HOMOGENEOUS KÄHLER MANIFOLDS OF COMPLEX DIMENSION TWO

Satoru Shimizu

(Received March 26, 1981, revised July 7, 1981)

Introduction. Let M be a connected and simply connected homogeneous Kähler manifold. In this note, by a homogeneous Kähler manifold we mean a Kähler manifold on which the group of all holomorphic isometries acts transitively. The purpose of this note is to prove the following theorem.

Theorem 1. If $\operatorname{dim}_{c} M=2$ and if the canonical hermitian form of M is degenerate and non-zero, then the fibering of M due to Hano and Kobayashi [3] is holomorphic and the fiber with the induced Kähler structure is a homogeneous Kähler manifold with zero Ricci curvature.

Our proof of Theorem 1 is based on the theory of Kähler algebras developed by Gindikin, Pjateckii-Sapiro and Vinberg [2]. They studied the structure of homogeneous Kähler manifolds and stated the following Fundamental conjecture:

Every homogeneous Kähler manifold admits a holomorphic fibering, whose base is analytically isomorphic to a homogeneous bounded domain and whose fiber with the induced Kähler structure is isomorphic to the direct product of a locally flat homogeneous Kähler manifold and a simply connected compact homogeneous Kähler manifold.

Combining Theorem 1 with the results of Alekseevskii and Kimel'fel'd [1] and Shima [7], [8], we see that the above conjecture is true for a complex two dimensional connected and simply connected homogeneous Kähler manifold. As an immediate consequence of this fact, we obtain the following.

Theorem 2. Let M be a connected homogeneous Kähler manifold of complex dimension two. If M contains no complex line, that is, if there are no non-constant holomorphic maps of C into M, then M is homogeneous bounded domain in \boldsymbol{C}^{2}.

In the theory of hyperbolic complex manifolds in the sense of Kobayashi [4], we have the following basic problem (see [4, Problem 12, p. 133]):

Let M be a homogeneous complex manifold of complex dimension n which is hyperbolic in the sense of Kobayashi. Then is M a homogeneous bounded domain in \boldsymbol{C}^{n} ?

Noting that hyperbolic complex manifolds contain no complex line, we see that Theorem 2 provides an affirmative answer to the above problem when M is a homogeneous Kähler manifold of complex dimension two.

The author wishes to express his hearty thanks to Professor Kodama who suggested to me the use of a result of Hano and Kobayashi [3] and introduced me to the works of Alekseevskii and Kimel'fel'd [1] and Shima [8], [9].

1. Preliminaries. In this section we recall the definition of Kähler algebras and state several lemmas for later use.

We denote by M a connected homogeneous Kähler manifold on which a connected Lie group G acts transitively as a group of holomorphic isometries, and by K an isotropy subgroup of G at a point o of M. Let I be the G-invariant complex structure tensor on M, let g be the G invariant Kähler metric on M and let v be the G-invariant volume element corresponding to the Kähler metric g. In terms of a local coordinate system $\left\{z_{1}, \cdots, z_{n}\right\}$ on M, the form v is expressed by $v=$ $(\sqrt{-1})^{n} F d z_{1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{1} \wedge \cdots \wedge d \bar{z}_{n}$, where F is a positive function. The G-invariant hermitian form

$$
h=\sum \frac{\partial^{2} \log F}{\partial z_{i} \partial \bar{z}_{j}} d z_{i} d \bar{z}_{j}
$$

is called the canonical hermitian form of M. It is easy to see that the Ricci tensor of the Kähler manifold M is equal to $-h$.

Let g be the Lie algebra of all left invariant vector fields on G and let ${ }^{*}$ be the subalgebra of g corresponding to K. Let π be the canonical projection of G onto $M=G / K$ and let $T_{0}(M)$ be the tangent space of M at the point $o=\pi(e)$, where e is the identity element of G. We define a linear mapping π_{*} of g onto $T_{o}(M)$ as follows:

$$
\pi_{*}(X)=(d \pi)_{e}\left(X_{\varepsilon}\right) \quad \text { for } \quad X \in \mathfrak{g},
$$

where $(d \pi)_{e}$ is the differential of π at e and X_{e} is the value of X at e. There exist a linear endomorphism J of g and a skew symmetric bilinear form ρ on g such that

$$
\pi_{*} J X=I_{o}\left(\pi_{*} X\right), \quad \rho(X, Y)=g_{0}\left(\pi_{*} X, I_{o}\left(\pi_{*} Y\right)\right) \quad \text { for } \quad X, Y \in \mathfrak{g},
$$

where I_{o} and g_{o} are the values of I and g at o, respectively. Then the
quadruple ($\mathfrak{g}, \mathfrak{f}, J, \rho$) satisfies the following properties and is called the Kähler algebra of M (see Gindikin, Pjateckii-Sapiro and Vinberg [2]):
(K.1) $\quad J \mathfrak{f} \subset \mathfrak{f}, J^{2} \equiv-\operatorname{id}(\bmod \mathfrak{f})$,
(K.2) $\quad[W, J X] \equiv J[W, X](\bmod \mathfrak{f})$,
(K.3) $[J X, J Y] \equiv J[J X, Y]+J[X, J Y]+[X, Y](\bmod \mathfrak{f})$,
(K.4) $\rho(W, X)=0$,
(K.5) $\rho(J X, J Y)=\rho(X, Y)$,
(K.6) $\rho(J X, X)>0, X \notin \mathfrak{\not}$,
(K.7) $\rho([X, Y], Z)+\rho([Y, Z], X)+\rho([Z, X], Y)=0$,
where $X, Y, Z \in \mathfrak{g}, W \in \mathfrak{f}$.
Putting $\eta(X, Y)=h_{o}\left(\pi_{*} X, \pi_{*} Y\right)$ and

