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0. Introduction. Let S denote a compact surface, i.e., a compact com-
plex manifold of complex dimension 2. We write 6<(S) for the ΐ-th Betti
number of S. For a divisor D on S, we write {Df for its self-intersection
number. A compact surface S is said to be of Class VΠ0 if S is minimal
and δx(S) = 1.

Now let S be a surface of Class VII0 with curves. Then S satisfies
one of the following conditions:

(0.1) S has a divisor D φ 0 with {ΊJf = 0 ,

(0.2) any divisor D Φ 0 on S has (D)2 < 0 .

Moreover, if 62(S) = 0, Kodaira proved that S is either an elliptic surface
or a Hopf surface. Note that b2(S) = 0 implies (0.1). In this paper we
shall complete the classification of surfaces of Class VΠ0 which satisfy
(0.1).

To state our result, we shall construct surfaces Sn>α,t, n > 0, 0 <
\a\ < 1, teCn, with the following properties:

[Sntatt is a surface of Class VΠ0 with b2 = n ,

[Sntatt has a curve Dn>a>t w i th (Dnι(X)t)
2 = 0 ,

(0.4) Sn,att — Dntatt is an affine C-bundle of degree —n over an
elliptic curve .
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Clearly Sn,a,t satisfy (0.1) (cf. note (2) below). Our result is the following

MAIN THEOREM. Let S be a surface of Class VΠ0 with 62(S) = n > 0.
If S has a divisor D Φ 0 with (Df = 0, then S is biholomorphic to Sn,a$t

and D = rΌ^aΛ for some 0 < | α | < 1, t eCn and reZ.

This Main theorem and some related results were announced in [2].
In subsequent papers, we shall study deformations of Snt(Xtt (cf. [6]) and
we shall give an application of the Main theorem to a study of com-
pact ifiable surfaces.

Here we recall some results on surfaces of Class VΠ0.
(1) Class VIIQ was introduced by Kodaira. As for the significance

of this class, we refer to his papers [8, I, IV]. He determined the struc-
ture of surface of Class VII0 with b2 = 0 which satisfy (0.1), as mentioned
above.

( 2 ) It was Inoue [4, 5] who first constructed examples of surfaces of
Class VΠ0 with δ2 > 0 which contain curves. In [4], he gave SlfΛf0 as an
example. SlttXtt is contructed in [6]. We note that Sn>a>0 is an ?ι-fold
unramified covering surface of SltβtOf a = βn, and Sn>(Xtt is a deformation
of Sn,β,0. In [5], he constructed examples satisfying (0.2).

(3) On the other hand, Kato discovered a series of surfaces of
Class VIIQ with b2 > 0 which contain global spherical shells and exactly
b2 rational curves (see [6; p. 74, Remark 4]). In this series, we find
Sn,a,t9 Inoue's examples consrtucted in [5] and many other surfaces of
Class VΠo satisfying (0.2).

(4) We have divided surfaces of Class VII0 with curves into two
classes, those satisfying (0.1) and those satisfying (0.2). Our Main theo-
rem, completing the classification of surfaces in the former, clarifies the
difference between these two classes in the following way.

When a compact surface S satisfies (0.2), it is well known that for
any curve C on S, any (complex analytic) compactification of S — C is
bimeromorphic to S (cf. Section 1). On the other hand, when a surface
S of Class VΠ0 satisfies (0.1), there exist a curve C on S and a compacti-
fication Σ of S — C such that Σ is not bimeromorphic to S. Indeed we
can take I7 to be a /^-bundle over an elliptic curve, where P1 is the
complex projective line. When 62(S) = 0, this fact is well known ([8, II;
Sections 9-10]). When 62(S) > 0, this fact is a direct consequence of (0.4)
and our Main theorem.

The composition of this paper is as follows. In Sections 1-2, we shall
collect together some known results. In Section 3, we shall construct the
surfaces Sn,a,t and prove (0.3)-(0.4). Now let S and D be as in the Main
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theorem. Let C denote the support of D. In Section 4 we shall deter-
mine the structure of C and see there is a surjective holomorphic map ψ
of S — C onto an elliptic curve A. In Sections 5-6 we shall construct a
compactification Σ of S — C so that ψ extends to a holomorphic map Ψ
of Σ onto Δ and Ψ maps Γ = Σ — (S — C) biholomorphically onto Δ. In
Section 7 we shall prove that Ψ: Σ -» 4 is a P'-bundle. In Sections 8-9,
using Proposition 2.5 in Section 2, we shall complete the proof of our
Main theorem.

The author would like to thank Dr. M. Inoue who kindly informed
him of an alternative proof of Proposition 4.12 which is much simpler
than the author's. Also the author would like to express appriciation to
the referee for several suggestions that helped clarify the presentation.

1. Neighborhoods of curves. By a curve we shall mean a compact
pure 1-dimensional analytic set. In this section, we collect together the
results on neighborhoods of curves.

Let C be a curve on a surface and let C = Σ?=i ®* denote the decom-
position of the curve C into the irreducible components Θ* of C (θt Φ Θ5

if i ψ j). We write {Θ^Θ^ for the intersection number of Θt and Θά.
The n x n matrix [(θ* Θj)] of the intersection numbers is called the
intersection matrix of the curve C. We quote a lemma from [13; p. 85,
Lemma 2].

LEMMA 1.1. Let C = Σ?=i®i be a curve on a surface. Assume that
C is connected and the intersection matrix of [(θi ^i)] of C is negative
semi-definite. Then we have

( ί ) if (Σ?=i mβif = 0 for some integers mi9 then mi are all positive,
negative or zero simultaneously,

(ii) rank[(0 £ .6g]^ n - 1,
(iii) if (i(l), , J(2>)}SE{1, , n), then the intersection matrix of the

curve Ufc=i®i(fc) ^s negative definite.

Let M be a surface. An open subset U of M is called strongly
pseudo-convex if there exists a proper C°° map φ: J7—>[0, <χ>) such that
φ is strictly plurisubharmonic outside a compact subset of U. A curve
C on ilί is called exceptional if there exists a normal analytic space ilf *
and a holomorphic map cr: M-> M* such that σ(C) is a finite set of points
on M* and σ maps M — C biholomorphically onto Λf * — σ(C). When C
is an exceptional curve of the first kind, ikf* is a manifold and M is a
quadratic transform of Λf* with respect to the point σ(C). We recall
the characterization of exceptional curves (cf. [3]).

PROPOSITION 1.2. Let C be a curve on a surface M. Then the fol-
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lowing three conditions are mutually equivalent.
(a) C is exceptional.
(b) The intersection matrix of C is negative definite.
(c) There exists a strongly pseudo-convex neighborhood of C in M.

Let M be a non-compact surface. A compact surface S is called a
compactification of M if M is an open submanifold of S and S — M is a
curve on S.

PROPOSITION 1.3. Let Sx and S2 be minimal compactifications of the
same surface M. If Ct = St — M is a connected exceptional curve on St

for each i = 1, 2, then Sλ is biholomorphic to S2

PROOF. Let σt: St-* Sf be the holomorphic map of S£ onto the normal
analytic space Sf so that σt(Ct) is one point and σt maps St — Ct biholo-
morphically onto Sf — ^(CJ. Then the identity map St — Cx —> S2 — C2

extends to a biholomorphic map of S* onto S* (cf. [10; p. 118, Prop. 4]).
Thus both Sλ and S2 are the minimal desingularizations of the same space
Sf and hence Sλ is biholomorphic to S2. q.e.d.

Let C be a curve on a surface S. Assume that C is of normal cros-
sing. Then, for each singular point pt of C, we can choose a system of
holomorphic coordinates (uif v%) on a neighborhood ί7£ of pi in S so that
C f] Ui is defined by the equation: u^Vi — 0 in Ut. Choose a Riemannian
metric ds2 on S such that ds2 = \ dut |2 + | dvt |2 on some neighborhood of
Pi in Ui. Let Ne(C) denote the ε-neighborhood of C in S with respect
to the distance determined by ds2. From the arguments in [11; pp. 72-
73], we infer

LEMMA 1.4. Let C be a curve of normal crossing on a surface. For
sufficiently small ε > 0, we have

( i ) Nε(C) is homotopically equivalent to C,
(ii) Ne(C) — C is homotopically equivalent to the boundary dN£C)

of Nε(C) in S,
(iii) dNε(C) is a compact orientable topological manifold of real

dimension 3.
Moreover, if C is of simple normal crossing, then

(iv) the topological structure of dNε(C) is determined only by the
intersection matrix and the topological structure of C.

We call Nε(C) a tubular neighborhood of C (e > 0 is sufficiently small).
The proof of the following lemma is found in [13; pp. 83-84],

LEMMA 1.5. Let Sif i = 1, 2, be compactifications of the same surface
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M. Assume that Ct = £< — M. is connected and of normal crossing for
each i = 1,2. Let Nt be the tubular neighborhood of Ct in St given by
Lemma 1.4. Then dNx is homotopically equivalent to dN2.

2. Affine C-bundles over elliptic curves. Let Δ be an elliptic curve.
We write Δ as the quotient group Δ — C*/<α> of C* by the multiplicative
group (a) generated by αeC*, 0 < | α | < 1.

Let neN, n ^ 1, and t eCn. We identify t = (ί0, , ίn_x) with the
polynomiaH(^) = ^ΣJiZlthw

k. Define a holomorphic automorphism gn,a,t of
C x C* by

(2.1) gntΛtt: (z, w) ^ (wnz + t(w), aw) .

We write AnιUtt for the quotient surface C x C*l(gn,att} of C x C* by
#n>α)ί. Then An,α>f is an affine C-bundle over Δ with the projection induced
by (z, w) κ> w.

In general the degree of an affine C-bundle over a curve is defined
to be the degree of its linearization, e.g., Ant(X}0 is the linearization of
An>aΛ and its degree is — n. We know

THEOREM 2.2. Let A be an affine C-bundle of degree —n over Δ —
C*/(a}. Then A is equivalent to An>(X7t as an affine C-bundle for some
teCn.

For the proof of our Main theorem, we need a little more.

LEMMA 2.3. Let d(w) and e(w) be holomorphic functions on C*
satisfying

(2.4) e(w) = κwnd{w) — d(aw) for weC*

with Λ:GC*, n ^ 1, 0 < | α | < 1.
( i ) If e(w) is holomorphic on C, then d(w) extends holomorphically

to the whole C.
(ii) If e(w) is a polynomial of degree < n, then d{w) and e{w)

vanish identically.

The proof of the above lemma is elementary and hence we omit it.
(Expand d(w) and e(w) into the power series in w and compare the co-
efficients of wk in (2.4).)

PROPOSITION 2.5. Let g be a holomorphic automorphism of C x C*
of the form

g: (z, w) h^ (a(w)z + b(w), aw) ,

where a(w) and b{w) are holomorphic functions on C*, and αeC*, 0 <
\a\ < 1. Assume that the quotient surface A = C x C*/(g) is an affine
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C-bundle of degree —n<0 over A = C*/(a). Then there exists a holo-
morphic automorphism h of C x C* of the form

(2.6) h: (z, w) h-> (c(w)z + d(w), βw) (β e C*)

satisfying

(2.7) ho go h-\z, w) = (wnz + t(w), aw)

for some polynomial t(w) of degree < n. Moreover, if a(w) and b{w) are
both holomorphic on C, then we can assume that h is a holomorphic
automorphism of C x C.

PROOF. By hypothesis, we can write a(w) as a{w) = wn exp u(w)
where u(w) is a holomorphic function on C*. Expanding u(w) into the
Laurent power series u{w) = ^kezUkw

k, ukeC, in w, we define a holo-
morphic function c{w) on C* by c(w) = expΣ f c 9 t 0 {ukw

k/(l — ak)}. Then
c(w) is nowhere zero and satisfies

(2.8) a(w)c(aw)/c(w) = £wn , Λ: = exp uQ .

