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Introduction. Let M be a connected and simply connected homo-
geneous Kahler manifold. In this note, by a homogeneous Kahler mani-
fold we mean a Kahler manifold on which the group of all holomorphic
isometries acts transitively. The purpose of this note is to prove the
following theorem.

THEOREM 1. If dim¢ M = 2 and if the canonical hermitian form of
M 1is degenerate and mon-zero, then the fibering of M due to Hamo and
Kobayashi [3] is holomorphic and the fiber with the induced Kahler
structure is a homogeneous Kdahler manifold with zero Ricci curvature.

Our proof of Theorem 1 is based on the theory of Kahler algebras
developed by Gindikin, Pjateckii-Sapiro and Vinberg [2]. They studied
the structure of homogeneous Kahler manifolds and stated the following
Fundamental conjecture:

Every homogeneous Kihler manifold admits a holomorphic fibering,
whose base is analytically isomorphic to a homogeneous bounded domain
and whose fiber with the induced Kahler structure is isomorphic to the
direct product of a locally flat homogeneous Kahler manifold and a
simply connected compact homogeneous Kahler manifold.

Combining Theorem 1 with the results of Alekseevskii and Kimel’fel’d
[1] and Shima [7], [8], we see that the above conjecture is true for a
complex two dimensional connected and simply connected homogeneous
Kahler manifold. As an immediate consequence of this fact, we obtain
the following.

THEOREM 2. Let M be a connected homogeneous Kahler manifold of
complex dimension two. ILf M contains no complex line, that is, if there
are no non-constant holomorphic maps of C into M, then M is homo-
geneous bounded domain in C>.

In the theory of hyperbolic complex manifolds in the sense of
Kobayashi [4], we have the following basic problem (see [4, Problem 12,
p. 133)):
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Let M be a homogeneous complex manifold of complex dimension n
which 1s hyperbolic in the sense of Kobayashi. Then is M a homogeneous
bounded domain in C™?

Noting that hyperbolic complex manifolds contain no complex line,
we see that Theorem 2 provides an affirmative answer to the above
problem when M is a homogeneous K#hler manifold of complex dimen-
sion two.

The author wishes to express his hearty thanks to Professor Kodama
who suggested to me the use of a result of Hano and Kobayashi [3] and
introduced me to the works of Alekseevskii and Kimel’fel’d [1] and
Shima [8], [9].

1. Preliminaries. In this section we recall the definition of Kahler
algebras and state several lemmas for later use.

We denote by M a connected homogeneous Kahler manifold on which
a connected Lie group G acts transitively as a group of holomorphic
isometries, and by K an isotropy subgroup of G at a point o of M. Let
I be the G-invariant complex structure tensor on M, let g be the G-
invariant Kahler metric on M and let v be the G-invariant volume
element corresponding to the Kahler metric g. In terms of a local
coordinate system {z, ---, z,} on M, the form v is expressed by v =
V' =1)"Fdz, \ --- Ndz, ANdZ, A\ --- A dZ,, where F is a positive func-
tion. The G-invariant hermitian form

h=yLlogF, iz,

02,02

is called the canonical hermitian form of M. It is easy to see that the
Ricei tensor of the Kahler manifold M is equal to —h.

Let g be the Lie algebra of all left invariant vector fields on G and
let £ be the subalgebra of g corresponding to K. Let 7 be the canonical
projection of G onto M = G/K and let T,(M) be the tangent space of M
at the point o = w(e), where ¢ is the identity element of G. We define
a linear mapping w, of g onto T,(M) as follows:

T (X) = (dm)(X,) for Xeg,

where (dz), is the differential of 7 at ¢ and X, is the value of X at e.
There exist a linear endomorphism J of g and a skew symmetric bilinear
form p on g such that

