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Introduction. This paper is concerned with stationary solutions of
the following reaction-diffusion system which was proposed by Gierer
and Meinhardt [3] as a model of biological pattern formation:

(G-M)

= DJa - μa + cp-^- + pop ,

for t > 0, x e.

Here, Da, Dh, μ, v, c, c', p and pf are positive constants; p0 is a non-
negative constant; Δ stands for the Laplace operator and Ω is a bounded
domain in Rn. The activator a(t, x) and the inhibitor h(t, x) represent
the concentrations of some substances, and hence both are to be positive.

Under the homogeneous Neumann boundary condition, the system
(G-M) has a unique constant stationary solution, which is interpreted as
a homogeneous state of cells or tissues.

It is numerically observed that, for appropriate values of Da, Dh, ,
p0, the system also has stable stationary solutions exhibiting spatially
wavy patterns, which is considered to account for biological pattern
formation. In addition, it seems that, as Da tends to 0, the amplitude
of such solutions becomes unbounded. See, for example, [5] and [8].

There are some rigorous results on the system (G-M). For example,
Keener [7] considered the stationary problem in the case that Dh-^oo,
In the vicinity of the constant solution, bifurcation theory is effective
to obtain the existence of non-constant stationary solutions and to study
their stability (see [12]).

However, little is known about the solutions with large amplitude.
The shape and the stability of stationary solutions seem to depend on
Da in a fairly complicated way, as is suggested in Fujii, Mimura and
Nishiura [2] where global structure of the solution set is investigated
for some reaction-diffusion systems with saturation.

The purpose of this paper is to estimate the range of existence of
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stationary solutions by giving a priori bounds and by showing the
uniqueness of the solution for sufficiently large values of D = DJDh.
A priori bounds for stationary solutions of (G-M) appeared first in
Hadeler, Rothe and Vogt [4]; in fact, they constructed an invariant set
for a modified evolutional problem. We take a different approach to
obtain more explicit estimates, especially to clarify the dependence on D.

The outline of this paper is as follows: Main results are stated in
Section 1; Theorems 1 and 2 give a priori bounds, while Theorem 3 is
concerned with the uniqueness. We shall verify the a priori estimates
in Section 2. The uniqueness theorem will be proved in Section 3.
Lastly, as an application of these theorems, we shall discuss in Section
4 the global behavior of bifurcating branches in the case that the
spatial dimension is one (Theorem 4).

The author would like to express his hearty gratitude to Professors
T. Kotake and N. Shimakura for their advice and encouragement.

1. Main results. First of all, we normalize the system (G-M) to
simplify the notations. For our purpose we need only the equations
satisfied by stationary solutions. Thus we consider the system

(1.1a) DΔu(x') - u(x')/m + u{xjjv{x') + p = 0

(1.1b) Δv(x') - v{x') + u{xj = 0

for x' G Ωr under the boundary condition

(1.2) du/dv = dv/dv = 0 on dΩ' ,

where

ft — l/ ί j/Π w Of — •ί'v' /v C O\
JU V J^l JLJ^Jb, ύώ \X j X KZ ύάj ,

u(x') = c'p\cp)~ιa(x), v(x') = c'p'v{cp)~2h{x)

and

(1.4) D = DJDh, m = v/μ, p = (c'p'po)/(cv) .

Note that D > 0, m > 0 and p ;> 0 by definition.
In what follows, we write x and Ω instead of x' and Ω', respectively,

for simplicity.
Throughout this paper, we put the following assumptions on the

domain Ω and on the regularity of the solutions (u, v):
(H.I) Ω is a bounded domain in Rn with C2+α-class boundary dΩ

(0 < a < 1);
(H.2) u,veC2(Ω)nC\Ω).
We observe that system (1.1)-(1.2) has a unique constant solution

(1.3)
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(u, v) == (ϋ, v) ,

where

(1.5) ΰ = m(l + p) and v = ΰ2 .

The main object of this paper is to estimate the suprema of u(x),
v(x), \Au{x)\ and \Av(x)\ in terms of the constants D, m, p and ω, ω
being the volume of Ω. We shall also show the uniqueness of the
solution for sufficiently large D (see Theorem 3 below). The proofs
will be given in the subsequent sections.

Before stating our main results, we note some fundamental facts.
Let us put

ft/* = M a x φ ) , U* = Minu(x) ,

\V* = Max v(x), V* = Min v{x) .

Then we have estimates of these four quantities which are valid inde-
pendent of D.

PROPOSITION 1.1. Let (u, v) be a solution of (1.1)-(1.2). Then, u and
v are positive up to the boundary; and we have

(1.7a) F * ^ C7*2 ,

(1.7b) V*^Ul,

(1.8a) C7* ̂ mU^/V* + mp ,

(1.8b) U* ^mUi/V* + mp .