$$
\begin{equation*}
\psi(X)=\operatorname{Tr}_{\mathrm{s} / \mathrm{t}}(\operatorname{ad}(J X)-J \operatorname{ad}(X)), \tag{1.1}
\end{equation*}
$$

we have

$$
\begin{equation*}
2 \eta(X, Y)=\psi([J X, Y]) \quad \text { for } \quad X, Y \in \mathfrak{g}(\text { see }[6]) \tag{1.2}
\end{equation*}
$$

The forms η and ψ satisfy the following properties:

$$
\begin{gather*}
\eta(J X, J Y)=\eta(X, Y), \tag{1.3}\\
\psi([W, X])=0, \tag{1.4}\\
\psi([J X, J Y])=\psi([X, Y]) \quad \text { for } \quad X, Y \in \mathfrak{g}, W \in \mathfrak{\not c} . \tag{1.5}
\end{gather*}
$$

We note that if G acts effectively on M, then \mathfrak{f} contains no non-zero ideal of \mathfrak{g}.

Now we have the following lemmas which are due to Shima [8].
Lemma 1 (cf. [8, Lemma 2.4]). Let \mathfrak{r} be an ideal of g. Suppose $\psi=0$ on \mathfrak{r}. Then $\mathfrak{r} \subset\{X \in \mathfrak{g} ; \eta(X, Y)=0$ for all $Y \in \mathfrak{g}\}$.

Lemma 2 (cf. [8, Lemma 2.3]). Let \mathfrak{r} be a commutative ideal of g. If G acts effectively on M and if the center of \mathfrak{g} is zero, then $\mathfrak{f} \cap \mathfrak{r}=$ $\mathfrak{f} \cap J \mathfrak{r}=\{0\}$.

Lemma 3 (cf. [8, Lemma 2.6]). Let $\{E\}$ be a one dimensional ideal of g . Then we have:
(a) If $\psi(E) \neq 0$, then $\left[E,{ }^{*}\right]=\{0\}$.
(b) If $[E, \notin]=\{0\}$ and if G acts effectively on M, then there exists an endomorphism \widetilde{J} of g such that $\widetilde{J} \equiv J(\bmod \mathfrak{f})$ and $[\widetilde{J} E, \mathfrak{f}]=\{0\}$.

Lemma 4 (cf. [8, Lemma 3.2]). Let $\{E\}$ be a one dimensional ideal of g. If $\psi(E) \neq 0$ and $\left[J E,{ }^{*}\right]=\{0\}$, then $[J E, E] \neq 0$.

Lemma 5 (cf. [8, Lemma 3.3]). Let $\{E\}$ be a one dimensional ideal of \mathfrak{g}. Suppose $\left[E, \mathfrak{f}^{\prime}\right]=[J E, \mathfrak{f}]=\{0\}$ and $[J E, E]=E$, and put $\mathfrak{p}=\{P \in \mathfrak{g}$;
$[P, E]=[J P, E]=0\}$. Then $\operatorname{ad}(J E) \mathfrak{p} \subset \mathfrak{p}$ and $\mathfrak{g}=\{J E\}+\{E\}+\mathfrak{p}$ (direct sum), where $\{J E\},\{E\}, \mathfrak{p}$ are mutually orthogonal with respect to the form η, and η is positive definite on $\{J E\}+\{E\}$.
2. Existence of certain ideals. Throughout this section we use the same notations as in the previous section and assume the following:

$$
\begin{equation*}
\operatorname{dim}_{c} M=2 \tag{2.1}
\end{equation*}
$$

(2.2) The canonical hermitian form h is degenerate and non-zero.
(2.3) $\quad G$ acts effectively on M.

Then, by a result of Hano and Kobayashi [3] there exists a closed subgroup L of G satisfying the following properties:

$$
\begin{equation*}
L \supset K \tag{2.4}
\end{equation*}
$$

(2.5) The coset space L / K is a one dimensional connected complex submanifold of $M=G / K$.
(2.6) $\quad T_{o}(L / K)=\left\{v \in T_{o}(M) ; h_{o}\left(v, v^{\prime}\right)=0\right.$ for all $\left.v^{\prime} \in T_{o}(M)\right\}$, where $T_{o}(L / K)$ is the tangent space of L / K at the point $o=\pi(e)$.

It is easy to see that the submanifold L / K of M is a homogeneous Kähler manifold with the Kähler metric induced from M.