Let L denote the linearization of A. Then, for each keZ, the
monomial wk defines an element 7k of H\Δ, ^(L)). By Lemma 2.3 (ii)
and the Riemann-Roch theorem, {7*}ϊ=o forms a basis of H\Δf ^(L)).
Thus we can write the element σ e H\A, έ?(L)) determined by c(aw)b(w)
as σ = Σί=o SkΎk for some sfe e C. This is equivalent to the existence of
a holomorphic function d{w) on C* such that

(2.9) °Σ skw
k = -tcwnd(w) -

Take /3 e C* such that Λ: = /3n and define h by (2.6). Then, by (2.8)-(2.9),
we have (2.7) with t(w) = X skβ~kwk. Now suppose that α(w) and b(w)
are both holomorphic on C. Then %(w) is holomorphic on C. Thus c(w)
extends to the whole C holomorphically so that c(0) ̂  0. By (2.9), we
can apply Lemma 2.3 (i) to see that d(w) is holomorphic on C. Thus h
is a holomorphic automorphism of C x C. q.e.d.

3. Surfaces Sn,β ι ί . Let n^l, 0 < | α | < 1 and teCn (neN, ae C).
We identify t = (ί0, •••, ίn-i) with the polynomial ί(w) = Σ*=o**w*. We
shall generalize the construction of S1>a>0 in [6; p. 57].

Let P1 denote the complex protective line with the inhomogeneous
coordinate z. Set Wo = P1 x C, ΓTO = {co} x C and Co = P 1 x {0}. Define
a birational automorphism gn>a>t of PΓ0 by

(3.1) gn>a,t: (z, w) h-> (^n2; + ί(w
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By induction on k, we define blowings-up Wk, k ^ 0, of Wo, curves C±k

on Wk and points pk e Ck, p_fc_! 6 C_k so that
( i )k ffn,a,t (resp. £»,«,«) induces a birational automorphism of WkJ

whose indeterminacy set consists of one point pk (resp. 2>_fc_i),
(ii) f c Wk+1 is the blowing-up of Wk at pfc and p_fc_i; Ck+1 and C_fc_2

are total transforms of pk and p_fe_i respectively.
In fact, we have (i)0 with p0 = (co, 0), p_x = (ί0, 0). For k i> 1, (i)fc follows
from (i), and (ii),., j" < &.

In what follows, we denote each proper transform by the same
symbol. Then we have [pk] = ΓTO fΊ Ck and p_k Φ p_k_x for k ^ 0. Identi-
fying Wk-χ — Γ^ — {p_k} with the open submanifold of Wk — Γ^ — {p_fe_i}
canonically, we define a noncompact surface Sn,α>t to be the inductive
limit of Wk — Γ^ — {p^-Jr Sn>α>ί = ind limA(Wfc — Γ^ — {p_fc_i}). Then we
have infinitely many non-singular rational curves Cjf j e Z, with (C^ )2 =
— 2 on Sntatt so that

(3.2) Cy and Cj+1 intersect transversally at pj9 Cά and Ck do
not meet when j Φ k ± 1 .

flrn,α,t induces a holomorphic automorphism £ n ι α ι t of Sn>a>t such that

(3.3) dn.aΛCj) = Cβ_n for j e Z .

By (3.1) and (3.3), gntΛtt generates a properly discontinuous group (gnta,t)
of holomorphic automorphisms of Sn,a,t free from fixed points. We define
the surface Sntβttt to be the quotient surface of SntΛtt by (gn,a,t): Sn>a>t =
Sn,a,tKgn,a,t). Writing λ for the canonical projection of Sny(X,t onto Sn,α,t,
set Dn > α ) ί = UΓi)1 Θ i with θ£ = λ ( Q .

PROPOSITION 3.4. ( i ) DUaΛ — ΘQ is a rational curve with one or-
dinary double point satisfying (<90)

2 = 0.
(i i) A.α.ί = ^ U θij each θi9 i = 0, 1, is a non-singular rational

curve with (θ<)2 = — 2. θ 0 ^wd θ1 intersect transversally at two points,
(iii) DniCCtt = U S 1 ®i (^ ^ 3); βαcfe Ot is a non-singular rational

curve with

'-2 if i = j ,

1 if i = j ±1 mod n ,

0 otherwise .

PROOF. It follows from (3.2) and (3.3). q.e.d.

PROPOSITION 3.5. ( i ) SntCCft is a surface of Class VΠ0 with

( i i ) (D n , β i t )
2 = 0.
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(iii) Sn>a>t — Dni(Xjt is an affine C-bundle of degree —n over an elliptic
curve.

PROOF (cf. [4]). (iii) Comparing (3.1) with (2.1), we see Sn,β | ί —

(ii) Proposition 3.4 implies this.
( i ) First we shall show 6i(Sn,βfί) = 1. By definition, Wk is simply

connected. Using van Kampen's theorem, we see that Wk — Γ^ — {p_fc_i}
is simply connected. Hence their inductive limit Sn>a>t is also simply
connected. Thus the fundamental group of the quotient space SntCttt of
Sn,a,t is (gn,a,t} and hence infinite cyclic. In particular b^S^t) = 1.

Next we shall show that Sn>a>t is compact. The coordinate w on Wo

induces a holomorphic function on SntCCtt9 which will be denoted by the
same symbol w, so that

(the divisor (w) of w is Σ C5 ,
(3.6) >'ez

\gta.tw = aw .

Take a compact tubular neighborhood Nt of Ĉ  for 0 ^ i ^ n — 1 and set

Ω = {(z, w)eW0- Γ«,- {p^}\\a\εS\w\ ^ ε,

Then we infer from (3.6) that X(\j7=o Nt) contains X(B) provided that
ε > 0 is sufficiently small. Hence X(B) is a compact neighborhood
of DntCltt. Clearly λ(fl) is a compact subset of Sn)Cί)t — Dny(Xyt and
MΩΌB- \JjCj) = Sntatt - Dn,att. Therefore Sn,a,t = λ(J5)U λ(β).' ' Thus
Sn>αιί is compact.

By (3.6), we may assume that transition functions of the line bundle
[fln,β|i] determined by Dn>a>t are all constants. Hence the real first Chern
class of [Dn,a>t\ is zero. This implies that any irreducible curve on Snf(X)t

is contained in either Dntβttt or Sn>(Xft — Dn>(X}t, none of which contains ex-
ceptional curves of the first kind on Sn,βlt. Thus Snt(Xtt is of Class VII0.

Finally we show b2(SΛtatt) = n. Let X(X) denote the Euler number
of a topological space X Note that Dn>aΛ is of normal crossing and
%(Dn,a,t) = n by Proposition 3.4. Let N be the tubular neighborhood of
Dn,a,t given by Lemma 1.4. Then we have

(3.7) I(N) = n, X{N - Dn,β,t) = 0 .

Since Sn>a,t — Dn,aΛ is an affine <7-bundle over an elliptic curve A, we have

(3-8) l(Sn,a,t - Dn,a,t) = X(C) • 1(A) = 0 .
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Combining (3.7) and (3.8) with the Mayer-Vietoris exact sequence of the
pair (Sn,βfί - Dn>a>t, N), we obtain %(Sn,α,t) = n. Since b^S^^) = 1, this
implies &2(Sn,α,t) = n.

REMARK. By Theorem 2.2, each affine C-bundle of degree — n < 0
over the elliptic curve A — C*/(a) can be compactified into Snta>t for some
teCn.

4. Surfaces of Class VΠ0. Throughout this section, we let S denote
a compact surface with b±(S) = 1 which has no meromorphic functions
except constants. Let K denote the canonical bundle of S.

Since b^S) = 1, it follows from Theorem 3 in [8, I; p. 755] that q —
dim H\S, έ?) = 1. By Theorems 21 and 22 in [8, I; p. 789, p. 796], we
have pg = dimiϊo(S, έ?) = 0 (see [8, I; p. 766, iii)]). Thus

(4.1) Σ ( - l ) v dim H"(S, (?) = 0 .

Under the canonical identification: H\S, R) = R, the cup product defines
a non-degenerate symmetric bilinear form, (λ £) for λ, ξ e H\S, R), on
H2(S, R). Let b+ denote the number of positive eigenvalues of this bi-
linear form (λ £). Since pg = 0, it follows from Theorem 3 in [8, I; p. 755]

(4.2) b+ = 0 .

For a line bundle A over S, let (A) 6 H2(S, R) denote the real first Chern
class of A. For a divisor Ξ on S, let [Ξ] denote the line bundle over S
determined by Ξ. We write (Ξ) for ([£])• Then, the intersection number
(A - Ξ) of A and Ξ is given by ((A) (S7)). We write (A)2 for ((Λ) (A)). Then,
by Noether's formula, (4.1) means

(4.3) 62(S) - -{Kf .

LEMMA 4.4. Lei Sf be a finite unramίfied covering surface of S. If
S is minimal, then S' is a surface of Class VΠ0 with no non-constant
meromorphic function.

PROOF. Suppose first that Sf contains an exceptional curve E of the
first kind. Let p denote the projection of S' onto S and let K' denote
the canonical bundle of S'. Set Θ = p(E). We write {E} and {©} for
the homology class of E in S' and the homology class of Θ in S, respec-
tively. Since (E) (resp. (β)) is the Poincare dual of {E} (resp. {©}), we
have

(4.5) {K* E) = ({K'\ {E}) , {K. Θ) = <tK), {θ})

where < , > denotes the pairing of the cohomology and the homology.
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Since E and Θ are irreducible, we have p*{E} = d{θ} for some integer
d. Hence, using (4.5) and (Kf) = p*(K), we have d(K θ) = (K' E) = - 1 .
Since the holomorphic map p preserves the orientation, d is non-negative.
Therefore (K θ)<0. In particular, (θ) Φ 0. Hence (<9)2 < 0 by (4.2).
Thus θ is an exceptional curve of the first kind on S. This contradicts
the minimality of S.

Now we know that S' contains no exceptional curves of the first
kind. From our assumption on S, it follows that S' has no meromorphic
functions except constants. Thus, by Theorem 11 in [8, I; p. 759], S' is
either a ίΓ3 surface, a complex tours or a surface of Class VΠ0. On the
other hand, since b^S) = 1, the fundamental group πλ(S) of S contains
an infinite cyclic group. Therefore Sf is not simply connected and hence
S' is not a KZ surface. Since bλ(S) is odd, S and hence S' are not
Kahlerian. In particular, S' is not a complex torus. Thus we conclude
that S' is a surface of Class VΠ0 with no non-constant meromorphic
functions. q.e.d.

The following lemma is due to Inoue.

LEMMA 4.6. // S contains a non-singular elliptic curve E, then there
is a non-trivial line bundle F over S such that (F) = 0 and the restric-
tion of F to E is trivial.

PROOF. In the exact sequence

0 -> H\S, Z) -* H\S, C) -> H\S, C*) ,

all cohomology groups are (complex) Lie groups and the maps are homo-
morphisms of Lie groups. By 6X(S) = 1, H\S, Z) ~ Z and H\S, C) = C.
Thus H\S, C*) contains C* = C/Z as a Lie subgroup. On the other hand,
H\E, C*) is the Picard variety of E, which is isomorphic to E as a Lie
group. Therefore, since the restriction map

r: H\S9 C*) -> H\E, C*)

is also a homomorphism of Lie groups, there is a non-zero element / of
JEΓ^S, C*) such that r(/) = 0. Then the line bundle F over S correspond-
ing to / is the desired one. q.e.d.

In the following, we assume that S has a divisor D Φ 0 with {Of — 0.
Let C denote the support of D. Applying Lemma 1.1 (i) to each connected
component of C, we may assume that D is a positive divisor.

A multi-valued holomorphic function w on S is said to be a multi-
plicative holomorphic function on S if the analytic continuation along
any closed (continuous) path 7 transforms w(x) into a(y)w(x), where a(y)
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is a constant depending on 7 (cf. [8, II; p. 701]). We call a(j) the multi-
plier of w (with respect to 7).

LEMMA 4.7. There exists a multiplicative holomorpic function w =
w{x) on S whose divisor (w) is D.

PROOF. We have the following commutative diagram:

H\S, C) > H\S, C*) > H\S, Z) > H\S, C)

H\S, <?) > H\S, &>*) > H\S, Z)

where the map H\S, C) -• H\S, έ?) is surjective by the formula (14) in
[8, I; p. 756]. We have (D) = 0 by (4.2). Thus, using the above diagram,
we see that the isomorphism class of the line bundle [D] is in the image
of the map H\S, C*)-^H\Sf έ?*). The rest of the proof is the same
as that of Lemma 11 in [8, II; p. 701]. q.e.d.