The equalities occur only for the constant solution (ΰ, v).

By this proposition the ranges of these four quantities can be limited
very roughly as follows:

Suppose for instance that we know an upper bound on U*. Then
F* is limited from above by (1.7a). This and (1.8b) give us a lower
bound of £7*, which in turn limits V* from below by virtue of (1.7b).
(Cf. Figure 1.)

It is also to be noted that from (1.7a) and (1.8b) we have

(1.9) U* > mp and V* > (mp)2,

which give nontrivial lower bounds if p > 0.
Next, to obtain bounds of Ϊ7* and F* depending on D, we at first

assume that V* is known and estimate them by means of V* and D.
Using (1.9), we shall have explicit a priori bounds when p > 0.

THEOREM 1. Suppose that (u, v) is a solution of (1.1)-(1.2). Then
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U* <« + 4(ffl,flyFt) ,

V* < [ΰ + A(m, D, ]/F7)]2,

Sup \Au{x)\ < [m + A(m, D, VTζ)]l(mD) ,

Sup \Δv{x) \<[ΰ + A(m, D, VΎl

+ Max (m~\ r1)}] .

FIGURE 1

we have

(1.10)

(1.11)

(1.12)

(1.13)
where

(1.14) A(m, D, t) = 2mD-1[m-1 + r 1 +

In particular, if p > 0, we have

(1.15)

In the case of n = 1, n being the spatial dimension, Theorem 1 can
be improved; and we obtain a priori bounds in terms of m, pf D and
the length of the interval both for p > 0 and for p — 0.

THEOREM 2. Let n = 1 cmd i2 = (0, L). Suppose that (u, v) is a
solution of (1.1)-(1.2). Then {uy v) is bounded as follows:

m[a{Llλ/mD) + p] < u(x) < ΰ + LVm\Ό ,

m\a(LlVmD) + pf < v{x) <{ΰ +

ί),

(1.16)

(1.17)
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where the function α(ΐ) is defined by

(1.18) a(t) = (L-1 tanh L)t cosech t .

Moreover, we have

(1.19) F* < e L F * .

REMARK 1.2. It is to be noticed that a(L/\/mD) is strictly increas-
ing in D; that α(L//mS) t ί*"1 tanh L as D | +00; and that a{L\λ/rmb) \ 0
as D10. Inequality (1.19) implies that the amplitude of v becomes
small as L tends to 0.

Using above results, we can derive a uniqueness theorem for suffi-
ciently large D. Here are some notations necessary to state the theorem:

Let lx be the smallest positive eigenvalue of the self-adjoint exten-
sion of — Δ under the homogeneous Neumann boundary condition. Define
a function F(s, t) by

(1.20) F(8, t) = s[2{m2(l + I,)}-1 + r 2 ] + m~ι .

Furthermore, let us put

(F(ύ + A(m, D, mp), mp) if p > 0 ,

[F(ΰ + Ll/m/A w\a{L\VmΏ) + p]) if n = 1 .

Then Φ(D) is strictly decreasing in D because A(m9 D, mp) and VmjD
are both decreasing functions of D, and a{L\VmΏ) is increasing in D.

Therefore the equation

(1.22) kD = Φ(D)

for Z) > 0 has a unique solution D — D*.
Now we can state our uniqueness theorem.

THEOREM 3. Assume either p > 0 or n — 1. Lei Z>* 6e £/&e solution
of (1.22). Then, for D > Z)*, ί/te constant solution (ΰ, v) is the unique
solution of (1.1)-(1.2).

In Section 4, Theorems 2 and 3 will be used to study the global
behavior of bifurcating branches (see Theorem 4).

2. Proof of a priori estimates. This section is divided into three
subsections. In the first paragraph we give basic equalities which play
an essential role in proving our a priori estimates (particularly Theorem
1). Proposition 1.1 and Theorem 2 are verified in the second subsection
by means of the Green function. The last subsection deals with
Theorem 1.



118 I. TAKAGI

Let us put

(2.1) z = u2/v and £ * = Max z .

As will be seen below, the crucial points of our proofs lie in estimating
the term z.

From now on we shall abbreviate I f(x)dx as I/.

2.1. Basic equalities. The following equalities (B.I), --^(B.T) will
be important and used repeatedly.

Multiply both sides of (1.1a) and (1.1b) by upvq and up+1vq~\ respec-
tively, and then integrate them over Ω. By virtue of (1.2), integration
by parts leads to

(B.I) [up+1vg + pmD [up~ιvq \Fu |2 + qmD [upvq-ψu- Fv

= mlw'+V"1 + mρ\upvq

and

(B.2) iup+1vq + (q - 1)[ up+1vq-2\Fv\2 + (p + l)[upvq-ψwFv =

for each p and qeR.