Let \mathfrak{l} be the subalgebra of g corresponding to L. Then $\mathfrak{l} \supset \mathfrak{f}$ and \mathfrak{l} is J-invariant. From (2.6), we have

$$
\begin{equation*}
\mathfrak{l}=\pi_{*}^{-1}\left(T_{o}(L / K)\right)=\{X \in \mathfrak{g} ; \eta(X, Y)=0 \text { for all } Y \in \mathfrak{g}\} \tag{2.7}
\end{equation*}
$$

We see $\operatorname{dim} \mathfrak{g} / \mathfrak{f}=4$ by (2.1) and, furthermore, $\operatorname{dim} \mathfrak{g} / \mathfrak{l}=\operatorname{dim} \mathfrak{l} / \mathfrak{t}=2$ by (2.5).

The purpose of this section is to prove the following.
Proposition. The Lie algebra g contains a one dimensional ideal or a two dimensional commutative ideal \mathfrak{r} such that $\mathfrak{l}=\mathfrak{l}+\mathfrak{r}$.

If the center of g is not zero, then it is clear that there exists a one dimensional ideal of g. Therefore it is sufficient to prove the above proposition when the center of g is zero. For the purpose, we need the following lemma.

Lemma 6. Let \mathfrak{r} be a commutative ideal of \mathfrak{g}. Then $\mathfrak{l}+\mathfrak{r} \neq \mathfrak{g}$.
Proof. First, we note that $\psi([A, X])=0$ for all $A \in \mathfrak{l}$ and $X \in \mathrm{~g}$. In fact, by (1.2), (1.5) and (2.7) we see $\psi([A, X])=\psi([J A, J X])=$ $2 \eta(A, J X)=0$. Assume $\mathfrak{g}=\mathfrak{l}+\mathfrak{r}$. Then, we have $J X=A+B$ and $X^{\prime}=A^{\prime}+B^{\prime}$ for $X, X^{\prime} \in \mathfrak{g}$, where $A, A^{\prime} \in \mathfrak{l}$ and $B, B^{\prime} \in \mathfrak{r}$. Since $\psi([A, Y])=$
$\psi\left(\left[A^{\prime}, Y^{\prime}\right]\right)=0$ for all $Y, Y^{\prime} \in \mathfrak{g}$ and since \mathfrak{r} is commutative, it follows that $2 \eta\left(X, X^{\prime}\right)=\psi\left(\left[J X, X^{\prime}\right]\right)=\psi\left(\left[A+B, A^{\prime}+B^{\prime}\right]\right)=\psi\left(\left[B, B^{\prime}\right]\right)=0$. This contradicts the assumption (2.2), and hence the lemma is proved.

We now prove Proposition under the assumption that the center of \mathfrak{g} is zero. Suppose that \mathfrak{g} is semi-simple. Then, by a result of Koszul [6], h is non-degenerate, which contradicts the assumption (2.2). Therefore \mathfrak{g} is not semi-simple, i.e., there exists a non-zero commutative ideal \mathfrak{r}. Since $\operatorname{dim} \mathfrak{g} / \mathfrak{f}=4$, we have $\operatorname{dim} \mathfrak{r}=1,2,3,4$ by Lemma 2. In the case $\operatorname{dim} \mathfrak{r}=1$, there is nothing to prove. We consider the cases $\operatorname{dim} \mathfrak{r}=$ 2,3,4. Using Lemma 6, we see $\operatorname{dim} \mathfrak{r} \neq 4$. For, if $\operatorname{dim} \mathfrak{r}=4$, then $\mathfrak{g}=\mathfrak{f}+\mathfrak{r}=\mathfrak{l}+\mathfrak{x}$ by Lemma 2. This contradicts Lemma 6. We show that \mathfrak{r} contains an ideal satisfying the assertions of Proposition in the cases $\operatorname{dim} \mathfrak{x}=2,3$.

First, suppose $\operatorname{dim} \mathfrak{r}=3$. Since $\operatorname{dim} \mathfrak{g} / \mathfrak{l}=2$, we see $\operatorname{dim} \mathfrak{l} \cap \mathfrak{r} \neq 0$. Lemma 6 and the fact $\operatorname{dim} \mathfrak{g} / \mathfrak{l}=2$ yield $\operatorname{dim} \mathfrak{l} \cap \mathfrak{x} \neq 1$. Furthermore, since $\operatorname{dim} \mathfrak{l} / \mathfrak{l}=2$, we see $\operatorname{dim} \mathfrak{l} \cap \mathfrak{r} \neq 3$ by Lemma 2. Hence $\operatorname{dim} \mathfrak{l} \cap \mathfrak{r}=2$. We have $J(\mathfrak{l} \cap \mathfrak{r}) \subset \mathfrak{l}=\mathfrak{f}+\mathfrak{l} \cap \mathfrak{r}$, because \mathfrak{l} is J-invariant and $\mathfrak{f} \cap(\mathfrak{l} \cap \mathfrak{x})=$ $\mathfrak{f} \cap \mathfrak{x}=\{0\}$ by Lemma 2. This implies that there exists an endomorphism \widetilde{J} of \mathfrak{g} such that $\widetilde{J} \equiv J(\bmod \mathfrak{f})$ and $\widetilde{J}(\mathfrak{l} \cap \mathfrak{x}) \subset \mathfrak{l} \cap \mathfrak{x}$. Therefore we may suppose $J(\mathfrak{l} \cap \mathfrak{x}) \subset \mathfrak{l} \cap \mathfrak{x}$. Then $J^{2}=-\mathrm{id}$ on $\mathfrak{l} \cap \mathfrak{r}$ by (K.1). Moreover, we have $\psi \neq 0$ on r. In fact, suppose $\psi=0$ on \mathfrak{r}. Then $\mathfrak{r} \subset \mathfrak{l}$ by Lemma 1 , which contradicts $\operatorname{dim} \mathfrak{l} \cap \mathfrak{r}=2$. Using these facts, we can select a basis of \mathfrak{r} as follows:

$$
\mathfrak{r}=\{J E, E, F\}, \quad \mathfrak{l} \cap \mathfrak{r}=\{J E, E\}
$$

and

$$
\begin{equation*}
\psi(J E)=0, \quad \psi(E)=0, \quad \psi(F) \neq 0 \tag{i}
\end{equation*}
$$

or

$$
\begin{equation*}
\psi(J E) \neq 0, \quad \psi(E)=0, \quad \psi(F)=0 \tag{ii}
\end{equation*}
$$

Put $\mathfrak{g}^{\prime}=\mathfrak{f}+J \mathfrak{r}+\mathfrak{x}$. Then $\operatorname{dim}_{c} \mathfrak{g}^{\prime} / \mathfrak{t}=1$ or 2 , since \mathfrak{g}^{\prime} is J-invariant, $\mathfrak{f} \cap \mathfrak{r}=\{0\}$ and $\operatorname{dim}_{c} \mathfrak{g} / \mathfrak{f}=2$. From $\operatorname{dim} \mathfrak{r}=3$, we have $\operatorname{dim}_{c} \mathfrak{g}^{\prime} / \mathfrak{f}=2$, which implies $\mathfrak{g}=\mathfrak{g}^{\prime}=\mathfrak{f}+J \mathfrak{r}+\mathfrak{x}$. Hence $\mathfrak{g}=\mathfrak{l}+\{J F\}+\{J E, E, F\}$ (direct sum). Further $\mathfrak{l}=\mathfrak{f}+\{J E, E\}$.

Case (i). It suffices to show that $\{J E, E\}$ is an ideal of g . Since $\{J E, E\}=\mathfrak{l} \cap \mathfrak{r}$ is an ideal of \mathfrak{l}, we see $[\mathfrak{l},\{J E, E\}] \subset\{J E, E\}$. The commutativity of \mathfrak{r} implies $[\{F\},\{J E, E\}]=\{0\} \subset\{J E, E\}$. Hence it is sufficient to show $[\{J F\},\{J E, E\}] \subset\{J E, E\}$. Since $\{J E, E, F\}=\mathfrak{r}$ is an ideal of \mathfrak{g}, we have $[J F, E]=\lambda J E+\mu E+\nu F$ for some $\lambda, \mu, \nu \in \boldsymbol{R}$. The
fact $E \in \mathfrak{l}$ yields $\eta(F, E)=0$ by (2.7). From these and from $\psi(J E)=$ $\psi(E)=0$, it follows that $0=2 \eta(F, E)=\psi([J F, E])=\lambda \psi(J E)+\mu \psi(E)+$ $\nu \psi(F)=\nu \psi(F)$, which implies $\nu=0$, since $\psi(F) \neq 0$. Therefore $[J F, E]=$ $\lambda J E+\mu E \in\{J E, E\}$. Similarly, we have $[J F, J E] \in\{J E, E\}$. Thus $[\{J F\}$, $\{J E, E\}] \subset\{J E, E\}$.

Case (ii). It suffices to prove that $\{E\}$ is an ideal of g. Since $\{J E, E\}$ is an ideal of \mathfrak{l}, we can put $[X, E]=\lambda J E+\mu E$ for $X \in \mathfrak{l}$, where $\lambda, \mu \in \boldsymbol{R}$. Then $\psi(J E) \neq 0, \psi(E)=0$ and $\eta(X, J E)=0$ yield $[X, E]=\mu E$ as in the case (i), which shows $[\mathfrak{I},\{E\}] \subset\{E\}$. Since \mathfrak{r} is commutative, we see $[\{F\},\{E\}]=\{0\} \subset\{E\}$. Therefore it suffices to show $[\{J F\},\{E\}] \subset\{E\}$. Put $[J F, E]=\lambda J E+\mu E+\nu F$, where $\lambda, \mu, \nu \in \boldsymbol{R}$. Then, using $\psi(J E) \neq 0$, $\psi(E)=0, \psi(F)=0$ and $\eta(F, E)=0$, we have $[J F, E]=\mu E+\nu F$, which together with $[E, F]=[J E, F]=0$ and (K.3) implies $\quad[J E, J F]=$ $-\mu J E-\nu J F+W$, where $W \in \mathfrak{f}$. Therefore $\nu J F \in \mathscr{f}+\{J E, E, F\}$, as $[J F, J E] \in\{J E, E, F\}$. Since the sum $\mathfrak{g}=\mathfrak{f}+\{J F\}+\{J E, E, F\}$ is direct, we see $\nu J F=0$, and hence $\nu=0$. This proves $[\{J F\},\{E\}] \subset\{E\}$.

