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0. Introduction. Let S denote a compact surface, i.e., a compact com-
plex manifold of complex dimension 2. We write b,(S) for the ¢-th Betti
number of S. For a divisor D on S, we write (D) for its self-intersection
number. A compact surface S is said to be of Class VII, if S is minimal
and b,(S) = 1.

Now let S be a surface of Class VII, with curves. Then S satisfies
one of the following conditions:

0.1) S has a divisor D # 0 with (D)* =0,
(0.2) any divisor D = 0 on S has (D*< 0.

Moreover, if b,(S) = 0, Kodaira proved that S is either an elliptic surface
or a Hopf surface. Note that b,(S) = 0 implies (0.1). In this paper we
shall complete the classification of surfaces of Class VII, which satisfy
(0.1).

To state our result, we shall construct surfaces S,.., » >0, 0<
la| <1, teC", with the following properties:

S...: is a surface of Class VII, with b, = n,
S..: has a curve D, ,, with (D, .. =0,

(0.4) S,.at — Dyna. is an affine C-bundle of degree —n over an
elliptic curve .

(0.3)
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Clearly S, .. satisfy (0.1) (cf. note (2) below). Our result is the following

MAIN THEOREM. Let S be a surface of Class VII, with b,(S) = n > 0.
If S has a divisor D = 0 with (D)* =0, then S is biholomorphic to S, ...
and D =rD, ., for some 0 < || <1, teC" and reZ.

This Main theorem and some related results were announced in [2].
In subsequent papers, we shall study deformations of S, ., (cf. [6]) and
we shall give an application of the Main theorem to a study of com-
pactifiable surfaces.

Here we recall some results on surfaces of Class VII,.

(1) Class VII, was introduced by Kodaira. As for the significance
of this class, we refer to his papers [8, I, IV]. He determined the struc-
ture of surface of Class VII, with b, = 0 which satisfy (0.1), as mentioned
above.

(2) It was Inoue [4, 5] who first constructed examples of surfaces of
Class VII, with b, > 0 which contain curves. In [4], he gave S, ., as an
example. S,,.. is contructed in [6]. We note that S,,, is an n-fold
unramified covering ‘surface of S,;, a = 8", and S, .. is a deformation
of S, .o In [5], he constructed examples satisfying (0.2).

(83) On the other hand, Kato discovered a series of surfaces of
Class VII, with b, > 0 which contain global spherical shells and exactly
b, rational curves (see [6; p. 74, Remark 4]). In this series, we find
S..«: Inoue’s examples consrtucted in [5] and many other surfaces of
Class VII, satisfying (0.2).

(4) We have divided surfaces of Class VII, with curves into two
classes, those satisfying (0.1) and those satisfying (0.2). Our Main theo-
rem, completing the classification of surfaces in the former, clarifies the
difference between these two classes in the following way.

When a compact surface S satisfies (0.2), it is well known that for
any curve C on S, any (complex analytic) compactification of S — C is
bimeromorphic to S (ef. Section 1). On the other hand, when a surface
S of Class VII, satisfies (0.1), there exist a curve C on S and a compacti-
fication 3 of S — C such that ¥ is not bimeromorphic to S. Indeed we
can take 3 to be a P!-bundle over an elliptic curve, where P! is the
complex projective line. When b,(S) = 0, this fact is well known ([8, II;
Sections 9-10]). When b,(S) > 0, this fact is a direct consequence of (0.4)
and our Main theorem.

The composition of this paper is as follows. In Sections 1-2, we shall
collect together some known results. In Section 3, we shall construct the
surfaces S, ., and prove (0.3)-(0.4). Now let S and D be as in the Main
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theorem. Let C denote the support of D. In Section 4 we shall deter-
mine the structure of C and see there is a surjective holomorphic map
of S — C onto an elliptic curve 4. In Sections 5-6 we shall construct a
compactification 3 of S — C so that 4 extends to a holomorphic map ¥
of ¥ onto 4 and ¥ maps I' = 3 — (S — C) biholomorphically onto 4. In
Section 7 we shall prove that ¥:3 — 4 is a P-bundle. In Sections 8-9,
using Proposition 2.5 in Section 2, we shall complete the proof of our
Main theorem.

The author would like to thank Dr. M. Inoue who kindly informed
him of an alternative proof of Proposition 4.12 which is much simpler
than the author’s. Also the author would like to express appriciation to
the referee for several suggestions that helped clarify the presentation.

1. Neighborhoods of curves. By a curve we shall mean a compact
pure 1l-dimensional analytic set. In this section, we collect together the
results on neighborhoods of curves.

Let C be a curve on a surface and let C = 3%, 6, denote the decom-
position of the curve C into the irreducible components 0, of C (0, # O;
if ¢+ 7). We write (6,-0;) for the intersection number of 6, and 6;.
The n X n matrix [(0;-0,)] of the intersection numbers is called the

intersection matrix of the curve C. We quote a lemma from [13; p. 85,
Lemma 2].

LEMMA 1.1. Let C = 32,0, be a curve on a surface. Assume that
C 1is conmected and the intersection matriz of [(0,-0;)] of C is negative
semi-definite. Then we have

(i) if CrimB,)* =0 for some integers m;, then m, are all positive,
negative or zero simultaneously,

(ii) rank[(©;-0)] = n — 1,

(i) of {4QV), - --, J(PIE{L, - -+, n}, then the intersection matrix of the
curve Uj-, 0,4 18 negative definite.

Let M be a surface. An open subset U of M is called strongly
pseudo-convex if there exists a proper C* map @: U — [0, ) such that
@ is strictly plurisubharmonic outside a compact subset of U. A curve
C on M is called exceptional if there exists a normal analytic space M*
and a holomorphic map ¢: M — M* such that ¢(C) is a finite set of points
on M* and ¢ maps M — C biholomorphically onto M* — ¢(C). When C
is an exceptional curve of the first kind, M* is a manifold and M is a
quadratic transform of M* with respect to the point o(C). We recall
the characterization of exceptional curves (cf. [3]).

PrOPOSITION 1.2. Let C be a curve on a surface M. Then the fol-
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lowing three conditions are mutually equivalent.
(a) C s exceptional.
(b) The intersection matrixz of C is megative definite.
(¢) There exists a strongly pseudo-convexr meighborhood of C in M.

Let M be a non-compact surface. A compact surface S is called a
compactification of M if M is an open submanifold of S and S — M is a
curve on S.

PROPOSITION 1.3. Let S, and S, be minimal compactifications of the
same surface M. If C;=S; — M is a connected exceptional curve on S,
for each © =1, 2, then S, is biholomorphic to S,

PrROOF. Let 0,: S, — S} be the holomorphic map of S; onto the normal
analytic space S} so that ¢,(C,) is one point and ¢; maps S; — C; biholo-
morphically onto S¥ — 6,(C;). Then the identity map S, — C,— S, — C,
extends to a biholomorphic map of S¥ onto S; (cf. [10; p. 118, Prop. 4]).
Thus both S, and S, are the minimal desingularizations of the same space
S} and hence S, is biholomorphic to S,. q.e.d.

Let C be a curve on a surface S. Assume that C is of normal cros-
sing. Then, for each singular point p, of C, we can choose a system of
holomorphic coordinates (u,, v,) on a neighborhood U, of p, in S so that
Cn U, is defined by the equation: wu,-v, = 0 in U,. Choose a Riemannian
metric ds* on S such that ds* = |du,|* + |dv;|* on some neighborhood of
p; in U,. Let N,C) denote the e-neighborhood of C in S with respect
to the distance determined by ds®*. From the arguments in [11; pp. 72-
73], we infer

LEMMA 1.4. Let C be a curve of normal crossing on a surface. For
sufficiently small ¢ > 0, we have

(i) NJC) is homotopically equivalent to C,

(ii) N.(C) — C 1is homotopically equivalent to the boundary oN.(C)
of N.(C) in S,

(iili) oN.(C) vs a compact orientable topological manifold of real
dimension 3.
Moreover, if C is of simple normal crossing, then

(iv) the topological structure of oN.(C) is determined only by the
intersection matrix and the topological structure of C.

We call N,(C) a tubular neighborhood of C (¢ >0 is sufficiently small). -
The proof of the following lemma is found in [13; pp. 83-84].

LemMmA 1.5. Let S,, © =1, 2, be compactifications of the same surface
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M. Assume that C;, = S; — M is connected and of mormal crossing for
each 1 =1,2. Let N, be the tubular neighborhood of C, in S, given by
Lemma 1.4. Then 0N, 18 homotopically equivalent to ON,.

2. Affine C-bundles over elliptic curves. Let 4 be an elliptic curve.
We write 4 as the quotient group 4 = C*/{a) of C* by the multiplicative
group {a) generated by aeC*, 0 < |a| < 1.

Let neN, n=1, and teC". We identify ¢t = (¢, ---, t,_,) with the

polynomial ¢{(w) = >}izit,w*. Define a holomorphic automorphism g, ., of
C x C* by
2.1) Onare s (2, W) — (w2 + t(w), aw) .
We write A,,., for the quotient surface C x C*/{g, .. of C x C* by
Ona: Then A, ., is an affine C-bundle over 4 with the projection induced
by (z, w) — w.

In general the degree of an affine C-bundle over a curve is defined

to be the degree of its linearization, e.g., A, ., is the linearization of
A, .. and its degree is —n. We know

THEOREM 2.2. Let A be an affine C-bundle of degree —m over 4 =
C*/{ay. Then A is equivalent to A, .., as an affine C-bundle for some
teC".

For the proof of our Main theorem, we need a little more.

LEMMA 2.3. Let d(w) and e(w) be holomorphic functions on C*
satisfying
(2.4) e(w) = kw'd(w) — dlaw) for weC*
with keC*, n=1, 0 < |a] <1.

(i) If e(w) is holomorphic on C, then d(w) extends holomorphically
to the whole C.

(ii) If e(w) ts a polynomial of degree < m, themn d(w) and e(w)
vanish tdentically.

The proof of the above lemma is elementary and hence we omit it.

(Expand d(w) and e(w) into the power series in w and compare the co-
efficients of w* in (2.4).)

PROPOSITION 2.5. Let g be a holomorphic automorphism of C x C*
of the form
g: (z, w) — (a(w)z + bw), aw) ,
where a(w) and b(w) are holomorphic functions on C*, and aecC*, 0 <
la| < 1. Assume that the quotient surface A = C x C*/{g) is an affine
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C-bundle of degree —n < 0 over 4 = C*/{a). Then there exists a holo-
morphic automorphism h of C x C* of the form

(2.6) h: (2, w) — (c(w)z + d(w), Bw) (BeC¥)
satisfying
(2.7) hogoh™(z, w) = (w"z + t(w), aw)

for some polynomial t(w) of degree < n. Moreover, if a(w) and b(w) are
both holomorphic on C, them we can assume that h is a holomorphic
automorphism of C x C.

ProOF. By hypothesis, we can write a(w) as a(w) = w" exp u(w)
where w(w) is a holomorphic function on C*. Expanding u(w) into the
Laurent power series w(w) = >,z u,w*, u,€C, in w, we define a holo-
morphic function c¢(w) on C* by c(w) = exp s {u,w*/(1 — a*)}. Then
c(w) is nowhere zero and satisfies

(2.8) a(w)e(aw)/c(w) = kw™, £ = eXp U, .