Let 7Γi(S) denote the fundamental group of S. For any closed path
7, the multiplier a(y) of w depends only on the (free) homotopy class of
7. Thus the map y^>a(y) induces a homomorphism μ(w):π1(S)-*C*.
Moreover, since C* is abelian, μ{w) induces a homomorphism H^S, Z) —•
C*. We denote it by the same symbol μ(w).

The free part F of H^S, Z) is infinite cyclic. Let σ be a generator
of F. For any torsion cycle τ, μ(w)(τ) is a root of unity. We have

(4.8) \μ(w)(σ)\Φl.

In fact, if \μ(w)(σ)\ = 1, then \w(x)\ would be a single-valued continuous
function on S and attains its maximum. This contradicts the fact that
w(x) is a non-constant holomorphic function. Due to Lemma 1.4 the proof
of the following lemma is identical to that of Lemma 12 in [8, II; p. 702].

LEMMA 4.9. Assume that C is of normal crossing. Then each con-
nected component of C contains a closed path which represents a homo-
topy class of infinite order on S.

Let C = Σ S 1 θt denote the decomposition of C into the irreducible
components 0* of C (θt Φ θό if i Φ j). Note that the intersection matrix
of C is negative semi-definite by (4.2).

PROPOSITION 4.10. Assume that S is minimal and C is connected.
Then C satisfies one of the following conditions I6, 6 ^ 0 .

Io: C = ΘQ is a rίon-singular elliptic curve.
Ix: C = ΘQ is a rational curve with one ordinary double point.
I2: C = Θo + θlf where each θt is a non-singular rational curve with
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^) 2 = — 2. θ0 and θλ intersect transversally at two points.
I& ( 6 ^ 3 ) : C = Σi=o©ϊ, where each et is a non-singular rational

curve with

- 2 if i = j ,

1 if i = j ± 1 mod b ,

0 otherwise .

particular, C is of nomal crossing and (C)2 = 0.

PROOF. We blow up S, σ: S* -> S, properly so that C* = σ'^C) is
of normal crossing. Let D# denote the total transform of D. Then we
have (D*)2 = 0. Hence by Lemma 4.9 the support C* of D* is not simply
connected.

We write D = Σ< ̂ Ά ^ > 0). Since (D) = 0, we have Σ t m^K-Θ,) =
0. It follows that

(4.11) Σ mi{2ττ(Θί) - 2 - (θ,)2} = 0
i

where π(θt) denotes the virtual genus of θt. Now we can adapt the
arguments in [7; pp. 567-568] as follows.

(A) The case in which C = Θo is irreducible. In this case, (<90) = 0
by (4.2). Hence π(C) = 1 by (4.11). When C is non-singular, it follows
that C is an elliptic curve. When C has singular points, it follows that
C is either a rational curve with one cusp or a rational curve with one
ordinary double point. If C had a cusp, then C* would be simply con-
nected. Thus C satisfies Io or I lβ

(B) The case in which C consists of at least two irreducible com-
ponents. Since C = U θt is connected, we have (θ%)2 < 0 by Lemma 1.1
(iii), while by hypothesis (9* is not an exceptional curve of the first kind.
Therefore, if π(θt) = 0, then (θ,)2 ^ - 2 . Thus we conclude by (4.11)
that each (9; is a non-singular rational curve with (Θ*)2 = — 2.

(Bl) Suppose there is a pair θ0, θ, with (θo θi) ^ 2. Then by (4.2)
we have 0 ^ (Θo + 6>i)2 = 2(θo βi) - 4. Therefore, (<90 6>i) = 2 and (Θo +
θj)2 = 0. Hence, by Lemma 1.1 (i), we have C = <90 + θ l β Since (0o Θi) = 2,
Θo n 0i consists of at most two points. If it consisted of one point, then
C* would be simply connected. Thus θ0 Π θv consists of two points and
hence C satisfies I2.

(B2) Now we assume (θt θs) ^ 1 for i Φ j.
(B2i) Suppose there exist at least three irreducible components, say

ΘQ, Θλ and Θ2, which meet at one point. Then (Θo + Θλ + Θ2)
2 = 0. Hence

C — Θo + ©i + Θ2 by Lemma 1.1 (i). In this case, C* would be simply
connected.
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(B22) Assume that 6̂  Π Θό Π Θk is empty for iΦ j , j Φ k, iΦ k. Then
C itself is of normal crossing. Hence C is not simply connected, while
each Θi is simply connected. Thus there exist irreducible components,
say θ0, θl9 , Θ6_! (6 ^ 3), such that (<?,-©,-) = 1 if i = j ± 1 mod 6. Then
by (4.2) we have (Σfco1 Θ*)2 = 0, and (©,-©,•) = 0 unless i = j or i = i ± 1
mod 6. Thus C = Σΐ-o1 θi by Lemma 1.1 (i) and hence C satisfies I6. q.e.d.

The following proposition gives a characterization of Hopf surfaces
among surfaces of Class VΠ0 satisfying (0.1).

PROPOSITION 4.12. Assume S is minimal. If C is disconnected or
non-singular, then S is a Hopf surface.

PROOF. We write the tensor product of line bundles in the additive
form, e.g., K + D = K® [D]. For any line bundle F over S, let Fc

denote the restriction of F to C. We first prove

LEMMA 4.13. Let F be a line bundle over S with (F) = 0. If
H°(S, ^(K+ F+rG)) Φ 0 for some integer r, then S is a Hopf surface.

PROOF OF LEMMA 4.13. Due to Theorem 34 in [8, II; p. 699], it suf-
fices to show 62(S) = 0. By hypothesis, there is a meromorphic section
φ of K + F over S whose polar cycle is contained in C. Thus K + F
is determined by the divisor of φ:

(4.14) # + F = [Σ r A - Σ βA ] , r , > 0 , 8 ,^0

where Ξif θj are irreducible curves and C = \Jj Θ5.
We claim (K-Ξ%) ^ 0, (K-θ/) = 0. In fact, Proposition 4.10 implies

(K-θj) = 0. Suppose (K-Ξt) < 0. Then it follows that {Ξ%) Φ 0 and hence
(Hi)2 < 0 by (4.2). Thus Ξt is an exceptional curve of the first kind.
This contradicts the minimality of S. Also (K-F) = 0, by (F) = 0.

Then, using (4.14), we see {Kf = Σ i r^K-Ξt) - Σ i s^K-θj) ^ 0. Com-
bining this with (4.3), we obtain 62(S) = 0 as desired.

Now we return to the proof of Proposition 4.12.
(A) The case in which C is disconnected (cf. [8, II; p. 702]). Take

two connected components Cλ and C2 of C. Then we have (Cέ)
2 = 0. In

view of Lemma 4.13, it suffices to show H\S, έ?(K + Σ i Q ) ^ 0. By
Lemma 4.7 each curve Ct determines a multiplicative holomorphic func-
tion wt on S whose divisor (w<) is Ct. We note that w^dWi is a mero-
morphic 1-form on S. Since Cι and C2 do not meet, w1 is nowhere zero
on C2. By Lemma 4.9 and (4.8), C2 contains a closed path 7 such that

Φ 1. It follows that w1 is not constant on C2, while w1 is con-
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stant on any rational curve. Thus we conclude by Proposition 4.10 that
C2 is a non-singular elliptic curve and the restriction of w^1dw1 to C2 is
a non-trivial holomorphic 1-form. Similarly, the same is true for w^dw^
and Cλ. Therefore the meromorphic 2-form w^dw Λ Wz1dw2 defines a
non-zero element of H°(S, έ?(K + Σ i Q )

(B) The case in which C is connected and non-singular. In this
case C is an elliptic curve by Proposition 4.10. Let F be a non-trivial
line bundle on S given by Lemma 4.6 so that (F) = 0 and Fc is trivial.
Then, since C is a non-singular elliptic curve, [K + F + C]c is trivial.
Therefore we have the exact sequence

(4.15) 0 -* <?(K + F) -> ̂ ( jf + F + C) — ^ -> 0 .

By (4.2), (C)2 = 0 implies (C) = 0. Also (ί7) = 0. Then by the Riemann-
Roch theorem and (4.1):

(-1)" dim H%S, ̂ {K + F + C)) = 0
(4.16)

' dim H*(S. ^{K + F)) = 0 .

With the aid of (4.16) and the duality theorem, we infer from the exact
cohomology sequence derived from (4.15) that either H°(S, ^{K + F +
C)) Φ 0 or H°(S, <?(-F)) Φ 0. If H\S, &{K + F+C))Φθ, then S is a
Hopf surface by Lemma 4.13. Suppose therefore there is a non-identically-
zero section ψ of — F over S. We write 2)' for the divisor (<p) of φ.
Then CD') = - ( F ) = 0. Let C denote the support of D'. Note that,
since F is not trivial, C" is not empty.

(Bl) Suppose C Φ C". Then C U C is a disconnected curve with the
self-intersection number zero. This is Case A.

(B2) Suppose C = &. Then D = rC (r ^ 1) and hence [K + (r +
1)C]C = [if + JF7 + C]<? is trivial. Therefore we have the exact sequence

(4.17) 0 -> O>(K + rC) -+ έ?(K + (r + 1)C) -^ ^ -* 0 .

By the argument parallel to that for K + F + C, from (4.17) we can
derive H\S, ^{K + (r + 1)C)) ^ 0. Thus S is a Hopf surface by Lemma
4.13. q.e.d.

NOTE. Inoue informed us that Proposition 4.12 Case B is easily ob-
tained by means of Lemma 4.6. Another proof of Proposition 4.12, which
does not use Lemma 4.6 and is more cumbersome, is in the authour's
master's degree thesis (Univ. of Tokyo, 1981).

Finally we shall prove
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PROPOSITION 4.18. Let S be a surface of Class VII0 with 62(S) > 0,
which has a divisor D Φ 0 with (Jΰf = 0. Let C denote the support of
D. Then there exist an unramified covering λ: S —> S of S and a holo-
morphic function w on S with the following properties:

( i ) λ-^C) consists of infinitely many non-singular rational curves
Cjf jeZ, with (Cj)2 = - 2 .

(ii) Cά and Cj+1 intersect transversally at one point. Cά and Ck do
not meet when j Φ k ± 1.

(iii) The divisor (w) of w is ΣjezCj.
(iv) The covering transformation group of S with respect to S is

generated by a single element g such that

g*w = aw (0 < \a\ < 1) ,

g{C3) = C y _ w f o r j e Z ( m ̂  1 ) .

PROOF. Since 62(S) > 0, S is not a Hopf surface and S has no mero-
morphic functions except constants. Hence (C) = 0 by Proposition 4.10
and (4.2). By Lemma 4.7, we have a multiplicative holomorphic function
w on S whose divisor is C. Let F and T denote respectively the free
part and the torsion part of H^S, Z). Take a generator σ of F and set
a = μ(w){σ). In view of (4.8), taking —σ instead of σ if necessary, we
may assume 0 < \a\ < 1. Notice that μ{w)(T) is a finite cyclic group
generated by a root of unity ε. Thus the image of μ(w) is the multi-
plicative group (a, ε) generated by a and ε. Let G denote the kernel
of μ(w): π^S) —> <α, ε>. Let W denote the universal covering surface of
S. We identify πx(S) with the covering transformation group of W with
respect to S. Define S to be the quotient surface W/G of W by G. Let
λ denote the canonical projection of S onto S. Then λ: S -> S is a cover-
ing and the covering transformation group of S with respect to S is
isomorphic to TΓ^SJ/G = <α, ε>. Let # and fc be the covering transforma-
tions of S corresponding to a and ε respectively. Then w induces a
single-valued holomorphic function on S so that g*w = aw and fc*w =
ew. Moreover, since the divisor of w on S is C, we obtain (iii).