Next, suppose $\operatorname{dim} \mathfrak{r}=2$. Since $\operatorname{dim} \mathfrak{g} / \mathfrak{l}=2$, we have $\operatorname{dim} \mathfrak{l} \cap \mathfrak{r} \neq 0$ by Lemma 6. If $\operatorname{dim} \mathfrak{l} \cap \mathfrak{r}=2$, then $\mathfrak{l}=\mathfrak{f}+\mathfrak{r}$ by Lemma 2. This shows that \mathfrak{r} is a two dimensional ideal satisfying the assertions of Proposition. Hence, in the following we may suppose $\operatorname{dim} \mathfrak{l} \cap \mathfrak{r}=1$. Then $\mathfrak{g}=\mathfrak{f}+$ $J \mathfrak{r}+\mathfrak{r}$. For, putting $\mathfrak{g}^{\prime}=\mathfrak{f}+J \mathfrak{r}+\mathfrak{r}$, we see $\operatorname{dim}_{c} \mathfrak{g}^{\prime} / \mathfrak{f}=1$ or 2 . If $\operatorname{dim}_{c} \mathfrak{g}^{\prime} / \mathfrak{f}=1$, then $J \mathfrak{r} \subset \mathfrak{g}^{\prime}=\mathfrak{f}+\mathfrak{r}$ by Lemma 2. This contradicts (K.1), since \mathfrak{l} is J-invariant. Therefore $\operatorname{dim}_{c} \mathfrak{g}^{\prime} / \mathfrak{f}=2$, and hence $\mathfrak{g}=\mathfrak{g}^{\prime}=\mathfrak{f}+J \mathfrak{r}+\mathfrak{r}$. Furthermore, we have $\psi \neq 0$ on \mathfrak{r} by Lemma 1. So we can select a basis of \mathfrak{r} as follows:

$$
\mathfrak{r}=\{E, F\}, \quad \mathfrak{l} \cap \mathfrak{r}=\{E\}
$$

and
(iii) $\psi(E)=0, \psi(F) \neq 0 \quad$ or (iv) $\psi(E) \neq 0, \quad \psi(F)=0$.

Then $\mathfrak{g}=\mathfrak{f}+\{J E, J F\}+\{E, F\}$, since $\mathfrak{g}=\mathfrak{l}+J \mathfrak{r}+\mathfrak{r}$.
In the case (iii), we can show in a method similar to that of (i) in the case of $\operatorname{dim} \mathfrak{r}=3$ that $\{E\}$ is an ideal of \mathfrak{g}. Hence, in this case \mathfrak{g} contains a one dimensional ideal.

Finally we show that the case (iv) does not occur. Since $\{E\}$ is an ideal of \mathfrak{l}, we can put $[X, E]=\lambda E$ for $X \in \mathfrak{l}$, where $\lambda \in \boldsymbol{R}$. Hence, from $\psi(E) \neq 0$ and $\eta(X, J E)=0$, we have $[X, E]=0$. In particular, we see $[E, \mathfrak{f}]=\{0\}$ and $[J E, E]=0$. From $\psi(E) \neq 0, \psi(F)=0$ and $\eta(E, F)=0$, it follows that $[J E, F]=\alpha F$ and $[J F, E]=\beta F$ for some $\alpha, \beta \in \boldsymbol{R}$. Put $[J F, F]=\lambda E+\mu F$, where $\lambda, \mu \in \boldsymbol{R}$. Then, putting $f=\operatorname{ad}(J F)-J \operatorname{ad}(F)$, we have $f(E)=\beta F$ and $f(F)=\lambda E+\mu F$. Noting that, for $X \in \mathfrak{g}$,
$f(J X) \equiv J f(X)(\bmod \mathfrak{f})$ by (K.3), we see $f(J E) \equiv \beta J F$ and $f(J F) \equiv$ $\lambda J E+\mu J F(\bmod \mathfrak{f})$. These facts show $\operatorname{Tr}_{g / t}(\operatorname{ad}(J F)-J \operatorname{ad}(F))=2 \mu$. Since $0=\psi(F)=\operatorname{Tr}_{8 / t}(\operatorname{ad}(J F)-J$ ad $(F))$ by (1.1), we obtain $\mu=0$, which implies $[J F, F]=\lambda E$. By (2.2), η is definite on $\mathfrak{g} / \mathrm{l}$. Therefore $0 \neq 2 \eta(F, F)=\psi([J F, F])=\lambda \psi(E)$, and hence $\lambda \neq 0$. Consequently, we have the following relations:

$$
\begin{align*}
& {[J E, E]=0, \quad[J E, F]=\alpha F, \quad[J F, E]=\beta F, \quad[J F, F]=\lambda E,} \tag{2.8}\\
& \lambda \neq 0 .
\end{align*}
$$