Let L denote the linearization of A. Then, for each ke Z, the
monomial w* defines an element v, of H'(4, #~(L)). By Lemma 2.8 (ii)
and the Riemann-Roch theorem, {v.};z forms a basis of H4, &(L)).
Thus we can write the element ¢ € H'(4, (L)) determined by c(aw)b(w)
as ¢ = > »7¢s,7, for some s, €C. This is equivalent to the existence of
a holomorphic function d(w) on C* such that

3

2.9) S st = —kwd(w) + claw)b(w) + d(aw) .

0

=
Il

Take 8 € C* such that k = 8" and define & by (2.6). Then, by (2.8)-(2.9),
we have (2.7) with t(w) = > 5,87 *w*. Now suppose that a(w) and b(w)
are both holomorphic on C. Then u(w) is holomorphic on C. Thus c¢(w)
extends to the whole C holomorphically so that ¢(0) = 0. By (2.9), we
can apply Lemma 2.8 (i) to see that d(w) is holomorphic on C. Thus &
is a holomorphic automorphism of C x C. g.e.d.

3. Surfaces S,.,. Let =1, 0<|a|<1and t€C" (neN, acCC).
We identify ¢ = (¢, -+, t,_,) with the polynomial t(w) = > r2=tt,w*. We
shall generalize the construction of S, ., in [6; p. 57]. :

Let P! denote the complex projective line with the inhomogeneous
coordinate z. Set W, = P! x C, I', = {0} X C and C, = P* x {0}. Define
a birational automorphism g¢, ., of W, by

3.1) Gnare: (2, W)= (W2 + H(w), aw) .
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By induction on %, we define blowings-up W,, k = 0, of W,, curves C.,
on W, and points p,e€C,, v_,_,€C_, so that

(i) Ona: (resp. g%, induces a birational automorphism of W,,
whose indeterminacy set consists of one point p, (resp. p_,_.),

(ii), Wiy, is the blowing-up of W, at p, and p_,_,; C,y, and C_,_,
are total transforms of p, and p_,_, respectively.

In fact, we have (i), with p, = (o=, 0), »_, = (¢, 0). For k = 1, (i), follows
from (i); and (ii);, 7 < &.

In what follows, we denote each proper transform by the same
symbol. Then we have {p,} =I.NC, and p_, # p_,_, for &k = 0. Identi-
fying W,_, — I'., — {p_,} with the open submanifold of W, — ', — {p_,_.}
canonically, we define a noncompact surface §n,a,t to be the inductive
limit of W, — I'.. — {p_s_i}: S,e: = ind imy (W, — I'. — {p_,_.}). Then we
have infinitely many non-singular rational curves C;, je Z, with (C;)* =
—2 on §M,, so that

(3.2) C; and C;,, intersect transversally at p;, C; and C, do
not meet when j =k +1.

On.«. induces a holomorphic automorphism §, ., of S,., such that
(3'3) gn,m,t(cj) = Cj—n for j eZ.

By (3.1) and (3.8), §...,. generates a properly discontinuous group (G, ...
of holomorphic automorphisms of S, ., free from fixed points. We define
the surface S, .. to be the quotient surface of S, ., bY (Gow:d: Sne: =
§n,,,t/<§n,a,t>. Writing \ for the canonical projection of §M,t onto S, ..,
set D, .. = Ui 0, with 6, = \(C)).

PropoOSITION 3.4. (i) D,,..,= 6, is a rational curve with one o07r-
dinary double point satisfying (0,7 = 0.

(i) Dy =06,U0,; each 0,, v =0,1, is a non-singular rational
curve with (0, = —2. 0, and O, intersect transversally at two points.

(iii) D,o:.= U0, (n =3); each O, is a mnon-singular rational
curve with

=2 if i=7,
0,:-0;) = 1 ¢f 9=5%+1 modn,
0 otherwise .
Proor. It follows from (3.2) and (3.3). g.e.d.

PrROPOSITION 3.5. (i) S,.. % a surface of Class VII, with
b,(S,.0) = M.
(ii) (Dyee) = 0.
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(i) S,.:— D, 15 an affine C-bundle of degree —mn over an elliptic
curve.

PrOOF (cf. [4]). (iii) Comparing (3.1) with (2.1), we see S,..—
Dn,a,t = An,a,t°

(ii) Proposition 3.4 implies this.

(i) First we shall show b,(S,.. = 1. By definition, W, is simply
connected. Using van Kampen’s theorem, we see that W, — I', — {p_,_.}
is simply connected. Hence their inductive limit §,,,,,,t is also simply
connected. Thus the fundamental group of the quotient space S, ., of
S,.a: i8S {Fna.> and hence infinite cyclic. In particular 5,(S, ., = 1.

Next we shall show that S, ,, is compact. The coordinate w on W,
induces a holomorphic function on S, ., which will be denoted by the
same symbol w, so that
(the divisor (w) of w is X, C;,

(3.6) 1 iez
Jr et = QW .

Take a compact tubular neighborhood N, of C, for 0 <7 <% — 1 and set

B=UU e .N)|wy =¢,

v=0 i=0

R={rweW,—I's—{pi}llaje = |w|=¢ |2 <1}.

Then we infer from (3.6) that MUz N;) contains M(B) provided that
e >0 is sufficiently small. Hence \(B) is a compact neighborhood
of D,,, Clearly \M2) is a compact subset of S,..,— D,.. and
MRUB — U;C;) = S,.0¢ — D,yay-  Therefore S, ., = MB)UNML). Thus
S,..: is compact.

By (3.6), we may assume that transition functions of the line bundle
[D.,...] determined by D, .. are all constants. Hence the real first Chern
class of [D,,.,] is zero. This implies that any irreducible curve on S, ,,
is contained in either D,,, or S, .. — D,.. none of which contains ex-
ceptional curves of the first kind on S, ... Thus S, .. is of Class VII,.

Finally we show b,(S, .. = n. Let X(X) denote the Euler number
of a topological space X. Note that D,,., is of normal crossing and
X(D, .. = n by Proposition 3.4. Let N be the tubular neighborhood of
D, .., given by Lemma 1.4. Then we have

3.7 IN)=mn, AN —D,,.,)=0.
Since S, . — D, is an affine C-bundle over an elliptic curve 4, we have
(3.8) XS, ar — Dyuy) = XC)-X(4) =0 .
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Combining (3.7) and (3.8) with the Mayer-Vietoris exact sequence of the
pair (S, .: — D, .. N), we obtain X(S, ., = n. Since b,(S,.. = 1, this
implies 8,(S, .. = 7.

REMARK. By Theorem 2.2, each affine C-bundle of degree —n <0

over the elliptic curve 4 = C*/{a) can be compactified into S, , ., for some
teCn.

4. Surfaces of Class VII,. Throughout this section, we let S denote
a compact surface with b,(S) =1 which has no meromorphic functions
except constants. Let K denote the canonical bundle of S.

Since b,(S) = 1, it follows from Theorem 3 in [8, I; p. 755] that ¢ =
dim HYS, ) = 1. By Theorems 21 and 22 in [8, I; p. 789, p. 796], we
have p, = dim H(S, ) = 0 (see [8, I, p. 766, iii)]). Thus

(4.1) > (=1 dim H (S, ) = 0.

Under the canonical identification: H*(S, R) = R, the cup product defines
a non-degenerate symmetric bilinear form, (A-&) for A, £e H%S, R), on
H*S, R). Let b* denote the number of positive eigenvalues of this bi-
linear form (A-£). Since p,=0, it follows from Theorem 3 in [8, I; p. 755]

4.2) bt =0.

For a line bundle 4 over S, let (4) e H¥S, R) denote the real first Chern
class of 4. For a divisor & on S, let [Z] denote the line bundle over S
determined by Z. We write (&) for ([Z]). Then, the intersection number
(4-5) of A and 5 is given by ((4)-(&F)). We write (4)* for ((4)-(4)). Then,
by Noether’s formula, (4.1) means

(4.3) b(S) = —(K)*.

LEMMA 4.4. Let S’ be a finite unramified covering surface of S. If
S is minimal, then S’ is a surface of Class VII, with mo mon-constant
meromorphic function.

ProoF. Suppose first that S’ contains an exceptional curve E of the
first kind. Let p denote the projection of S’ onto S and let K’ denote
the canonical bundle of S’. Set 6@ = p(E). We write {E} and {6} for
the homology class of E in S’ and the homology class of © in S, respec-
tively. Since (E) (resp. (0)) is the Poincaré dual of {E} (resp. {6}), we
have

(4.5) (K'-E) = (K", {E}), (K-6)=/<K),{6})
where ( , ) denotes the pairing of the cohomology and the homology.
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Since E and 6 are irreducible, we have p, {E} = d{0} for some integer
d. Hence, using (4.5) and (K') = p*(K), we have d(K-0) = (K'-E) = —1.
Since the holomorphic map p preserves the orientation, d is non-negative.
Therefore (K-0) < 0. In particular, (@) = 0. Hence (0} <0 by (4.2).
Thus @ is an exceptional curve of the first kind on S. This contradicts
the minimality of S.

Now we know that S’ contains no exceptional curves of the first
kind. From our assumption on S, it follows that S’ has no meromorphic
functions except constants. Thus, by Theorem 11 in [8, I; p. 759], S’ is
either a K3 surface, a complex tours or a surface of Class VII,. On the
other hand, since b,(S) = 1, the fundamental group x,(S) of S contains
an infinite cyclic group. Therefore S’ is not simply connected and hence
S’ is not a K3 surface. Since b,(S) is odd, S and hence S’ are not
Kahlerian. In particular, S’ is not a complex torus. Thus we conclude
that S’ is a surface of Class VII, with no non-constant meromorphic
functions. q.e.d.

The following lemma is due to Inoue.

LEMMA 4.6. If S contains a non-singular elliptic curve E, then there
is @ non-trivial line bundle F over S such that (F') = 0 and the restric-
tion of F to E is trivial.

PrOOF. In the exact sequence
0 — HX(S, Z) —~ HXS, €) — HX(S, €*),

all cohomology groups are (complex) Lie groups and the maps are homo-
morphisms of Lie groups. By b,(S) =1, HYS, Z) = Z and H'(S, C) = C.
Thus H'(S, C*) contains C* = C/Z as a Lie subgroup. On the other hand,
H'(E, C*) is the Picard variety of E, which is isomorphic to E as a Lie
group. Therefore, since the restriction map

r: H(S, C*) — H(E, C*)
is also a homomorphism of Lie groups, there is a non-zero element f of

H'(S, C*) such that »(f) = 0. Then the line bundle F' over S correspond-
ing to f is the desired one. q.e.d.

In the following, we assume that S has a divisor D % 0 with (D)* = 0.
Let C denote the support of D. Applying Lemma 1.1 (i) to each connected
component of C, we may assume that D is a positive divisor.

A multi-valued holomorphic function w on S is said to be a multi-
plicative holomorphic function on S if the analytic continuation along
any closed (continuous) path v transforms w(x) into a(v)w(x), where a(v)
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is a constant depending on v (cf. [8, II; p. 701]). We call a(v) the multi-
plier of w (with respect to 7).

LEMMA 4.7. There exists a multiplicative holomorpic function w =
w(x) on S whose divisor (w) 1s D.

ProOF. We have the following commutative diagram:
H'(S, C) — H'(S,C*) — H*S, Z) — H%S, C)

1
1 |
HY(S, &) — HXS, ¢*)—— H*S, Z)

where the map H'(S, C) —» H(S, &) is surjective by the formula (14) in
[8, I; p. 756]. We have (D) = 0 by (4.2). Thus, using the above diagram,
we see that the isomorphism class of the line bundle [D] is in the image
of the map H'(S, C*) — H'(S, *). The rest of the proof is the same
as that of Lemma 11 in [8, II; p. 701]. qg.e.d.

