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1. Introduction. Let U be the upper half-plane and let R = R U {°°}
be the extended real line. We denote by PSL(2, R) the real Mobius
group, that is, the group of all the conformal automorphisms of U. A
discrete subgroup G of PSL(2, R) is called a Fuchsian group. The limit
set Λ(G) of a Fuchsian group G is the derived set of the set which con-
sists of all the images y(ί) of the point z = i under γeG. We say that
a Fuchsian group G is non-elementary whenever Λ(G) contains more than
two points. A Fuchsian group G is said to be of the first kind if
Λ(G) = R; G is said to be of the second kind if Λ(G)ΦR. It is well-known
that, if G is a non-elementary Fuchsian group of the second kind, then
Λ(G) is a nowhere dense perfect subset of R, which is invariant under G.

Let G be a Fuchsian group and let σ be a closed subset of iί, which
is invariant under G and which contains at least three points. We define
Σ(G) as the family which consists of all such σ. As is known, every σ
in Σ(G) contains Λ(G). Let / be a quasiconformal automorphism of Z7,
which is compatible with G: that is, fGf"1 c PSL(2, R). All such / form
a family F(G). It is known that every / i n F(G) is extensible to a homeo-
morphism of U U R, which is also denoted by the same letter /. For
feF(G) and σeΣ(G), we define F(G,f,σ) as the set of all the geF(G)
satisfying g\σ = f\σ9 where g\σ means the restriction of g to σ. We put

(1.1) k(G,f,σ) = iΏi\\μβ\\,

where \\μg\\ means the L^ norm of the Beltrami coefficient μg = g-z\gz of g
and the infimum is taken over all geF(G,f, σ). By means of a normal
family argument of quasiconformal mappings, we can check that there
exists some geF(G, f, σ) with \\μg\\ = k(G,/, σ) (see [6]). Such a mapping
g is said to be extremal in the class F(G, f, σ).

Let Γ be a subgroup of a Fuchsian group G. By definition, it is
obvious that Σ(G) c Σ(Γ)f F(G) c F(Γ) and that F(&, f, σ) c F(Γ, /, σ) for
every feF(G) and every σeΣ(G). Thus, by (1.1), clearly we have

(1.2) KG,f,σ)^k(Γ,f,σ)
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for every feF(G) and every σeΣ(G). The fundamental inequality,
referred to in the title of Bers [1], plays an important role in charac-
terizing extremal mappings (see Lemma 1 below). As an application,
under the hypothesis that the index [G: Γ] of Γ in G is finite, we can
verify that (1.2) is valid with equality (cf. [8, Theorem 1]).

Ohtake proved in [7] a theorem which implies the following: if a
Fuchsian group G is cyclic, then k(G, f, R) = fc(l, /, R) for every / 6 F(G),
where 1 means the trivial group which consists only of the identity
transformation of PSL(2, R). Strebel [11] says that there exist a Fuchsian
group G and some / e F(G) such that U/G is a compact Riemann surface
of genus 2 and which satisfy k(G, f, R) > fc(l, /, R).

Now let G be a Fuchsian group of the second kind and let σ e Σ(G)
be the closure of UreG^O?) in R, where δ is an open interval contained
in R\Λ(G). We denote by ΘG the Poincare series operator of G. The
precise definition of ΘG is given in Section 3. In this paper, first we shall
show that, for 0 < Jc0 < 1, there exists a quasiconformal mapping / e F(G)
which satisfies Jc0 = \\μ/\\ = k(G, f, σ) — fc(l, /, δ). Next, as applications
to the operator ΘG of G, we shall have some results related to operator
norms of restrictions of ΘG to suitable spaces. Finally, under the further
hypothesis that G is non-elementary and finitely generated, we shall
ensure the existence of some g e F(G) such that k(G, g, σ) is sufficiently
larger than fc(G, g, Λ(G)).

The author would like to express his sincere thanks to Professor
Tadashi Kuroda for his constant encouragement and advice, and to the
referee for his helpful comments on the original version of this note.