Since S is not a Hopf surface, it follows from Propositions 4.12 and
4.10 that πx(C) = Z. Let 7 be a closed path representing a generator of
πλ(C). Then we can write

(4.19) μ(w)(rr) = a%h (α, b 6 Z)

where a Φ 0 by Lemma 4.9. Changing the orientation of 7 if necessary,
we may assume a > 0. We shall show a = 1, ε = 1 and h is the identity
map. Consider the quotient surface S' — S/(gaohh) of S by the group
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(ga°hb) generated by gaohb. Let p denote the canonical projection of
S' onto S. Then the covering transformation group of S' with respect
to S is the quotient group (g, h)/(gaohb) of (g, h) by (gaohh). Since h
is of finite order and a Φ 0, the order of {g, h}l(ga o hh) is finite, say d,
i.e., S' is a d-fold unramified covering surface of S. Therefore, by
Lemma 4.4, S' is a surface of Class VII0 with no non-constant meromor-
phic functions. Moreover, since S is not a Hopf surface, S' is not a
Hopf surface. Note that (p~\C)) = p*(C) = 0 on S\ Hence p ^ C ) is
connected by Proposition 4.12. On the other hand we infer from (4.19)
that p~\C) consists of d connected components. Thus d = 1. This im-
plies (g, h) = (ga°hb). Therefore a = 1, h is the identity map and hence
e = l. Now (4.19) means that the closed path 7 corresponds to the cover-
ing transformation g and hence X~\C) —> C is the universal covering of
C. Hence (i), (ii) and (iv) follow from Proposition 4.10. q.e.d.

5. Construction of Σ, I. Let S be a compact surface free from
exceptional curves of the first kind. Throughout Sections 5-8 we assume
that S has a curve C and satisfies the following conditions (cf. Proposi-
tion 4.18):

(S-0) There are an unramified covering λ: S —> S of S and a holo-
morphic function w on S.

(S-l) λ-1(C) consists of infinitely many non-singular rational curves
Ci9 jeZ, with (Cy)

f= - 2 .

(5.1) Cy and C i+1 intersect transversally at one point pif Cά and
Ck do not meet when j Φ k ± 1 ,

(5.2) the divisor (w) of w is Σ Q

(S-2) The covering transformation group of S with respect to S is
generated by a single element g such that

(5.3)

(5.4)

We set C = λ-χ(C) and C+ = Ui>o C,-.
In this section we shall construct on a neighborhood of C+ a hok>

morphic 2-form which satisfies certain estimates. To state precisely and
prove this result, we define coordinate charts (U2j, (ζ2i, w))9 (U2j+lt (Qj+1,
Qj+i))t j e Z, covering a neighborhood of C, with the following properties
(where we set j = vm + i, veZ, 0 ^ i ^ m — 1):

( i ) Ki+i is a neighborhood of pό and identified with a polydisk by
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U23+1 = {(ζlj+ι, Qj+i) 11Z23+11 < ε0, e = 1, 2} ,

where ε0 > 0 is independent of j . The equation: ζlj+1 = 0 defines Cj+1 on
U2j+1. Moreover

(5.5) ζ^ + A +i = o?w .

( i i ) U2j is a neighborhood of C3 — U2j_λ U U2j+1 and identified with
the product of an annulus and a disk by (ζ2i, w):

U2j = {(£,, w) I r < I ζ2j | < r-1, 1101< | α l^εj

where 0 < r < 1 and εx > 0 are independent of j . ζ2 i | C3 extends to the
inhomogeneous coordinate of C3 such that ζ2ί (P/_i) = °°, ζ>2j(Vj) = 0.

(iii) We have

(5.6) [/. n [/, = 0 if j ^ & ± 1 ,

ίCίi+i (^)C«+i for e =
( 5 8 )

(iv) There is a holomorphic 2-form s2j+1 on ?72i+1 so that it has no
zero and satisfies

(5.9) s2j+1 = ζ2>dζ2j A dw on Cs Π U2j Π ί/2ί + i ,

(5.10) s2j+1 = a-\gψs2ί+1 .

To define the above coordinate charts, let ξs be the inhomogeneous
coordinate of Cά such that ξs{p3) = 0 and f s(pS-ι) — 00. Let K denote the
canonical bundle of S. Set σ5 = ίj^f, Λ d^. Then σ̂  defines a holomor-
phic section of K over C,- — {pά} — {^ _i}. Since ^ is determined uniquely
up to constant multiples, σά is determined uniquely. Moreover, using
(5.1)-(5.2), we see that σά extends to a holomorphic section of K over
Cj so that it has no zero and satisfies oό{pβ) = oi+1{p3). Thus, σ/s define
a trivialization σ of K over C by α|Cy = σ3.

We first take a coordinate chart (ί72ί+I, (ζ^+i, CL+i)) around p4 for each
0 ^ i ^ m — 1. By (5.1)-(5.2), we may assume condition (i) for 0 <; i ^
m — 1. We extend σ to a holomorphic 2-form s2ί+i on U2i+1. Shrinking
U2i+1 if necessary, we may assume s2ί+1 has no zero. Take a real number
0 < r < 1 so that the open set

Ek-i U {x 6 C< I r < I f,(») I < r"1} U 172<+1

covers C, for any 0 <̂  i ^ m — 1, where Z7_! = g(U2m,_ΐ). According to
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Siu [12], there is a Stein neighborhood Tt of Ct — {pj — {Pi-i} in S
{Pi-i} We extend ζt to a holomorphic function ζ2i on 2V Shrinking Γ<
if necessary, we may assume that (ζ2i, w) forms a system of coordinates
on 2V Set

2i = {z e Γ,|r w(x)\

Then coordinate charts (U2t, (ζii9 w)) (0 <̂  i £ m — 1) satisfy condition (ii)
provide that ex and r are chosen properly. Now we define coordinate
charts (C72i+1, (Gi+1, α +1)), (U2j, (ζ2i, w)) by (5.7) and (5.8). Then they
satisfy conditions (i)-(iii) as desired. Define holomorphic 2-forms s2j+1 by
(5.10). Then they satisfy condition (iv).

Define an open neighborhood Bε of C+ by

Bε =

PROPOSITION 5.11.

morphic 2-form φ on
expression

on U2j Π Bε satisfies

Us\\w(x) ε > 0

For sufficiently small ε > 0, there exists a holo-
Bε such that φ has no zero on Bε and its local

Ψ = 2j A dw

<P*j(p) = 1 f o r x e C O U2j , j ^ 0

\φ2j(x) - 1 | < 1/2 f o r x e B ε f ) U 2 j , j ^ O .

The following construction of the holomorphic 2-form φ is similar to
that of the holomorphic map in [9], However the noncompactness of C+

forces us to make some alternations to the arguments in [9]. Namely,
(i) while arbitrary coordinate charts could be used in [9], we have to
use special coordinate charts such as (Ujf ζ3), (ii) while the ordinary
maximum-supremum norm of Cech cochains is used in [9], we shall use
a weighted norm of Cech cochains defined on C+. We divide our proof
into five steps.

Step 1. We begin by introducing a norm of Cech cochains and
proving a lemma which uses this norm. Let

vά = Uj n c

%2j ~ S2i I * 2j

2j 4

nc.
Then (Vzj^
covering C3.

z\ά_^, (V2j, z2j) and (V2j+1f]Cjf zlj+1) form coordinate charts
Define a relatively compact subset Vf of Vi by
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V*. = {x e V2j\r + δ < \z2j(x)\ < r" 1 - δ}

Vt'j+1 = {xe V2j+111 zlά+ι{x) | < ε0 - δ, e = 1, 2}

for sufficiently small δ > 0. We may assume that U*=o+1 F/ covers a com-
pact curve UΓ=iCi Then, by (5.4) and (5.7), UisoV/ covers C+.

Set 3^ = {F. J^o Let Cq(T, έ?) denote the module of #-cochains on
the covering Y' with the coefficients in έ?. Let p be a positive constant.
For any g-cochain η = {̂ <0...<g}, define the norm H^H, of 77 by

, , i f f ̂  0} .

Let δ denote the coboundary map.

LEMMA 5.12. Let 0 < p < 1. Tfoew, /o?* CWM/ l-cocycle 7, ίfrere
α Q-cochain ψ satisfying

δψ = 7 αwώ Hα/rll, ^ L ^ I T I I ^

where Lp is a positive constant independent of 7.

PROOF. Let 7 = {7^}. Assume first | |7| |/9<o°. We expand Ύ2j2
into the Laurent power series in z2j:

^2i 2i±i(^2i) — α 2 i 23±1 ~^~ Z-i vjμZzj f
μψo

where a2j2j±u bfιμeC. Set

/ί<0

Then we have

(5.13) 72i2i±l = «2i 2i±l + ft + 9j

Since z2j extends to the inhomogeneous coordinate of Cά such that z2j{pό) — t)
and z2ύ{pά_^ = co, we can extend fp and gf to holomorphic functions on
V2j±1 and on y 2 i ± 1 U V2j respectively so that ff\Cj±1 = 0 and βr*|C i±1 = 0.
By the definition of | | 7 |U we have

\yjk(x)\ £ p*\\7II, for xeVjΠV,.

Hence, using Cauchy's inequality, we obtain the estimates

(5.14) 11 ft(x) I ̂  iep2^1!! 7 ||P for x e T^ ± 1

.\gftx)\£R(P+i\\y\\f for ^ e ^ U ^ , ,

where i? is a positive constant independent of j , k and 7. Combining
(5.13) with (5.14), we obtain
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(\ff(x)\£(l + 2R)p^ί\\7\\P for xeV2j±1

(I gf(χ) I ^ (1 + 2 # ) ^ + 1 | | 71|, for * e V2j U F 2 i ± 1 .

Define a constant αy by αy = —ΣΠ=yα<i+i for j *> 0. Then by (5.14),

(5.16) I α y I ^ ( 1 - pT'Rp^W 7 \\P f o r j ^ O .

Now we define a 0-cochain ψ = {ψj} by

f 2i±i = α2i±i + # - 0? on y2 y ± 1 n Cj

ψ2j = a2j - gj - gj .

Then δα/r = 7. By (5.15) and (5.16),

)I S Lpp>\\71|, f o r xeVi9 j ^ 0 ,

w h e r e L , = 1 + 2 R + i 2 / ( l - /o). T h e r e f o r e w e o b t a i n \\f \\p ^ L p \ \ j \ \ p a s
d e s i r e d . W h e n | | 7 | | p = oo, w e d e f i n e a5 b y

j

a0 = 0 , α, = Σ αi-i i (i ^ °)
i=l

Then similarly we have δψ = 7. q.e.d.

Step 2. We first introduce some notations. By (5.5), (ζ^ +i, w) (resp.
(ζlj+ly w)) is a system of coordinates on U2j+1 ΓΊ Z72y (resp. Z72i+1 Π U2j+2).
We write the coordinate changes as follows:

c, = ffW(Cϊ, w ) , c; = fcr(cj, w)
on E/,. Π £/*, where J Ξ O mod 2, (σ, τ) = (2, 1) or (1, 2) according as j =
fc + 1 or fc — 1. For simplicity we write ζy and z3- for the vectors (ζ} , Q)
and (̂ J , ^ ) respectively. Considering zjf j e Z, as local coordinates for C,
we write the coordinate changes as zά = bjk(zk). Let s2i+1 be the holo-
morphic 2-form on ?72i+1 satisfying (5.9)-(5.10). Setting

s2j = ζ2-dζ2ό A dw ,

define a holomorphic function fjk on E/,- Π Uk by sy = /fcJ sfc. Note that
fjk = 1 on C by (5.9). We regard / i Λ as a holomorphic function in two
variables:

(fik(ζk, w) if k Ξ 0 mod 2

*(Ci,w) if fc = l m o d 2 , i = fc~l

fc(α w) if A? = 1 mod 2 , j = k + l .

In order to prove Proposition 5.11, it suffices to construct holomorphic
functions φί9 j >̂ 0, defined respectively on Uj Π ΰ ε such that
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, g 1 7 v \<Pi = fjkΨk on U, f)Ukf)Bε

\φs = 1 on C n U3

(5.18) I φs(x) - 11 < 1/2 for xe U3 Π Bε .