T JX = L7 X), oXY)=g(r.X L(x,Y)) for X, Yeg,

where I, and g, are the values of I and g at o, respectively. Then the
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quadruple (g, f, J, o) satisfies the following properties and is called the
Kahler algebra of M (see Gindikin, Pjateckii-Sapiro and Vinberg [2]):
K.1) Jtct, J*= —id (mod ¥),
(K.2) [W,JX]=J[W, X](modF),
(K.3) [JX,JY]=J[JX, Y]+ J[X,JY] + [X, Y](mod¥),
(K.4) o(W, X) =0,
(K.5) po(JX,JY)=p(X,Y),
(K.6) o(JX, X)>0, Xet,
where X, Y, Zeg, Wet.
Putting 7»(X, Y) = h(7, X, 7, Y) and

(1.1) w(X) = Tr,(ad (JX) — Jad (X)),

we have

(1.2) X, Y)=+(JX, Y)) for X, Yeg (see [6]) .
The forms 7 and + satisfy the following properties:

1.3) NJX,JY)=nX,Y),

(1.4) (W, X]) =0,

(1.5) y([JX, JY)) = 4(X, Y] for X, Yeg, Wet.

We note that if G acts effectively on M, then ¥ contains no non-zero
ideal of g.
Now we have the following lemmas which are due to Shima [8].

LEMMA 1 (cf. [8, Lemma 2.4]). Let t be an ideal of g. Suppose
p=0o0n t. Then tC{Xeg;NX,Y)=0 for all Y eg}.

LEMMA 2 (cf. [8, Lemma 2.3]). Let t be a commutative ideal of g.
If G acts effectively on M and if the center of g is zero, then f Nt =
tNJr = {0}.

LEMMA 3 (cf. [8, Lemma 2.6]). Let {E} be a one dimensional ideal
of g. Then we have:

(@) If y(E) =+ 0, then [E, t] = {0}.

(b) If [E, t] = {0} and if G acts effectively on M, then there exists
an endomorphism J of g such that J = J (modt) and [JE, t] = {0}.

LEMMA 4 (cf. [8, Lemma 3.2]). Let {E} be a one dimensional ideal
of g. If ¥w(E)=#0 and [JE, t] = {0}, then [JE, E] =+ 0.

LEMMA 5 (cf. [8, Lemma 3.3]). Let {E} be a one dimensional ideal
of g. Suppose [E, t] =[JE, t] = {0} and [JE, E] = E, and put p = {Peg;
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[P, E]=[JP,E] =0}. Thenad (JE)YpCpand g ={JE} + {E} + p (direct
sum), where {JE}, {E}, p are mutually orthogonal with respect to the
form n, and 7 is positive definite on {JE} + {E}.

2. Existence of certain ideals. Throughout this section we use the
same notations as in the previous section and assume the following:

(2.1) dimc M =2.
(2.2) The canonical hermitian form h is degenerate and non-zero.
(2.3) G acts effectively on M.

Then, by a result of Hano and Kobayashi [3] there exists a closed sub-
group L of G satisfying the following properties:

(2.4) LoK.

(2.5) The coset space L/K is a one dimensional connected complex sub-
manifold of M = G/K.
2.6) T(L/K)={veT,(M);h,(v, ") =0 for all v' € T,(M)}, where T,(L/K)
is the tangent space of L/K at the point o = 7(e).

It is easy to see that the submanifold L/K of M is a homogeneous
Kahler manifold with the Kahler metric induced from M.

Let | be the subalgebra of g corresponding to L. Then [Df and !
is J-invariant. From (2.6), we have

2.7 | =71 MT(L/K)) = {Xeg;p(X, Y)=0 for all Yeg}.

We see dimg/t =4 by (2.1) and, furthermore, dimg/l = dim [/t =2 by
(2.5).

The purpose of this section is to prove the following.

PROPOSITION. The Lie algebra g contains a one dimensional ideal
or a two dimensional commutative ideal t such that [ =t + 1.

If the center of g is not zero, then it is clear that there exists a
one dimensional ideal of g. Therefore it is sufficient to prove the above
proposition when the center of g is zero. For the purpose, we need the
following lemma.

LEMMA 6. Let t be a commutative ideal of g. Then | + t # g.