2. Extremal sequences of holomorphic quadratic differentials. Let
G be a Fuchsian group and let Ω(G) be the region of discontinuity of
G. Let DdΩ(G) be an open set which is invariant under G. A mero-
morphic function φ in D is called a meromorphic quadratic differential
for G in D if φ satisfies Φ(Ύ(Z))Ύ'(Z)2 = φ(z) for every 7 6 G. If, in addi-
tion, such a differential φ is holomorphic in D, and satisfies

φ(z) = O(\z\-') f z->oo if o o e ΰ ,

then φ is called a holomorphic quadratic differential for G in D.
The upper half-plane U is invariant under G. For σ e Σ(G)f we de-

note by A(G, σ) the space consisting of all the holomorphic quadratic
differentials φ for G in U, which are continuously extensible to R\σ and
are real on R\σ, and satisfy the following conditions:

( 1 ) 11*11* = ( ( \Φ(z)\dxdy <oo,
J JU/G
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( 2 ) φ(z) = O(\z\-*), z-> oo if oo.eΛ\<7.

We note that every <f> in A(G, σ) is symmetrically extensible to a holo-
morphic quadratic differential for G in C\ σ, where C denotes the extended
complex plane. The space A(Gf σ) is a real Banach space with norm
|| ||G. We denote by A(G, σ\ the set of those φe A(G, σ) with \\φ\\G = 1.

Let G be a Fuchsian group and feF(G). The Beltrami coefficient
μf of / induces a bounded real linear functional L(μf) on A(G, R) which
sends φ e A{G, R) into

(2.1) L(μf)(φ) = Re \\ μfφdxdy .
J JU/G

On the right hand side of (2.1), Re A denotes the real part of A and the
integration is carried out over any fundamental region representing the
Riemann surface U/G (see [1] for the precise definition of the funda-
mental region). Let σeΣ(G). We note that, if φeA(G,σ), then — φe
A(G,σ) and A{G, σ)aA(G, R). We denote by L(μf)\A{βt0) the restriction
of L(μf) to A(G, σ). The functional norm of L(μf)\MGfσ) is

\\L(μf)\A{G,σ)\\ = supL(/*/)(0) ,

where the supremum is taken over all φ e A(G, σ\. We say, in this paper,
that a sequence {φn} in A(G, σ\ is an extremal sequence for the triple
(μf, G, σ) if it satisfies

(2.2) \\L(μf)\MG,σ)\\ =limL(μf)(φn).
n-*oo

A sequence {φn} in A(G, σ\ is said to be degenerating if it converges to
zero uniformly on every compact subset of U as n tends to oo. If there
exists some φ e A(G, σ\ which satisfies

\\L(μf)\A{GiO)\\ = L(μf)(φ) ,

then we say that φ is an extremal differential for the triple (μff G, σ).
The following Lemmas 1 and 2 characterize extremal mappings in an

arbitrarily chosen and fixed class F(G, f, σ). It is well-known that (2.3)
in our Lemma 1 is a necessary condition for g to be extremal in the
class F(G,f,σ) (see Bers [2, Theorem 7 and Lemma 25]). The reverse
implication in Lemma 1 is a by-product of the fundamental inequality
in Bers [1, Theorem 2], and is proved in [8, Lemma 6] (cf. Strebel [12,
Theorem 5]). By Lemma 1, we easily have our Lemma 2.

LEMMA 1. Suppose that g e F(G, f, σ). Then g is extremal in the
class F(G, f, σ) if and only if

(2.3) | | jκ , | | ||
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LEMMA 2. Suppose that g e F{G, f, σ) and that g is extremal in the
class F{G, /, σ). In this case, if the triple (μg, G, σ) possesses an extre-
mal differential φ e A(G, σ)u then μg is of the form

(2.4) μβ= | |μ g \\ \φ\/φ .

Conversely, if μg is of the form (2.4) for some φ e A(G, σ)u then φ is an
extremal differential for the triple (μg, G, σ) and, moreover, g is a unique
extremal mapping in the class F(G,f,σ).