We write φ3- in the form φ3- = Σ?U Ψ3\μ{Z3 )wμ where φ3\μ(ζ3) are holo-
morphic functions in ζy defined on U3. Moreover, when j is odd, we
assume that φ,Ίμ is of the form

Ψjiμx^j) — w-ii/* i J j\μ\^3'J ^ J j\μ\^3)

where ajlμ is a constant and each //^(ζy), β = 1 or 2, is a holomorphic
function in ζj, | ζ j |<e o > s110^ that //^(O) = 0. Let ψ3\μ(z3) denote the
restriction of φjlμ to V3. Then, corresponding to <ps, we have a formal
power series ψ3(z3, w) = Σ^=o ψj\μ(z3)wμ in w whose coefficients ψ3\μ{z3) are
holomorphic functions on F y . When j = 2d + 1 is odd, ψ3\μ{zά) is written as

P + fϊM) f o r ^i 6 Vά ΓΊ Cd
μ j U + flM) for

We regard the collection of ψ3(zjf w), j ^ 0, as a formal power series in
w with coefficients ψμ = {ψjlμ} in C°(T, <?). Let

In what follows, we identify a holomorphic function with its power
series expansion at a point on C. Define a formal power series Γ(ψμ)jk(zk, w)
in w with coefficients in holomorphic functions on V3 Π Vk as follows:

Γ(ψμ)3h{zk, w) = Σ K Ί . + flMutek, w) + f!Mk(zk, w))}w

— /y*(2*, w)ψk(Zk, w) for j = fc ± 1 , & = 0 mod 2 ,

Γ(ψμ)jk(zk, w) = ^{gSk{zk, 10), w)

- fik(zk, w) Σ {α*,,, + fa

k[λK\zk, w)) + fM)}W

for i = & ± 1 , & Ξ 1 mod 2 ,

where (σ, τ) = (2, 1) or (1, 2) according as fc = j + 1 or j — 1, and

Γ(ψμ)3k(zk, w) = 0 for i = fc. For any power series P(w), Q(w) in w we
indicate by P(^) Ξ^ Q(W) that P(w) — Q(w) contains no terms of degree
^ μ. With this notation, φ3 satisfy (5.17) if and only if ψ3(z3, w) satisfy

(5.19), Γ(ψ")Jk(zk,w)=μ0

for all μ ^ 0. In fact, identifying a holomorphic function φ3- — f3kφk with
its power series expansion at zk 6 F^ Π Ffe (with respect to the coordinates
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(ζjj., w) or (ζι9 w) on Uό Π Uk according as k is even or odd), we have

(fPs - fjk<Pk)(zk, w) =μ Γ(ψμ)jk(zk, w) .

We note that, in general, Γ(ψμ)jk is different from ψ' — fJkψί as a formal
power series in w with coefficients in holomorphic functions on V3 Π Vk.

Step 3. In this step, we prove the existence of a formal power
series Σμ=oψμWμ satisfying (5.19),, for all μ. We define ψ> by induction
on μ. Set ψjl0 = 1. Then ^ 0 = {ψvio} satisfies (5.19)0. Suppose therefore
we have defined f11"1 satisfying (5.19)^^ for some μ ̂  1. We define
Vjkiμtek) to be the coefficient of wμ in Γ{fμ~ι)jk{zky w). The collection of
7jk]μ forms an element yμ — {yάk\μ} of G\Tl tf). In view of Lemma 5.12,
the following lemma proves the existence of ψμ e C°(TΪ &) such that
ψ^1 + fμw

μ satisfies (5.19)^.

LEMMA 5.20. Assume ψ^1 satisfies (5.19)^!. Then
( i ) ' yμ is a 1-cocycle of C\T, έ?),
( ϋ ) φp - φμ-i + ψμW

μ, ψμeC\T, έ?), satisfies (5.19)^ if and only if
δψμ = yμ in C\T, <?).

PROOF. By (5.19)^_x, we have

(5.21) ΎikMW ^ Γ{r~ι)^*k, w) .

Now, let j = k ± 1, k = 0 mod 2. Let zi — bjk(zk). Furthermore, we let
(σ, τ) = (2, 1) or (1, 2) according as j = k + 1 or k — 1.

( i ) By the definition we have 7ii]μ = 0, and by (5.6) we have
Vp Π Vq Π Vr = 0 for p Φ q, qφ r, r Φ p. Hence it suffices to show the
identities 7 ; ^ = —Ύkj\μ on Fy Π 7*. Since zk = flrfci(2ί, 0), we can rewrite
(5.21) as

Multiply both hand sides of this formula by fk3 (z}9 w). Then, since

gUΰksteh w), w) = Λ5Γ(2;, w)

we obtain

Λy^ , w)ΣVyι«, + fϊΛhrte, w))

Comparing this with Ίkj\μ{zά)wμ by (5.21), we see
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Since fki(zh 0) = 1, it follows -fόk{μ = -yk,Ίμ.
(ii) We regard the collection of Γ(<fμ)άk as a formal power series

Γ(ψμ) = {Γ(fμ)jk} in w with coefficients in C\T, έ?). For our purpose it
suffices to show

(5.22) Γ(ψμ) =μ 7μw
μ - δψμw

μ .

We write Γ(ψμ)jk(zkf w) as

(zk, w) = Γ(if-χ)Sh{zh, w) + {aj]μ + fi]μ(9U*k, w)) + fUgM*k,

while we have g)k{zk9 0) - z), g*ύk{zk9 0) = 0, //,„(<)) - 0 and fSk(zk9 0) = 1.
Taking these and (5.21) together, we see

Γ(fμ)jk(zkf W) =μΎjk]μ(zk)wμ + {ψVi/Sy) - ψk\μ(zk)}wμ .

This means (5.22). q.e.d.

Step 4. Consider two power series

F(s) = Σ A . .^βϊ1 * * 8ϊ , G(s) = Σ ΛΓ..vrβϊι * * 8 r r

in s — (sl9 , sr) with coefficients in C. We indicate by F(s) < G(s) that
\fvV '*r\ ^\gVί~ vr\ Let A(w) = lβ^δc" 1 ΣΓ=iv~2cι'wv. In this step, we
shall choose ^ e C°(^7 ^ ) by induction on μ so that the power series
Σ~=oψyM^ satisfies (5.19)^ and Σ£U l l ^ l l ^ satisfies

(5.23), || ψ1 \\pw + + || f μ \\Pw
μ « A(w) , ^ ^ 1 ,

for some constants p, 6, c > 0 independent of μ.
We choose the constant p so that \a\ ^ p2m <1. Set j = 2vm + q,

k = 2vm + r for v = 0, 1, 2, 3, , 0 ^ g, r < 2m. Then, by (5.3) and
(5.8)-(5.10), we have

0ifc(C, w) = flfjr(ζ, αvw) (& = 0 mod 2)

^ fc(ζ> ̂ ) = 0βr(ζ> ^ v ^ ) (fc = 1 niod 2)

/tfcΓ(C, w) = hσ

r

τ(ζ, o?w) (k = 1 mod 2)

as holomorphic functions in two variables (ζ, w). Hence, estimating power
series expansions in w of g'qr(ζ, w), gqr{ζ, w)9 hσ

r

T(ζ, w) and fqr(ζ, w) for
0 ^ q, r < 2m, we may assume

•k(zk9 w) — g)k(zk9 0) < Ao(w) (fc = 0 mod 2)

( 5 ' 2 4 ) Ί-7(zl, w) « Ao(w) (fc = 1 mod 2, σ Φ τ)

j*( ĵfc, w ) — 1 < | 0 ^
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for all j, k^O, where AQ(w) is the power series A{w) in which the con-
stants by c are replaced by 60, cQ. We fix a small positive number 3 so
that UyaoV/ covers C+. Since (5.24) remains valid if we replace c0 by a
larger constant, we may assume

(5.25) bo/coδ < 1/2 .

W e def ine ψ0 = {ψ\, |0} b y ^ jl0 = 1. T h e n α/r° = ψ0 sa t i s f ies (5.19) 0 a n d

we have Γ(ψ°)jk(zk, w) = 1 — fjk(zkf w). Since 7jk\iW is the linear part
of Γ(f°)jky it follows | | 7 i | | ^ < A0(w) by (5.24). By Lemma 5.12, we can
choose ^ e C 0 ^ &) so that \^\P ^ L^HTIII^ and Sψx = 7i Then, by
Lemma 5.20, ψ1 = ψ0 + ψλw satisfies (5.19)lβ We may assume 6 ̂  LpbQ,
c ^ c0. Then (5.23)x follows from this. Assume therefore we have chosen
ψ*1'1 satisfying (5.19)̂ _χ and (5.23)^_i for some μ ^ 2. To estimate ψμ,
we need

LEMMA 5.26. Assume (5.19)^_i and (5.23)^_x for some μ ^ 2. ΓΛe^
we have

\\Ύμ\\PW
μ < (i^oδ"1 + i^e" 1 + iίaC" 2)^^)

where Ko, Kλ and K2 are positive constants independent of yμ, b and c.

PROOF. Let j = k ± 1, k = 0 mod 2. For simplicity, we set

= 1 + amw + . . . + aύxμ_jjoμ-1

w) = fj i(zΐ)w + + fj μ-i(.Zj)wμ~1 f ° r β = 1, 2 .

Then ψ"j~\z5y w) is written as

+ f}(z),w) for ZjβVjΠC,

where d = fc/2. We note that //(0, w) = 0 for e = 1, 2.
By the induction assumption (5.23)^_!, we have

ία,(w) + //(«}, w) - 1 « ί>JΆ(^) for | *} | < ε0 , e = 1, 2 ,

Itr 1 ^*, w) - 1 « pkA(w) for zkeVk.

Let i? = δ"1. Then, applying Cauchy's inequality to holomorphic functions
//(«? + 2/, w) + ^.(w) - 1 and ψl"\zh + y,w)-l\n (y, w) with estimates
(5.27), we obtain

(5.28) fj(z} + y,w)- ff(z}, w) < p>Ά(w) Σ ifivY for I «y l < e0 - δ ,

(5.29) ψΓ 1^* + y, w) - ^Γ 1 ^*, w) «

In particular, letting z) — 0 in (5.28), we have
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(5.30) //(!/, w) « p*A(w) Σ (RyY ,

since //(0, w) = 0. Here we remark that

Ά0(wy < (δo^^^'Aoί^) for v = 1, 2, 3, ,

(5.31) Ao

,A0(w)A(w)

First we estimate Ύjk\μ(zk)wμ for 2;fc e V- Π Ffc. Let (σ, τ) = (2, 1) or (1, 2)
according as j = fc + 1 or & — 1. For any power series P(w) in w, let
[P(^)]^ denote its ^-th part. Then Ύjk\μw

μ is written as

(5.32) Ύjk\μ(zk)wμ = [fj(g]k(zk, w), w)]μ + [ff(g)k(zk, w), w)]μ

\zk, w)]μ .

< bJb~1A{w) (since c ^ c0)

Let zj = bjk(zk), i.e., g)k{zk, 0) = z] . In (5.28), we let y = ^ fc(^ fc, w) - sj .
Then, for 2;̂  e V- Π Ffc, we have

Σ RvA0(wγ by (5.24)

< p>A(w) Σ ^(δoCo-1)"-1Λ(w) by (5.31)

< 2i2jo
J^L(w)Λ(w) by (5.25)

< 2Rboc-1pίA(w) by (5.31) .

Since g"jk(zk, 0) = 0, letting y = g%{zk, w) in (5.30), we obtain similarly

fMk(Zk, w), w) < 2Rb0c-1pίA(w) for «»6 7, Π F f c .

Thus for any e = 1 or 2 we have

(5.33) [/;(flr;»(z», w), w)l, < 2B6^-yA(w) for « , e V / n V » .

For «t e F, ί l ^ , we have

(5.34) [/„(«», w)irfr(zk> w)]μ

= [(Λ»(2», w) - 1)], + [(Λ»(2*. w) - lWr(zk, w) - 1)],

< p'A0(w) + p'A0(w)p"A(w) by (5.24), (5.27)

< (Wr1 + b.e-ηp'-Aiw) by (5.31) .

Combining (5.33)-(5.34) with (5.32), we obtain

(5.35) Ίmμ(zk)W < {bob-1 + (1 + 4β)δ0c-1}loVl(w) for z4 e F/ Π F 4 .

Next we estimate Ίki\μ(z,)wμ for «y e Vd Π F*, which is defined by
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(5.36) ΎwμizjW = [ψΓ(gkj(zjf w\ w)]μ - [fkj{zjy w){aj(w) + fj(zr

if w)}]μ

In (5.29), we let y = gk5{zτ

h w) — zk. Then, in the same way as we derived
(5.33), we have

(5.37) WlΛOufa, ™), w)]μ « 2RbQc-ίpkA(w) for zά e V3 n Vξ .

Since hγ(z)9 0) = 0, letting y = fejr(2y, w) in (5.30), we obtain similarly

f!(hγ{zT

h w), w) < 2ΛδoC-yA(w) for zs e 7 y Π Vk .

