HOMOGENEOUS KÄHLER MANIFOLDS OF COMPLEX DIMENSION TWO

SATORII SHIMIZII

(Received March 26, 1981, revised July 7, 1981)

Introduction. Let M be a connected and simply connected homogeneous Kähler manifold. In this note, by a homogeneous Kähler manifold we mean a Kähler manifold on which the group of all holomorphic isometries acts transitively. The purpose of this note is to prove the following theorem.

THEOREM 1. If $\dim_c M = 2$ and if the canonical hermitian form of M is degenerate and non-zero, then the fibering of M due to Hano and Kobayashi [3] is holomorphic and the fiber with the induced Kähler structure is a homogeneous Kähler manifold with zero Ricci curvature.

Our proof of Theorem 1 is based on the theory of Kähler algebras developed by Gindikin, Pjateckii-Sapiro and Vinberg [2]. They studied the structure of homogeneous Kähler manifolds and stated the following Fundamental conjecture:

Every homogeneous Kähler manifold admits a holomorphic fibering, whose base is analytically isomorphic to a homogeneous bounded domain and whose fiber with the induced Kähler structure is isomorphic to the direct product of a locally flat homogeneous Kähler manifold and a simply connected compact homogeneous Kähler manifold.

Combining Theorem 1 with the results of Alekseevskii and Kimel'fel'd [1] and Shima [7], [8], we see that the above conjecture is true for a complex two dimensional connected and simply connected homogeneous Kähler manifold. As an immediate consequence of this fact, we obtain the following.

THEOREM 2. Let M be a connected homogeneous Kähler manifold of complex dimension two. If M contains no complex line, that is, if there are no non-constant holomorphic maps of C into M, then M is homogeneous bounded domain in C^2 .

In the theory of hyperbolic complex manifolds in the sense of Kobayashi [4], we have the following basic problem (see [4, Problem 12, p. 133]):

Let M be a homogeneous complex manifold of complex dimension n which is hyperbolic in the sense of Kobayashi. Then is M a homogeneous bounded domain in \mathbb{C}^n ?

Noting that hyperbolic complex manifolds contain no complex line, we see that Theorem 2 provides an affirmative answer to the above problem when M is a homogeneous Kähler manifold of complex dimension two.

The author wishes to express his hearty thanks to Professor Kodama who suggested to me the use of a result of Hano and Kobayashi [3] and introduced me to the works of Alekseevskii and Kimel'fel'd [1] and Shima [8], [9].

1. Preliminaries. In this section we recall the definition of Kähler algebras and state several lemmas for later use.

We denote by M a connected homogeneous Kähler manifold on which a connected Lie group G acts transitively as a group of holomorphic isometries, and by K an isotropy subgroup of G at a point o of M. Let I be the G-invariant complex structure tensor on M, let g be the G-invariant Kähler metric on M and let v be the G-invariant volume element corresponding to the Kähler metric g. In terms of a local coordinate system $\{z_1, \dots, z_n\}$ on M, the form v is expressed by $v = (\sqrt{-1})^n F dz_1 \wedge \dots \wedge dz_n \wedge d\overline{z}_1 \wedge \dots \wedge d\overline{z}_n$, where F is a positive function. The G-invariant hermitian form

$$h = \sum rac{\partial^2 \log F}{\partial z_i \partial \overline{z}_j} dz_i d\overline{z}_j$$

is called the canonical hermitian form of M. It is easy to see that the Ricci tensor of the Kähler manifold M is equal to -h.

Let g be the Lie algebra of all left invariant vector fields on G and let \mathfrak{k} be the subalgebra of g corresponding to K. Let π be the canonical projection of G onto M = G/K and let $T_o(M)$ be the tangent space of M at the point $o = \pi(e)$, where e is the identity element of G. We define a linear mapping π_* of g onto $T_o(M)$ as follows:

$$\pi_*(X) = (d\pi)_{\it e}(X_{\it e}) \quad {
m for} \quad X \in {\mathfrak g}$$
 ,

where $(d\pi)_e$ is the differential of π at e and X_e is the value of X at e. There exist a linear endomorphism J of g and a skew symmetric bilinear form ρ on g such that

$$\pi_*JX=I_{\rm o}(\pi_*X)\;,\qquad \rho(X,\;Y)=g_{\rm o}(\pi_*X,\;I_{\rm o}(\pi_*Y))\qquad {\rm for}\quad X,\;Y\in\mathfrak{g}\;,$$

where I_o and g_o are the values of I and g at o, respectively. Then the

quadruple (g, f, J, ρ) satisfies the following properties and is called the Kähler algebra of M (see Gindikin, Pjateckii-Sapiro and Vinberg [2]):

- (K.1) $J\mathfrak{k} \subset \mathfrak{k}, J^2 \equiv -\mathrm{id} \pmod{\mathfrak{k}},$
- $(K.2) \quad [W, JX] \equiv J[W, X] \pmod{\mathfrak{k}},$
- (K.3) $[JX, JY] \equiv J[JX, Y] + J[X, JY] + [X, Y] \pmod{\mathfrak{k}}$
- $(K.4) \quad \rho(W, X) = 0,$
- $(K.5) \quad \rho(JX, JY) = \rho(X, Y),$
- (K.6) $\rho(JX, X) > 0, X \notin f$
- (K.7) $\rho([X, Y], Z) + \rho([Y, Z], X) + \rho([Z, X], Y) = 0$, where $X, Y, Z \in \mathfrak{g}, W \in \mathfrak{k}$.

