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1. Introduction. If f(z) is a holomorphic function on the closed unit
disc \z\ ^ 1, then the inequality

(1)

holds for any Θ, 0 ^ θ < 2τr, and any p > 0, where the constant 1/2 is
the best possible. This is the inequality mentioned in the title and was
obtained by Fejer and Riesz [3]. The purpose of this note is to extend
this result to holomorphic functions defined on the unit ball of the com-
plex w-space Cn and then to apply it to obtain a certain geometric
property of quasiconformal holomorphic mappings.

For the points of Cn we shall use the notation z — (zu , zn), where
zk = χ21c_x + iχ2k eC9 1 ^ k ^ n, and xu 1 ^ I S 2n, are real variables.
Under the correspondence z —> (xlf , x2n) the space Cn is identified with
the real Euclidean space R2n. The inner product (z, w) in Cn is defined
by the expression Σ*=i*Wfe When z, w are viewed as vectors in R2n,
their inner product (z, w)r is given by the real part of (z, w}, i.e.,
(z, w)r = Re((z, w)). Let B be the open unit ball {zeCn\Σ*k=i l^l2 < 1}
of Cn and dB be the boundary of B. The surface area element of the
sphere dB will be denoted by dτ. For any p, 0 < p < oo, the Hardy
space HV{B) is then defined as the set of holomorphic functions f on B
such that

sup JJ^ \f(rz)\pdτ(z)\0 < r < lj < oo .

For feHp(B) the radial limit f*(z) is known to exist for almost every
point zedB and the resulting function /* belongs to the ZΛ space on
dB with respect to the measure dτ (cf., Stein [6; Chapter II, Section 9]).
In §2 we shall prove the following

THEOREM 1. Let L be any hyperplane in the space R2n passing
through the origin, dσ the surface area element of L, and w a unit
vector in Cn which is orthogonal to L with respect to the real inner
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product ( , ) r . Then the inequality

(2) \ \f(z)Ydσ{z) ^ \ \ \f*(z)\"\(z,w)\dτ(z)

holds for any p, 0 < p < oo, and any feHp(B). In particular, we have

(3) \ \M\'dσ(z)£±-\ \f*(z)\>dτ(z) .

As is well known, the classical Fejer-Riesz theorem has a simple
geometric meaning. Namely, if a univalent holomorphic function maps
the unit disc | z | < 1 onto the interior of a domain bounded by a rectifi-
able Jordan curve C, then the image of any diameter is shorter than
the half of the length of C. As an application of Theorem 1 it is
possible to prove an analogous geometric result for jK-quasiconformal
holomorphic mappings from the closed unit ball in C\ §3 is devoted to
the proof of the following

THEOREM 2. Let F be a univalent holomorphic mapping of the closed
unit ball B into Cn, which is K-quasiconformal with a constant K ^ 1
in the sense of Wu [7] (cf., §3 of this note). Let Area (Γ) denote the
real (2n — l)-dimensional volume of a hyper surface Γ in the space R2n.
Then, for the hyperplane in R2n of the form Ln = {z e Cn \ Im zn = 0}, we
have

( 4 ) Area (F(Ln n B)) £ 2~1K2n(X + (2n - l)a*)V 2 Area (F(dB)) ,

where the consant aκ, 0 ̂  aκ < 1, is determined by the equation

- l)aκ) = K~in .

In general, for any hyperplane L in R2n passing through the origin,
we have

(5 ) Area (F(L n B)) ^ 2"1iί''2n(l + (2n - l)aκ.)
v* Area (F(dB)) ,

where Kr = K{1 + (2n - l)aκ)
m.

2. Proof of Theorem 1. First we shall prove a slightly more
general result as a lemma. For z = (zlf , zn) eCn, n^2, we set z =

LEMMA 1. Suppose that the function f{z) is continuous on the closed
unit ball B and, for each fixed zeC71'1 with \\z\\ < 1, the function zn-+
f(z,zn) is holomorphic on the disc \zn\ < (1 — ||2Ί|2)1/2 Let dσn be the
surface area element of Ln = {zeCn\Imzn = 0}. Then
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(6) \ \f{z)\vdσn{z)iί±-\ \f{z)\*\zn\dτ{z)
JLnΓ\B 2 JdB

for every p, 0 < p < co, where the constant 1/2 is the best possible.

