left\|A^{\prime} \xi\right\|>\|A \xi\|$. It follows that $\left\|\boldsymbol{a}_{j}\right\|=K J^{1 / N}$, $1 \leqq j \leqq N$. It is seen from (13) that $\|\boldsymbol{x}\|$ must be equal to the length of maximum semi-axes of Σ^{\prime}.

Next we shall show that A can be taken so that $\left\langle\boldsymbol{a}_{j}, \boldsymbol{a}_{k}\right\rangle$ is a nonnegative constant for every pair of $j, k, j \neq k$. Let $\Sigma(i, \cdots, j)=$ $\Sigma_{A} \cap S(i, \cdots, j)$, where $S(i, \cdots, j)$ denotes the subspace of \boldsymbol{R}^{N} spanned
by vectors $\boldsymbol{a}_{i}, \cdots, \boldsymbol{a}_{j}$, distinct from each other. Then, if $\boldsymbol{a}_{k} \neq \boldsymbol{a}_{i}, \cdots, \boldsymbol{a}_{j}$, the projection of a_{k} to $S(i, \cdots, j)$ lies on a maximum semi-axis of $\Sigma(i, \cdots, j)$, as is easily seen in the same way as above. Suppose $\left\langle\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right\rangle \neq 0$. We may assume that $\left\langle\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right\rangle>0$ by taking - \boldsymbol{a}_{1}, if necessary. The projection of \boldsymbol{a}_{3} or $-\boldsymbol{a}_{3}$ to $S(1,2)$ lies on the line $t\left(\boldsymbol{a}_{1}+\boldsymbol{a}_{2}\right)$, $t \in \boldsymbol{R}$, since $\boldsymbol{a}_{1}+\boldsymbol{a}_{2}$ is a maximum semi-axis of $\Sigma(1,2)$ by assumption, hence we have $\boldsymbol{a}_{3}=c\left(\boldsymbol{a}_{1}+\boldsymbol{a}_{2}\right), c>0$. This implies that $\left\langle\boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right\rangle>0$ and $\left\langle a_{3}, a_{1}\right\rangle>0$. Continuing this procedure by considering the projection of a_{4} or $-\boldsymbol{a}_{4}$ to $\Sigma(1,2,3)$ which has $a_{1}+a_{2}+a_{3}$ as one of its maximum semi-axes, we can finally conclude that $\left\langle\boldsymbol{a}_{j}, \boldsymbol{a}_{k}\right\rangle>0, j \neq k$.

Take arbitrary three vectors, e.g., $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$, and \boldsymbol{a}_{3}. If $\overrightarrow{O A} \vec{A}_{j}$ denotes the vector a_{j}, then the projection of $\overrightarrow{O A_{1}}$ onto the triangle $\triangle O A_{2} A_{3}$ bisects the angle $\angle A_{2} O A_{3}$. The situation is similar for A_{2} and A_{3}, hence it can be seen that $\left\langle\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right\rangle=\left\langle\boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right\rangle=\left\langle\boldsymbol{a}_{3}, \boldsymbol{a}_{1}\right\rangle$. Thus $\left\langle\boldsymbol{a}_{j}, \boldsymbol{a}_{k}\right\rangle$ is a positive constant for $j, k, j \neq k$. If $\left\langle\boldsymbol{a}_{j}, \boldsymbol{a}_{k}\right\rangle=0$ for some j, k, then this holds for all $j, k, j \neq k$. Note that we can write $\left\langle\boldsymbol{a}_{j}, \boldsymbol{a}_{k}\right\rangle=\left\|\boldsymbol{a}_{j}\right\|\left\|\boldsymbol{a}_{k}\right\| \alpha=K^{2} J^{2 / N} \boldsymbol{\alpha}$ with $0 \leqq \alpha<1$, for $j \neq k$, so the constant α can be computed from the following: $\left.J^{2}=\operatorname{det}\left(\left\langle\boldsymbol{a}_{j}, \boldsymbol{a}_{k}\right\rangle\right)=\left(K^{2} J^{2 / N}\right)^{N}(1-\alpha)^{N-1}(1+(N-1) \alpha)\right)$. The constant $l(K, J)$ can be obtained by estimating $\|A \xi\|^{2},\|\xi\|=1$, in which $\sum_{j \neq k} \xi_{j} \xi_{k}$ takes on the maximum value $N-1$ on the sphere $\|\xi\|=1$.