Let σeΣ(G). By the mean value property of holomorphic functions,
we can easily check that A(G, σ\ is a family whose elements are locally
uniformly bounded; that is, for each compact subset K of U, there exists
a uniform bound M such that | φ(z) | <; M for all φ e A(G, σ\ and all zeK.
Hence A(G, σ)x forms a normal family with respect to locally uniform
convergence. The following Lemmas 3 and 4 are instrumental in the
later discussions, and can be proved in the same way as in Harrington
and Ortel [4, Propositions 1.1 and 1.2].

LEMMA 3. Suppose that a sequence {φn} in A{G, σ)1 converges to φ
uniformly on every compact subset of U. Then φ belongs to A(G, σ) and

0 n - 0 | | β = l - \\φ\\G.

In particular, \\φ\\G ύ 1 and the equality holds if and only if

lim\\φn-φ\\β = 0 .
n-*co

LEMMA 4. Let f e F(G) and a e Σ(G). Let {φn} be an extremal sequence
in A{G, σ)x for the triple (μf, G, σ), which converges to φe A{G, σ) uni-
formly on every compact subset of U. Suppose that 0 < \\φ\\G ^ 1. Put
ψ =z φ/\\φ\\G and ψn — (φn — Φ)/\\φn — Φ\\σ Then ψe A(G, σ\ is an extremal
differential for the triple (μff G, σ). Moreover, in the case 0 < ||$5||ff < 1,
the sequence {ψn} in A(G, σ)ι is a degenerating extremal sequence for the
triple (μf, G, σ).

COROLLARY 1. Let feF{G) and σeΣ(G). Suppose that the triple
(μff G, σ) does not possess any extremal differential which belongs to
A(G, σ\. Then every extremal sequence {φn} in A(G, σ\ for the triple
(μf, G, σ) is degenerating.

3. Certain Teichmuller mappings with infinite norm. Let G be a
Fuchsian group and / e F(G). We say that / is a Teichmuller mapping
with infinite norm (resp. with finite norm) for G if μf — \\μ/\\\Φ\/Φ for
some holomorphic quadratic differential φ for G in U with \\φ\\G — <*>
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(resp. with \\ψ\\G < oo). Lemma 2 says that a Teichmiiller mapping with
finite norm for G is a unique extremal mapping in a certain class.
Sethares [9] gave various conditions, in the case G = 1, on the regular
function φ, which guarantee that a corresponding Teichmiiller mapping
with infinite norm for G = 1 is extremal or uniquely extremal (cf. Strebel
[10]). In this section we prove Theorem 1 below. To prove the theorem,
first we state some results in [9] and [10] in somewhat modified forms
as lemmas.

Let S be a simply connected domain of the w-plane. For any real
number v, put Sυ = {w eSΛmw > v] and denote by \ΊV\ the length of
Ύυ = {w e S: Im w = v}. Suppose that there exist some vt and M, 0<M<ooy

such that

(3.1) Ύv Φ 0 and \ΊV\ ̂  M for every v^vlf

and

(3.2) the area of SVl is infinite .

For v ^ v19 every Ύυ consists of a disjoint union of denumerable arcs {7J}.
Let Ko > 1 and let F be the mapping on S which sends w = u + iv into
F(w) = Kou + iv. For ζ, ζ'eF(S), we define p(ζ, ζ') as the infimum of
the lengths of all the curves, in F(S), joining ζ and ζ'. Let H be a
JΓ-quasiconformal mapping of SVJL into JP(S) which satisfies H(SV2)ciF(SVl)
for some v2 >̂ vlβ For t; ^ v1 and every i, we consider H{Ί{) and F(7J)
as crossing curves in F(S). Suppose further that, for almost all v ^ vL

and every j , the ends of H(Ύί) and those of F(Ύi) have null distance in
the sence of [10], that is, the following hold:

lim inf p(F(w), H(w')) = 0 and lim inf p(F(w), H(w')) = 0 ,
w,w'—*a w,w'—>b

where a and 6 denote the end points of 7j and the inferior limits are
taken for w, wf e Ί{. For v ^ vlf put

d(y) = sup I Im H(w) — v\ .
weγv

Then we have the following Lemma 5. The proof of (3.3) is already
accomplished in that of [10, Hilfssatz on page 313] (cf. [9, Lemma 2]).
By making use of (3.3), we can verify (3.4) in the same way as in [10,
Satz 2].