Eliminate \upvq~ΨwFv to obtain

(B.3) (1 + p - qmD)[up+1vq + qmD f^+V" 1 + p(p + l)mί) ίu p -V | F

= (p + l J m Q ^ + V " 1 + ρ\upvA + g(? - l)mD[up+1vq-2\Fv\2 .

In particular, setting p = q = 0 in (B.I) and p = — 1, # = 0 in (B.2),
we have

(B.4) \u = mU + m f̂t)

and

(B.5) [z + U~2 |Fi;|2 = ω .

(Recall that z = u2/v and ω is the volume of Ω.) Eliminating \z, we also

have

(B.6) [u + m[v~2\Fv\2 = ωΰ .

Lastly, (B.2) with p = — 1 and q = 1 yields

u |
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(B.7) it; = \u2 .

2.2. Proofs of Proposition 1.1 and Theorem 2. For a > 0, let
G(x, ξ a) be the Green function for the boundary value problem

(w(x) - aΔw{x) = f(x) in Ω ,

\dw/dv = 0 on 9β .

Then we have

(2.3) G(x9ξ;a)>0

for (a?, ξ)eΩ x Ω\{(x, x); xeΩ} and

(2.4) ( G(x, ξ; a)dξ = 1 for all x e Ω

moreover, the solution of (2.2) is given by

w{x) = ί G(α, f a)f(ξ)dξ .

Using the Green function, we can convert (1.1)-(1.2) into the
following equivalent integral equations:

(2.5a) u(x) = ml G(x, ξ; mD)z(ζ)dξ + mp ,

(2.5b) v(x) = \ G(x, ξ; lMξ)*dξ ,

where we have used (2.4).
The positivity of u and v is now clear from (2.3) and (2.5). More-

over, (2.5b) and (2.4) imply that U% ^ v(x) ^ Ϊ7*2, which verifies (1.7a)
and (1.7b). Since U2JV* ̂  z(ξ) ^ U*2/V* for all ξ eΩ, we obtain (1.8a)
and (1.8b) from (2.5b) and (2.3). Therefore, Proposition 1.1 has been
proved.

To demonstrate Theorem 2, we need the explicit form of the Green
function. Let n — 1 and Ω = (0, L). Then G(x, ξ a) is given by

(2.7) G(x, ξ; a) =

(h(L\Va) cosh ((L - x)\Vά) cosh (ξ/l/α)

i f O ^ ί ^ α ^

b(L/λ/a) cosh (a?/i/α) cosh ((L -

where &(£) = L^ίcosechί.
It is easy to see that
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(2.8) h(L\Vά) ^ G(x, ξ; a) ^ (1/Vα) coth (L/\/a) .

Hence from (2.5a) and (2.8) with a = mD it follows that

u(x) ^ mΓ(l/l/m5) coth (L/l/mϊ>)(z + ^Ί .

Since [z^Lhγ (B.5) and ί coth t < 1 + ί for t > 0, we have

L\VmD) + mp = ΰ + LVm\Ό .

On the other hand, putting a — 1 in (2.8), we see from (2.5b) that

v(x) ^ cothLΛU 2 . Thus it follows from (2.5a) that

u(x) ^ m6(L/l/mB)L2/(cothL LΛ + m^ = m[tanh L 6(L/l/mΣ>)

Therefore (1.16) is verified since α(L/i/m5) = tanhL 6(L/l/mδ). In-
equality (1.17) is an immediate consequence of (1.16) and (1.7).

We now pass to the proof of (1.19). Let x0 e [0, L] be such that
v(χQ) = V*. Then by Schwarz' inequality

^0

x0

v-V2ώ

Because \v~2v'2 < L by (B.5), we have

log v(a?) - log V* < L for all x e [0, L] ,

whence follows V*/V* < eL. q.e.d.

2.3. Proof of Theorem 1. Our plan of proving Theorem 1 is as
follows: We at first assume that V* is known. Then we have Lemma
2.1 below which permits us to estimate Z* by means of F*. Next,
(2.5a) and (2.4) imply

(2.9) 17* ^ m(Z* + p) .

The estimate of Z7* gives us an upper bound on F* because of (1.7a).
This also yields

since |Δv\ = \v — u2\ ^ Max{v, u2}.
On the other hand, we have
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(2.10) DMax\Ju\ ^ Z*

by virtue of Lemma 2.2 below.

Therefore, the infimum V* of v gives us all the estimates stated in
Theorem 1.

We now state key lemmas:

LEMMA 2.1. Let (u, v) be a solution of (1.1)-(1.2). Then, for each
natural number k, we have

(2.11) \zk ^ ωMk-χ ,

where

(2.12) M = [1 + {1 + V*D(D + 2/m)}1/2]2/( V*D2) .