Proof of Theorem 2. First we assume that $L=L_{n}$. Let $G=$ $\left(G_{1}, \cdots, G_{2 n}\right)$, where $F_{j}=G_{2 j-1}+i G_{2 j}$. In order to estimate the left-hand side of the inequality (4), we consider the mapping $\Phi\left(t_{1}, \cdots, t_{2 n-1}\right)=$ $G\left(t_{1}, \cdots, t_{2 n-1}, 0\right)$ of the unit ball $\Delta=\left\{\left(t_{1}, \cdots, t_{2 n-1}\right) \mid t_{1}^{2}+\cdots+t_{2 n-1}^{2}<1\right\}$ of $\boldsymbol{R}^{2 n-1}$ into $\boldsymbol{R}^{2 n}$, which is nothing other than the restriction of F to the set $L_{n} \cap B$. Then the surface area element of $\Phi(\Delta)$ is given by $\left(\operatorname{det}\left(g_{l_{m}}\right)\right)^{1 / 2} d t_{1} \cdots d t_{2_{n-1}}$ where

$$
g_{l m}=\sum_{s=1}^{2 n} \frac{\partial G_{s}}{\partial x_{l}} \frac{\partial G_{s}}{\partial x_{m}}, \quad 1 \leqq l, m \leqq 2 n-1
$$

evaluated at the point $\left(t_{1}, \cdots, t_{2 n-1}, 0\right)$. Since the matrix $\left(g_{l m}\right)$ is positive semidefinite, we have

$$
\operatorname{det}\left(g_{l m}\right) \leqq g_{11} \cdots g_{2 n-12 n-1}
$$

here we used the fact that, for any nonnegative hermitian matrix ($h_{l m}$) of any order n,

$$
\operatorname{det}\left(h_{l m}\right) \leqq h_{11} \cdots h_{n n}
$$

an inequality long known to be equivalent to Hadamard's determinant inequality. Now from the relations $g_{2 k-12 k-1}=g_{2 k 2 k}=\left\|\partial F / \partial z_{k}\right\|^{2}, 1 \leqq k \leqq n$,
stated in the paragraph preceding Lemma 2 as well as the inequality (11) it follows that

$$
\begin{aligned}
\operatorname{Area}\left(F\left(L_{n} \cap B\right)\right) & =\operatorname{Area}(\Phi(\Delta)) \\
& =\int_{\lrcorner}\left(\operatorname{det}\left(g_{l m}\right)\right)^{1 / 2} d t_{1} \cdots d t_{2 n-1} \\
& \leqq \int_{!}\left(g_{11} \cdots g_{2 n-1} 2 n-1\right)^{1 / 2} d t_{1} \cdots d t_{2 n-1} \\
& =\int_{L_{n} \cap B}\left\|\frac{\partial F}{\partial z_{1}}\right\|^{2} \cdots\left\|\frac{\partial F}{\partial z_{n-1}}\right\|^{2}\left\|\frac{\partial F}{\partial z_{n}}\right\| d \sigma_{n}(z) \\
& \leqq K^{2 n-1} \int_{L_{n} \cap B}\left|\operatorname{det} J_{F}\right|^{(2 n-1) / n} d \sigma_{n}(z) .
\end{aligned}
$$

Applying Theorem $1(3)$, to the holomorphic function $\operatorname{det} J_{F}$ with $p=$ $(2 n-1) / n$, we get

$$
\operatorname{Area}\left(F\left(L_{n} \cap B\right)\right) \leqq \frac{1}{2} K^{2 n-1} \int_{\partial B}\left|\operatorname{det} J_{F}\right|^{2 n-1) / n} d \tau(z)
$$

Next we should estimate $\operatorname{Area}(F(\partial B))$. Let $z \in \partial B$, and let $\left\{\boldsymbol{e}_{1}, \cdots, \boldsymbol{e}_{2 n-1}\right\}$ be an orthonormal frame of ∂B at the point z; then the surface area element of $F(\partial B)$ at the point $F(z)$ is given by $A(z) d \tau(z)$ where $A(z)$ denotes the area of the parallelopiped spanned by the vectors $J_{G}(z) e_{j}, 1 \leqq j \leqq 2 n-1$. Take the unit normal vector, $e_{2 n}$, to ∂B at z. Since $\left|\operatorname{det} J_{G}(z)\right|$ represents the volume of the parallelopiped spanned by $J_{G}(z) \boldsymbol{e}_{j}, 1 \leqq j \leqq 2 n$, we see $\left|\operatorname{det} J_{G}(z)\right| \leqq A(z)\left\|J_{G}(z) e_{2 n}\right\|$. Here, we note that $\left\|J_{G}(z) e_{2 n}\right\|$ does not exceed the length of maximum semi-axes of the hyperellipsoid Σ corresponding to the matrix $J_{G}(z)$. Applying Lemma 2 to the case $N=2 n$ and $J=\left|\operatorname{det} J_{G}(z)\right|$, we thus have $\left\|J_{G}(z) e_{2 n}\right\| \leqq$ $l\left(K,\left|\operatorname{det} J_{G}(z)\right|\right)=K\left(1+(2 n-1) \alpha_{K}\right)^{1 / 2}\left|\operatorname{det} J_{G}(z)\right|^{1 / 2 n}$. It follows that $A(z) \geqq$ $K^{-1}\left(1+(2 n-1) \alpha_{K}\right)^{-1 / 2}\left|\operatorname{det} J_{G}(z)\right|^{1-1 / 2 n}=K^{-1}\left(1+(2 n-1) \alpha_{K}\right)^{-1 / 2}\left|\operatorname{det} J_{F}(z)\right|^{(2 n-1) / n}$, and hence