PROOF. Note that the case n — 1 in (6) is the original Fejer-Riesz
inequality (1), which is assumed to be known.

Let n ^ 2. We define polar coordinates for dB as follows:

x1 — cos θλ ,

x2 = sin θt cos θ2 ,

( 7 )

x 2 n l = sin θ1 sin #2 sin Θ2n_2 cos 02B_j. ,

x2n — sin #x sin θ2 sin #2n_2 sin ^2n_i ,

where 0 <^ θlf , ^2ra_2 ^ 7Γ and 0 ^ Θ2n_1 < 2π. The surface area ele-
ment of dB with respect to this parametrization is given by dτ =
Πf=I2 sin271"1-* M 0 i d»2n_!. Choose an arbitrary zeC71'1 with | | ? | | < 1,
which is fixed for a moment. If z = (z, zn)edB, then 2n = (1 —
||2Ί|2)1/2exp (i02n_!) for a unique /92n_!, 0 ^ ^2n_! < 2π, where f̂e = α;^.! + ix2k,
1 ^ fc ^ n - 1, and 0fc, 0 ^ 0fc ^ π, are fixed for fc, 1 ^ fe ^ 2n - 2. Now
consider the function ζ —>/(z, (1 — ||?||2)1/2ζ) of a complex variable ζ.
Since this function is holomorphic on the disc | ζ | < 1 and continuous on
| ζ | ^ 1, the Fejer-Riesz inequality (1) implies that

1 f(z, (1 - || 2 ||2)1/2ί) \>dt £ - ί j * I /(?, ( 1 - | | 2 1 | 2 ) 1 / 2 exp ( i ^ . , ) ) | * n . .

P u t t i n g zn •= (1 — | | ? | | 2 ) 1 / 2 e x p ( i# 2 n _i) a n d | 2 n | ί = a;, w e h a v e

4' | / ( ) | Λ(8) Γ |/(z, α?)|Λc ^ \ \
J-!βΛl 2 Jo

Let a; = x2n_i = sin 0! sin /92n_2 cos Θ2n_lt 0 ^ 02 n - 1 ^ π, so that the left-
hand side of (8) is equal to

Jo
2»-i) lp sin θx sin Θ2n_λdθ2n_x .

On the other hand, the mapping (θlf , 02Λ-i) —• fe, ^2, # , a?2n-i) ^n (7)
with 0 <; #!, , 02n_! ^ 7Γ defines a parametrization for Ln Π B, in which
we can write dσn = Πi 'Ί 1 sin2n- fcM0i ^ 2 n - i . It follows that

(9) ( \Az)\'dσn(z)
JLnf]B

, x^-i) \p Π* sin ^ ^ ^ ^ ff
fc / fc=i
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^ Γ \'(i- Γ ι/(2'*»> i' i z"i ̂ - 0 Ή ^ n 1 - 1 - * ^ ^ <^«-2
JO JO \ 2 JO / Λ = l

= -5-1 l/(z)NzJώr(z) .
2 Jδΰ

Finally, let p > 0 and let ε > 0. Since 1/2 is the best possible in
the case n = 1, there exist a holomorphic function fc(s) on the disc
\z\ <£ 1 and a constant ^ 0 < #> < 1, such that

J1

11 h(pt) \'dt > (i- - ε) j " I λ ( ^ ) \>dθ

for all |O, ^0 ^ |0 ^ 1. Define a function / with ε' > 0 by

ε'-- | |^ | | 2r i / 2^).
Clearly, / satisfies t h e s ta ted assumptions. Take 2, \\z\\^δ, δ =

((1 - (1 + e')/oS)(l - ρTΎ\ and consider 2 = (z, zn) on 3 5 . Then

\f(z, x)\*dx > (λ - ε) [π\f(z, zn)\*\zn\dθ ,
\ 2 / J o

where zn = |«n |ew. Now divide dB into Si and S2, where Sx: ||2Ί| ^ δ
and iS2: ||2Ί| > δ. It can be seen just as in the inequality (9) that

J£ B \f{z)\*dσn(z) > (i- - e) jsj/(«)|'|«,|dr(«)