In particular,

Z* ^M.

LEMMA 2.2. Suppose that (u, v) satisfies (1.1)-(1.2). Then for any
natural number k

(2.13)

Consequently, we have

Ώ\Δu\ £Z* .

Before proving these lemmas, we majorize M. From (2.12) we see

M = 1 + 2(mD)'1 + 2{VΎlΏ)-\{λ/ΎlΏYι + {1 + 2(mD)~1

Noting that 1 + 2(mΰ)~1 + (VTζD)-2 ^ (1 + D'1 max {m~\ VΎl'1})2, we
find

M ^ 1 + m-'Aim, D,

Especially, if p > 0, then (mp)2 > 0 limits V* from below. Therefore
we have (1.15) since A(m, D, t) is strictly decreasing in t.

Thus it remains only to demonstrate Lemmas 2.1 and 2.2.

PROOF OF LEMMA 2.1. Substitute p = 2k — 1 and q = —k (k ^ 1)
into (B.3) and (B.I) to have

(2.14) (mD + 2)\zk + 2(2k - V)mΌ ψu~2 \ Vu |2

+1 + (fc + l)mD[zkv~2\Fv\
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and

(2.15) f (2k

=

- V)mD \z

m\zk+1u~1 -

I.

ku~2

TAKAGI

| F u | 2

/Λ/ 1 Z (A/
I 1

respectively. Since \zk — mp\zku~1 = \zku~\u — mp) > 0 by (1.9), we

have from (2.15) t h a t

(2k - l)mD[zku-2\Fu\2 <

whence follows, for 0 < ε < 2k — 1,

(2.16) (2k - 1 - ε)mi) \zku~2\Vu\2 < m [z^'u'1 + k2mD(Aε)~ι \zkv~2\Vv\2 .

Eliminating \zkn-2\Vn\2 from (2.14) and (2.16), we obtain

(2.17) mD\zk+1 < (mD + 2)\zk + 2mε(2λ; - 1 -

+ [k\2k - l){2e(2k - 1 - ε)}"1 - (k

We may eliminate \zkv2\Fv\2 from (2.17) by choosing

ε - 2~1[2fc - 1 - {(2k - l)(fc - l)/(fc + I)}1

which satisfies 0 < ε < 2k - 1 and ε(2k - 1 - ε)"1 ̂  1.
Therefore, we have on the one hand

mD\zk+ι < (mD + 2)\zk + 2m \z

on the other hand,

j s ' + V 1 - js*+1/V-1'* ^ V*ll2\zk+1/2

Consequently we are led to

m(D - ε)^zk+1 < [mD + 2

k+1u~ι

for 0<ε<D. Minimize [mD + 2 + m(εV^-1]/[m(D - ε)] to have

f+1 < ΛfU*, so that

\zk+1 < Mk\z ,
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where M = [1 + {1 + V*D(D + 2/m)}1/2]2/(F5iίD
2). In view of (B.5), we

finally obtain (2.11). q.e.d.

PROOF OF LEMMA 2.2. Let us put

w = u — mp .

Then we see w > 0 because of (1.9). Since mDΔu = w — mz and z is
also positive, we have mD\Δu\ ^ Maxjw, mz}. Suppose that w ^ mz on
Ex c i? and w <> mz on E2 a Ω. Then

JE2 JΩ
(

that is,

(2.18) {mD)k\\Δu\k ^ [wk + mk\zk .

In view of Δu — Δw, we see mDΔw = w — mz. Integrate both
sides of this equation over Ω after multiplication by wk~ι to find

\wk + (ft - l)mjDίwfc~21 Fw |2 = m \zwk~ι ,

so that

\wk ^ mlz^fc"1 for each ft ^ 1 .

By Holder's inequality, we have

(2.19)

Combining (2.18) and (2.19) proves (2.13), as desired. q.e.d.

3. Proof of uniqueness. Let us decompose u and v as follows:

(3.1) u = u0 + φ and v = v0 + ψ ,

where

S r
u , Vo = co'Λv .

Then we have

(3.3) J0 = j + = 0 .

By a simple computation, we see that (φ, ψ) is a solution of the system
of equations
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(3.4a) DΔφ - (1/ra - 2a)φ - a*ψ + (φ — aψ)2/v = uo/m - p - MS/V0 ,

(3.4b) Δψ - ψ + 2u0φ + φ2 = v0- ul ,

where a = wo/tv

We wish to show that φ = ψ = 0 if D is greater than some value
D*. Theorem 3 follows at once from this, because (uo,vo) is then a
constant solution of (1.1)-(1.2), hence is equal to (ΰ, v) by the uniqueness
of constant solutions.