LEMMA 5. Under the above hypotheses, the following inequalities
hold:

(3.3) d(v) ^ (KK0)
1/2M for v ^ v2 ,
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(3.4) K^K0.

REMARK 1. Let S be a simply connected domain of the w-plane.
In this paper, we say that SVl is an upper arm of S if (3.1) and (3.2)
are satisfied. Symmetrically, if there exist some v* and M*, 0 < M* <
oo, such that

(3.1)' Ίv Φ 0 and | 7 j <; M* for every v ^ v* ,

and

(3.2)' the area of S\ S^ is infinite ,

then we say that S\S7* is a lower arm of S. Similarly, we can define
a horizontal, right or left, arm of a simply connected domain (see [10,
§ 5]). They are said generically to be arms. For a simply connected
domain which has an arm, under obvious modifications of the hypotheses
of Lemma 5, we have a result similar to Lemma 5.

The following Lemma 6 is implicitly remarked in [9, Remark on page
117]. Since the lemma plays an important role in the later discussions,
we give the proof.

LEMMA 6. Let φ be a holomorphic function in U, which possesses a
pole of order two (resp. a zero of order two) at an arbitrarily prescribed
point xoeR (resp. x0 = oo). Let δ be an open interval contained in R
such that δ contains xQ. Suppose that f is a quasiconformal automor-
phism of U with μf — h^φ\\φ for some 0 < kQ < 1. Then f is extremal
in the class F(l, /, δ).

PROOF. First we assume that x0 = 1. For p > 0, put NP = {z e U:

\z — 1| < p}. It is known that there exists some p0 > 0 such that a

single-valued and schlicht branch w = Φ(z) of I (φ(z))1/2dz can be chosen

in iV̂ 0. Moreover, we may write

(3.5) Φ(z) = c log (1 - z) + η{z) , ze NPo ,

where τ](z) is bounded and c Φ 0 is a complex number (see [9, Lemma 4]).
We may assume that dNPo Π Λ c J , where dNPo denotes the boundary of
NPo in U{JR. Let S = Φ(NPQ), KO = (1 + &0)/(l - k0) and let F be the
mapping on S which sends w = u + iv into F(w) = Kou + iv. By (3.5),
we see that the domain S is contained in a semi-infinite parallel strip
and that the area of S is infinite. Therefore S has an arm. We assume
that S has an upper arm SVl and that the conditions (3.1) and (3.2) are
satisfied. For v ^ v19 we have Ίv = Σ , 7ί as before. Since both / and
Foφ have the same Beltrami coefficient in NPQ, the mapping Ψ = F°Φo f ~ι
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is a conformal mapping of f(NPo) onto F(S). Let geF(l,f,'δ). Choose
some plf 0 < pλ < p0 such that g(NPι)af(NPo). Let H be the quasiconformal
mapping of Φ(NPl) into F(S) defined by H = ψogoφ-1. By (3.5), we see
that the set Φ(NPo\NPl) is bounded. Thus we may assume that

(3.6) S9ι<zΦ(NPι).

Then clearly we have

(3.7) H(S9ι)<zF(S).

Similarly, by (3.5), we can choose a sufficiently small p2 > 0 and a suffi-
ciently large v2 ^ vγ which satisfy

(3.8) ( f - ' J J

and

(3.9) SV2aΦ(NP2).

By (3.8) and (3.9), we have

(3.10) H(SV2)(zF(SVl).