= ( y - e)(Jsj! |/(2)H^|dτ(2) - \^ \f(z)\"\zn\dΦ)) ,

where the second term tends to 0 as ε' —> 0. It follows that

\f(z)\*\zn\dτ(z)

for a sufficiently small s\

PROOF OF THEOREM 1. Choose a unitary transformation U in Cn in
such a way that Uw = (0, , 0, i). Then we have clearly U(L) = Ln.
First assume that / is holomorphic in a neighborhood of the closed ball
B. In view of Lemma 1 we have

\ I(/oU-%z')\>dσΛ&) £ i- ί I(/oC/-1)^)
JL^ΠB 2 J35

Since K | = I <«', (0, . , 0, i)> | = |<Efc, E/̂ > | = | (z, w) \ with z' = C7̂  and
since unitary transformations in C71 do not change the surface area ele-
ment of any surface, we have
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(10) ( \f(z)\*dσ(z) ύ ±\ \f(z)\"\(z,wy\dτ(z).

We now take an arbitrary feHp(B). Set fr(z) = f(rz) for 0 ^ r < 1.
Since / r are holomorphic in neighborhoods of B, the inequality (10) holds
for these functions. If we set F(z) = sup{|/r(z)|p |0 ^ r < 1} for zedB,
then F{z) is integrable with respect to the measure dτ as shown by
Rauch [5; Theorem 1]. This implies that

ί \fr(z)\p\(z,w)\dτ(z)-+\ \Γ(z)\*\(z,w)\dτ(z)
JdB JdB

as r tends to 1. Hence, by means of Fatou's lemma, we have

\f{z) \>dσ{z) ^ Km inf \ \fr{z) \»dσ{z)
r->l JLΓ\B

^limi-ί \fr(z)\p\<z,w}\dτ(z)
r—1 2 dB

= -j\JΓ(z)\*\(z,w)\dφ),

as was to be proved.

3. An application to quasiconformal holomorphic mappings. Let
D be a domain in Cn and let F: D-^Cn be a holomorphic mapping, F =
(Flf •••, Fn), where Fά are holomorphic functions defined in D. We say
that F is if-quasiconformal in D if there exists a constant K > 0 such
that

on JD for 1 <* k ^ n. Here, || || denotes the Euclidean norm of Cn,
dF/dzk = (dFJdzk, , dFJdzk) and JF is the complex Jacobian matrix
{dFάldzk) of F (cf., Wu [7; p. 229]).

We note that the lf-quasiconformality has an equivalent formulation
in terms of real coordinates. Namely, D can be considered as a domain
in R2n, denoted by DR, and F3- are expressed by real-valued functions
Gt(xlf , x2n)> 1 ^ I ^ 2w, with the domain DΛ such that

Setting G — (Glf , G2n), we get a mapping of DR into iί2n. Then F is
if-quasiconformal if and only if the mapping G is Z-quasiconformal in
the sense that

(11') ||dG/dXt \\ ^ K\detJG\
1/2n
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on DB for 1 <̂  I ̂  2n, where || || denotes the Euclidean norm of R2n,
dG/dXι = (dGJdXi, , dG2nldxι), and JG is the Jacobian matrix (dGJdxi) of
G. Indeed, it is easily checked by means of Cauchy-Riemann equations
that || dG/dx^ \\ = \\ dG/dx2k || = || dF/dzh \\, l^k^n, and | det JG | =
|det JF\

2. So (11) and (11') are equivalent. In order to prove Theorem
2 we need the following

LEMMA 2. Let A be a nonsingular N x N matrix with real entries
and regard it as a linear transformation in the real Euclidean N-space
RN. Let a3, 1 <̂  j <; N, be the j-th column vector of A so that A =
(«i αn). The transformation A maps the unit sphere of RN onto a
hyper ellipsoid, which is denoted by ΣA. Let 1{A) be the length of maximum
semi-axes of ΣA. Given two numbers J > 0 and K^l, we denote by
l(K, J) the maximum of 1{A) when A varies over the collection of matrices
satisfying the condition

| d e t A | = J and \\aj\\ ^ KJ1/N for l ^ j ^ N .

Then we have

l(K, J) = KJ^a + (N - ΐ)aκ)
1'* ,

where aκ is determined by the condition

(12) (1 - aκ)»-\l + (N- l)aκ) = Er™ , 0 ̂  aκ < 1 .