Our proof is divided into three steps. The first is to show that

(3.5) \

for a constant β. The second is to derive an inequality of type

(3.6) (D - A)[φ2 £ β[φ2

with some constants A and B. Then we have the desired result φ —
ψ = 0 if D > A + B. Our third step is to show that A and B are
majorized by decreasing functions of D, whence follows D > A + B for
sufficiently large D.

Our main tool is the following Lemma 3.1. Let lx be the smallest
positive eigenvalue of the self-ad joint extension of — Δ under the homo-
geneous Neumann boundary condition. Then by the eigenfunction
expansion, we have the following inequality of Poincare type:

LEMMA 3.1. If w(x)sC\Ω), then

(3.7) \w2 ̂  ir1 \\Fw\* + ω-ι([v>y .

We now pass to the first step of the proof. After multiplying both
sides of (3.4b) by ψ, we integrate over Ω to have

The right hand side does not exceed 2ί7* l | ^ | , where U* = Maxu;

while the left hand side is greater than (Zx + 1)\^2 by virtue of Lemma

3.1. Therefore we have (3.5) with

(3.8) β = 2t/*/(l + Id .

Let us proceed to the second step. Integrate both sides of (3.4a)
over Ω. Then we see
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(3.9) (O'λiφ — aψfv1 = uQ/m — p — u2

0/vQ = (u0 — u)/m + (v0 — ul)/v0

£ Oo - ul)lv0 = (ωvoyΛφ*,

where we have used (B.4) and (B.5) which imply u0 ^ ΰ. Therefore,

(3.10) \(Φ - af)2v~ι ^ v

Next, let us integrate over Ω both sides of (3.4a) multiplied by φ
to obtain

D [\Vφ\2 + (1/m - 2α)L2 + α2ί ̂ f = [φ(φ - aψfv~ι .

We remark that \φ\ does not exceed U*, because 0 < u0 ^ ?7* and C/̂  —
u0 -^ φ ^ Ϊ7* — u0. Hence the right hand side of the above equation is

not greater than (ϊ7*/vo)U2 by virtue of (3.10). Using Lemma 3.1 again

to see that \ | F ^ | 2 ^ l\φ2, we have

(3.11) (Dk + 1/m - 2a - tf*M)U2 ^ α2ί | ^ | ^ 2α2C/*(l + IJ

where we have used (3.5) and (3.10). This is nothing but an inequality
of type (3.6) if we can majorize a and l/v0 by some constants.

Recalling that U* =Minu, we see that l/v0 = ω \v = ω \u2^ 1/Ul,

and that from (3.9) uo/m — p — ul/v0 ^ 0 hence a = uo/vo <̂  1/m — p/u0 ^

1/m. That is,

(3.12) a ^ 1/m and l/vQ ^ 1/C/2 .

Therefore,

2a2U*/(l + I,) + U*/v0 + 2α ^ ί7*[2/{m2(l + I,)} + 1/Ul] + 2/m .

Consequently, if D satisfies

IJ) > t/*[2/{m2(l + k)} + 1/Ul] + 1/m ,

S r
^2 = \^2 = 0.

In the case of p > 0, we estimate Ϊ7* by (1.10) and (1.15) of Theorem
1 and U* by (1.9); if n = 1, then we can apply Theorem 2 to obtain an
upper bound of ?7* and a lower bound of I7#. This is enough to prove
Theorem 3. q.e.d.

4. Remarks on behavior of bifurcating branches. We consider in
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this section the structure of the solution set of (1.1)-(1.2) in the case
that the spatial dimension is one.

Regarding ΰ a s a parameter and the unknowns as a column vector
JJ = *(u, v), we define

(4.1) gf = R+x E ,

where R+ denotes the set of all positive real numbers and

(4.2) E={U= \u, v); u, veC2[0, L], u' = v' = 0 at x = 0, L) .

Here and hereafter, the prime stands for d/dx. A pair (DQ, Uo) e 2? is
said to be a solution of (1.1)-(1.2) if U = Uo satisfies (1.1) for D = Do.
Let us put

Γ = {(D,U);DeR+}, Ό = \ϋ, v) .

Observing that (D, U) is always a solution for D > 0, we call Γ the
trivial branch.

Under assumption (H.3) on p below, it is shown by bifurcation
theory that there exists a sequence {Ds\f=1 c R+ such that (i) Dό -»0 as
j—>oo, and (ii) for each j , (Djf U)eΓ is a bifurcation point, i.e., in a
neighborhood of (Djf U) there is a one-parameter family of nonconstant
solutions passing through (JDh Ό) (see Proposition 4.1 below).