Hence, for ^ e Vs Π Ffc,

(5.38) [fkj(z]-, w)fi(hy&i9 w), w)]μ

w ) t + [(/W(«J, w) - l)//(ΛΓ(«y, w), w)],

) + ρkA0(w)2Rb0c-1pjA(w)

< 2Rboc~1pjA(w) + 2Rbo2c~2pkA(w) by (5.31) .

In the same way as we derived (5.34), we have

(5.39) [fkj(zjf w){aό{w) + ffa, w)}]μ « {b^ + b^)P

hA{w)

for ^ e F, n Vk .

Combining (5.37)-(5.39) with (5.36), we obtain

(5.40) ΎksMW < {hb-1 + (1 + 2R)bQc~1 + 2Rblc~2}pkA{w)

+ 2i260c-1^A('M;) for zά e Vά Π Fj? .

Now we recall that yμ = {Ti&î } is a 1-cocycle. In particular we have

(5.41) yjklμ = -Ύk3\μ o n v, n v f c .

Since Vt Γ\Vj f]Vk = 0 for ΐ Φ j , j Φ Jc, k Φ i, we have

vjnvk = (V; nvk)Ό(vjnvk

δ).

Combining this with (5.35), (5.40) and (5.41), we obtain

yjkMW < (Kob-1 + K.c-1 + K2c-2)ptA(w)

for zk e Vj Π Vkf j , k ^ 0, where

Ko = bo/p , Kx = &0(l + AR)/p , UΓ2 = 2Rbl/p

are positive constants independent of j , k, μ, b and c. We have thus
the desired estimate for ]|7^||^ q.e.d.

By Lemma 5.26, we have \\yμ\\pw
μ < K*A(w) where K* = Kob~ι +

Kβ'1 + iL2c~2. Independently of μ, we choose the constants 6, c sufficiently
large so that K*LP^1. By Lemma 5.12, we can choose fμeC\Ty ^)
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so that δfμ = yμ and ||ψv,||, <£ LP\\7μ\\P- Then, we have \\ψμ\\Pw
μ <

K*LpA(w) < A(w). Thus ψμ = ψ^"1 + α^w^ satisfies the estimate (5.23),,.
Moreover, by Lemma 5.20, ψι satisfies (5.19),,. This completes our induc-
tive choices of ψμ.

Final step. Let Σ?=o ψμw
μ be the formal power series defined in

Step 4. Let ψμ — {ψ3-\μ{z3)}. We extend ψj\μ(z3 ) to a holomorphic function
ΦjiμiZj) o n U3 by setting

[ψj\μ(ζj) if J is even
9 i ' ' = \ajΊμ + //,,(ζj) + //,,«3) if i is odd.

By the estimates (5.23)^ we have

\<P3\μ(ζj(%))\wμ ^ pjA(w) (j is even)

I α ϋ^ + fj\μ(Q(χ)) \wμ ^ iθ5Ά(ii;) (j is odd)

for μ ^ 1, α; 6 £7y, β = 1, 2. Hence, for any .? ^ 0, we have

(P3\μ(ζj(%))\wμ ̂  3pjA(w) for xe Uj , μ ^ 1 .

Note t h a t A(w) converges absolutely for |w | ^ 1/c and A(0) = 0. Thus,
for every j ^ 0,

1 + 9>,-ii(Ci)w + + Φή\μ{ζ'i)wμ +

converges to a holomorphic function ^ absolutely and uniformly on
Us Π -Bε satisfying (5.18) provided that ε > 0 is sufficiently small. Then
(5.19)^, μ ^ 0, imply (5.17). This completes the proof of Proposition 5.11.

6. Construction of Σ, II. Let A = C*/(a) denote the quotient group
of C* by the multiplicative group generated by a. Then Δ is an elliptic
curve since 0 < \a\ < 1. By (5.2) and (5.3) the holomorphic function w
on S induces a surjective holomorphic map ψ: S — C—> J. In this section,
using the results of Section 5, we shall prove

PROPOSITION 6.1. There exists a compactification Σ of S — C such
that

( i ) ψ extends to a holomorphic map Ψ of Σ onto Δ,
(ii) Ψ maps Γ = Σ — (S — C) biholomorphically onto Δ.

First we derive several lemmas.

LEMMA 6.2. Let X be a Riemann surface. Let Y be a relatively
compact open subset of X with smooth boundary. Suppose that the closure
Ϋ of Y in X is homeomorphic to a closed annulus. Then there is a con-
tinuous function f on Ϋ so that f is holomorphic on Y and f maps Ϋ
homeomorphically onto a closed annulus.
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When X=C, this lemma is well known (e.g., [1; pp. 244-247]). The
proof in [1] is valid verbatim in our situation. Briefly the argument
goes as follows. The boundary 3Y consists of two connected components
70, Ti Since dY is smooth, we have a continuous function h on Ϋ such
that h\y0 = 0, h\yx = 1, and h is harmonic on Y. Set

f(x) = exp V cdh (ceR) .

Then / is a single-valued function on Ϋ and / maps Ϋ homeomorphically
onto a closed annulus provided that the constant c is chosen properly.
Clearly / is holomorphic on Y.

In Section 5, we have defined the coordinate charts (Uίf ζ, ) on S
covering C, which will be used successively in this section. Set

Πu = w-\u) n U (Uj - C+) for ueC.

Note that w is of maximal rank on Us — C+ for j ^ 0. Thus /7% is
smooth for every u. Let D be the unit disk { ί e C | | £ | < l } and let
D* - D - {0}.

LEMMA 6.3. There is a positive number ε so that, for each u, 0 <
\u\ < ε, we fcαve α biholomorphic map f of Πu onto D*, which satisfies

(6.4) *VLv{\f(x)\\xeΠ%n\JUk}-+0 as j -» oo .

PROOF. Cn(ί7oU ••• U U2m) is a relatively compact subset whose
boundary in C consists of two circles (defined by the equations: |ζ o | = 1/r
and |ζ 2 m | = r). Hence there is a positive number e so that the boundary
of w~\u) Π (f/o U U £72m) in w\u) consists of two circles for each u,
u\ < e. Fixing ueC so that 0 < |u | < ε, we shall show that Πu is

biholomorphic to the punctured disk D*. Set

A , = 7 7 . n ( ΰ CT*) f o r i ^ O .

Recalling that ζ2i is defined on an open neighborhood of U2j, we define
1-cycles γj, σ = 1, 2, on 77tt n ^ by

where θe[0,2π]. We denote the image of any 1-cycle 7 by the same
symbol 7.

We divide the proof of Lemma 6.3 into four steps.
Step 1. We shall show that Aά is biholomorphic to an annulus for
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each j ^ 0. By our choice of ε, we see from (5.3) and (5.7) that the
boundary of Ai in w~\n) consists of two circles, 7J, y), which are both
smooth. Therefore, by Lemma 6.2, it suffices for our purpose to show
that Aj is homeomorphic to a closed annulus by induction on j . Clearly
Ao is identified with an annulus by the coordinate ζ0. Suppose therefore
that Aά_γ is homeomorphic to an annulus for some j ^ 1. Set A) = Ai —
Aά_γ U U2j and A) = Aά Π Uzj. Then A) is an annulus whose boundary is
7} U 7}. Note that A) c U2j_ι. Let p: U2ύ_γ —• C denote the projection to
the first coordinate C ^ . Then, by (5.5), p maps w~\u) Π Z72j _i biholo-
morphically into C. p(A)) is a compact set whose boundary consists of
two disjoint circles, p(y)) and p(y)). Therefore A) is biholomorphic to
an annulus. Since Άά_λ (Ί A) = y)_u the union A ^ U A) is (homeomorphic
to) an annulus whose boundary is 7J U 7}. Thus, for the same reason,
Aj = {Aj_x U A)) U A) is homeomorphic to a closed annulus.

By Lemma 6.2, we have a homeomorphism

fό\Aύ-^{teC\rά ^ | ί | ^ 1} (0 < rά< 1)

such that fj is holomorphic on Aά. We may assume

(6.5)

Step 2. Since fj9 j ^ 0, are uniformly bounded on Πu, taking a sub-
sequence if necessary, we may assume that the sequence {fά} converges
to a continuous function / uniformly on each compact subset of Πu. In
particular, / is holomorphic on Πu. In this step we shall show that /
and df are nowhere zero on Πu. For this purpose we define a number
v(t, 7, h) by

v(t, 7, h) —
2πi h h - t

for t e C, a 1-cycle 7 and a holomorphic function h defined on a neighbor-
hood of 7. Let 7 be a 1-cycle on Πu and let {tk} be a sequence of points
tkeC, k = 0, 1, 2, , with t = limfc_«x> tk. Then it follows from the com-
pactness of 7 that, if ίg/(7), then

(6.6) v(ί, 7, /) = lim v(tkf 7, fk) .
&->oo

By Step 1, y), j ^ 0, are all homologous to 7J in Ak for j < k, while /fc

maps 7J homeomorphically onto a circle around the origin. Therefore it
follows by the argument principle that

(6.7) v(0, y), fk) = 1 for j < k .
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We shall see first that / is not constant. By (6.5), | / | = 1 on 7ί, i.e., /
does not vanish identically. Suppose therefore / is identically equal to
a non-zero constant. Then v(0, y), f) = 0. By (6.7), this contradicts (6.6).

Since fk is a coordinate of Akf for each xeΠu there is a small 1-cycle
yx around x on Πu such that yx is homologous to zero in Πu and v(fk(x),
yx9 fk) = 1 for sufficiently large k. Moreover we may assume f(x)ίf(ya).
Now suppose df(x) = 0 for some x e Πu. Then v{f(x), yβ, f) ^ 2. This
contradicts (6.6). Suppose next f(x) = 0 for some x e Πu. Then v(0, yx, f)^
1. On the other hand, since fk is nowhere zero, we have v(0, yX9 fk) = 0.
This contradicts (6.6).

Step 3. In this step, we shall show

(6.8) suv{\t\\tef(Πun Aj)}^0 as j -> oo .

Fixing 0 <; ΐ < m, set j = vm + i for v = 0, 1, 2, . We recall that ζ2i

is defined on the neighborhood T; of C* — {pj — {Pi-J in S — {pj — {p{_i}
and (ζ2ί, w) forms a system of coordinates on Tt. Set Ty = g~u(Tt). Then
ζ2 i = {gv)*ζ2i extends to T3 and (ζ2i, w) forms a system of coordinates on
Tj for each j . In these coordinates, sf̂  is written as

g": (ζ2i, w) 6 Γy ̂ > (ζ2i, a"w) e Γ4 .

Therefore, since 0 < | α | < 1, there exist real numbers Rjf j ^ 0, such
that lim^oo Rό — oo and

{x e Tt I Rj1 < I ζ2i(^) I < Rjf w{x) = α^} c ^^(i7M n Γy) for j^O.

Let fev = (fΓT/. We identify ^(77W Π Γy) with a domain in C by the
coordinate ζ2i and we regard hv as a holomorphic function on the annulus
{ζtiβClRj1 < |ζ 2 < | < Rj}. Since fcv, v ^ 0, are uniformly bounded, there
is a subsequence {hv) of {fej which converges to a bounded holomorphic
function defined on C*. Therefore the sequence [hv] converges to a
constant uniformly on the compact set {ζ2 i |r <̂  | ζ 2 ί | ^ r"1}. Thus the
sequence {dό) of the diameters of /(Z72i, π /?tt) in C, i ' = v'm + i, con-
verges to zero. On the other hand, by (6.6)-(6.7) we have

(6.9) »(0, y)Ί f) = 1 .

This means that the convex hull of f(Ui3 >Γ\Πu) contains the origin.
Therefore, by the maximum principle, l i m ^ ^ dy — 0 implies (6.8).

Step 4. We shall show that / : Πu -+ D* is a proper map. Suppose
not. Then there is a sequence {xv} of points xueΠu, v = 1, 2, 3, •••,
without accumulation points in Πu such that the sequence {/(#„)} converges
to a point y* of Z>*. Since |τ/*| > 0, it follows from (6.8) that there
exists j ^ 0 such that xu e A, for all v. Then the sequence {xv} converges
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to a point x* on A, and ?/* = /(a?*). From cc* £ 77tt it follows that x* eyl
and hence \y*\ = \f(x*)\ = 1. This contradicts y*eD*.