Let 7,(S) denote the fundamental group of S. For any closed path
v, the multiplier a(v) of w depends only on the (free) homotopy class of
v. Thus the map v+ a(y) induces a homomorphism pg(w): w,(S) — C*.
Moreover, since C* is abelian, g(w) induces a homomorphism H (S, Z) —
C*. We denote it by the same symbol p(w).

The free part F' of H,(S, Z) is infinite cyclic. Let o be a generator
of F. For any torsion cycle 7, p(w)(z) is a root of unity. We have

(4.8) lp(w)(o)| # 1.

In fact, if |p#(w)(o)] = 1, then |w(x)| would be a single-valued continuous
function on S and attains its maximum. This contradicts the fact that
w(x) is a non-constant holomorphic function. Due to Lemma 1.4 the proof
of the following lemma is identical to that of Lemma 12 in [8, II; p. 702].

LEMMA 4.9. Assume that C is of normal crossing. Then each con-
nected component of C contains a closed path which represents a homo-
topy class of infinite order on S.

Let C = >\"' 0, denote the decomposition of C into the irreducible
components @, of C (0, # 0, if i # j). Note that the intersection matrix
of C is negative semi-definite by (4.2).

PROPOSITION 4.10. Assume that S is minimal and C is commected.
Then C satisfies one of the following conditions I,, b = 0.

I C =0, is a non-singular elliptic curve.

I: C =0, 1s a rational curve with one ordinary double point.

IL: C=06,+ 6, where each O; is a non-singular rational curve with
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0,)= —2. 6, and O, intersect transversally at two points.
I, (0 =3): C=>3%i0, where each 0, is a mnon-singular rational
curve with
-2 af 1=17,
6,-0,) = 1 of 1=5+£1 modbd,
0 otherwise .
In particular, C is of nomal crossing and (C)* = 0.

Proor. We blow up S, ¢:S*— S, properly so that C*=¢7'(C) is
of normal crossing. Let D* denote the total transform of D. Then we
have (D¥? = 0. Hence by Lemma 4.9 the support C* of D* is not simply
connected.

We write D = >, m,0,(m; > 0). Since (D) =0, we have 3}, m;(K-0,) =
0. It follows that

(4.11) > m{2m(0;) — 2 — (0,)} =0

where 7(0;) denotes the virtual genus of ©,. Now we can adapt the
arguments in [7; pp. 567-568] as follows.

(A) The case in which C = 6, is irreducible. In this case, (0,) = 0
by (4.2). Hence n(C) =1 by (4.11). When C is non-singular, it follows
that C is an elliptic curve. When C has singular points, it follows that
C is either a rational curve with one cusp or a rational curve with one
ordinary double point. If C had a cusp, then C* would be simply con-
nected. Thus C satisfies I, or I,.

(B) The case in which C consists of at least two irreducible com-
ponents. Since C = | 0O, is connected, we have (0,)) < 0 by Lemma 1.1
(iii), while by hypothesis 0, is not an exceptional curve of the first kind.
Therefore, if w(6;,) =0, then (0, < —2. Thus we conclude by (4.11)
that each O, is a non-singular rational curve with (0, = —2.

(B1) Suppose there is a pair 6,, @, with (6,-0,) = 2. Then by (4.2)
we have 0 = (0, + 0, = 2(0,-0,) — 4. Therefore, (6,-0,) =2 and (O, +
6, = 0. Hence, by Lemma 1.1 (i), we have C = 6, + 0,. Since (6,-60,) = 2,
6, N O, consists of at most two points. If it consisted of one point, then
C* would be simply connected. Thus 6, N O, consists of two points and
hence C satisfies I,.

(B2) Now we assume (6,:0;) <1 for ¢ # j.

(B2,) Suppose there exist at least three irreducible components, say
6,, 6, and 0,, which meet at one point. Then (0, + 6, + 0,)? = 0. Hence
C=6,+6,+06, by Lemma 1.1(1). In this case, C* would be simply
connected.
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(B2,) Assume that ©,N0;N06, is empty for i # 5, j # k, i # k. Then
C itself is of normal crossing. Hence C is not simply connected, while
each 0, is simply connected. Thus there exist irreducible components,
say 6,, 6,, -+, 0,_, (b = 3), such that (6,-0;,) =1if i =35+ 1 modb. Then
by (4.2) we have (3})2160,)* =0, and (6,-0;) =0 unless 1 =jor 1 =j+1
mod b. Thus C = 32t @, by Lemma 1.1 (i) and hence C satisfies I,. q.e.d.

The following proposition gives a characterization of Hopf surfaces
among surfaces of Class VII, satisfying (0.1).

PROPOSITION 4.12. Assume S is minimal. If C is disconnected or
non-singular, then S is a Hopf surface.

PrROOF. We write the tensor product of line bundles in the additive
form, e.g., K+ D= K®|[D]. For any line bundle F over S, let F,
denote the restriction of F to C. We first prove

LEMMA 4.18. Let F be a line bundle over S with (F)=0. If
HS, /(K + F + rC)) # 0 for some integer r, then S is a Hopf surface.

PrOOF OF LEMMA 4.13. Due to Theorem 34 in [8, II; p. 699], it suf-
fices to show b,(S) = 0. By hypothesis, there is a meromorphic section
@ of K + F over S whose polar cycle is contained in C. Thus K + F
is determined by the divisor of ¢:

(4.14) K+F=[3r8—>s56;, r.>0, 5,20

where &, 0, are irreducible curves and C = U, 0;.

We claim (K-5,) =0, (K-0,) =0. In fact, Proposition 4.10 implies
(K-0;) = 0. Suppose (K:-5,) < 0. Then it follows that (&,) = 0 and hence
(5,))<0 by (4.2). Thus &, is an exceptional curve of the first kind.
This contradicts the minimality of S. Also (K-F') =20, by (F) = 0.

Then, using (4.14), we see (K)* = >}, r(K-5,) — >,;8,(K-60;) = 0. Com-
bining this with (4.8), we obtain b,(S) = 0 as desired.

Now we return to the proof of Proposition 4.12.

(A) The case in which C is disconmnected (cf. [8, II; p. 702]). Take
two connected components C, and C, of C. Then we have (C,)* =0. In
view of Lemma 4.13, it suffices to show HS, (K + >,;C,)) # 0. By
Lemma 4.7 each curve C; determines a multiplicative holomorphic func-
tion w, on S whose divisor (w,) is C;. We note that w;'dw, is a mero-
morphic 1-form on S. Since C, and C, do not meet, w, is nowhere zero
on C,. By Lemma 4.9 and (4.8), C, contains a closed path v such that
[ p(w)(v)] # 1. It follows that w, is not constant on C,, while w, is con-
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stant on any rational curve. Thus we conclude by Proposition 4.10 that
C, is a non-singular elliptic curve and the restriction of wi*dw, to C, is
a non-trivial holomorphic 1-form. Similarly, the same is true for w;*dw,
and C,. Therefore the meromorphic 2-form wdw A w;'dw, defines a
non-zero element of H'(S, (K + 3, C)).

(B) The case in which C is connected and non-singular. In this
case C is an elliptic curve by Proposition 4.10. Let F' be a non-trivial
line bundle on S given by Lemma 4.6 so that (F) = 0 and F, is trivial.
Then, since C is a non-singular elliptic curve, [K + F + C], is trivial.
Therefore we have the exact sequence

(4.15) 0>PK+F)>PEK+F+C)—cy—0.

By (4.2), (C)* = 0 implies (C) = 0. Also (¥) = 0. Then by the Riemann-
Roch theorem and (4.1):

ji(—l)“ dim H*(S, (K + F + C)) = 0
(4.16) =
Lz;o(—l)b dim H*(S, 7(K + F)) = 0.

With the aid of (4.16) and the duality theorem, we infer from the exact
cohomology sequence derived from (4.15) that either H(S, (K + F +
C)) # 0or HXS, o(—F)) = 0. If H'S, Z(K + F + C)) #+ 0, then S is a
Hopf surface by Lemma 4.13. Suppose therefore there is a non-identically-
zero section @ of —F over S. We write D’ for the divisor (@) of o.
Then (D') = —(F') =0. Let C’ denote the support of D’. Note that,
since F is not trivial, C’ is not empty.

(B1) Suppose C =+ C’. Then CU C’ is a disconnected curve with the
self-intersection number zero. This is Case A.

(B2) Suppose C=C'. Then D=rC (r=1) and hence [K + (» +
1)Cl, =[K + F + C]; is trivial. Therefore we have the exact sequence

(4.17) 0->(K+1rC)— K+ (r+1)C)—:—0.

By the argument parallel to that for K + F + C, from (4.17) we can
derive H(S, /(K + (» + 1)C)) # 0. Thus S is a Hopf surface by Lemma
4.13. q.e.d.

NoTE. Inoue informed us that Proposition 4.12 Case B is easily ob-
tained by means of Lemma 4.6. Another proof of Proposition 4.12, which
does not use Lemma 4.6 and is more cumbersome, is in the authour’s
master’s degree thesis (Univ. of Tokyo, 1981).

Finally we shall prove
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PROPOSITION 4.18. Let S be a surface of Class VII, with b,(S) > 0,
which has a divisor D # 0 with (D) =0. Let C denote the support of
D. Then there exist an unramified covering »:S— S of S and a holo-
morphic function w on S with the following properties:

(1) NYC) comsists of infinitely many mon-singular rational curves
C;, jeZ, with (C;} = —2.

(i) C; and C;,, intersect transversally at one point. C; and C, do
not meet when j + k =+ 1.

(iii) The divisor (w) of w is >,;czC;.

(iv) The covering transformation group of S with respect to S is
generated by a single element g such that

gw=aw O<lal<l),
9(C)=C;_,, for jeZ (m=1).

PROOF. Since b,(S) > 0, S is not a Hopf surface and S has no mero-
morphic functions except constants. Hence (C) = 0 by Proposition 4.10
and (4.2). By Lemma 4.7, we have a multiplicative holomorphic function
w on S whose divisor is C. Let F and T denote respectively the free
part and the torsion part of H,(S, Z). Take a generator ¢ of F and set
a = p(w)(e). In view of (4.8), taking —o instead of ¢ if necessary, we
may assume 0 < |a| < 1. Notice that g(w)(T) is a finite cyclic group
generated by a root of unity e. Thus the image of pg(w) is the multi-
plicative group {a, ¢) generated by « and e. Let G denote the kernel
of p(w): 7, (S) — {a, ey. Let W denote the universal covering surface of
S. We identify #,(S) with the covering transformation group of W with
respect to S. Define S to be the quotient surface W/G of W by G. Let
»\ denote the canonical projection of S onto S. Then M S— S is a cover-
ing and the covering transformation group of S with respect to S is
isomorphic to 7, (S)/G = {a, ¢). Let g and h be the covering transforma-
tions of S corresponding to @ and e respectively. Then w induces a
single-valued holomorphic function on S so that g*w = aw and h*w =
cw. Moreover, since the divisor of w on S is C, we obtain (iii).