Proor. First, we note that ([A4, X]) =0 for all Ael and Xeg.
In fact, by (1.2), (1.5) and (2.7) we see ([4, X]) = +([JA4, JX]) =
2n(A, JX) =0. Assume g=1[+r. Then, we have JX = A + B and
X'=A'"+B’ for X, X'eg, where A, A’eland B, B'ex. Since ¥([4, Y]) =
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Y([A, Y') =0 for all Y, Y eg and since t is commutative, it follows
that 29(X, X') = ([JX, X']) = v([4 + B, A’ + B']) = 4(B, B’]) = 0. This
contradicts the assumption (2.2), and hence the lemma is proved.

We now prove Proposition under the assumption that the center of
g is zero. Suppose that g is semi-simple. Then, by a result of Koszul
[6],  is non-degenerate, which contradicts the assumption (2.2). There-
fore g is not semi-simple, i.e., there exists a non-zero commutative ideal
1. Since dimg/f =4, we have dimr=1,2,3,4 by Lemma 2. In the
case dimt = 1, there is nothing to prove. We consider the cases dimt =
2,8,4. Using Lemma 6, we see dimr # 4. For, if dimr =4, then
g=f+r=1+1 by Lemma 2. This contradicts Lemma 6. We show
that © contains an ideal satisfying the assertions of Proposition in the
cases dimr = 2, 3.

First, suppose dimt = 3. Since dimg/l =2, we see dimIN r # 0.
Lemma 6 and the fact dimg/l =2 yield dimINnxr = 1. Furthermore,
since dim I/t = 2, we see dim! Nt # 3 by Lemma 2. Hence dimI N1t = 2.
We have JINr)cl=f+ Nzt because [ is J-invariant and tN(IN1) =
fNt = {0} by Lemma 2. This implies that there exists an endomorphism
J of g such that J=J (modf) and JONx)cINzx. Therefore we may
suppose JINr)clinzt. Then J*= —id on INzt by (K.1). Moreover,
we have 4 %= 0 on tr. In fact, suppose 4+ =0 onzx. Then rcl by Lemma
1, which contradicts dim! Nt = 2. Using these facts, we can select a
basis of t as follows:

t={JE E F}, Int={JE E)
and
(i) vJE)=0, E)=0, yF)=+*0
or
(ii) VJIE)=0, @E) =0, F)=0.

Put ¢ =t + Jr+ 1. Then dimcg'/t =1 or 2, since ¢’ is J-invariant,
fNt=1{0} and dimcg/t =2. From dimt =3, we have dim.g'/f = 2, which
implies g=¢g'=f+ Jr+1x. Hence g=%+ {JF} + {JE, E, F} (direct
sum). Further [ =f{ + {JE, E}.

Case (i). It suffices to show that {JE, E} is an ideal of g. Since
{(JE, E} =1Nt is an ideal of I, we see [|, {JE, E}]C{JE, E}. The com-
mutativity of 1 implies [{F'}, {JE, E}] = {0}C{JE, E}. Hence it is
sufficient to show [{JF'}, {(JE, E}JC{JE, E}. Since {JE, E, F} =1t is an
ideal of g, we have [JF, E] = NJE + pE + vF for some A, ¢, ve R. The
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fact Fel yields n(F, E) =0 by (2.7. From these and from (JE) =
(E) = 0, it follows that 0 = 29(F, E) = (JF, E]) = M(JE) + py(E) +
vp(F') = vy(F"), which implies v = 0, since (F') = 0. Therefore [JF, E] =
NE + pEe{JE, E}. Similarly, we have [JF, JE]|e{JE, E}. Thus [{JF},
(JE, E}|C{JE, E}.

Case (ii). It suffices to prove that {E} is an ideal of g. Since
{JE, E} is an ideal of I, we can put [X, F] = AMJE + pE for X €1, where
N, pt€R. Then (JE) # 0, y(E) =0 and 9(X, JE) = 0 yield [X, E] = pE
as in the case (i), which shows [I, {E}]C{E}. Since r is commutative,
we see [{F'}, {E}]={0}c{E}. Therefore it suffices to show [{JF'}, {E}|C{E}.
Put [JF, E] = \NJE + pE + vF, where \, ¢, ve R. Then, using (JE) = 0,
Y(E) =0, y(F) = 0and n(F, E) =0, we have [JF, E] = pE + vF, which
together with [E, F]=[JE, F1=0 and (K.3) implies [JE, JF']=
—uJE — vJF + W, where Wet. Therefore vJF et + {JE, E, F}, as
[JF, JEle{JE, E, F'}. Since thesum g =t + {JF'} + {JE, E, F'} is direct,
we see vJF =0, and hence v = 0. This proves [{JF'}, {E}]C{E}.