We assume that the restriction H\Sv of H to SWl is a ίΓ-quasiconformal
mapping. It suffices to prove that K ^ KQ. For v^vι and every ^,
we consider H(Ί{) and JP(7}) as crossing curves in F(β). Since both /
and g have the same boundary values on dNPί Π R and S n is an upper
arm of S, it follows from (3.6) and the arguments in [10] that, for al-
most all v ^ v1 and every j, the ends of H(Ί{) and those of F(yί) have
null distance (see [10, §6]). Furthermore, H satisfies (3.7) and (3.10).
Thus, by Lemma 5, we have K ^ Ko. If S has an arm which is not an
upper arm, then, by Remark 1, we can prove the lemma in a similar
way.

Next assume that x0Φl. Choose TePSL(2,R) which satisfies
T-\x0) = 1. Put φ,(z) = φ(T(z))T(z)2 for zeU9fί= T~ιfT and δ1 = T'\δ).
Then we have μfl — ftol&l/Λ By the former part of the proof, fλ is ex-
tremal in the class F(l, fl9 δj. In this case, clearly / is extremal in the
class F(lff9 δ). Thus we have the lemma.

Let G be a Kleinian group, Ω(G) the region of discontinuity of G and
Λ(G) the limit set of G. Let DczΩ(G) be an open set which is invariant
under G. Let Φ be a meromorphic function in D. The Poincare series
ΘGΦ of Φ is defined by

(3.11) (ΘGΦ)(z) = Σ Φ(y(z))Y(zf , z e D ,
γeG
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whenever, for each compact subset S of D, the right hand side of (3.11),
from which a possible finite number of terms are removed, converges
absolutely and uniformly on S. In this case, the series ΘGΦ converges
to a meromorphic quadratic differential for G in D uniformly on every
compact subset of D with respect to the spherical metric.

The following lemma is easily concluded by Kra [5, Chap. Ill, Theo-
rem 3.3] and is implicitly established in the proof of [1, Theorem 2].

LEMMA 7. Let G be a Fuchsian group and σ e Σ(G). Then, for every
Φ in A(l, R), the series ΘGΦ defined by (3.11) converges absolutely and
uniformly on every compact subset of U. Moreover, the restriction
βσLα.σ) of ΘG to A(l, σ) gives a bounded real linear mapping of A(l, σ)
onto A(G, σ), and the operator norm \\θo\A{ltσ)\\ is less than or equal to 1.

The following lemma is a slightly generalized form of [5, Chap. Ill,
Corollary to Lemma 9.2].

LEMMA 8. Let G be a Kleinian group and let Φ be a rational func-
tion with its poles in Ω(G). In the case oo eΛ(G), suppose further that
Φ satisfies

(3.12) φ{z) = O(|z|-4) , s-*oo .

Denote by E the set of all the points where Φ possesses its poles. Then
the series ΘGΦ converges to a meromorphic quadratic differential for G in
Ω(G) and is holomorphic in Ω(G)\\JΐeGΎ(E{J{oo}). Suppose further that
there exists some zoeE\{Ύ(™): 7 eG} which is not fixed by any elliptic
element of G and which satisfies {J(z0): Ύ eG} p, E = {zQ}. Then, if Φ
possesses a pole of order n > 0 at zQ, then so does ΘGΦ.

PROOF. First assume that °°eΩ(G). In this case, the corollary in
[5] quoted above says that our lemma holds whenever G is a non-
elementary Kleinian group. Examination of the proof of the corollary,
however, shows that our lemma is valid even if G is an elementary
Kleinian group, too.

Next assume that oo eΛ(G). Let xoeΩ(G)\{JreGΎ(E) and let T(z) =
(az + b)/(cz + d), ad — be = 1, be a Mobius transformation which satisfies
T(x0) = oo. Put G* = TGT-1 and let Ψ be the mapping defined by
Ψ{z) = Φ{T-\z))(T-ι)\zγ = Φ(T-\z))/(-cz + α)\ Then, by (3.12), we can
easily check that Ψ is holomorphic at the point a/c = Γ(oo) eΛ(G*) and
that f is a rational function with its poles in T{E)aΩ(G*). Since
oo e Ω(G*)9 it follows from the former part of the proof that ΘG*Ψ con-
verges to a meromorphic quadratic differential for G* in Ω(G*). Since
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we can easily check that (ΘG*Ψ)(T(z))T'(z)2 is none other than (ΘβΦ)(z) for
z € Ω(G), we see that the series ΘGΦ converges to a meromorphic quad-
ratic differential for G in Ω(G). Now we easily have the lemma.