Since S is not a Hopf surface, it follows from Propositions 4.12 and
4.10 that z,(C) = Z. Let v be a closed path representing a generator of
7,(C). Then we can write

(4.19) pw)(v) = aet (a,beZ)

where a # 0 by Lemma 4.9. Changing the orientation of « if necessary,
we may assume a > 0. We shall show a = 1 e= 1 and h is the identity
map. Consider the quotient surface S = S/{(g°-h*> of S by the group



468 I. ENOKI

{g°oh®) generated by g*oh’. Let p denote the canonical projection of
S’ onto S. Then the covering transformation group of S’ with respect
to S is the quotient group (g, h)/{g°oh*> of {g, h) by {g*-h’). Since h
is of finite order and a # 0, the order of (g, h)/{g*-h’) is finite, say d,
i.e., S’ is a d-fold unramified covering surface of S. Therefore, by
Lemma 4.4, S’ is a surface of Class VII, with no non-constant meromor-
phic functions. Moreover, since S is not a Hopf surface, S’ is not a
Hopf surface. Note that (p*(C)) = »*(C) =0 on S’. Hence p7'(C) is
connected by Proposition 4.12. On the other hand we infer from (4.19)
that p~*(C) consists of d connected components. Thus d = 1. This im-
plies <{g, h) = {g*oh®). Therefore a =1, h is the identity map and hence
€ = 1. Now (4.19) means that the closed path v corresponds to the cover-
ing transformation g and hence A'(C) — C is the universal covering of
C. Hence (i), (i) and (iv) follow from Proposition 4.10. q.e.d.

5. Construction of Y, I. Let S be a compact surface free from
exceptional curves of the first kind. Throughout Sections 5-8 we assume
that S has a curve C and satisfies the following conditions (cf. Proposi-
tion 4.18):

(S-0) There are an unramified covering »:S — S of S and a holo-
morphic function w on S.

(S-1) A *C) consists of infinitely many non-singular rational curves
C;, jeZ, with (C;)* = —2.

(5.1) C; and C;,, intersect transversally at one point p;, C; and
C, do not meet when j =k =1,

(5.2) the divisor (w) of w is >, C; .

(S-2) The covering transformation group of S with respect to S is
generated by a single element g such that

(5.3) gw=aw O<|a|<]),
(5.4) 9C) =C;.n (mz=1).

We set C = A"(C) and C* = U;,,C;.

In this section we shall construct on a neighborhood of C* a holo-
morphic 2-form which satisfies certain estimates. To state precisely and
prove this result, we define coordinate charts (U,;, (&, w)), (Usjrs, (Gjss
&;41), 7 € Z, covering a neighborhood of C, with the following properties
(where we set j =vm + 1, veZ, 0<i<=m — 1)

(i) U,y is a neighborhood of p; and identified with a polydisk by
(<yen Gy
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Usjir = (G, i) 11 Gl < &6 =1, 2},

where ¢, > 0 is independent of j. The equation: {};,, = 0 defines C,,, on
U,;,,. Moreover

(5.5) Céj+1C§j+1 =aw.

(ii) U, is a neighborhood of C; — U,;_, U U,;,, and identified with
the product of an annulus and a disk by ({,;, w):

Uzi = {(Czj; w)|r < |C2;‘| <7’ lwl < la|™e}

where 0 < » < 1 and ¢, > 0 are independent of j. {,;|C; extends to the
inhomogeneous coordinate of C; such that {,;(p;_,) = o, §;(p;) = 0.
(iii) We have

(5.6) UNnU, =0 if j#kx1,
U2i+1 = g_,( U2i+1)

U,; = 97 (Uy) ,

{C£j+1 = (9")*Ciy, for e=1,2
C2i = (gy)*Cu .

(iv) There is a holomorphic 2-form s,;,, on U,;,, so that it has no
zero and satisfies

(56.9) 8y = Cidl; Adw  on Cj N Uy N Uy
(5.10) Sopa1 = A7(9") S0i4s -

(6.7 {

(5.8)

To define the above coordinate charts, let &; be the inhomogeneous
coordinate of C; such that £;(p;) = 0 and &;(p;_,) = . Let K denote the
canonical bundle of S. Set o; = &'ds; Adw. Then o, defines a holomor-
phic section of K over C; — {p;} — {p;_,}. Since ¢; is determined uniquely
up to constant multiples, o; is determined uniquely. Moreover, using
(56.1)-(5.2), we see that o, extends to a holomorphic section of K over
C; so that it has no zero and satisfies 0;(p;) = 0;,.(p;). Thus, 0;’s define
a trivialization ¢ of K over C by ¢|C; = o;.

We first take a coordinate chart (U,.,, (Ciyi, C4iyy) around p, for each
0<71<m-—1. By (6.1)-(5.2), we may assume condition (i) for 0 < ¢ <
m — 1. We extend ¢ to a holomorphic 2-form s,,,, on U,,,. Shrinking
U,... if necessary, we may assume s,,,, has no zero. Take a real number
0 < 7 <1 so that the open set

Uy, Uz eCilr < |&@)] < 7} U Usiss

covers C, for any 0<¢<m — 1, where U_, = g(U,,_,). According to
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Siu [12], there is a Stein neighborhood T, of C, — {p;} — {p,_,} in 8 — {p,} —
{p._}. We extend ¢; to a holomorphic function £, on T,. Shrinking T,
if necessary, we may assume that ({,, w) forms a system of coordinates
on T,. Set

Uy ={eeT|r <|Gx)| <r™ |wk)| <e}.

Then coordinate charts (U,;, (s, w)) (0 £ 1 < m — 1) satisfy condition (ii)
provide that ¢, and r are chosen properly. Now we define coordinate
charts (Usjyyy (Giisy Giin))s (Uiy, (G5, w)) by (5.7) and (5.8). Then they
satisfy conditions (i)-(iii) as desired. Define holomorphic 2-forms s,;,, by
(5.10). Then they satisfy condition (iv).
Define an open neighborhood B: of C* by
B =UeU,llw@|<e, ¢>0.

20
PROPOSITION 5.11. For sufficiently small ¢ > 0, there exists a holo-

morphic 2-form @ on B¢ such that @ has mo zero on B° and its local
exPression

P = @5 dy; N\ dw
on U,; N B¢ satisfies
piw) =1 for 2eCNU,;, j=0
|poi(@) — 1| < 1/2 for 2zeBNU,, j=0.

The following construction of the holomorphic 2-form ¢ is similar to
that of the holomorphic map in [9]. However the noncompactness of C*
forces us to make some alternations to the arguments in [9]. Namely,
(i) while arbitrary coordinate charts could be used in [9], we have to
use special coordinate chartsvsuch as (U, C;), (ii) while the ordinary
maximum-supremum norm of Cech cochains is used in [9], we shall use
a weighted norm of Cech cochains defined on C*. We divide our proof
into five steps. .

Step 1. We begin by introducing a norm of Cech cochains and
proving a lemma which uses this norm. Let

V,=U;nC

%5 = Cu’ | sz

21 = i1l Vagn N G

z§j+1 = C§j+1[V21‘+1 N Cj+1 .
Then (V,;_,NC;, 23;_1), (Vyy, 2,;) and (V,;,,NC;, 23;,,) form coordinate charts
covering C;. Define a relatively compact subset V7 of V; by
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Vi ={ze Viylr + 06 <|z,@)| <™ —d)
Vi = {w e Vyullzu@)| < e —0,e =1, 2}

for sufficiently small 6 > 0. We may assume that 2"/ V? covers a com-

7

pact curve U, C,. Then, by (5.4) and (5.7), U;z, V] covers C*.

Set 77 = {V,};2. Let CY7; ¢”) denote the module of g-cochains on
the covering 7~ with the coefficients in <7 Let p be a positive constant.
For any g-cochain 7 = {»,..;}, define the norm ||7||, of 7 by

H’?HP = sup {Sl:.p P—iolﬁio~--iq(x>\ |y =+, Uy = 0} .
Let 6 denote the coboundary map.

LEMMA 5.12. Let 0 < p < 1. Then, for any l-cocycle <, there exists
a 0-cochain + satisfying
O = Y and I lle = Loll7llo
where L, is a positive constant independent of 7.

PrOOF. Let v = {v;}. Assume first ||v|,<co. We expand v,;,;.,(z:;)
into the Laurent power series in z,;:

Voj 2j:1(z2j) = Qg o541 T %bfﬂzﬁv ’
where a,;,;+,, b7 €C. Set
fif(2y) = #Zwbﬁtﬂzzi}”
95 (2,5) = ;Ob}ﬁ;,,z;;!' .
Then we have
(5.13) Yojzizr = Qojojer + fi + 95 -
Since z,; extends to the inhomogeneous coordinate of C; such that z,;(p;)=0
and z,;(p,_,) = e, we can extend f;* and g7 to holomorphic functions on
Ve and on V., U V,; respectively so that fi*|C;., = 0 and ¢7|C;., = 0.
By the definition of ||v||,, we have
[Ya@)| = pill7lle for zeV;NV,.
Hence, using Cauchy’s inequality, we obtain the estimates
(Iajkl = Ro'll7 [l
(5.14) Hfi@)| = B, for we Vi,
llgf(x)l = RP2j+1H'YHp for ze Vi;U Vieisr

where R is a positive constant independent of j, k¥ and v. Combining
(5.13) with (5.14), we obtain
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(5.15) il f7@) = U+ 2R)0 7], for we Vi

g7 (@) = A + 2R)p*Y|v]l, for xeV, U Vi, .

Define a constant a; by a; = —>.2; a;,,, for j = 0. Then by (5.14),
(5.16) la;| = (1 — o)'Rp¥|| 7|, for j=0.
Now we define a 0-cochain + = {y,} by

VYojer = Qujsa + fi7 — 97 on V., NG,

Vo = Gy — 97 — G5 -
Then 04 = v. By (5.15) and (5.16),

|¥i(@)| = Lol 7], for xzeV;, j=0,

where L, =1 + 2R + R/(1 — p). Therefore we obtain ||+ |, < L,||v|l, as
desired. When ||, = «, we define a; by

J
a, =0, aa‘:;ai—u Gz0.

Then similarly we have i = 7. q.e.d.

Step 2. We first introduce some notations. By (5.5), (;,., w) (resp.
(&;41, w)) is a system of coordinates on U, ., N U,; (resp. U,y N Usypn).
We write the coordinate changes as follows:

(& € = (95(Cs, w), 954 (Ch, w))
Ck = gkj(C;, w) 1) C; = h’?(C;, w)

on U; N U,, where k=0 mod?2, (g,7) = (2, 1) or (1, 2) according as j =
k+ lork— 1. For simplicity we write ; and z; for the vectors ({3, &)

and (2}, 2%) respectively. Considering z,;, j € Z, as local coordinates for C,
we write the coordinate changes as z; = b,,(z,). Let s,;,, be the holo-
morphic 2-form on U,;,, satisfying (5.9)-(5.10). Setting
8y = Gidl; AN dw

define a holNomorphic function f;, on U; N U, by s; = fi;8,. Note that
fix=1on C by (5.9. We regard f;, as a holomorphic function in two
variables:

(f,-,,(Ck, w) if k=0 mod2

fio= fulll,w) if k=1 mod2, j=k—1

filli,w) if k=1 mod2, j=Fk+1.
In order to prove Proposition 5.11, it suffices to construct holomorphic
functions @;, j = 0, defined respectively on U, N B* such that
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(5.17) P;=faps on U;nU.NB
p; =1 on CnU;
(5.18) |p;(@) — 1| < 1/2 for xeU;N B .

We write @; in the form @; = 37, @;.({;)w* where @;,.({;) are holo-
morphic functions in {; defined on U;. Moreover, when j is odd, we
. assume that @;, is of the form

Pii&s) = @i + [i1u85) + F7u(C5)

where a;, is a constant and each f§.((5), ¢ =1 or 2, is a holomorphic
function in , |{;] < &, such that f;.(0) =0. Let +;.2; denote the
restriction of @;, to V,. Then, corresponding to ®,;, we have a formal
power series r;(2;, W) = > Piu(2;)w* in w whose coefficients ;.(2;) are
holomorphic functions on V;. When j = 2d + 1 is odd, +r;.(2;) is written as

ajiu + fiu(2y) for z,€V;NC,
@i+ f7.25) for z;€ V;NCuy .