Next, suppose dim:r = 2. Since dimg/l =2, we have dimINt =0
by Lemma 6. If dimINnt =2, then [l =f 4+ ¢t by Lemma 2. This shows
that r is a two dimensional ideal satisfying the assertions of Proposition.
Hence, in the following we may suppose dim!Nt=1. Then g=1*F+
Jr + 1. For, putting ¢’ =t + Jr + 1, we see dimcg'/t=1 or 2. If
dim;g'/t =1, then Jrcg =f + t by Lemma 2. This contradicts (K.1),
since | is J-invariant. Therefore dim;g’/f=2, and hence g=¢' =t + Jr+ 1.
Furthermore, we have 0 on r by Lemma 1. So we can select a basis
of r as follows:

t={E F}, Inr={KE}
and
(i) P(E) =0, $(F)#0 or (iv) y(E)#0, (F)=0.

Then g =t + {JE, JF} + {E, F'}, since g =t + Jr + 1.

In the case (iii), we can show in a method similar to that of (i) in
the case of dimt =3 that {E} is an ideal of g. Hence, in this case g
contains a one dimensional ideal.

Finally we show that the case (iv) does not occur. Since {E} is an
ideal of I, we can put [X, E] = \E for Xel, where e R. Hence, from
(E)# 0 and n(X, JE) =0, we have [X, E] =0. In particular, we see
[E, ] = {0} and [JE, E] =0. From (&) +# 0, 4(F) =0 and 7(E, F') =0,
it follows that [JE, F'] = aF and [JF, E] = GF for some a, e R. Put
[JF, F] = \E + pF, where \, te R. Then, putting f=ad (JF)— Jad (F),
we have f(E)= pgF and f(F)=\E + pF. Noting that, for Xeg,
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fJX) = Jf(X) (modt) by (K.3), we see f(JE)= gJF and f(JF)=
MNE + pJF (modt). These facts show Tr,, (ad (JF) — Jad (F)) = 2p.
Since 0 = y(F') = Tr,, (ad (JF) — Jad (F')) by (1.1), we obtain g =0,
which implies [JF, F'] = AME. By (2.2), n is definite on g/l. Therefore
0+ 29(F, F) = (JF, F']) = Mp(E), and hence » #= 0. Consequently, we
have the following relations:

28 [JE,E|=0, [JE F]l=aF, [JF,E]=gF, [JF,F]=\E,
A=0.

Now, by carrying out the same computation as in Shima [8, Proof
of Lemma 4.1], we derive a contradiction. First, we show ¥ = {0}. As
indicated above, [E, f] = {0}. Let Wef. Put [W, F] = pE + vF, where
p,veR. Then (&) =0, y(F) =0 and (1.4) yield [W, F] = vF. From
this, we obtain y([JF,[ W,F 1)) =vy([JF,F )=y (E) and (JF,[W, F]]) =
v([JF, W], F]) + y(W, [JF, F]) = (J[F, W], F]) = —vy(JF, F])=
—wr(E) by (1.4) and (K.2). Therefore we have 2\w(E) =0, and
hence v =0 and [W, F)] = 0. Thus [f, ] = {0}. Since [, Jr]C¥, [ f]CE
and g =t + Jxr + 1, we see that f is an ideal of g. By (2.3), we have
f = {0}). Next, we show 2a = 8. Using the Jacobi identity, (K.3) and
t = {0}, we have

0 =[[JE, JF], F]+ [[JF, F], JE] + |[F, JE], JF']
= (@ — BIJF, F]| — a|F, JF'] = 2a — B)IJF, F'] = M2a — B)E .
Hence we see 2a = 8. From this, (2.8) and (K.7), we have
0 = o(lJE, F), JF) + o(F, JF], JE) + o(JF, JE], F)
= ap(F, JF) — No(E, JE) + (B — a)o(JF, F)
= (B — 2a)p(JF, F') + \no(JE, E) = Mo(JE, E) .
This contradicts (K.6). Thus, Proposition has been proved.