By Steps 2 and 4, / : i7 t t -+D* is a d-fold covering (1 <: d < 00).
Moreover, (6.9) shows that the degree of the map / : y) -> /(γj) is one.
Since 75 is a generator of the fundamental group of Πu, this implies
d = 1. Thus / maps 77tt biholomorphically onto D*. Now (6.4) follows
from (6.8). q.e.d.

Take sufficiently small ε > 0 so that the conclusions of Proposition
5.11 and Lemma 6.3 hold. Then we have a holomorphic 2-form φ on Bε

such that φ is nowhere zero and its local expression φ = φ23'ζί/dζz3 Λ dw
on U2j Π -Bε satisfies

( 6 ' 1 0 ) l |9> 2 i(aj)-l |<l/2 for x 6 C72i n

Define a holomorphic 1-form ^tt on Πu by the formula φ — Θu Λ dw on 77U.
Then ββ is nowhere zero on Πu for any u, \u\ < ε. Fix u so that 0 <
\u\ < e and let / : Πu -+ D* be the biholomorphic map given by Lemma 6.3.

LEMMA 6.11. (f~1)*θu extends to a meromorphic 1-form on D so that
the origin of D is a pole of order one.

PROOF. In the standard coordinate t on D, we write θu as θu =
f*(hdt), where h is a holomorphic function o n ΰ * . By the definition of
θu9 we have

(6.12) φuζ£ = (f*h)(df/dζ2d) on U2jf)Πu.

For our purpose it suffices to show that h extends to a meromorphic
function on D which has a pole of order one at the origin.

First we claim lim^o hijty1 = 0. For simplicity let

Uii - {xeU2j\r + δ < \ζ2j(x)\ < r"1 - δ}

where ε > 0 is sufficiently small. Then by Cauchy's inequality we have

\ ( d f l d ζ 2 j ) ( x ) \ ^ L ( j ) l d f o r x e U l - f M I v , j ^ O .

Combining this and (6.10) with (6.12), we have

\ h ( t ) \ - 1 ^ 2 L ( j ) / r d f o r tsf{UlsnΠ%), j ^ O .

By (6.4) and the maximum principle, it follows

(6.13) s u p P ( £ ) H £ e U / ( # * Π #.)}-> 0 as j - > «, .

Note that the collection of sets \Jk^f(UkΠΠu)\J{0}9 j^O, forms a
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neighborhood system of the origin in D. Therefore (6.13) implies
lim^o hit)'1 = 0.

Now we know that h is meromorphic on D and not holomorphic at
the origin. Next we claim there is a sequence {tά} of points t3eD*,
j ;> 0, such that |tyfc(iy)| are bounded with respect to j and lim^ooίy = 0.
This proves Lemma 6.11. By the argument principle we have

d ζ 2 j = 2 π i f o r j ^ O .

Hence by the mean value theorem we can find a point $$ on U2j Π Πu

such that

Let tά = f(xά). Then, by (6.10) and (6.12), | «,&(«/) I ̂  3/2 for all j ^ 0.
lim^eo ίy = 0 follows from (6.4). q.e.d.

Let E denote the ε-disk {u eC\ \u\ < ε).

LEMMA 6.14. There are an open neighborhood B of C+ in S and a
holomorphic function τ on B — C+ such that (τ, w) maps B — C+ biholo-
morphically onto D* x E.

PROOF. We expand φo(ζo, w) into the Laurent power series in ζ0:
<Po(Co, w) = *ΣiμezCμ(w)ζS where cμ(w) are holomorphic functions in w,
\w\ < 6. Since co(O) = 1 by (6.10), we have co(u) Φ 0 for any ueE pro-
vided that ε > 0 is sufficiently small. Thus

(6.15) ί clu)~ιθu = 2πi for u e E.
J i < r o ι = i

Define a holomorphic map s of E into Uo Π Bε by

s t ί H (ζ0, w) = (1, it) for ueE .

For each a ; e 5 ε - C+, set

= exp \ cQ{
Jβ(M)

Then, since c^u^θ^ depends on u holomorphically, τ = τ(x) is a holomor-
phic function on Bε — C+. By (6.15) and Lemma 6.11, the restriction of
τ to 77W is a holomorphic coordinate of Πu for each uf 0 < \u\ < e. Note
that (the extension of) ζ0 maps /70 = CQ Π (Z70 U Z7i) — {p0} biholomorphically
onto a punctured disk. By the first line of (6.10), τ\ΠQ = ζo\Πo. Thus

B = {xeBε - C+\\τ(x)\ < 1} U C +
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is an open neighborhood of C+ in S and (τ, w) maps B — C+ biholomor-
phically onto D* x E provided that ε > 0 is sufficiently small. q.e.d.

Let E* = E - {0}. Form the union W = w~\E*) U ( B x E*) by identi-
fying each xeB — C with (τ(x), w(&)) eD x E*. Then the map w extends
to a holomorphic map tar of W onto i£*. First we shall show that
τf:W->E*isa proper map. Fix ueE* arbitrarily and choose a real
number εu such that | α | e β < \u\ < εu < ε. Let B' be the domain in B
defined by the inequalities: | τ | < 1/2, \w\ < εM. Then λ(B') is an open
neighborhood of C in S by Lemma 6.14 and (5.4). Hence S — λ(2?') is
compact. By the choice of εu and (5.3), we have

X(w-\u) - B') = X{w-\u)) - λ(JB') ,

while λ embeds w~\u) into S — C. Therefore w" 1 ^) — J5' and hence

vf-\u) = (w-\u) - B') U A/2 x {̂ }

are compact, where D1/2 is a closed disk of radius 1/2. Thus every fibre
of tar is compact and hence τf is proper.

Next we shall show that we can extend g to a biholomorphic map
p of W into itself by setting

(p(x) = g(χ) for x e w~\E*)

(/o(0, u) = (0, cm) for (0, u) e D x E*

Let {xu} be a sequence of points #v e W, y = 1, 2, , which converges to
(0, u) e D x E* in W. Then, since the sequence {τf(p(xu))} converges to
ecu e E* and τf is proper, the sequence {p(xj)} has some accumulation
point only on τf~\au). On the other hand, since p maps w\u) homeo-
morphically onto w^au), the sequence {p(xu)} has no accumulation points
in w~1{au). Therefore, since τf~1(au) — w~\au) consists of one point
(0, cm), the sequence {p(xv)} converges to (0, cm) and hence \imvp(xi) =
p(]imvxj). Thus p is continuous on W. Then, since W — w~\E*) is an
analytic set of codimension 1 on W', it follows by Riemann's extension
theorem that p is holomorphic on W. Moreover, since p is one-to-one,
p maps W biholomorphically onto p(W). We note that p preserves the
fibres of τf.

Now we define Σ to be the complex manifold obtained from W by
identifying each yeW with p(y). Let A denote the canonical projection
of W onto Σ. Then τf induces a holomorphic map Ψ of Σ onto z/. Since
τf is proper, ?Γ is also proper and hence Σ is compact. In view of (5.2)
and (5.3), we can identify S — C with the open submanifold Λ(w~~\E*))
of Σ canonically. Let Γ = Σ - (S - C). Then Γ = Λ({0} x E*) is a curve
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on Σ. Thus ί i s a compactification of S - C. We have Ψ\S - C = f
since they are both induced by w. Since Ψ\A(D x E*) is induced by
the projection (t,u)ι-*u of D x E* onto # * , it follows from (6.16) that
Ψ maps Γ = Λ({0} x E*) biholomorphically onto Δ = C*/(a). This com-
pletes the proof of Proposition 6.1.

7. Structure of Σ and S — C. By (5.4) we know that C consists of
m irreducible components (m ̂  1). In this section, we shall prove

PROPOSITION 7.1. S — C has the structure of an affine C-bundle of
degree —m over the elliptic curve Δ with the projection ψ.

PROOF. We identify S with the quotient surface S/(g) of S by the
group generated by g. Hence for any positive integer k we have a
&-fold unramified covering surface S' = S/(gk) of S and a fc-fold covering
curve Δ' — C*/(ak) of Δ. Let p denote the canonical projection of S'
onto S and π that of Δr onto Δ. Then the holomorphic function w on S
induces a holomorphic map ψ' of Sf — p~\G) onto Δf such that ψ o p =
πoψ'. Suppose now that ψ': Sf — p~\C) —> Δ is an affine C-bundle of
degree d. Then, since π: Δf —> J is a &-fold covering, ψ: S — C -+ Δ is an
affine C-bundle of degree cϊ/&. Clearly p~\C) is connected and consists
of &m irreducible components. Therefore, considering S' — p~\C) instead
of S — C, we may assume m ̂  3.

Let I' be the compactification of S — C given by Proposition 6.1 so
that S — C = Σ — Γ and ψ extends to the holomorphic map Ψ of Σ onto
Δ. The proof of Proposition 7.1 is divided into three steps.

Step 1. First we shall show (Γ)2 = m. Note that C and 2?w,a,0 have
the same intersection matrices and the same topological structure by
(5.1)-(5.4) (cf. (3.2), (3.3) and (3.6)). Suppose now (Γ)2 < 0. Then, since
Γ is irreducible, it follows by Proposition 1.2 that Σ and hence C have
strongly pseudo-convex neighborhoods in Σ and S respectively. Again
by Proposition 1.2, this contradicts (C)2 = 0. Thus it suffices to show

Let M be the tubular neighborhood of Γ. Then dM is a circle bundle
of degree ±(Γ) 2 over the elliptic curve Γ. Hence the Gysin exact
homology sequence gives

(7.2) HtfM, Z)~Z®Z® (Z/dZ) , d = I (Γ)21 .

Let iVand No, respectively, be the tubular neighborhoods of C in S and
Dm>(Xi0 i n Sm>a>0. W e s h a l l s e e

(7.3) HtfM, Z) ~ HtfNo, Z) .

In fact dM is homotopically equivalent to 3N by Lemma 1.5. Since
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m ^ 3 by our hypothesis, C and Dm>a>Q are of simple normal crossing.
Therefore, according to Lemma 1.4, we may assume that dN and 3NQ

are homotopically equivalent. Thus we obtain (7.3).
Sm,α>0 — -DOT)α,o is a line bundle of degree — m over an elliptic curve.

Therefore, by Lemma 1.5, dNQ is homotopically equivalent to a circle
bundle of degree ± m over an elliptic curve. Hence H^dNo, Z) = Z φ
Z0(Z/mZ). Combining this with (7.2)-(7.3), we obtain |(Γ)2 | = m.

Step 2. Σ is obtained from a surface 2* free from exceptional curves
of the first kind by successive quadratic transformations. Let σ denote
the canonical projection of Σ onto Σ*. Set Γ* = σ(Γ). Since Δ is an
elliptic curve, Ψ is a constant map on each exceptional curve of the first
kind on Σ. Hence Ψ induces a holomorphic map Ψ*;Σ*~>Δ satisfying
Ψ = Ψ*oσ. Note that, since Ψ: Γ -> A is biholomorphic, ?r*:Γ*->J i s

also biholomorphic. In this step we shall show that Ψ*:Σ*-^Δ is a
P^bundle.

Since (Γ)2 > 0 and hence (Γ*)2 > 0, we see that Σ* is algebraic ([8,
I; p. 757, Th. 8]). Now let K denote the canonical divisor of Σ*. Then,
since Γ* is a non-singular elliptic curve with (Γ*)2 > 0, we have (vK —
μΓ* Γ * ) < 0 for any v > 0, μ^O. Hence all pluri-genera Pu =
dimiϊ 0 ^*, (^(vK)) are zero (v > 0). On the other hand, since W* maps
Σ* onto the curve Δ holomorphically, 2* is not the protective plane P 2 .
Therefore, by Enriques' theorem, Σ* is a P^bundle over a curve Δf (cf.
[8, IV; p. 1060, Th. 52]). Let Φ: 2'* -> J' denote the projection of the
P^bundle. Since A is an elliptic curve, ?F* is a constant map on each
fibre Φ-1(u) = P1, u 6 z/'. Hence there is a holomorphic map μ: Δf —> J
satisfying Ψ* = μoφ. Moreover, since ?P**: Γ* —> J is biholomorphic, μ is
biholomorphic. Thus f*: J* -> J is a P'-bundle.