Now we prove the following theorem.

THEOREM 1. Let G be a Fuchsian group of the second kind and let

δ be an open interval contained in R\Λ(G). Let σ be the closure of

Urea Ύ(δ) in R. Then, for 0 < kQ < 1, there exists a quasiconformal map-

ping f e F(G) which satisfies

(3.13) k0 = || μf || = k{G, f, σ) = fc(l, /, S) .

PROOF. Let xoeδ, x1eΩ(G)\(U\J {°o}) be two distinct points which
satisfy {Ύ(X0): Ύ e G} n {flcj = 0 and M°°): 7 e G} n {x0} = 0 . Put Φ(z) =
1/(2 — xo)

2(^ — X1)2. Since α?oeR\Λ(G)9 as is known, the point x0 is not
fixed by any elliptic element of G. Thus, by Lemma 8, ΘGΦ is holomor-
phic in U and possesses a pole of order two at x0. It is well-known
that there exists a quasiconformal automorphism f of U with μf =
ko\ΘGΦ\/ΘGΦ (see [6]). By Lemma 6, / is extremal in the class F(l, /, 5).
In other words, we have

(3.14) A?o

On the other hand, we can easily check that / is compatible with G.
Thus we may consider the class F(G, f, σ). Since / e F(G, f, σ) c F(l, f, δ),
it follows from definition that

(3.15) \\μf\\}>k(G,f,σ)^k(l,f,δ).

By (3.14) and (3.15), we have (3.13).

REMARK 2. Let G, δ and σ satisfy the hypotheses of Theorem 1.
Then it is obvious by definition that k(G, /, σ) ^ fc(l, /, σ) ^ fc(l, /, δ).
Thus (3.13) implies

(3.16) k(l, f, σ) = k(l, f, δ) .

4. Operator norm of Poincare series. Let G be a Fuchsian group.
In this section we shall consider whether operator norms of restrictions
of ΘG to suitable spaces is equal to 1. First we prove the following
theorem.

THEOREM 2. Let G be a Fuchsian group and σeΣ(G). Suppose that
there exists f e F(G) which satisfies

(4.1)
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Then the operator norm \\θβ\Mlta)\\ of the restriction θG\Mltσ) of ΘG to
A(l, σ) is equal to 1.

PROOF. Let {Φn} be an extremal sequence in A(l, σ\ for the triple
(μff 1, σ). Put φn = ΘGΦn. Our hypothesis (4.1) means that / is extremal
in the class F(l, f σ). Thus, in view of (2.2) and (2.3), we have

(4.2) \\μ/\\= lim Re (( μfΦndxdy .

Since feF(G), we can easily check that

(4.3) (( μfΦndxdy = \\ μfφndxdy .
JJU J JU/G

By Lemma 7, \\φn\\G ^ 1. By (4.1), (4.2) and (4.3), we may assume that
\\φn\\G ^ 0 for every n = 1, 2, . It suffices to prove that the sequence
ίll^nllσ} converges to 1 as n tends to oo. Assume the contrary. Then
there exist some ε > 0 and a subsequence {φnje} such that

(4.4) \\Φnk\\G ^ 1 - e for every k = 1, 2, .

By (4.2), (4.3) and (4.4), we have

\\μf\\ = lim Re (( μfφnkdxdy < lim Re (( μfΦnkl\\φnk\\Gdxdy ^ H^H ,
k~*oo ))u/G K k^oo ϋ U/G A

which is absurd. Thus we have the theorem.