OUTLINE OF PROOF. Let A = (αx aN) be a matrix such that
1{A) = \\Aξ\\ = 1{K, J) for a ξ - (&, . . . , ξN) eR», ξl + . . + & = 1. Let
Σr = ΣAf)S' where S' denotes the subspace spanned by ajf 1 ̂  j ^ N — 1.
We can write aN = y + 6, # 6 S', 6 1 S', and Aξ = ξ'x + ςNaN, x e Σ\
ξ' = (1 - ί^)1/2, so that Mill 2 = f'2 | |*ll2 + &HJ,||2 + 2 ^ < x , ^> + ^ | | 6 | | 2 .
If ξN(x, y) < \ξN\\\x\\ \\y\\t then by r o t a t i n g aN we could t a k e a'N = yf + 6,

# ' e S ' , ll^'ll - lljfll, so that ^<x, y') = |^| | |x | | | | if ' | | , hence | |A'ί| | > ||Af||
with I det A'\ = |det A|, where A! = (αx α ^ α ^ ) . Thus ^<x, ZA> =
Ifivl | |x | | IIIf II» which means that JC and ̂  lie on one and the same straight
line in 2", and we have

(13)

Now suppose \\aN\\ < KJlλ\ Then taking a'N = y' + 6, | | # ' | | 2 = (KJ1/N)2 -
II&IΓ > 11 ÎΓ, we could have | |A'£| | > || Aξ||. I t follows t h a t | |α,. | | = KJ1/N,
1 ^ j ^ N. I t is seen from (13) t h a t ||ΛΓ|| must be equal to the length
of maximum semi-axes of 2".

Next we shall show t h a t A can be taken so t h a t (aj9 ak} is a non-
negative constant for every pair of j , k, j Φ k. Let Σ(ί,— ,j) =
ΣAf]S(i, —-,j), where S(i, * , i ) denotes the subspace of RN spanned
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by vectors au , aό, distinct from each other. Then, if akφaif , aj9

the projection of ak to S{i, , j) lies on a maximum semi-axis of
Σ(i,'' ,j), a s is easily seen in the same way as above. Suppose
(al9 α2) Φ 0. We may assume that (alf α2> > 0 by taking — al9 if neces-
sary. The projection of α3 or — α3 to S(l, 2) lies on the line t{ax + α2),
t e JR, since αx + α2 is a maximum semi-axis of 2X1, 2) by assumption,
hence we have α3 = c ^ + α2), c > 0. This implies that <α2, αs> > 0 and
<α8, α^ > 0. Continuing this procedure by considering the projection of
α4 or — α4 to Σ(l9 2, 3) which has ax + α2 + α3 as one of its maximum
semi-axes, we can finally conclude that (ajf ak) > 0, j Φ k.

Take arbitrary three vectors, e.g., a19 α2, and α3. If OAά denotes

the vector aj9 then the projection of OAX onto the triangle Δ 0 4 2 Λ bisects
the angle ZA2OA3. The situation is similar for A2 and A3, hence it can
be seen that (alf a2) = <α2, α3> = <α3, αx>. Thus <α, , αfc> is a positive
constant for j , k, j Φ k. If (ajf ak) = 0 for some ;?, &, then this holds
for all j , k, j Φ k. Note that we can write <α, , ak) = || α5-1| || αfc || α = K2JVNa
with 0 ̂  a < 1, for j 1 Φ k, so the constant a can be computed from
the following: J 2 = det «α y , α*» - (Z 2J 2 Λ V) i V(l - α j ^ l + ( ^ - l)α)). The
constant l(K, J) can be obtained by estimating || Aζ\\2, \\ξ\\ = 1, in which
ΈjjΦkζjξk takes on the maximum value N — 1 on the sphere | |£ | | = 1.

PROOF OF THEOREM 2. First we assume that L = Ln. Let G =
(<?i, , G2n), where F, = G2i_i + iG2j. In order to estimate the left-hand
side of the inequality (4), we consider the mapping Φ(*i, , ί2n-i) =
G(tl9 , ί2n.lf 0) of the unit ball J = {(tl9 , ί ^ J l ί ϊ + - • + *2