We are interested in the behavior of the bifurcating branch when
it is far from the bifurcation point (Djf Ό). It is observed numerically
that (1.1)-(1.2) has wavy solutions with extremely large amplitude if D
is very small (so-called "striking patterns"). Therefore, it is a funda-
mental problem to prove the existence of such solutions and clarify the
connection between bifurcating branches and striking patterns. As a
first step in attacking this problem, we shall show in Theorem 4 below
that bifurcating branches can be prolonged with respect to D into any
small neighborhood of D = 0. (Cf. Nishiura [10], where more detailed
results are established for some systems with saturation.)

The plan of this section is as follows: First we formulate the
problem as an abstract equation (4.4) on if. Secondly we state the
existence of local bifurcation in Proposition 4.1. Then the main goal
of this section will be asserted in Theorem 4.

We begin by rewriting (1.1) as equations around U. Put

U = U + W and W = \φ, ψ) .

Then W satisfies the following equations:

(4.3a) Dφ" + μm-'φ - v~xf + (φ - ΰ^ffKv + ψ) = 0 ,
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(4.3b) ψ " - ψ + 2ΰφ + φ2 = 0 ,

where

J" = (1 -

As was pointed out in [12], if p ^ 1, then there is no bifurcation, i.e.,
U is an isolated solution for each D > 0. Therefore, we assume

(H.3) 0 ^ p < 1 ,

which is equivalent to the condition 0 < μ <; 1.
Now, for the positive real numbers α and β, let 5f (α, /3) be the

Green operator for the boundary value problem

ίβw - aw" = f in (0, L) ,

\w' = 0 at x = 0, L .

Put

G(JD) = ^ ( D , jM/m) and G, = &(1, 1) .

Then (4.3) can be interpreted as the following integral equation for
(D, W)eξf:

(4.4) [I - T(D)]W- N(D, W) = 0 ,

where I denotes the identity operator on E, T(D) and N(Df W) are
defined by

(4.5) Tφ) _ Γ
L

and

(4.6) N(D, W) = '(

for W = Xφ, ψ), respectively.

It should be noticed that T and N are compact operators from a
domain of if into E\ that Dv->T{D)eB(E), (D, W)^N(D, W)eE are
analytic, B(E) being the Banach space of bounded linear operators on
E\ and that N(D, W) = O(\\Wψ) uniformly on each compact sub-interval
of R+.

If / — T(D0) is invertible, then the implicit function theorem yields
that (Do, 0)ei? is not a bifurcation point for (4.4). Thus we wish to
find a condition on D for I— T(D0) to be singular (i.e., non-invertible).
For this purpose we introduce a function g(l) for I > 0:

g{l) = (μl - l)/[ml(l + i)] .
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Define a sequence {Dj}J=ι by

D, = g(h) for j = 1, 2, 3, • ,

where

ly = (TΓi/L)2 for i - 0, 1, 2, . . . .

As will be seen in Appendix, I — T(D) is singular if and only if D =
Zλ, > 0 for some j . We say that Dό is a simple critical value of mode
j if Dά > 0 and Dn Φ Όά for all n Φ j . (Note that g(l) is positive for
I > j&r1. Since g(ϊ) is strictly increasing in the interval (0, ΐ) and
strictly decreasing in the interval (ί, + °°) with ΐ = (1 + l/l +
the equation flr(ϊ) = Dy has two roots I = iy and 1 = 1*, where i* =
(jwZy — 1). Therefore, Dy is a simple critical value if and only if ln Φ I*
for all n Φ j.) If Dά > 0 is not simple, we call it a double critical value.

First, we state the existence of local bifurcation.

PROPOSITION 4.1. Assume that (H.3) is satisfied. Let Dό be a simple
critical value. Then (Dj9 Ό) is a bifurcation point. More precisely, in
a neighborhood of (Djf U)e& there exists a one-parameter family of
non-constant solutions CD, (s), l/y(e)) with Uό(έ) = \u5(e), vό{ε)) such that

Dά{έ) = Dj + O(ε2) ,

Uβ(ε) — ΰ + ε aλ cos (πjx/L) + O(ε2) ,

Vj(e) = v + e α2 cos (πjx/L) + O(ε2) ,

where αx = l/2/L α^d α2 = 2ΰaJ(l + Z5 ) Furthermore, the solution set
of (1.1) wear (Zλ, , Ϊ7) consists of exactly two curves Γ and CDy(e), Uj(e)).

This proposition can be verified by the well-known theorem of
Crandall and Rabinowitz [1]. (See, for details, [12].)

Let £f be the closure of the set of non-trivial solutions (D, U),
UΦ U, in g7. Moreover, let ^{j) be the connected component of Sf
containing (Djf U). Put

P r o j Λ + ^ w = {DeR+; (D,

and

Proj^^(^ = {UeE; {D, U)

Our main goal in this section is then stated as follows:

THEOREM 4. Suppose that (H.3) holds and that Όά is a simple
critical value. Then Pro j Λ + ^ ( i ) is a bounded interval and

^ ID (0, Dό] .