We regard the collection of +r;(z;, w), 7 = 0, as a formal power series in
w with coefficients . = {4} in CY(7; ). Let

Viiu(#;) =

’Ilf‘,‘ = y:Eo /‘/’\ku y ?(zh w) = g "ll‘:ilv(zj)wu .

In what follows, we identify a holomorphic function with its power
series expansion at a point on C. Define a formal power series I'(4*);,(2,, w)
in w with coefficients in holomorphic functions on V; N V, as follows:

() a2, w) = é {aj, + fi(gi(z, w) + f7.(05(2 w)}w”

— fie(#ey w2, w) for j=k+1l, k=0 mod2,
I'(y") (24, W) = P59 55(25, W), W)

— ol w) 3, (au, + 2.5 w)) + fi (e

for j=k+1, k=1 mod2,

where (o,7) = (2,1) or (1,2) according as k=j+1 or 5—1, and
(") (2, w) = 0 for j =Fk. For any power series P(w), Q(w) in w we
indicate by P(w) =, Q(w) that P(w) — Q(w) contains no terms of degree
< p. With this notation, @, satisfy (5.17) if and only if +;(z;, w) satisfy

(5.19), (") 1(2, w) =4 0

for all £ = 0. In fact, identifying a holomorphic function ¢; — f;@, with
its power series expansion at z,€ V; NV, (with respect to the coordinates
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(&, w) or (i, w) on U, N U, according as k is even or odd), we have
(P; — [P (Zhy, w) = I'(Y*) (24, ) -

We note that, in general, I'(4#);, is different from +; — fjvi as a formal

power series in w with coefficients in holomorphic functions on V; N V,.

Step 3. In this step, we prove the existence of a formal power
series >.n, 4.w" satisfying (5.19), for all x. We define +, by induction
on ft. Set 4, =1. Then o, = {4;,} satisfies (5.19),. Suppose therefore
we have defined "' satisfying (5.19),_, for some g =1. We define
Yire(2) to be the coefficient of w* in I'(y*7');,(2:, w). The collection of
Yirx forms an element v, = {v;,.} of C(7; ¢’). In view of Lemma 5.12,
the following lemma proves the existence of +,cC%(7; <) such that
Pt 4 Apw* satisfies (5.19),.

LEMMA 5.20. Assume ** satisfies (5.19),._,. Then

(i) "v. is a l-cocycle of CN¥; &),

(il) " = P + Pw?, € CAY; ), satisfies (5.19), if and only if
O, = Yu m CHT; O).

Proor. By (5.19),_,, we have
(6.21) ViupRR)W* = (") (20, w) -

Now, let j =k +1, k =0 mod2. Let z; = b;(2,). Furthermore, we let
(6,7)=(2,1) or (1, 2) according as j =k + 1 or k — 1.

(i) By the definition we have v,,=0, and by (5.6) we have
V,nV,NV,= @ for p+*gq, ¢+ r, r+ p. Hence it suffices to show the
identities v,,. = —vi;x on V,; N V,. Since z, = g,;(z;, 0), we can rewrite
(5.21) as

Y i (@)W =4 ¥ j11(945(%5, W)W =u L'(P" ) 1495525, w), w) .
Multiply both hand sides of this formula by f;(2;, w). Then, since
g?k(gkj(z;’ w); w) = haﬂr(z;’ w)
g;’k(gkj(za—'y ’U)), w) = z;
Sui(%5, w)fi(903(25, w), w) =1,

we obtain
Sei(Zs, WY (i (@)W =4 fri(25, ) 2;}) {a;, + f7.(h7 (25, w)) + f7.(25)}w

— i " N(Gui(25, W), W) .
Comparing this with v,;.(z;)w* by (5.21), we see

Sri(®iy W)Y 51601 (2 )W = —Viiu(z))W"
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Since f;(z;, 0) = 1, it follows V,uu = —Vijin-

(ii) We regard the collection of I'(y*);, as a formal power series
I'(y*) = {I'(4*);} in w with coefficients in C(7; 7). For our purpose it
suffices to show

(5.22) (") =p 70" — O .
We write I'(y);.(2:, w) as

L(p*)iu(2ay w) = TP ) a(20y ) + {0510 + F7(05(20, W) + f7 u(g5:(20, w))}w0"
— Fir(Ze, W)yri(2)W"
while we have ¢5.(z;, 0) = 25, g7(2, 0) =0, f7.0) =0 and f;. (2, 0) = 1.
Taking these and (5.21) together, we see
I(9") j1(Zhy W) =0 Y s Z)W* + {j1(25) — Priiu(ze)w”
This means (5.22). q.e.d.

Step 4. Consider two power series
F(s) =3 f, .08 - e 807, G(8) = 3 9,0, 80 0 - 8T

ins = (s, ---,s,) with coefficients in C. We indicate by F(s) € G(s) that
| foron] S 1901000, | Let A(w) = 1670¢™ 32, v%c*w”.  In this step, we
shall choose ., € C%7; ) by induction on # so that the power series
Dinmo Yraw” satisfies (5.19), and >in_, || 4. ||,w* satisfies

(5.23), [ llow + « - + |lgullow* K Alw), 7£=1,

for some constants p, b, ¢ > 0 independent of g.

We choose the constant p so that |a| < o™ < 1. Set j = 2vm + q,
k=2vm+7r for v=20,1,2,8, ---, 0<¢q,7» <2m. Then, by (5.3) and
(5.8)-(5.10), we have

95, w) = ¢;,(C, @w) (k=0 mod 2)
9i(& w) = 9,,(, @'w) (k=1 mod 2)
hir (€, w) = b7, a’w) (k=1 mod 2)
fjk(cr w) = fqr(C; avw)
as holomorphic functions in two variables ({, w). Hence, estimating power
series expansions in w of ¢:.((, w), 9. w), r7(, w) and f,.(, w) for
0= 9,7 < 2m, we may assume
942, w) — gi(2s, 0) € Ag(w) (k= 0 mod 2)
9iu(2i, €) — biu(2y) K Afw) (b=1 mod 2)
(hr(z;, w) € A(w) (k=1mod2, ¢=1)
Fin#e, w) — 1 < 07 Ay(w)

(5.24)
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for all j, k = 9, where A,(w) is the power series A(w) in which the con-
stants b, ¢ are replaced by b, ¢,, We fix a small positive number § so
that U;z, V; covers C*. Since (5.24) remains valid if we replace ¢, by a
larger constant, we may assume

(5.25) bo/cd < 1/2.

We define +, = {40} by ;0 = 1. Then «° = 4, satisfies (5.19), and
we have I'(y");(2,, w) = 1 — fi,(2,, w). Since 7v,;,,w is the linear part
of I'(4"),, it follows ||7,],w € A (w) by (5.24). By Lemma 5.12, we can
choose +, € C(7; @) so that ||y, < L,||vll, and 8y, =v,. Then, by
Lemma 5.20, ' = qp, + or,w satisfies (5.19),. We may assume b = L,b,,
¢ = ¢. Then (5.23), follows from this. Assume therefore we have chosen
J#7t satisfying (5.19)._, and (5.23),_, for some g = 2. To estimate q,,
we need

LEMMA 5.26. Assume (5.19),_, and (5.23),_, for some p=2. Then

we have
[[7el]low* € (Kb™ + Kic™ + Kye ) A(w)

where K,, K, and K, are positive constants independent of v., b and c.
ProOF. Let j=kx1, k=0 mod2. For simplicity, we set
a(w) =1+ a;;w + -+ + @jp W
fi(zs, w) = fiGHw + -+ + flaa@Z)w for e=1,2.
Then +;7%(z;, w) is written as
Vet a;(w) + fi(z;, w) for z;e V;NGC,
,'lb\j (zjy w) = 2/ 2
aj(w) + fi;, w) for z;eV;NCuy
where d = k/2. We note that f7(0, w) =0 for e =1, 2.
By the induction assumption (5.23),_,, we have
ai(w) + f;(z;‘; w) — 1<K .O’A(W) for Izjl <&, e=12,
i N2y, w) — 1 L p*A(w) for z,eV,.
Let R = 6. Then, applying Cauchy’s inequality to holomorphic functions
£z + 9, w) + aj(w) — 1 and 4 7'(z, + ¥, w) — 1 in (y, w) with estimates
(5.27), we obtain

(5.27)

(5.28) i@ + v, w) — fi(@ w) < pPAW) S (By) for |z <a -9,
(5.29)  yi(a + U, w) — ¥i(e w) < P*AW) S (Ry) for ze Vi

In particular, letting z; = 0 in (5.28), we have
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(5.30) Fiw, w) < PAw) 3} (Ry

since f7(0, w) = 0. Here we remark that

A (w) € (bey™) tAy(w) for v=1,2,3,---,
(5.31) A (w) € bb*A(w) (since ¢ = ¢,)

A (w)A(w) K be*A(w) .

First we estimate v,,.(z,)w* for z,e VNV, Let (g,7)=(2,1) or (1, 2)
according as j =k + 1 or k — 1. For any power series P(w) in w, let
[P(w)]. denote its p-th part. Then v,,,w" is written as

(5.32) ViweZ)W* = [ f7(97(2s, ), W)]u + [f7(95(2, W), W)]u
- [fjk(zky ’W)'lll“;:_l(zk, w)]# .
Let z; = b;.(z0), 1.e., 05:(21, 0) = 25. In (5.28), we let y = g5z, w) — 25.
Then, for z,€ V; NV, we have
Fi(@3n(z, w), ©) — f5(&, W) PAW) 3 RA(G5u(z, w) — 7
< 0P A(w) i; R A(wy by (5.24)

< P'AWw) 3 R'(biei?y " Asw) by (5.31)
L 2RO’ A(w)A,(w) by (5.25)
& 2Rbc'0’A(w) by (5.31) .
Since g%.(z4, 0) = 0, letting y = g¢%.(z,, w) in (5.30), we obtain similarly
F1(95 (2, w), w) K 2Rbc'0'A(w) for z,eV;NV,.
Thus for any ¢ = 1 or 2 we have
(5.33) [ f7 (952, w), w)]. € 2Rbc'0?A(w) for 2z,eV]NV,.
For z,€ V;NV,, we have
(5.34) [ fiulz, WYL ™21y W)]s
= [(fir(2es w) — D] + [(f5(2h, w) — 1)@k (23, w) — )]s
L PPA(w) + pA(w)p*A(w) by (5.24), (5.27)
L (bd™* + be™Mp’A(w) by (5.31).
Combining (5.33)-(5.34) with (5.32), we obtain
(5.35) Virp(@w* < {bd™ + (1 + 4R)bec '}’ A(w) for z,eVINV,.
Next we estimate v,;.(z;)w* for z;€ V; N V!, which is defined by
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(5.36) Vesn(Z)W = [P (gri(25, W), )] — [ frs(25, W a;(w) + f5(25, w)}],
- [fk.i(zjy w).f;(h;’-(z;i W), w)]l‘ .