Now, by carrying out the same computation as in Shima [8, Proof of Lemma 4.1], we derive a contradiction. First, we show $\mathfrak{f}=\{0\}$. As indicated above, $[E, \mathfrak{t}]=\{0\}$. Let $W \in \mathfrak{f}$. Put $[W, F]=\mu E+\nu F$, where $\mu, \nu \in \boldsymbol{R}$. Then $\psi(E) \neq 0, \psi(F)=0$ and (1.4) yield $[W, F]=\nu F$. From this, we obtain $\psi([J F,[W, F]])=\nu \psi([J F, F])=\lambda \nu \psi(E)$ and $\psi([J F,[W, F]])=$ $\psi([[J F, W], F])+\psi([W,[J F, F]])=\psi([J[F, W], F])=-\nu \psi([J F, F])=$ $-\lambda \nu \psi(E)$ by (1.4) and (K.2). Therefore we have $2 \lambda \nu \psi(E)=0$, and hence $\nu=0$ and $[W, F]=0$. Thus $[\mathfrak{f}, x]=\{0\}$. Since $[\mathfrak{f}, J x] \subset \mathfrak{f},[\mathfrak{f}, \mathfrak{f}] \subset \mathfrak{f}$ and $\mathfrak{g}=\mathfrak{f}+J \mathfrak{r}+\mathfrak{r}$, we see that \mathfrak{f} is an ideal of \mathfrak{g}. By (2.3), we have $\mathfrak{f}=\{0\}$. Next, we show $2 \alpha=\beta$. Using the Jacobi identity, (K.3) and $\mathfrak{f}=\{0\}$, we have

$$
\begin{aligned}
0 & =[[J E, J F], F]+[[J F, F], J E]+[[F, J E], J F] \\
& =(\alpha-\beta)[J F, F]-\alpha[F, J F]=(2 \alpha-\beta)[J F, F]=\lambda(2 \alpha-\beta) E .
\end{aligned}
$$

Hence we see $2 \alpha=\beta$. From this, (2.8) and (K.7), we have

$$
\begin{aligned}
0 & =\rho([J E, F], J F)+\rho([F, J F], J E)+\rho([J F, J E], F) \\
& =\alpha \rho(F, J F)-\lambda \rho(E, J E)+(\beta-\alpha) \rho(J F, F) \\
& =(\beta-2 \alpha) \rho(J F, F)+\lambda \rho(J E, E)=\lambda \rho(J E, E)
\end{aligned}
$$

This contradicts (K.6). Thus, Proposition has been proved.
3. Proof of Theorem 1. We keep our notations and assumptions in the previous section.

By restricting J and ρ to \mathfrak{l}, we see that $(\mathfrak{l}, \mathfrak{f}, J, \rho)$ is the Kähler algebra of the homogeneous Kähler manifold L / K. Let h^{\prime} be the canonical hermition form of L / K. Then, putting $\eta^{\prime}(X, Y)=h_{o}^{\prime}\left(\pi_{*} X, \pi_{*} X\right)$ and $\psi^{\prime}(X)=\operatorname{Tr}_{1 / t}(\operatorname{ad}(J X)-J$ ad $(X))$ for $X, Y \in \mathfrak{l}$, we have (1.2), (1.3), (1.4) and (1.5) for the forms η^{\prime} and ψ^{\prime}.

Now, Theorem 1 is stated more precisely as follows:
Theorem 1'. The homogeneous Kähler manifold L/K has zero Ricci curvature. Furthermore, if M is simply connected, then, by defining a
suitable G-invariant complex structure on G / L, the natural projection of G / K onto G / L is holomorphic.

Proof. To begin with, we prove $h^{\prime}=0$, which shows the first half of the theorem. By the proposition in the previous section, g contains a one dimensional ideal or a two dimensional commutative ideal \mathfrak{r} such that $\mathfrak{l}=\mathfrak{f}+\mathfrak{r}$. If \mathfrak{g} contains a two dimensional ideal satisfying the assertions of the proposition, then we see $\eta^{\prime}=0$ by (1.2), (1.4) and the commutativity of \mathfrak{x}, and hence $h^{\prime}=0$. Therefore we consider the case where there exists a one dimensional ideal $\{E\}$.

If $\psi(E) \neq 0$, then, using Lemmas 3, 4 and 5, we have $\mathfrak{g}=\{J E\}+$ $\{E\}+\mathfrak{p}$ (direct sum), where $\{J E\},\{E\}, \mathfrak{p}$ are mutually orthogonal with respect to the form η, and η is positive definite on $\{J E\}+\{E\}$. By (2.7), we see $\mathfrak{l} \subset \mathfrak{p}$, and hence $\mathfrak{l}=\mathfrak{p}$, since $\operatorname{dim} \mathfrak{g} / \mathfrak{l}=\operatorname{dim} \mathfrak{g} / \mathfrak{p}=2$. Therefore we have

$$
\begin{equation*}
\mathfrak{g}=\{J E\}+\{E\}+\mathfrak{l}(\text { direct sum }), \quad[E, \mathfrak{l}]=\{0\} \quad \text { and } \quad \operatorname{ad}(J E) \mathfrak{l} \subset \mathfrak{l} \tag{3.1}
\end{equation*}
$$