ACTIVATOR-INHIBITOR MODEL 129

FIGURE 2

This theorem asserts that if we continue the bifurcating branch
(Zλ, (ε), U3 (ε)) with respect to e, we may take the value of D arbitrarily
small. Although numerical analyses suggest that P r o j ^ ^ is unbounded
in E, we have not succeeded in proving it.

In order to demonstrate Theorem 4, we use the following key
lemma:

LEMMA 4.2. Assume that (H.3) holds. Let Dό be simple. Then the
connected component ^ ( i ) is not compact in g7.

Now, Theorem 4 is verified by combining a priori estimates (Theorem
2), uniqueness of the solutions for large values of D (Theorem 3) and
Lemma 4.2. First, observe that Theorem 3 ensures the boundedness of
the interval ProjΛ+ίf(J). Next, assume that ProjΛ+<§f(i) Π (0, δ) = 0 for
some δ > 0. Then the a priori estimate implies that P r o j * ^ ^ is
bounded in E. Therefore ^ ( i ) is bounded in g\ The compactness of
the operators T(JD) and N(D, W) then yields that ^ ( i ) is a compact set
in ^ , which contradicts Lemma 4.2. Consequently, we have P r o j Λ + ^ ( i ) Π
(0, S) Φ 0 for all δ > 0. This is sufficient to show Theorem 4.

It remains to prove Lemma 4.2. The main idea is due to Nishiura
[10]. Suppose that ^ ( i ) be compact in g\ We are going to show that
this assumption reduces to absurdity. We start by claiming that
Rabinowitz' results on global bifurcation [11] can be applied to our case:
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LEMMA 4.3. Assume that (H.3) is satisfied and Ώά is simple. If
&(j) is compact, then there exists at least one simple critical value Dn

such that Dn Φ D5 and (2?n, Ό) e <έf (ίλ

For the proof, see Appendix.
Now, let p be the largest mode of the simple critical values con-

tained in P r o j ^ ς ^ λ Note that p > 1 since ^ ( i ) contains at least two
simple bifurcation points.

Following [10], let us pose an auxiliary problem:

(P) Consider (1.1)-(1.2) on the interval (0, L/p) .

We refer to our original problem on the interval (0, L) as the problem
(P). Define two function spaces E and %t by replacing L with L/p in
the definition of E and £?. We continue a function U in E by reflection
and periodicity to obtain a function yfj in E as follows: Put xn — nh\p
for n = 0, 1, 2, , and set

(7 U)(x) ~ ί ̂  ~ ^ ^ X2n~X- X2n+1 '
(U(x2n+2 - x) if £2n+1 <; a ^ x2ίl+2 .

We also define a mapping 7: *?->£? by 7(2?, Ϊ7) = (Z?, 7t/).
It is to be noticed that, for each solution (D, ϋ) of (P), 7(2?, f/) is

a solution of (P); and that D3 is a simple critical value of mode j for
(P) if and only if it is a simple critical value of mode pj for (P).

Therefore, (2?p, U) e ί? is a bifurcation point of mode one. Let ^ ( 1 )

be the connected component of & containing (2?p, U)f where S? is
defined analogously to £f. If ^ ( 1 ) is non-compact in έf, then 7^ ( 1 ) is also
non-compact in g\ However, this is impossible because 7^ ( 1 ) c ^ ( i ) .
Hence (g=?{1) must be compact. Then Lemma 4.3 applied to (P) asserts
that # 7 { 1 ) has to contain a simple bifurcation point (Dqj U) of mode q>l.
Thus we see that Dq is a critical value of mode pq > p contained in

Λ+

(g;7(i), which is inconsistent with the maximality of p. Consequently
must be non-compact in g7.

Appendix. For the sake of completeness, we prove Lemma 4.3
which is a special version of Rabinowitz' results [11]. He showed the
corresponding fact for equations of type (4.4) in the case of Γ(2?) = DT,
T being a compact linear operator. A close examination of his proof
leads to the conclusion that the assertion is valid if T(D) satisfies the
following condition at D = Dά\

(A.I) ind (I - T(Dά - ε)) Φ ind (I - T(Dά + e))
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for all sufficiently small ε > 0. Here ind (/ — T(D)) denotes the Leray-
Schauder index of I - T(D), i.e., ind ( I - T(D)) = d e g ( I - T(D), Br, 0)
with Br = {WeE; \\W\\ < r).