$$
\begin{aligned}
\operatorname{Area}(F(\partial B)) & =\int_{\partial B} A(z) d \tau(z) \\
& \geqq K^{-1}\left(1+(2 n-1) \alpha_{K}\right)^{-1 / 2} \int_{\partial B}\left|\operatorname{det} J_{F}(z)\right|^{(2 n-1) / n} d \tau(z)
\end{aligned}
$$

Thus we have the inequality (4): Area $\left(F\left(L_{n} \cap B\right)\right) \leqq 2^{-1} K^{2 n}(1+(2 n-$ 1) $\left.\alpha_{K}\right)^{1 / 2}$ Area $(F(\partial B))$.

Finally, to prove the inequality (5), let U be the unitary transformation employed in the proof of Theorem 1. Let V denote the real representation of U, an orthogonal transformation in $\boldsymbol{R}^{2 n}$, and let $V^{-1}=$ $\left(v_{l j}\right), 1 \leqq l, j \leqq 2 n$, and $J_{G}=\left(\boldsymbol{a}_{1} \cdots \boldsymbol{a}_{2 n}\right)$. Then the j-th column \boldsymbol{c}_{j} of
$J_{G} J_{V^{-1}}$, the Jacobian matrix of the mapping $G V^{-1}$, is of the form $c_{j}=$ $\sum_{l=1}^{2 n} v_{l j} \boldsymbol{a}_{l}, 1 \leqq j \leqq 2 n$. Since $\sum_{l=1}^{2 n} v_{l j}^{2}=1$, c_{j} belongs to the hyperellipsoid spanned by the vectors $\boldsymbol{a}_{k}, 1 \leqq k \leqq 2 n$. So Lemma 2 shows that $\left\|\boldsymbol{c}_{j}\right\| \leqq$ $l\left(K,\left|\operatorname{det} J_{G}\right|\right)=K\left(1+(2 n-1) \alpha_{K}\right)^{1 / 2}\left|\operatorname{det} J_{G}\right|^{1 / 2 n}=K\left(1+(2 n-1) \alpha_{K}\right)^{1 / 2} \times$ $\left|\operatorname{det}\left(J_{G} J_{V^{-1}}\right)\right|^{1 / 2 n}, 1 \leqq j \leqq 2 n$, which means that $G V^{-1}$ is K^{\prime}-quasiconformal with the constant $K^{\prime}=K\left(1+(2 n-1) \alpha_{K}\right)^{1 / 2}$. The inequality (4) can now be applied to yield the inequality (5).
4. Remarks. 1. We do not know whether the constant $1 / 2$ in the inequalities (2), (3), (4), and (5) is the best possible or not when $n>1$.
2. In the case of the unit disc there have been several extensions of the Fejér-Riesz inequality (cf., Carlson [2], Huber [4]). It may be of some interest to find corresponding generalizations in the case of the ball of \boldsymbol{C}^{n}.
3. A univalent holomorphic mapping is conformal if and only if $K=1$ in (11), and it should be noted that α_{K} tends to zero as K tends to 1 . There are a variety of (equivalent) definitions for the quasiconformality of mappings besides the one used here (cf., Caraman [1]). Other definitions will lead to different inequalities in place of (5).
4. Theorem 2 can be formulated for a wider class of mappings, e.g., nonsingular holomorphic mappings.

References

[1] P. Caraman, n-Dimensional Quasiconformal (QCF) Mappings, Editura Academiei Române, Bucharest; Abacus Press, Tunbridge Wells, Kent, 1974.
[2] F. Carlson, Quelques inégalités concernant les fonctions analytiques, Ark. Mat. Astr. Fys., 29B, no. 11, 6pp. (1943).
[3] L. Fejer and F. Riesz, Uber einige funktionentheoretische Ungleichungen, Math. Z. 11 (1921), 305-314.
[4] A. Huber, On an inequality of Fejér and Riesz, Ann. of Math. 63 (1956), 572-587.
[5] H. E. RAUCH, Harmonic and analytic functions of several variables and the maximal theorem of Hardy and Littlewood, Canad. J. Math. 8 (1956), 171-183.
[6] E. M. Stein, Boundary behavior of holomorphic functions of several complex variables, Princeton University Press, 1972.
[7] H. Wu, Normal families of holomorphic mappings, Acta Math. 119 (1967), 193-233.
Department of Mathematics and Department of Mathematics
Ibaraki University College of General Education
Mito, Ibaraki 310
Japan

Tôhoku University
Sendai, 980
Japan