Let $X \in \mathfrak{l}$. Then $(\operatorname{ad}(J X)-J \operatorname{ad}(X))(E)=0$ and $(\operatorname{ad}(J X)-J \operatorname{ad}(X))(J E) \equiv$ $0(\bmod \mathfrak{f})$ by (3.1) and (K.3). Using this fact and (3.1), we see

$$
\psi(X)=\operatorname{Tr}_{\mathrm{g} / \mathrm{t}}(\operatorname{ad}(J X)-J \operatorname{ad}(X))=\operatorname{Tr}_{\mathrm{t} / \mathrm{t}}(\operatorname{ad}(J X)-J \operatorname{ad}(X))=\psi^{\prime}(X)
$$

Therefore $\psi=\psi^{\prime}$ on \mathfrak{l}. From this and (1.2), we have $2 \eta\left(X, X^{\prime}\right)=$ $\psi\left(\left[J X, X^{\prime}\right]\right)=\psi^{\prime}\left(\left[J X, X^{\prime}\right]\right)=2 \eta^{\prime}\left(X, X^{\prime}\right)$ for $X, X^{\prime} \in \mathfrak{l}$. Since $\eta=0$ on \mathfrak{l}, we see $\eta^{\prime}=0$ on \mathfrak{l}, and hence $h^{\prime}=0$.

If $\psi(E)=0$, then $\{E\} \subset \mathfrak{l}$ by Lemma 1. Using (2.3) and (K.1), we have

$$
\begin{equation*}
\mathfrak{l}=\{J E\}+\{E\}+\mathfrak{l} \tag{3.2}
\end{equation*}
$$

We show $\psi^{\prime}(E)=0$. Otherwise $[E, \mathfrak{f}]=\{0\}$ by Lemma 3 (a), and hence, by Lemma 3 (b), $[J E, \mathfrak{f}]=\{0\}$ with a suitable linear endomorphism J of g belonging to the Kähler algebra of $M_{c}=G / K$. Furthermore, we have $[J E, E] \neq 0$ by (3.2) (cf. Lemma 4). We may assume $[J E, E]=E$ with a suitable $E \neq 0$. From these, it follows by Lemma 5 that $\eta(E, E)>0$. This contradicts $E \in \mathfrak{I}$. Therefore, we see $\psi^{\prime}(E)=0$. Using this fact, we have $2 \eta^{\prime}(E, E)=\psi^{\prime}([J E, E])=0$, which implies $\eta^{\prime}=0$ on \mathfrak{l} by (3.2). Thus, $h^{\prime}=0$ is proved.

Next, we prove that the natural projection of G / K onto G / L is holomorphic, if M is simply connected and if we define a suitable G invariant complex structure on G / L. Since M is simply connected, K is connected, and hence so is L by the connectedness of L / K. Therefore,
the G-invariant complex structures on G / L are in a natural one-to-one correspondence with the linear endomorphisms \bar{J} of $g(\bmod \mathfrak{l})$ satisfying the following properties (cf. [5, p. 217]):

$$
\begin{gather*}
\bar{J} \mathfrak{l} \subset \mathfrak{l}, \quad \bar{J}^{2} \equiv-\mathrm{id}(\bmod \mathfrak{l}), \tag{3.3}\\
 \tag{3.4}\\
{[A, \bar{J} X] \equiv \bar{J}[A, X](\bmod \mathfrak{l}),} \tag{3.5}\\
{[\bar{J} X, \bar{J} Y] \equiv \bar{J}[\bar{J} X, Y]+\bar{J}[X, \bar{J} Y]+[X, Y](\bmod \mathfrak{l}),}
\end{gather*}
$$

where $X, Y \in \mathfrak{g}, A \in \mathfrak{l}$. We show that the linear endomorphism J of \mathfrak{g} belonging to the Kähler algebra of $M=G / K$ satisfies the above three properties. If this can be done, then it is easily seen that the natural projection of G / K onto G / L with the G-invariant complex structure corresponding to J is holomorphic.

It is clear that (K.1) and (K.3) imply (3.3) and (3.5), respectively. We show by using the proposition that (K.2) implies (3.4). If g contains a two dimensional commutative ideal \mathfrak{r} with $\mathfrak{l}=\mathfrak{f}+\mathfrak{r}$, then we see easily that (K.2) implies (3.4), since $[\mathfrak{r}, \mathfrak{g}] \subset \mathfrak{r} \subset \mathfrak{l}$. Hence we consider the case where there exists a one dimensional ideal $\{E\}$.

If $\psi(E) \neq 0$, then $[E, \mathfrak{l}]=\{0\}$ and ad $(J E) \mathfrak{l} \subset \mathfrak{l}$ by (3.1). From this, we have $[A, J E] \equiv J[A, E]$ and $[A, J(J E)] \equiv J[A, J E](\bmod \mathfrak{l})$ for $A \in \mathfrak{l}$. Since $\mathfrak{g}=\{J E\}+\{E\}+\mathfrak{l}$ by (3.1), this implies (3.4).

If $\psi(E)=0$, then $\mathfrak{l}=\{J E\}+\{E\}+\mathfrak{b y}$ (3.2). Since $\{E\}$ is an ideal, we see $[E, J X] \equiv J[E, X](\bmod \mathfrak{l})$ for $X \in \mathfrak{g}$. This implies $[J E, J X] \equiv$ $J[J E, X](\bmod \mathfrak{l})$, since $[J E, J X]-J[J E, X] \equiv J([E, J X]-J[E, X])(\bmod \mathfrak{l})$ by (K.3). From these and from (K.2), we have (3.4). Thus, the theorem is established.