In (56.29), we let y = ¢,,(z5, w) — 2,. Then, in the same way as we derived

(5.33), we have

(5.37) [V (9:5(z5, W), w)]. K 2Rbc ' 0*A(w) for z,e V,NV;.
Since 137 (z5, 0) = 0, letting y = h7°(z5, w) in (5.80), we obtain similarly
JI(hE (25, w), w) € 2Rbec "0’ A(w) for z;,e V,NV,.
Hence, for z,€ V; NV,
(5.38) [ fis(@5, w)fi(h5 (25, w), w)]s
= [fi(h5 (&5, w), w)]x + [(fii(25, w) — 1)f7 (R (25, w), )]s
& 2Rb e 0’ A(w) + p*Af(w)2Rb,c™' 0’ A(w)
& 2Rbc "0’ A(w) + 2Rb;*c¢*0*A(w) by (5.31) .
In the same way as we derived (5.34), we have
(5.39)  [fus(zs, wla;(w) + fi(zj, w)Hu K (bed™" + boe™") 0 A(w)
for z,eV;NV,.
Combining (5.37)-(5.39) with (5.36), we obtain
(5.40) YisuZ)w* L {bd™" + (1 + 2R)b,c™ + 2Rbie*}o* A(w)
+ 2Rbc'0’A(w) for z;eV,NV{.
Now we recall that v, = {v,,.} is a 1l-cocycle. In particular we have
(5.41) Yive = —Vegie o0 VNV, .
Since V;NV,NV,= @ for i+ j, j #k, k # 1, we have
V,NV,=VinV)yu(V;nVi).
Combining this with (5.85), (5.40) and (5.41), we obtain
Yiuu(Z)w* L (K™ + Kie™ + K,e*)p’ A(w)
for z,e V;NV,, j, k=0, where
K,=blp, K, =b(l+4R)p, K,=2Rbp

are positive constants independent of 7, &, t, b and ¢. We have thus
the desired estimate for ||v.|,. g.e.d.

By Lemma 5.26, we have |[|v.|,w* < K*A(w) where K* = Kb~ +
K¢ + K,c*. Independently of y¢, we choose the constants b, ¢ sufficiently
large so that K*L, < 1. By Lemma 5.12, we can choose +, € C%?; 2)
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so that oy. =, and [[yul, < Lo[[7]l,- Then, we have |[|yu,w" <
K*L,A(w) € A(w). Thus * = 4 + 4w" satisfies the estimate (5.23),.
Moreover, by Lemma 5.20, « satisfies (5.19),. This completes our induc-
tive choices of .

Final step. Let X7, +.w" be the formal power series defined in
Step 4. Let 4 = {4r;4(2;)}. We extend +;.(2;) to a holomorphic function
P;u(C;) on U; by setting
(vr51(&5) if jis even
(5 + F1E) + F7u(CD if j s odd.

By the estimates (5.23), we have
|P1(L;(2)) |lw" K o7 A(w) (J is even)
|0 + Fu(Ci@) w" < pPA(w) (7 is odd)
for £ =1, xe U;, e =1,2. Hence, for any j = 0, we have
|Psu(l(@)) [w* < 3p7A(w) for xzelU;, p=1.

Note that A(w) converges absolutely for |w| < 1/¢ and A(0) = 0. Thus,
for every 5 =0,

Piu(C5) =

1+ @ju(Cy’)w + e+ @j\ll<Cj)wy + .

converges to a holomorphic function ¢, absolutely and uniformly on
U; N B¢ satisfying (5.18) provided that ¢ > 0 is sufficiently small. Then
(56.19),, £ = 0, imply (5.17). This completes the proof of Proposition 5.11.

6. Construction of 3, II. Let 4 = C*/{a) denote the quotient group
of C* by the multiplicative group generated by a. Then 4 is an elliptic
curve since 0 < |a| < 1. By (5.2) and (5.8) the holomorphic function w

on S induces a surjective holomorphic map +: S — C— 4. In this section,
using the results of Section 5, we shall prove

PROPOSITION 6.1. There exists a compactification X of S — C such
that

(i) A extends to a holomorphic map ¥ of X onto 4,

(ii) ¥ maps I' = 3 — (S — C) biholomorphically onto 4.

First we derive several lemmas.

LEMMA 6.2. Let X be a Riemann surface. Let Y be a relatively
compact open subset of X with smooth boundary. Suppose that the closure
Y of Y in X is homeomorphic to a closed annulus. Then there is a con-
tinuous function f on Y so that f is holomorphic on Y and f maps ¥
homeomorphically onto a closed annulus.
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When X = C, this lemma is well known (e.g., [1; pp. 244-247]). The
proof in [1] is valid verbatim in our situation. Briefly the argument
goes as follows. The boundary oY consists of two connected components
Y, Vi Since 9Y is smooth, we have a continuous function ~» on Y such
that h|v, =0, h|v, =1, and & is harmonic on Y. Set

f(x) = exp chah (ceR) .

Then f is a single-valued function on Y and f maps ¥ homeomorphically
onto a closed annulus provided that the constant ¢ is chosen properly.
Clearly f is holomorphic on Y.

In Section 5, we have defined the coordinate charts (U; £;) on S
covering C, which will be used successively in this section. Set

I, =w'w)n UU; —C*) for ueC.

Note that w is of maximal rank on U; — C* for 5 =0. Thus 7, is
smooth for every u. Let D be the unit disk {teC||t| < 1} and let
D* = D — {0}.

LEMMA 6.3. There is a positive number € so that, for each w, 0 <
lu| < e, we have a biholomorphic map f of II, onto D*, which satisfies

(6.4) Sup{lf(x)llweﬁuﬂlijk}ﬁo as j—> oo .

ProoF. CN(U,U --- U U,,) is a relatively compact subset whose
boundary in C consists of two circles (defined by the equations: |{,| = 1/
and |{,.| = 7). Hence there is a positive number ¢ so that the boundary
of w(w)N((U,U ---U U, in w'(u) consists of two circles for each u,
lu| <e. Fixing ueC so that 0 < |u| <e, we shall show that I7, is
biholomorphic to the punctured disk D*. Set

v
.A]:Hum<0Uk> fOI‘ j;o.
k=0

Recalling that {,; is defined on an open neighborhood of U,;, we define
l-cycles v}, 0 =1,2, on I, N U,; by

'7}: 0 = (C2j7 w) = (eiﬂ/,r, u)

Vi 0 (G w) = (re”, u) ,
where 6 €[0, 2r]. We denote the image of any l-cycle v by the same
symbol 7.

We divide the proof of Lemma 6.3 into four steps.
Step 1. We shall show that A; is biholomorphic to an annulus for
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each j = 0. By our choice of ¢, we see from (5.83) and (5.7) that the
boundary of A; in w'(u) consists of two circles, v}, v3, which are both
smooth. Therefore, by Lemma 6.2, it suffices for our purpose to show
that A; is homeomorphic to a closed annulus by induction on j. Clearly
4, is identified with an annulus by the coordinate {,. Suppose therefore
that A;_, is homeomorphic to an annulus for some j = 1. Set A} = A, —
A; U U, and A3 = A,N U,;. Then A% is an annulus whose boundary is
7; U % Note that A;c U,;_,. Let p: U,;_, — C denote the projection to
the first coordinate (;;_,. Then, by (5.5), »p maps w™(w) N U,;_, biholo-
morphically into C. p(4}) is a compact set whose boundary consists of
two disjoint circles, p(v}) and p(v%). Therefore A} is biholomorphic to
an annulus. Since A; ;N A} = ~%_,, the union A4, , U A} is (homeomorphic
to) an annulus whose boundary is 7 U~} Thus, for the same reason,
A; = (4, U A} U A% is homeomorphic to a closed annulus.
By Lemma 6.2, we have a homeomorphism

find;—{teClr; < |t|=1) O0<r;<1)
such that f; is holomorphic on A;, We may assume

filr) = {teC|]t] = 1}
filry) = {teClt] = r3} .

Step 2. Since f;, j = 0, are uniformly bounded on /7,, taking a sub-
sequence if necessary, we may assume that the sequence {f;} converges
to a continuous function f uniformly on each compact subset of /7,. In
particular, f is holomorphic on 77/,. In this step we shall show that f
and of are nowhere zero on II,. For this purpose we define a number
v(t, v, h) by

(6.5)

1 oh
t) ’ h = = S

V(8 7, 1) 2t Jrh —t

for teC, a l-cycle v and a holomorphic function % defined on a neighbor-

hood of v. Let v be a l-cycle on 7, and let {¢,} be a sequence of points

t,eC, k=012, -.., with ¢ = lim,_.. t,. Then it follows from the com-
pactness of v that, if £ ¢ f(v), then
(6~6) )J(t, ryy f) = }clm ”(tlc, 7: fk) .

By Step 1, 7%, 7 = 0, are all homologous to v} in 4, for j < k, while f,
maps vi homeomorphically onto a circle around the origin. Therefore it
follows by the argument principle that

(6.7) v0, 7, f) =1 for j<Fk.



482 I. ENOKI

We shall see first that f is not constant. By (6.5), |f| =1 on v, i.e., f
does not vanish identically. Suppose therefore f is identically equal to
a non-zero constant. Then v(0, 7%, f) = 0. By (6.7), this contradicts (6.6).

Since f, is a coordinate of A,, for each x e I7, there is a small 1-cycle
v, around % on II, such that v, is homologous to zero in /7, and v(f,(x),
Y., fo) = 1 for sufficiently large k. Moreover we may assume f(x) ¢ f(7,)-
Now suppose df(x) = 0 for some xell,. Then v(f(x), 7., f) = 2. This
contradicts (6.6). Suppose next f(x)=0 for some x € IT,. Then v(0, v,, /)=
1. On the other hand, since f, is nowhere zero, we have v(0, v,, f,) = 0.
This contradicts (6.6).

Step 3. In this step, we shall show

6.8) sup (|t||te FUT N A)) >0 as j— oo

Fixing 0 <t <m, set j=vm + 1 for v=20,1,2, ---. We recall that {,
is defined on the neighborhood T, of C, — {p,} — {p;_s} in S — {p.} — {p._}
and (§,;, w) forms a system of coordinates on T,. Set T; = ¢g7(T;). Then
L = (99)*C,; extends to T; and ({,;, w) forms a system of coordinates on
T, for each j. In these coordinates, g* is written as

9" (G, w)e T;— (&, aw)e T, .

Therefore, since 0 < |a| < 1, there exist real numbers R;, j = 0, such
that lim; . R; = « and

{xeT,|R;* < |Cux)| < R, wx) =auycgI,NT;) for 7=0.

Let h, = (¢97)*f. We identify ¢*(II, N T;) with a domain in C by the
coordinate ,; and we regard h, as a holomorphic function on the annulus
{{ueC|R;* < |C;| < R;}. Since h,, v =0, are uniformly bounded, there
is a subsequence {h,} of {h,} which converges to a bounded holomorphic
function defined on C*. Therefore the sequence {h,} converges to a
constant uniformly on the compact set {{,|r < |l:| <77'}. Thus the
sequence {d;} of the diameters of f(U,, NII,) in C, j = v'm + 1, con-
verges to zero. On the other hand, by (6.6)-(6.7) we have

(6'9) ))(0, 73"; f) = 1 .

This means that the convex hull of f(U,; NII,) contains the origin.
Therefore, by the maximum principle, lim; . d;, = 0 implies (6.8).

Step 4. We shall show that f:II, — D* is a proper map. Suppose
not. Then there is a sequence {x,} of points x,e€ll,, »=1,238, ---,
without accumulation points in /7, such that the sequence {f(x,)} converges
to a point y* of D*. Since |y*| >0, it follows from (6.8) that there
exists j = 0 such that x,€ A, for all . Then the sequence {x,} converges
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to a point z* on A; and y* = f(x*). From xz*¢ I, it follows that 2* ¢ v}
and hence |y*| = |f(«*)| = 1. This contradicts y* e D*.