Sίep 3. Now we shall show Σ = Σ* and hence W = Ψ*. Suppose
Σ Φ Σ*. Then we can write Σ = QkQ^ - Qi(£*), (fc ^ 1), where Qu

denotes the quadratic transformation with respect to the point qu on
Qv-i Qi[Σ*). We identify Qv - Q^*) - Q ^ ) with Qv_, . . . Q^*) -
{qv} canonically. Setting ΓQ = Γ*, inductively we define Γv to be the
proper transform of Γv_λ with respect to Qu, v = 1, 2, , fc. Thus
Γ — Γk. Since S — C = Σ — Γ has no exceptional curve of the first kind,
we have
(7.4) qk_μ 6 TV,.! for 0 ^ μ ^ A; - 1 .

Set Fo = ?r*"1(?P'*(g1)). Since ?Γ* is of maximal rank on Γo, it follows from
(7.4) that Fo intersects Γo transversally at qlt Therefore, since Fo is a
non-singular rational curve with (F0)

2 = 0, the proper transform JFΊ of Fo

with respect to Qλ is an exceptional curve of the first kind on QyϋΣ*) — Γx.
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Moreover, by (7.4), the proper transform of F1 with respect to Qk Q2

is an exceptional curve of the first kind on Σ — Γk = S — C. This is a
contradiction.

Thus Ψ: Σ -> Δ is a /^-bundle. Since Ψ: Γ ^ Δ is biholomorphic, Γ is
a holomorphic section of the /^-bundle Σ. We may regard Γ as an oo-
section. Hence S — C = Σ — Γ i s a n affine C-bundle with the projection
ψ = Ψ. Note that the linearization of the affine C-bundle S — C is the
dual of the normal bundle [Γ]Γ. Therefore the degeree of S — C is
_-(Γ)2 = -m. q.e.d.

8. Structure of S. In this section we shall determine the structure
of S. We begin with

LEMMA 8.1. Let M be a noncompact surface and w:M-^C a holo-
morphic map. Assume

( i ) w is of maximal rank at each point of M,
(ii) M — w~\ϋ) is an affine C-bundle over C* with the projection w,
(iii) w^O) is biholomorphic to C*.

Then there exists a holomorphic function ξ on M so that (ξ, w) maps M
biholomorphically onto C2 — {0}.

PROOF. Set F = w~\0). Since every affine C-bundle over C* is trivial,
there is a holomorphic function ξ0 on M — F so that (f0, w) maps M — F
biholomorphically onto C x C*. Fix xoeF. Let (Z70, (z0, w)) be a coordi-
nate chart around x0 such that

Uo = {(z0, w) 11 z01 < 1, I w I < ε0} , zo(xo) = 0 ,

where ε0 > 0 is sufficiently small. Define a holomorphic map s: w(U0) —•
?7oby

s: u h-> (̂ o, w) = (0, u) for | u | < ε0 .

Define holomorphic functions a(u) and b(u) on te;( C70) — {0} respectively by

a(u) = | ^ ( β ( u ) ) , 6(w) = fo(β(w)) for w e w(J70) - {0} .
dzQzQ

Note that α(u) is nowhere zero. Set

(8.2) 7]{x) =

for xew~\w(Uo)) — F. Then η is holomorphic on w~\w(U0)) — F.
First we shall show that η extends to w~\w(UQ)) holomorphically so

that Ύ] maps F biholomorphically onto C*. Take y eF arbitrarily. Then
we can find finitely many points xlf - , x», ••-,&* on F and coordinate
char t s (U» (z,, w)) around xu9 v = 1, , k, such t h a t xv e Vv_γ Π Uv and
xk = y. Moreover we may assume t h a t for each v, 0 <̂  v ^ ky
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Uv = {(zu,w)\\zv\<l,\w\<ε} ( ε > 0 ) , zy(xj) = 0 .

By induction on v, we prove

(8.3)v η extends to a holomorphic function on U» so that

d7]jdzv is nowhere zero.

By (8.2) we have

η(0, w) = 0(8.4) for (0, w)eU0- F.

So

Hence the distortion inequality holds:

\ V ( Z o , w ) \ ^ \ Z o \ i a - \ Z o \ ) 2 f o r 0 < h

In particular η is locally bounded on Uo. Therefore by Riemann's exten-
sion theorem, η extends to Uo holomorphically. Suppose (βτj/dzo)(x) = 0
for some x e Z70. Then the equation: drjjdz^ — 0 defines an analytic subset
of pure dimension one, while dη/dz0 is nowhere zero on Uo — F. Hence
dη/dz0 is identically zero on F Π Uo. On the other hand by (8.4) we have
(di}/dzo)(xo) = 1. This is a contradiction. Thus dη/dzQ is nowhere zero on
[To. This proves (8.3)0. Assume therefore that (8.3)v_i holds for some
v >̂ 1. Define a holomorphic map sv: w(UJ) -* Uv by

s/. u H* (zv, w) = (0, w) for u e ιι;(ϊ7v) .

We may assume that Όv_x Π Uv contains the whole sv{w(Uv)). Define
holomorphic functions aμ(u) and b^u) on w(Uv) respectively by

for u 6 w{ UJ) .

Then au(u) is nowhere zero by (8.3)v_lβ As before, we define a holomor-
phic function ΎJV on Uv — F by

Repeating the same argument as that for (8.3)0, we obtain that ηv extends
to Uv holomorphically so that dηjdzv is nowhere zero. Therefore (8.3),,
holds since we can write η as η = av(w)ηv + b£w). Thus, since ΐ / e F is
arbitrary, η extends to W\W(UQ)) holomorphically so that for each
uew(U0) the restriction of drj to w~\u).i& nowhere zero. By (8.2), η is
one-to-one on w\v) for uew(U0) — {0}. Hence, using the argument
principle, we obtain that 7] is one-to-one on F. Thus Ύ] maps F biholo-
morphically onto C*.

Now we know that (M — F, (ξ0, w)) and (w~\w(U0)), (η, w)) are co-
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ordinate charts covering M. Since the coordinate change (8.2) is an affine
transformation with respect to ζ0, we can identify M with an open sub-
manifold of some affine C-bundle over C with the projection w. Since
every affine C-bundle over C is trivial, there is a holomorphic function
ξ on M such that ξ defines the coordinate on w~\u) for each ueC. Thus,
taking ξ — v instead of ξ for some constant v if necessary, (£, w) maps
M biholomorphically onto C2 — {0}. q.e.d.

PROPOSITION 8.5. Let S be a compact surface free from exceptional
curves of the first kind. Assume that S satisfies the conditions (S-0)-
(S-2) with a curve C. Then S is biholomorphic to SmtCC>t and C = Dmι0Ctt

for some m ^ 1, 0 < | a \ < 1, t e Cm.

PROOF. By our hypothesis we have the unramified covering λ: S —> S
of S, the holomorphic function w on S and the covering transformation
g satisfying (5.1)-(5.4). We write Cjf jeZ, for the irreducible com-
ponents of \-\C) so that flf(Cy) = Cj_m (m ^ 1). Set Δ = C*/<α>, where
g*w = aw (0 < \a'\ < 1). Then w induces a holomorphic map ψ of S — C
onto the elliptic curve Δ. By Proposition 7.1, ψ: S — C -> Δ is an affine
C-bundle of degree —m. Therefore w: S — X~\C) —> C* is also an affine
C-bundle. Set M = S - U;*o Cy and F = C0Γ\M. Then ί 7 is biholomor-
phic to C* by (5.1). By (5.2), w is of maximal rank at each point of M.
Hence, applying Lemma 8.1, we obtain a holomorphic function ζ on M
such that (f, w) maps M biholomorphically onto C2 — {0}. Since g*w =
aw, g is of the form

(8.6) g: (ξ, w) \-+ (a(w)ξ + b(w), aw) for w Φ 0 ,

where a(w), b(w) are holomorphic functions on C* and α(w) is nowhere
zero on C*.

First we prove that a{w) and b(w) extend to C holomorphically. By
(5.1) and (5.4) we can choose a compact neighborhood N3- of Cό for each
j G Z so that

( 8 7 )
[JVy Π 2SΓfc = 0 if i ^ k ± 1 .

Fixing 0 < i < m, set j(z/) = vm + i for v ^ 0. Then, by g*w =
we have

λ ^ - 1 ^ ) Π iSΓ, (,)) = X{w-\avu) n iVi) for u e C .

Hence, from | α | < 1 it follows that, for each ueC, the sequence of sets
X(w-\u) n iVyo,,), v = 0, 1, 2, , converges to C n λCiVJ. Since Cΐi

(u)) = 0 for u Φ 0, this means that, for each U G C * ,
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(8.8) inf {| ξ(χ) \\xe w~\u) n Nά} -> oo a s j -> + oo .

For sufficiently small δ > 0 and ε > 0, we set

B = {xeM\\ξ(x)\ >l/δ,\w(x)\ < ε} .

Then, by (8.8) and the maximum principle we have

(8.9) NkΠB = 0 for fc < 0 .

Take two points qlf q2 on ί7 and define holomorphic maps st: C-+M, i =

1, 2, by
st: u H* (£, w) '= (£(ft), w) for u e C .

We may assume that Si(u)eNQ for |w| < ε, £ = 1, 2. Then, by (8.7) and
(8.9), g(Si(u))<ίB for | u | < ε. That is, by (8.6),

I a(w)ζ(ft) + 6(w) I < 1/3 for 0 < | w | < ε .

Hence, by Riemann's extension theorem, α(w)£(ft) + b(w), ί = 1, 2, extend
to C holomorphically. Thus α(w ) and b(w) extend to C holomorphically
since ζ(q,) Φ ξ(q2).

Now, applying Proposition 2.5 to the holomorphic automorphism g of
S — λ~x(C), we obtain a holomorphic function z on M and a polynomial
t(w) of degree < m such that (z, w) forms a system of coordinates on
M and g is of the form

(8.10) g: (z, w) H* (wmz + t(w), αw) ,

taking βw, βeC*, instead of w if necessary.
By (5.1)-(5.4) (cf. (3.2), (3.3) and (3.6)), we know that C and Dm,a>t

are homeomorphic and have the same intersection matrices. We have
C = Ur=~o^(C4) by (5.4). Let Dif 0 <; i < m, denote the irreducible com-
ponents of Dm}Ce>t.

The case: m = 1. By (5.1) and (5.4), C (resp. DltUtt) has the unique
singular point p (resp. q). Comparing (8.10) with (3.1), we see from
the construction of Sm,α,f in Section 3 that S — {p} is biholomorphic to
Si,a,t — {Q} a n d C — {p} = A,α,t — {̂ } Thus by Hartogs' extension theorem
we conclude that S is biholomorphic to S1>ct)t and C = A,«,t

7%e case: m > 1. From (5.2) and (5.3) it follows that the real first
Chern class of the line bundle [C] and hence the real homology class of
C are zero. This implies that S is not Kahlerian. Therefore, since S
has no exceptional curves of the first kind, S is minimal (cf. [8, IV; p.
1065, Th. 56]). Set P = U E 1 λ ( C ( ) and Q = \JT^ A Comparing (8.10) with
(3.1), we see from the construction of Sm>cttt that S — P is biholomorphic
to Smyajt — Q and C—P=Dm>at — Q, changing the indices of Dt if necessary.



492 I. ENOKI

Thus both S and SmyCC)t are minimal compactifications of the same surface
S — P. Note that P^C, Q g Dm>a>t and the intersection matrices of
C, Dm>CCtt are negative semi-definite. Hence P and Q are both exceptional
by Lemma 1.1 (iii) and Proposition 1.2. Also P, Q are connected. Thus
we conclude by Proposition 1.3 that S is biholomorphic to Sm}Ct)t. Since
S - P (resp. C - P) is identified with Sm,a,t - Q (resp. Dw,β f t - Q), we
have C = !>„,„,*. q.e.d.

9. Proof of Main theorem. Let S and D be as in the Main theorem.
Let C denote the support of D. Then S and C satisfy the conditions
(S-0)-(S-2) by Proposition 4.18 (see the beginning of Section 5). Thus,
by Proposition 8.5, S = SWιβ>ί and C = Dmf(X>t. By Lemma 1.1 (ii) we have
D = rΌm>aΛ for some r e Z . Finally from 62(S) = w it follows m = n.
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