Remark. By the above theorem, we see that a complex two dimensional connected and simply connected homogeneous Kähler manifold with degenerate and non-zero canonical hermitian form is a holomorphic fiber bundle whose base space is the unit disk or the Riemann sphere and whose fiber is the complex plane.
4. Known results and their consequence. Let $M=G / K$ be a complex n-dimensional connected homogeneous Kähler manifold with the canonical hermitian form h, where G acts effectively on M. In the investigation of M, the form h plays an important role. Now, we state the known results about the structure of M.

When h is either definite or zero, the following hold:
(a) If the Ricci curvature of M is negative, then M is a homogeneous bounded domain in \boldsymbol{C}^{n}.
(b) If M has zero Ricci curvature, then M is a locally flat homogeneous Kähler manifold, and hence M is obtained by factoring C^{n} by some lattice (cf. [1, Theorem 1]).
(c) If the Ricci curvature of M is positive, then G is compact and semi-simple, and hence M is a simply connected compact homogeneous Kähler manifold (see [7, Corollary]).

When h is non-degenerate and not definite, the following are valid:
(d) Suppose that M is simply connected and that the signature of h is $(2,2(n-1))$. Then, if either G is semi-simple or G contains a one parameter normal subgroup, $M=G / K$ is a holomorphic fiber bundle whose base space is the unit disk and whose fiber is a homogeneous Kähler manifold of a compact semi-simple Lie group (see [8, Theorem 1]).
(e) If $\operatorname{dim}_{c} M=2$ and if the signature of h is (2,2), then G is semi-simple or G contains a one parameter normal subgroup (see [8, Theorem 2]).

Using these results and Theorem 1^{\prime} with its remark, we see that the types of complex two dimensional connected and simply connected homogeneous Kähler manifolds M are the following six ones (cf. [8, Section 5]):
(i) Homogeneous bounded domains in \boldsymbol{C}^{2}. Hence M is $\{z \in \boldsymbol{C}$; $|z|<1\} \times\{z \in \boldsymbol{C} ;|\boldsymbol{z}|<1\}$ or $\left\{\left(z_{1}, z_{2}\right) \in \boldsymbol{C}^{2} ;\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<1\right\}$.
(ii) Complex two dimensional compact hermitian symmetric spaces. Hence M is $\boldsymbol{P}_{1}(\boldsymbol{C}) \times \boldsymbol{P}_{1}(\boldsymbol{C})$ or $\boldsymbol{P}_{2}(\boldsymbol{C})$, where $\boldsymbol{P}_{n}(\boldsymbol{C})$ is the complex n dimensional projective space.
(iii) A holomorphic fiber bundle whose base space is the unit disk and whose fiber is $\boldsymbol{P}_{1}(\boldsymbol{C})$.
(iv) A holomorphic fiber bundle whose base space is the unit disk and whose fiber is \boldsymbol{C}.
(v) A holomorphic fiber bundle whose base space is $\boldsymbol{P}_{1}(\boldsymbol{C})$ and whose fiber is \boldsymbol{C}.
(vi) C^{2}.

From these, we obtain the following.
Theorem 2. Let M be a connected homogeneous Kähler manifold of complex dimension two. If M contains no complex line, then M is a homogeneous bounded domain in \boldsymbol{C}^{2}.

Remark. It should be remarked that Shima [9] proved the following theorem:

Let M be a connected homogeneous Kähler manifold admitting a simply transitive solvable Lie group. Assume that M contains no com-
plex line. Then M is a homogeneous bounded domain.

References

[1] D. V. Alekseevskil and B. N. Kimel'fel'd, Structure of homogeneous Riemann spaces with zero Ricci curvature, Functional Anal. Appl. 9 (1975), no. 2, 97-102.
[2] S. G. Gindikin, I. I. Pjateckit-Sapiro and E. B. Vinberg, Homogeneous Kähler manifolds, in "Geometry of Homogeneous Bounded Domains", Centro Int. Math. Estivo, 3 Ciclo, Urbino, Italy, 1967, 3-87.
[3] J. Hano and S. Kobayashi, A fibering of a class of homogeneous complex manifolds, Trans. Amer. Math. Soc. 94 (1960), 233-243.
[4] S. Kobayasti, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, Inc. New York, 1969.
[5] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Interscience, New York, 1969.
[6] L. Koszul, Sur la forme hermitienne canonique des espaces homogénes complexes, Canad. J. Math. 7 (1955), 562-576.
[7] H. Shima. On homogeneous complex manifolds with negative definite canonical hermitian form, Proc. Japan Acad. 46 (1970), 209-211.
[8] H. Shima, On homogeneous Kähler manifolds with non-degenerate canonical hermitian form of signature (2, 2(n-1)), Osaka J. Math. 10 (1973), 477-493.
[9] H. Shima, Remarks on homogeneous Kähler manifolds, preprint.
Mathematical Institute
TôHoku University
Sendai, 980
Japan