In view of (3.16), we deduce the following as an immediate corollary
of our Theorems 1 and 2.

COROLLARY 2. Let G and σ satisfy the hypotheses of Theorem 1.
Then the operator norm \\θσ\Mltσ)\\ is equal to 1.

REMARK 3. To the author's knowledge, it is unknown whether there
exists a non-elementary Fuchsian group G such that || β<? l̂ α «̂?)) II < 1 (cf.
Theorem 3 below).

Using the following Lemma 9, which is proved in [8, Lemma 9], we
shall prove Theorem 3 below.

LEMMA 9. Let G and Γ (£Ξ G) be Fuchsian groups and σeΣ(G).
Let Φ be an arbitrary element of A(l, σ). Put φ = ΘGΦ and ψ — ΘΓΦ.
Then

Furthermore, suppose that ψ Φ 0. Then the following three conditions
are equivalent to each other:
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(2) +eA{G,σ),
(3) n = [G: Γ] < oo and φ = nψ.

THEOREM 3. Let G be a Fuchsian group which has a non-elementary
finitely generated subgroup Γ of G such that [G: Γ] = oo. Then the
operator norm of the restriction θβ\MltAιΓ)) of ΘG to A(l, Λ(Γ)) is less
than 1.

PROOF. Assume the contrary. Then there exists a sequence {Φn} in
A(l, Λ(Γ)\ such that

(4.5)

where φn = ΘGΦn. Put ψn — ΘΓΦn. By Lemma 7, we have

(4.6) ψneA(Γ,Λ(Γ)).

Since A(l, Λ(Γ))aA(X, R) and ReΣ(G), we may apply Lemma 9 choosing

R as σ in the lemma. Then we have

(4.7) U«\\G£ l l tnl lr^ ||*n||l = l .

Since Γ is non-elementary and finitely generated, the dimension of the
space A(Γ, Λ(Γ)) is finite (see [2]). Thus, in view of (4.6) and (4.7), we
may assume that for some subsequence, which is also denoted by {ψn},
we have

(4.8) lim || ψn - ψ \\Γ = 0 for some ψ e A(Γ, A(Γ)) .

By (4.5), (4.7) and (4.8), we have \\ψ\\Γ = 1. By Lemma 7, there exists
some Φ 6 A(l, Λ(Γ)) such that ψ = ΘΓΦ. Put φ = ΘGΦ. Then, by Lemma
9, we have

(4.9) 11^-011*^ lltn-fllr.

By (4.5), (4.8) and (4.9), we see t h a t \\φ\\G = 1. Thus we have

(4.10) 11*11* = 11*11/- = i .
But, by Lemma 9, (4.10) implies [G: Γ] < oo. This contradiction proves
the theorem.

REMARK 4. For a non-elementary Fuchsian group H, we know that
the hyperbolic area of U/H is non-zero and that it is finite if and only
if H is finitely generated and of the first kind (see [5]). Let G and Γ
satisfy the hypotheses of Theorem 3. Then the hyperbolic area of U/Γ
is not finite, because it is equal to [G: Γ] times the hyperbolic area of
U/G. From these considerations, we see that, under the hypotheses of
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Theorem 3, Γ is necessarily of the second kind.

5 Comparison of k(G, f, σ) and k(G, /, A(G)). Let T be a conformal
mapping of the unit disk onto the upper half-plane U. For every m =
1,2, . . . , put

Dm = {w:\w\<l- (112m)} , Km = Γ ( D J .

Let G be a Fuchsian group, / 6 F(G) and ω a fundamental region
representing the Riemann surface U/G. Let μ — μs be the Beltrami
coefficient of /. For every m = 1, 2, , we define μm by the following
properties, where Int ω means the interior of ω:

(1) j"«(s) = 0 for zeKmf] Int α),
(2) μw(z) = J"(*0 for zeώ\(KmC) Int α>),

and

( 3) μu(y(z))Ψ^)/y\z) = μm(s) for all z e U and all 7 6 G.
For every m = 1, 2, , we denote by /m a quasiconformal automorphism
of 17 with its Beltrami coefficient μfm = μm and which leaves the points
0, 1 and <χ> fixed; it is well-known that fm exists and belongs to F(G)
and that fm is uniquely determined by μm (see [6]).