The general case that T{D) is a non-linear function of D was treated
by Ize [6], who gave a sufficient condition for (A.I). However, it seems
rather tedious to verify his condition in our case. Instead, we are
going to show by a straightforward computation that (A.I) is satisfied
if Dj is a simple critical value.

We begin by recalling that

(A.2) ind (I - T(D)) = (-l)β{D) ,

where β(D) is the sum of the algebraic multiplicities of all the eigen-
values of T(D) which are greater than 1 (see, e.g., Nirenberg [9]). The
function β(D) has a simple expression as follows:

LEMMA A.I. Let β(D) be as above. Then

(A.3) β(D) = #{neN; Dn>D},

where #S denotes the number of the elements of a set S.

Before proving the lemma, we observe that

(β(Dj + ε) + 1, if Ό3 is simple,
β j ~ \β(D3 + ε) + 2, if D3 is double,

for sufficiently small ε > 0. Therefore, in view of (A.2), we see that
(A.I) is satisfied if D3 is simple.

PROOF OF LEMMA A.I. We begin by computing the eigenvalues of
T{D). Using the Fourier cosine expansion, we see easily that λ is an
eigenvalue of T(D) if and only if λ satisfies the following characteristic
equation for some j ^ 0:

det
~2μ(μ 4- mDl3)~l - X -m[v(μ +

- λ ' ~ '

that is,

(A.4) λ2 - 2μ(μ + mDl^X + 2m[ΰ(l + ^Xj" + mΌl,)]'1 = 0 .

Here l5 = (πj/L)2 is the (j + l)-th eigenvalue of —d2/dx2 under the
Neumann boundary condition.

Since Ker (/ — T(D)) is non-trivial if and only if λ = 1 is an eigen-
value of T(D), we see that D=D3 is necessary and sufficient for I—T(D)
to be singular.

Now let λ0 > 1 be an eigenvalue of T(D). We wish to compute its
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algebraic multiplicity. First, note that λ = λ0 satisfies (A.4) for some
j ^ 1. It is immediately seen that the other root λ = λί of (A.4) is
smaller than 1, so that λ = λ0 is a simple root. Therefore, the algebraic
multiplicity of λ0 coincides with the number of the j's such that lά

satisfies (A.4) with λ = λ0. (This number does not exceed two because
(A.4) is quadratic in l5.)

Running λ0 over all the eigenvalues greater than 1, we see that
β(D) is equal to the number of all the j's for which (A.4) has a root
greater than 1. However this occurs if and only if j satisfies D3 > D.
Consequently we obtain β(D) = %{n\ Dn > D], as required. q.e.d.

REFERENCES

[ 1 ] M. G. CRANDALL AND P. H. RABINOWITZ, Bifurcation from simple eigenvalues, J. Func-
tional Analysis 8 (1971), 321-340.

[2] H. FUJII, M. MIMURA AND Y. NISHIURA, A picture of global bifurcation diagram in

ecological interacting and diffusing systems, Research Report, No. 79-11, Kyoto
Sangyo University, 1979.

[ 3 ] A. GIERER AND H. MEINHARDT, A theory of biological pattern formation, Kybernetik
12 (1972), 30-39.

[4] K. P. HADELER, F. ROTHE AND H. VOGT, Stationary solutions of reaction-diffusion equa-

tions, Math. Mech. in the Appl. Scien. 1 (1979), 418-431.
[ 5 ] H. HAKEN AND H. OLBRICH, Analytical treatment of pattern formation in the Gierer-

Meinhardt model of morphogenesis, J. Math. Biol. 6 (1978), 317-331.
[6] J. IZE, Bifurcation theory for Fredholm operators, Mem. Amer. Math. Soc. Vol. 7 No.

174, 1976.
[7] J. P. KEENER, Activators and inhibitors in pattern formation, Studies in Appl. Math.

59 (1978), 1-23.
[8] H. MEINHARDT AND A. GIERER, Applications of a theory of biological pattern formation

based on lateral inhibition, J. Cell Sci. 15 (1974), 321-346.
[9] L. NIRENBERG, Topics in Nonlinear Functional Analysis, Lecture Notes, New York

University, 1974.
[10] Y. NISHIURA, Global structure of bifurcating solutions of some reaction-diffusion systems,

Research Report, No. 79-12, Kyoto Sangyo University, 1979.
[11] P. H. RABINOWITZ, Some global results for nonlinear eigenvalue problems, J. Functional

Analysis 7 (1971), 487-513.
[12] I. TAKAGI, Stability of bifurcating solutions of the Gierer-Meinhardt system, Tδhoku

Math. J. 31 (1979), 221-246.

TOKYO METROPOLITAN COLLEGE OF AERONAUTICAL ENGINEERING

8-53-1 MINAMI-SENJU

ARAKAWA-KU, TOKYO 116

JAPAN