3. Proof of Theorem 1. We keep our notations and assumptions in
the previous section.

By restricting J and p to I, we see that (I, £, J, p) is the Kahler
algebra of the homogeneous Kahler manifold L/K. Let h’' be the canoni-
cal hermition form of L/K. Then, putting »'(X, Y) = hy (7, X, 7, X) and
W(X) = Try, (ad (JX) — Jad (X)) for X, Yel, we have (1.2), (1.3), (1.4)
and (1.5) for the forms %’ and '

Now, Theorem 1 is stated more precisely as follows:

THEOREM 1. The homogeneous Kahler manifold L/K has zero Ricci
curvature. Furthermore, if M is simply connected, then, by defining a
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suitable G-invariant complex structure on G/L, the natural projection
of G/K onto G/L is holomorphic.

PrOOF. To begin with, we prove &' = 0, which shows the first half
of the theorem. By the proposition in the previous section, g contains
a one dimensional ideal or a two dimensional commutative ideal tr such
that I =f+ r. If g contains a two dimensional ideal satisfying the
assertions of the proposition, then we see 7' =0 by (1.2), (1.4) and the
commutativity of r, and hence k' = 0. Therefore we consider the case
where there exists a one dimensional ideal {E}.

If (E) # 0, then, using Lemmas 3, 4 and 5, we have g = {JE} +
{E} + p (direct sum), where {JE}, {E}, p are mutually orthogonal with
respect to the form 7, and % is positive definite on {JE} + {E}. By
(2.7), we see I Cp, and hence [ = p, since dim g/l = dim g/p = 2. There-
fore we have

3.1) g={JE)+ {E}+ | (direct sum), [E,!]={0} and ad(JE)cC!.

Let Xel. Then (ad (JX)—Jad(X))(E)=0and (ad(JX) — Jad (X))(JE)=
0 (modf) by (3.1) and (K.3). Using this fact and (3.1), we see

W(X) = Tr,, (ad (JX) — Jad (X)) = Try, (ad (JX) — Jad (X)) = 4/(X) .

Therefore + =+ on [. From this and (1.2), we have 27p(X, X') =
v([JX, X']) = +'([JX, X']) = 27'(X, X') for X, X"el. Since =0 on I,
we see 7' =0 on I, and hence A’ = 0.

If w(E) =0, then {E}c! by Lemma 1. Using (2.3) and (K.1), we
have

(3.2) [={JE}+ {E}+T.

We show +'(E) = 0. Otherwise [E, f] = {0} by Lemma 3 (a), and hence,
by Lemma 3 (b), [JE, ] = {0} with a suitable linear endomorphism J of
g belonging to the Kahler algebra of M = G/K. Furthermore, we have
[JE, E]1+ 0 by (3.2) (cf. Lemma 4). We may assume [JE, E] = E with
a suitable £ = 0. From these, it follows by Lemma 5 that n(E, E) > 0.
This contradicts Eecl. Therefore, we see (&) = 0. Using this fact,
we have 27'(E, E) = '((JE, E]) = 0, which implies ' =0 on | by (3.2).
Thus, A’ = 0 is proved.

Next, we prove that the natural projection of G/K onto G/L is
holomorphic, if M is simply connected and if we define a suitable G-
invariant complex structure on G/L. Since M is simply connected, K
is connected, and hence so is L by the connectedness of L/K. Therefore,



HOMOGENEOUS KAHLER MANIFOLDS 61

the G-invariant complex structures on G/L are in a natural one-to-one
correspondence with the linear endomorphisms J of g (mod!) satisfying
the following properties (cf. [5, p. 217]):

(3.3) Jicl, J*= —id(modl),
(3.4) [4, JX] = J[A, X] (mod]),
(8.5) [JX,JY]=J[JX, Y]+ J[X,JY] + [X, Y] (mod])),

where X, Yeg, Acl. We show that the linear endomorphism J of g
belonging to the Kahler algebra of M = G/K satisfies the above three
properties. If this can be done, then it is easily seen that the natural
projection of G/K onto G/L with the G-invariant complex structure
corresponding to J is holomorphic.