LEMMA 10. Let G be a Fuchsian group, σeΣ(G) and f eF(G). Let
μ — μf be the Beltrami coefficient of f. Suppose that f is extremal in
the class F(G, /, σ) and that the triple (μ, G, σ) possesses a degenerating
extremal sequence {φn} in A(G, σ\. Then, for every m = 1, 2, , fm is
extremal in the class F(G, fm, σ) and \\μ\\ — | |μm | | . Furthermore, for
every m = 1, 2, —, the sequence {φn} is a degenerating extremal sequence
for the triple (μm, G, σ), too.

PROOF. By our hypothesis, the sequence {φn} converges to zero uni-
formly on every compact subset of U as n tends to oo. Thus, in view
of (2.2) and (2.3), we have, for every m = 1, 2, ,

|| μ || = lim Re (\ μφndxdy = lim Re \ I μmφndxdy ^ || μM || ^ || μ || .
n-*oo J J u/G w^oo J J u/G

Hence, for every m — 1, 2, ,

(5.1) \\μ\\ = \\μm\\ = \\L(μm)\MG,σ)\\ = lim Re \\ μmφndxdy .
Λ->oo J J U/G

By Lemma 1, we see that (5.1) implies our Lemma 10.

THEOREM 4. Let G be a non-elementary finitely generated Fuchsian

group of the second kind and let δ be an open interval contained in

R\A(G). Let σ be the closure of Ure<?^(δ) in R. Let kQ and ε be arbi-
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trarίly chosen and fixed positive numbers which satisfy 0 < k0 < 1 and
0 < ε < k0. Then there exists a quasiconformal mapping g e F(G) which
satisfies

(5.2) || μg || = kQ = k(G, g, σ) and k(G, g, Λ(G)) < ε .

PROOF. Let / e F(G) be the quasiconformal mapping which is men-
tioned in the proof of Theorem 1 and put μ = μf. The mapping / has
the following properties: / is extremal in the class F(G, /, σ), \\μ\\ = kQ

and / is not a Teichmϋller mapping with finite norm for G. Thus, by-
Lemma 2, the triple (μf G, σ) does not possess any extremal differential
which belongs to A(G, σ\. Hence, by Corollary 1, there exists a degen-
erating extremal sequence {φn} in A(G, σ\ for the triple (μ, G, σ). Con-
sequently, by Lemma 10, fm is extremal in the class F(Gf /m, σ) and

(5.3) ko= 11̂11 = \\μm\\=k(G,fmfσ).

Since the sequence {μm} converges to 0 as m tends to oo, it follows that
the sequence {fm} converges to the identity automorphism of U uniformly
on every compact subset of U as m tends to oo (see [6]). Let Ύl9 72, , Ίά

be a system of generators for G. Put yi>m = fm°yi°fm
1 for every i,

1 ^ i ^ j- Then, for every i, 1 <; i ^ j, the sequence {7i>m} converges to
7< as m tends to oo, As is known, a non-elementary finitely generated
Fuchsian group G is symmetrically quasi-stable (see Gardiner and Kra
[3, Theorem 10.2]). Thus the following holds: there exists a sequence
{gm} in F(G) which satisfies

(5.4) gmo7,o0-1 = fmoj.o/-1 for every i , l ^ ί ^ j ,

and

(5.5) l im | | / ι f m | |==0.

It is easily checked that (5.4) implies

(5.6) Qm\Λ{G) = fmUiβ)

By definition and (5.6), clearly we have

(5.7) k(G,fm,Λ(G))£\\μ,J.

By (5.5), we can choose a sufficiently large m* such that

(5.8) l l Λ . J I < β .

Put g = /w*. Then, by (5.3), (5.7) and (5.8), we have the desired con-

clusion (5.2).
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