By Steps 2 and 4, f:II, —> D* is a d-fold covering (1 =< d < o).
Moreover, (6.9) shows that the degree of the map f:v%— f(7%) is one.
Since 7% is a generator of the fundamental group of I7,, this implies
d =1. Thus f maps I7, biholomorphically onto D*. Now (6.4) follows
from (6.8). q.e.d.

Take sufficiently small € > 0 so that the conclusions of Proposition
5.11 and Lemma 6.3 hold. Then we have a holomorphic 2-form @ on B®
such that @ is nowhere zero and its local expression @ = @,,(;;}dl,; A dw
on U,; N B° satisfies

P C; =1
|@,;(x) — 1] < 1/2 for =xeU,nN B°.
Define a holomorphic 1-form 8, on I7, by the formula ¢ = 6, Adw on II,.

Then 6, is nowhere zero on II, for any u, |u| <e. Fix u so that 0 <
lu| < e and let f: IT, — D* be the biholomorphic map given by Lemma 6.3.

(6.10)

LEMMA 6.11. (f)*0, extends to a meromorphic 1-form on D so that
the origin of D is a pole of order one.

PrOOF. In the standard coordinate ¢ on D, we write 4, as 6, =
f*(hdt), where h is a holomorphic function on D*. By the definition of
4., we have

(6.12) Pyl = (f*m)(@0f0C,;) on U,nll, .

For our purpose it suffices to show that h extends to a meromorphic
function on D which has a pole of order one at the origin.
First we claim lim,, h(f)™* = 0. For simplicity let

L(5) = sup{|f@)||z e U,; N IL.} ,
Uj = {we Uylr 4+ 0 < [L)] < vt — 6}

where & > 0 is sufficiently small. Then by Cauchy’s inequality we have
|0flat)@)| < L(I6 for weUsNM,, j=0.

Combining this and (6.10) with (6.12), we have
()| < 2L(G)rs for tef(USNIL), j=0.

By (6.4) and the maximum principle, it follows

(6.13) Sup{lh(t)l”‘ltegf(Ukﬂﬂu)}—>0 as j— o .

Note that the collection of sets U,.; f(U.NI,)U{0}, j =0, forms a
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neighborhood system of the origin in D. Therefore (6.13) implies
lim,_, ()™ = 0.

Now we know that A is meromorphic on D and not holomorphic at
the origin. Next we claim there is a sequence {t;} of poinmts t;ec D*,
j =0, such that |t;h(t;)| are bounded with respect to j and lim;_ ., t; = 0.
This proves Lemma 6.11. By the argument principle we have

0 o .
Sigz_ﬂ:l <ac2i log f>dC2] = 2wt for 1= 0.

Hence by the mean value theorem we can find a point z; on U,; N II,

such that
- _of =
e (3w 21, el =1
Let ¢t; = f(x;). Then, by (6.10) and (6.12), |¢;h(t;)| < 3/2 for all j = 0.
lim;_. t; = 0 follows from (6.4). g.e.d.

Let E denote the e-disk {ueC||u| < &}.

LEMMA 6.14. There are an open meighborhood B of C* in S and o
holomorphic function ¢ on B — C* such that (t, w) maps B — C* biholo-
morphically onto D* X K.

ProorF. We expand o, ({, w) into the Laurent power series in {;:
Py W) = Speze(w)ly where c.(w) are holomorphic functions in w,
|w| <e. Since ¢,(0) =1 by (6.10), we have c¢,(u) # 0 for any u € E pro-
vided that ¢ > 0 is sufficiently small. Thus

(6.15) SK e, =2mi for uel.

Define a holomorphic map s of E into U, N B° by
ssut— (G, w) =0,u) for uck.
For each xe B: — C™, set
2@ =exp| a0, (u=w@).
s(u)

Then, since c¢,(u)'¢, depends on % holomorphically, z = z(x) is a holomor-
phic function on B¢ — C*. By (6.15) and Lemma 6.11, the restriction of
7 to II, is a holomorphic coordinate of I7, for each u, 0 < |u| < e. Note

that (the extension of) ¢, maps II, = C,N(U,U U,) — {p,} biholomorphically
onto a punctured disk. By the first line of (6.10), ¢|II, = {|II,. Thus

B={reB — C*||r(x)| <1}UC*
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is an open neighborhood of C* in S and (¢, w) maps B — C* biholomor-
phically onto D* x E provided that ¢ > 0 is sufficiently small. q.e.d.

Let E* = E — {0}. Form the union W = w™(E*) U(D x E*) by identi-
fying each x € B — C with (c(z), w(x)) e D x E*. Then the map w extends
to a holomorphic map w of W onto E*. First we shall show that
w: W— E* is a proper map. Fix we E* arbitrarily and choose a real
number ¢, such that |ale, < |u| <e, <e. Let B’ be the domain in B
defined by the inequalities: |z]| < 1/2, |w| <e¢,. Then AB’) is an open
neighborhood of C in S by Lemma 6.14 and (5.4). Hence S — MB') is
compact. By the choice of ¢, and (5.3), we have

Mw™(u) — B') = Mw™(w)) — MB'),
while A embeds w*(u) into S — C. Therefore w=*(u) — B’ and hence
' (u) = (w(uw) — B") U Dm X {u}

are compact, where D,, is a closed disk of radius 1/2. Thus every fibre
of w is compact and hence w is proper.

Next we shall show that we can extend g to a biholomorphic map
o0 of W into itself by setting

(6.16) o) = g(x) for xzew(E*)
' 000, w) = (0, au) for (0,w)eD x E*.
Let {x,} be a sequence of points x,e W, v =1, 2, ---, which converges to

(0,w)eD x E* in W. Then, since the sequence {w(po(x,))} converges to
auwe E* and w is proper, the sequence {o(z,)} has some accumulation
point only on w~'(au). On the other hand, since p maps w~'(w) homeo-
morphically onto w™*(au), the sequence {o(x,)} has no accumulation points
in w*(au). Therefore, since @ *(au) — w(au) consists of one point
(0, au), the sequence {o(x,)} converges to (0, au) and hence lim, o(x,) =
o(lim, z,). Thus p is continuous on W. Then, since W — w™'(E*) is an
analytic set of codimension 1 on W, it follows by Riemann’s extension
theorem that p is holomorphic on W. Moreover, since p is one-to-one,
o maps W biholomorphically onto o(W). We note that p preserves the
fibres of w.

Now we define Y to be the complex manifold obtained from W by
identifying each y € W with p(y). Let 4 denote the canonical projection
of W onto 3. Then w induces a holomorphic map ¥ of Y onto 4. Since
w is proper, ¥ is also proper and hence 3 is compact. In view of (5.2)
and (5.3), we can identify S — C with the open submanifold A(w=(E*))
of ¥ canonically. Let I’ = 3 — (S — C). Then I' = A({0} x E*)is a curve
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on 5. Thus ¥ is a compactification of S — C. We have ¥|S —C =+
since they are both induced by w. Since ¥ |A(D x E*) is induced by
the projection (¢, ) — u of D x E* onto E*, it follows from (6.16) that
¥ maps I' = A{0} x E*) biholomorphically onto 4 = C*/{a@). This com-
pletes the proof of Proposition 6.1.

7. Structure of ¥ and S — C. By (5.4) we know that C consists of
m irreducible components (m = 1). In this section, we shall prove

PRrROPOSITION 7.1. S — C has the structure of an affine C-bundle of
degree —m over the elliptic curve 4 with the projection .

ProoF. We identify S with the quotient surface S/(g> of S by the
group generated by g¢g. Hence for any positive integer k& we have a
k-fold unramified covering surface S’ = §/(g*) of S and a k-fold covering
curve 4’ = C*/{a*) of 4. Let p denote the canonical projection of S’
onto S and 7 that of 4 onto 4. Then the holomorphic function w on S
induces a holomorphic map +' of S’ — p™*(C) onto 4’ such that op =
moa’. Suppose now that «': S’ — p7(C) — 4 is an affine C-bundle of
degree d. Then, since n: 4’ — 4 is a k-fold covering, 4: S — C— 4 is an
affine C-bundle of degree d/k. Clearly »p~*(C) is connected and consists
of km irreducible components. Therefore, considering S’ — p~*(C) instead
of S — C, we may assume m = 3.

Let 3 be the compactification of S — C given by Proposition 6.1 so
that S — C = XY — I' and + extends to the holomorphic map ¥ of ¥ onto
4. The proof of Proposition 7.1 is divided into three steps.

Step 1. First we shall show (I')? = m. Note that C and D,, ., have
the same intersection matrices and the same topological structure by
(5.1)-(5.4) (cf. (3.2), (3.3) and (3.6)). Suppose now (I")? < 0. Then, since
I' is irreducible, it follows by Proposition 1.2 that 3 and hence C have
strongly pseudo-convex neighborhoods in Y and S respectively. Again
by Proposition 1.2, this contradicts (C)* = 0. Thus it suffices to show
()] = m.

Let M be the tubular neighborhood of I". Then oM is a circle bundle
of degree = (I')* over the elliptic curve I'. Hence the Gysin exact
homology sequence gives

(7.2) H(©M, 2)=20 2 (Z[dz), d=|T)|.

Let N and N,, respectively, be the tubular neighborhoods of C in S and
D, .o in S, ... We shall see

(7.3) H,(0M, Z) = H,(ON,, Z) .
In fact M is homotopically equivalent to N by Lemma 1.5. Since
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m = 3 by our hypothesis, C and D, ., are of simple normal crossing.
Therefore, according to Lemma 1.4, we may assume that oN and oN,
are homotopically equivalent. Thus we obtain (7.3).

S,e0 — Dueo 18 a line bundle of degree —m over an elliptic curve.
Therefore, by Lemma 1.5, 0N, is homotopically equivalent to a circle
bundle of degree +m over an elliptic curve. Hence H,0ON, Z) = Z P
Z® (Z/mZ). Combining this with (7.2)-(7.3), we obtain |(I")?*| = m.

Step 2. 3 is obtained from a surface X* free from exceptional curves
of the first kind by successive quadratic transformations. Let ¢ denote
the canonical projection of XY onto X*. Set I'* = ¢(I"). Since 4 is an
elliptic curve, ¥ is a constant map on each exceptional curve of the first
kind on Y. Hence ¥ induces a holomorphic map ¥*: 3* — 4 satisfying
¥ =¥*o0. Note that, since ¥:I" — 4 is biholomorphic, ¥*: I'* — 4 is
also biholomorphic. In this step we shall show that ¥*:¥* - 4 is a
P'-bundle.

Since (I')? > 0 and hence (I'*)* > 0, we see that X* is algebraic ([8,
I; p. 757, Th. 8]). Now let K denote the canonical divisor of ¥*. Then,
since I'* is a non-singular elliptic curve with (I"*)* > 0, we have (VK —
plr*.-r*y<0 for any »>0, ¢ =0. Hence all pluri-genera P, =
dim H°(2*, &(vK)) are zero (¥ > 0). On the other hand, since Z* maps
X* onto the curve 4 holomorphically, ¥* is not the projective plane P2.
Therefore, by Enriques’ theorem, Y* is a P'-bundle over a curve 4’ (cf.
[8, IV; p. 1060, Th. 52]). Let @:3* — 4’ denote the projection of the
P'-bundle. Since 4 is an elliptic curve, ¥* is a constant map on each
fibre @'(u) = P', ue 4. Hence there is a holomorphic map p: 4’ — 4
satisfying ¥* = p¢o®@. Moreover, since ¥*: I'* — 4 is biholomorphie, £ is
biholomorphic. Thus ¥*: ¥* — 4 is a P!-bundle.