It is clear that (K.1) and (K.3) imply (38.3) and (3.5), respectively.
We show by using the proposition that (K.2) implies (3.4). If g contains
a two dimensional commutative ideal t with [ = f 4+ 1, then we see easily
that (K.2) implies (3.4), since [r,g]crcl. Hence we consider the case
where there exists a one dimensional ideal {£}.

If y(E) +# 0, then [E, (] = {0} and ad (JE) C! by (3.1). From this,
we have [4, JE] = J[A4, E] and [A, J(JE)] = J[A, JE] (mod ) for Ael.
Since g = {JE} + {E} + | by (3.1), this implies (3.4).

If w(E) =0, then | = {JE} + {E} + £ by (3.2). Since {E} is an ideal,
we see [E,JX]|= J[E, X] (modl) for Xeg. This implies [JE, JX]=
J[JE, X] (mod)), since [JE, JX]—J[JE, X] = J(E, JX]-J[E, X]) (mod I)
by (K.3). From these and from (K.2), we have (3.4). Thus, the theorem
is established.

REMARK. By the above theorem, we see that a complex two
dimensional connected and simply connected homogeneous Kahler manifold
with degenerate and non-zero canonical hermitian form is a holomorphic
fiber bundle whose base space is the unit disk or the Riemann sphere
and whose fiber is the complex plane.

4. Known results and their consequence. Let M = G/K be a complex
n-dimensional connected homogeneous Kahler manifold with the canonical
hermitian form h, where G acts effectively on M. In the investigation
of M, the form h plays an important role. Now, we state the known
results about the structure of M.

When 7 is either definite or zero, the following hold:

(a) If the Ricci curvature of M is negative, then M is a homogene-
ous bounded domain in C".
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(b) If M has zero Ricci curvature, then M is a locally flat homo-
geneous Kahler manifold, and hence M is obtained by factoring C" by
some lattice (cf. [1, Theorem 1]).

() If the Ricci curvature of M is positive, then G is compact and
semi-simple, and hence M is a simply connected compact homogeneous
Kahler manifold (see [7, Corollary]).

When & is non-degenerate and not definite, the following are valid:

(d) Suppose that M is simply connected and that the signature of
h is (2,2(n — 1)). Then, if either G is semi-simple or G contains a one
parameter normal subgroup, M = G/K is a holomorphic fiber bundle whose
base space is the unit disk and whose fiber is a homogeneous Kahler
manifold of a compact semi-simple Lie group (see [8, Theorem 1]).

(e) If dim¢M = 2 and if the signature of h is (2,2), then G is
semi-simple or G contains a one parameter normal subgroup (see [8,
Theorem 2]).

Using these results and Theorem 1’ with its remark, we see that
the types of complex two dimensional connected and simply connected
homogeneous Kahler manifolds M are the following six ones (cf. [8,
Section 5]):

(i) Homogeneous bounded domains in C®. Hence M is {z€eC;
lz| <1} x {zeC; |2] <1} or {(z, 2.) € C*; |2[ + |2 < 1}.

(ii) Complex two dimensional compact hermitian symmetric spaces.
Hence M is P,(C) x P,(C) or P,C), where P,C) is the complex n-
dimensional projective space.

(iii) A holomorphic fiber bundle whose base space is the unit disk
and whose fiber is P,(C).

(iv) A holomorphic fiber bundle whose base space is the unit disk
and whose fiber is C.

(v) A holomorphic fiber bundle whose base space is P,(C) and
whose fiber is C.

(vi) C~.

From these, we obtain the following.

THEOREM 2. Let M be a connected homogeneous Kahler manifold of
complex dimension two. If M contains mo complex line, then M is a
homogeneous bounded domain in C*.

REMARK. It should be remarked that Shima [9] proved the following
theorem:

Let M be a connected homogeneous Kdahler manifold admitting a
simply transitive solvable Lie group. Assume that M contains no com-
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plex line. Then M is a homogeneous bounded domain.
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