2n-i < 1} of
2j2n-i j n ^ 0 2j2n̂  w ] 1 i c ] : l i s nothing other than the restriction of F to the
set Ln Π B. Then the surface area element of Φ{Δ) is given by
(det (glm))mdtx dί27l_x where

evaluated at the point (tl9 , ί2n_!, 0). Since the matrix (flrIm) is positive
semidefinite, we have

d e t (glm) ^ flfn flT2n-l 2n-l J

here we used the fact that, for any nonnegative hermitian matrix (hlm)
of any order n,

det (hlm) ^ hn fenn ,

an inequality long known to be equivalent to Hadamard's determinant

inequality. Now from the relations g2k-i2k-i = £2*2* = II dF/dzk ||
2, 1 <£ fc ̂  n,
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stated in the paragraph preceding Lemma 2 as well as the inequality (11)
it follows that

Area (F(Ln n B)) = Area {Φ{Δ))

= 5 j(det(flrl.))1/1dί1 . dί!«_1

^ I ( (ffll f/sn-1 2n-l)1/2dίi '

dF

dz,

dF dF

^ K2n~ι \ det J*

dz
dσn(z)

Applying Theorem 1 (3), to the holomorphic function det JF with p =
(2n — ΐ)/n, we get

Area (F(Ln n B)) ̂  l-K271'1 [ \ det JF\
{2n~ι)/ndτ(z) .

2 J3B

Next we should estimate Area (F(dB)). Let zedB, and let
{̂ i, , e2π-i} be an orthonormal frame of dB at the point z; then the
surface area element of F{dB) at the point F{z) is given by A(z)dτ{z)
where A(z) denotes the area of the parallelopiped spanned by the vectors
JG(z)ejf 1 <; j ^ 2n — 1. Take the unit normal vector, e2n, to 3β at z.
Since | det JG(z) | represents the volume of the parallelopiped spanned by
JG(z)ejf l^j^2n, we see \ det JG(z)\ ^ A(z)\\JG(z)e2n\\. Here, we note
that \\JG(z)e2n\\ does not exceed the length of maximum semi-axes of the
hyperellipsoid Σ corresponding to the matrix Jβ(z). Applying Lemma 2
to the case N = 2n and J = |det Jσ(z)\, we thus have ||c7βθ5)e2n|| ^

l(K, I det JG(z) I) = ίΓ(l + (2n -
- ΐ)aκy

ί/21 det
1 det JG{z) \1/2n. It follows that A(z) ^

V2 \ det JF(β) |(2"-1)/w,
and hence

Area = ( A(z)dτ(z)
JdB

det

Thus we have the inequality (4): Area (F(Ln Π 5)) ^ 2-1Jί27l(l + (2w -
l)aκ)

12 Area (F(dB)).
Finally, to prove the inequality (5), let U be the unitary transforma-

tion employed in the proof of Theorem 1. Let V denote the real
representation of U, an orthogonal transformation in R2n, and let F " 1 =
(vij), 1 ^ ϊ, j ^ 2^, and JG = (α± α2ra). Then the j-th column cό of
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JGJv-i, the Jacobian matrix of the mapping GV~\ is of the form cά =
Σ?=i Vijdi, 1 ^ j ^ 2w. Since Σ?=i ^L = 1» e i belongs to the hyperellipsoid
spanned by the vectors ak, 1 ^ k ^ 2n. So Lemma 2 shows that \\cj\\ ̂
l(K, \detJG\) = K(ί + (2n - l)aκ)

1/2\άetJG\
1/2n = K(l + (2n - l)α*)1 / 2 x

|det (JGJF-i)|1/2n, 1 ^ i ^ 2w, which means that GF" 1 is if'-quasiconformal
with the constant Kr = ίΓ(l + (2w — l)α*)1/2. The inequality (4) can now
be applied to yield the inequality (5).

4. Remarks. 1. We do not know whether the constant 1/2 in the
inequalities (2), (3), (4), and (5) is the best possible or not when n > 1.

2. In the case of the unit disc there have been several extensions
of the Fejer-Riesz inequality (cf., Carlson [2], Huber [4]). It may be of
some interest to find corresponding generalizations in the case of the
ball of C\

3. A univalent holomorphic mapping is conformal if and only if
K = 1 in (11), and it should be noted that aκ tends to zero as K tends
to 1. There are a variety of (equivalent) definitions for the quasicon-
formality of mappings besides the one used here (cf., Caraman [1]).
Other definitions will lead to different inequalities in place of (5).

4. Theorem 2 can be formulated for a wider class of mappings, e.g.,
nonsingular holomorphic mappings.
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