Step 3. Now we shall show ¥ = 3* and hence ¥ = ¥*. Suppose
Y #23* Then we can write ¥ = Q,Q;_, -+ Q,(2*), (k=1), where Q,
denotes the quadratic transformation with respect to the point ¢, on
Q1+ Q(2*). We identify @, --- Q(2*) — Q,(q,) with Q,_, --- Q,(Z*) —
{g,} canonically. Setting I, = I'*, inductively we define I, to be the
proper transform of I',_, with respect to @, »=1,2, .-, k. Thus
I' =T,. Since S — C =Y — I has no exceptional curve of the first kind,
we have
(7.4) Qn€l, y, for 0SS pu<k—1.

Set F, = U*7(¥*(q,)). Since ¥* is of maximal rank on I, it follows from
(7.4) that F, intersects I', transversally at q,. Therefore, since Fj is a
non-singular rational curve with (F,)? = 0, the proper transform F, of F,
with respect to @, is an exceptional curve of the first kind on Q,(2*) — I',.
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Moreover, by (7.4), the proper transform of F, with respect to @, --- @
is an exceptional curve of the first kind on ¥ — ', =S — C. This is a
contradiction.

Thus ¥:Y — 4 is a P*-bundle. Since ¥: " — 4 is biholomorphiec, I" is
a holomorphic section of the P'-bundle ¥. We may regard I" as an co-
section. Hence S — C = Y — I' is an affine C-bundle with the projection
4 = ¥. Note that the linearization of the affine C-bundle S — C is the
dual of the normal bundle [I'];. Therefore the degeree of S — C is
—()?* = —m. q.e.d.

8. Structure of S. In this section we shall determine the structure
of S. We begin with

LEMMA 8.1. Let M be a noncompact surface and w: M — C a holo-
morphic map. Assume

(1) w 18 of maximal rank at each point of M,

(ii) M — w™*(0) s an affine C-bundle over C* with the projection w,

(iii) w™'(0) is biholomorphic to C*.

Then there exists a holomorphic function & on M so that (&, w) maps M
biholomorphically onto C* — {0}.

PrOOF. Set F' = w™(0). Since every affine C-bundle over C* is trivial,
there is a holomorphic function & on M — F' so that (¢, w) maps M — F'
biholomorphically onto C x C*. Fix x,¢ F. Let (U, (2, w)) be a coordi-
nate chart around x, such that

Uy = {(zo, w)|]2| <1, [w] <&},  2®)=0,
where ¢, > 0 is sufficiently small. Define a holomorphic map s: w(U,) —
U, by
siu (2, w) = (0, w) for |u|<e,.

Define holomorphic functions a(u) and b(u) on w(U,) — {0} respectively by
aw) = Los(w)) , bw) = &(sw)  for wew(V) — (0}

Note that a(u) is nowhere zero. Set
(8.2) N(x) = {&(@) — b(w(x))}a(w(@))
for x e w(w(U,)) — F. Then 7 is holomorphic on w*(w(U,)) — F.

First we shall show that 7 extends to w(w(U,)) holomorphically so
that 7 maps F biholomorphically onto C*. Take y e F arbitrarily. Then
we can find finitely many points «,, ---, ®,, ---, 2, on F and coordinate
charts (U, (2,, w)) around z,, v =1, ---, k, such that z,€ U,_,N U, and
x, = y. Moreover we may assume that for each v, 0 < v <k,
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U, ={z,wllz| <1 w[<e (>0, z@)=0.
By induction on v, we prove

(8.3), 7 extends to a holomorphic function on U, so that
on/oz, is nowhere zero.

By (8.2) we have
70, w) =0

on
270 w) =1
-azo(' )

Hence the distortion inequality holds:
1720, w)| = [2,]/(1 — [2,])* for 0 <|w|<eg.

In particular 7 is locally bounded on U,. Therefore by Riemann’s exten-
sion theorem, 7 extends to U, holomorphically. Suppose (09/0z,)(x) = 0
for some x ¢ U,. Then the equation: 97/0z, = 0 defines an analytic subset
of pure dimension one, while 67/0z, is nowhere zero on U, — F. Hence
0m/0z, is identically zero on F'N U,. On the other hand by (8.4) we have
(0m)0z,)(x,) = 1. This is a contradiction. Thus 97/0z, is nowhere zero on
U,. This proves (8.3),. Assume therefore that (8.3),_, holds for some
v = 1. Define a holomorphic map s,: w(U,) — U, by

(8.4) for 0, w)eU,— F.

s,surt(z, w) = (0,u) for wew(U,).

We may assume that U,_,N U, contains the whole s (w(U,)). Define
holomorphic functions a,.(u) and b,(u) on w(U,) respectively by

a,(w) = g: (8,(w) , b(w) =n(s(w) for uew(U,).
Then a,(u) is nowhere zero by (8.3),_,. As before, we define a holomor-
phic function », on U, — F by

n(x) = {n(x) — b(w(@))}/a.(wx)) .

Repeating the same argument as that for (8.3),, we obtain that 7, extends
to U, holomorphically so that 07,/0z, is nowhere zero. Therefore (8.3),
holds since we can write 7 as 7 = a,(w)7), + b,(w). Thus, since y€ F is
arbitrary, » extends to w™'(w(U,) holomorphically so that for each
u € w(U,) the restriction of d7 to w™'(u) is nowhere zero. By (8.2), 7 is
one-to-one on w™'(u) for wew(U, — {0}. Hence, using the argument
principle, we obtain that 7 is one-to-one on F. Thus » maps F' biholo-
morphically onto C*.

Now we know that (M — F, (&, w)) and (w'(w(U,)), (, w)) are co-



490 1. ENOKI

ordinate charts covering M. Since the coordinate change (8.2) is an affine
transformation with respect to &, we can identify M with an open sub-
manifold of some affine C-bundle over C with the projection w. Since
every affine C-bundle over C is trivial, there is a holomorphic function
& on M such that £ defines the coordinate on w~'(u) for each u€C. Thus,
taking & — v instead of ¢ for some constant v if necessary, (&, w) maps
M biholomorphically onto C* — {0}. q.e.d.

PROPOSITION 8.5. Let S be a compact surface free from exceptional
curves of the first kind. Assume that S satisfies the conditions (S-0)-
(S-2) with a curve C. Then S is biholomorphic to S, ., and C = D,, .,
for some m=1, 0 <|a| <1, teC™

PROOF. By our hypothesis we have the unramified covering »: S — S
of S, the holomorphic function w on S and the covering transformation
g satisfying (5.1)-(5.4). We write C;, jeZ, for the irreducible com-
ponents of A7'(C) so that ¢g(C;) =C;_, (m=1). Set 4= C*/{a), where
g*w = aw (0 < |a] < 1). Then w induces a holomorphic map 4 of S — C
onto the elliptic curve 4. By Proposition 7.1, 4: S — C— 4 is an affine
C-bundle of degree —m. Therefore w:S — A"(C)— C* is also an affine
C-bundle. Set M =S — U, C; and F = C,N M. Then F is biholomor-
phic to C* by (5.1). By (5.2), w is of maximal rank at each point of M.
Hence, applying Lemma 8.1, we obtain a holomorphic function £ on M
such that (¢, w) maps M biholomorphically onto C* — {0}. Since g*w =
aw, ¢ is of the form

(8.6) g: (&, w) — (a(w)é + b(w), aw) for w =0,

where a(w), b(w) are holomorphic functions on C* and a(w) is nowhere
zero on C*.

First we prove that a(w) and b(w) extend to C holomorphically. By
(5.1) and (5.4) we can choose a compact neighborhood N, of C; for each

j € Z so that
8.7) j'g(Nj) = N;_,
’ (IN;AN, =@ if j#k+1.

Fixing 0 <1< m, set j») =vm + ¢ for vy = 0. Then, by g*w = aw,
we have

Mw ™ (uw) N Nj,y) = Mw ™ (a'u) N N;) for uweC.
Hence, from | < 1 it follows that, for each u € C, the sequence of sets

Mw ™) N Ny, v=20,1,2 ... converges to CNMN,). Since Cn
Mw 7 (w) = @ for u = 0, this means that, for each u e C*,
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(8.8) inf{|e@)||lzew (W) N N;} >0 as j— +co.
For sufficiently small 6 > 0 and ¢ > 0, we set

B = {ze M||&x)| > 1/5, |w(x)| < e} .
Then, by (8.8) and the maximum principle we have
(8.9) N.NB=g for £<0.

Take two points ¢, ¢, on F' and define holomorphic maps s;: C —> M, © =
1,2, by

s u— (g, w) = (&q,), ) for ueC.

We may assume that s;(u)e N, for |u| <e, 4=1,2. Then, by (8.7) and
(8.9), g(s;(w)) ¢ B for |u| < e. That is, by (8.6),

la(w)&(g,) + bw)| < 1/6 for 0<|w|<e.

Hence, by Riemann’s extension theorem, a(w)z(q;) + b(w), i = 1, 2, extend
to C holomorphically. Thus a(w) and b(w) extend to C holomorphically
since &£(q,) # £()-

Now, applying Proposition 2.5 to the holomorphic automorphism g of
S — A4(C), we obtain a holomorphic function z on M and a polynomial

t(w) of degree < m such that (z, w) forms a system of coordinates on
M and g is of the form

(8.10) g: (z, w) — (w™z + t(w), aw) ,

taking Bw, B e C*, instead of w if necessary.

By (5.1)-(5.4) (cf. (3.2), (3.3) and (3.6)), we know that C and D,.,
are homeomorphic and have the same intersection matrices. We have
C=UrMC) by (5.4). Let D,, 0 £1 < m, denote the irreducible com-
ponents of D,, , ..

The case: m = 1. By (5.1) and (5.4), C (resp. D,, ., has the unique
singular point p (resp. q). Comparing (8.10) with (3.1), we see from
the construction of S, .., in Section 3 that S — {p} is biholomorphic to
Sie:— {qg}and C — {p} = D, ., — {q}. Thus by Hartogs’ extension theorem
we conclude that S is biholomorphic to S,., and C = D, ,,.

The case: m > 1. From (5.2) and (5.3) it follows that the real first
Chern class of the line bundle [C] and hence the real homology class of
C are zero. This implies that S is not Kiahlerian. Therefore, since S
has no exceptional curves of the first kind, S is minimal (cf. [8, IV; p.
1065, Th. 56]). Set P=Ur:*n(C,) and @=Ur:' D,. Comparing (8.10) with
(3.1), we see from the construction of S, ., that S — P is biholomorphic
to S,...—@Q and C—P=D,,,,—Q, changing the indices of D, if necessary.
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Thus both S and S, .. are minimal compactifications of the same surface
S — P. Note that P& C, Q& D,,.. and the intersection matrices of
C, D,,.. are negative semi-definite. Hence P and @ are both exceptional
by Lemma 1.1 (iii) and Proposition 1.2. Also P, @ are connected. Thus
we conclude by Proposition 1.3 that S is biholomorphic to S, .; Since
S — P (resp. C — P) is identified with S, ., — @ (resp. D, .. — @), we
have C = D,, ;. qg.e.d.

9. Proof of Main theorem. Let S and D be as in the Main theorem.
Let C denote the support of D. Then S and C satisfy the conditions
(S-0)-(S-2) by Proposition 4.18 (see the beginning of Section 5). Thus,
by Proposition 85, S=8, ., and C = D,,.,. By Lemma 1.1 (ii) we have
D =7rD,,,, for some »e Z. Finally from b,(S) = n it follows m = n.
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