Putting $\eta(X, Y) = h_0(\pi_* X, \pi_* Y)$ and

$$\psi(X) = \operatorname{Tr}_{a/t}(\operatorname{ad}(JX) - J\operatorname{ad}(X)),$$

we have

(1.2)
$$2\eta(X, Y) = \psi([JX, Y]) \quad \text{for} \quad X, Y \in \mathfrak{g} \text{ (see [6])}.$$

The forms η and ψ satisfy the following properties:

$$\eta(JX, JY) = \eta(X, Y),$$

$$\psi([W, X]) = 0,$$

(1.5)
$$\psi([JX, JY]) = \psi([X, Y]) \quad \text{for} \quad X, Y \in \mathfrak{g}, W \in \mathfrak{k}.$$

We note that if G acts effectively on M, then f contains no non-zero ideal of g.

Now we have the following lemmas which are due to Shima [8].

LEMMA 1 (cf. [8, Lemma 2.4]). Let \mathfrak{r} be an ideal of \mathfrak{g} . Suppose $\psi=0$ on \mathfrak{r} . Then $\mathfrak{r}\subset\{X\in\mathfrak{g};\,\eta(X,\,Y)=0\ \text{for all}\ Y\in\mathfrak{g}\}.$

LEMMA 2 (cf. [8, Lemma 2.3]). Let $\mathfrak r$ be a commutative ideal of $\mathfrak g$. If G acts effectively on M and if the center of $\mathfrak g$ is zero, then $\mathfrak k \cap \mathfrak r = \mathfrak k \cap J\mathfrak r = \{0\}$.

LEMMA 3 (cf. [8, Lemma 2.6]). Let $\{E\}$ be a one dimensional ideal of g. Then we have:

- (a) If $\psi(E) \neq 0$, then $[E, f] = \{0\}$.
- (b) If $[E, \mathfrak{k}] = \{0\}$ and if G acts effectively on M, then there exists an endomorphism \widetilde{J} of \mathfrak{g} such that $\widetilde{J} \equiv J \pmod{\mathfrak{k}}$ and $[\widetilde{J}E, \mathfrak{k}] = \{0\}$.

LEMMA 4 (cf. [8, Lemma 3.2]). Let $\{E\}$ be a one dimensional ideal of g. If $\psi(E) \neq 0$ and $[JE, \mathfrak{k}] = \{0\}$, then $[JE, E] \neq 0$.

LEMMA 5 (cf. [8, Lemma 3.3]). Let $\{E\}$ be a one dimensional ideal of g. Suppose $[E, t] = [JE, t] = \{0\}$ and [JE, E] = E, and put $\mathfrak{p} = \{P \in \mathfrak{g}; P \in \mathfrak{g}\}$

- [P, E] = [JP, E] = 0. Then ad $(JE)\mathfrak{p} \subset \mathfrak{p}$ and $\mathfrak{g} = \{JE\} + \{E\} + \mathfrak{p}$ (direct sum), where $\{JE\}$, $\{E\}$, \mathfrak{p} are mutually orthogonal with respect to the form η , and η is positive definite on $\{JE\} + \{E\}$.
- 2. Existence of certain ideals. Throughout this section we use the same notations as in the previous section and assume the following:
- $\dim_c M = 2.$
- (2.2) The canonical hermitian form h is degenerate and non-zero.
- (2.3) G acts effectively on M.

Then, by a result of Hano and Kobayashi [3] there exists a closed subgroup L of G satisfying the following properties:

$$(2.4) L\supset K.$$

- (2.5) The coset space L/K is a one dimensional connected complex submanifold of M = G/K.
- (2.6) $T_o(L/K) = \{v \in T_o(M); h_o(v, v') = 0 \text{ for all } v' \in T_o(M)\}, \text{ where } T_o(L/K)$ is the tangent space of L/K at the point $o = \pi(e)$.

It is easy to see that the submanifold L/K of M is a homogeneous Kähler manifold with the Kähler metric induced from M.

Let I be the subalgebra of g corresponding to L. Then $I \supset \mathfrak{k}$ and I is J-invariant. From (2.6), we have

(2.7)
$$l = \pi_*^{-1}(T_o(L/K)) = \{ X \in \mathfrak{g}; \, \eta(X, Y) = 0 \text{ for all } Y \in \mathfrak{g} \} .$$

We see dim $g/\mathfrak{k}=4$ by (2.1) and, furthermore, dim $g/\mathfrak{k}=\dim \mathfrak{k}/\mathfrak{k}=2$ by (2.5).

The purpose of this section is to prove the following.

PROPOSITION. The Lie algebra g contains a one dimensional ideal or a two dimensional commutative ideal $\mathfrak x$ such that $\mathfrak l=\mathfrak k+\mathfrak x$.

If the center of g is not zero, then it is clear that there exists a one dimensional ideal of g. Therefore it is sufficient to prove the above proposition when the center of g is zero. For the purpose, we need the following lemma.

Lemma 6. Let x be a commutative ideal of g. Then $I + x \neq g$.

PROOF. First, we note that $\psi([A,X])=0$ for all $A\in \mathfrak{l}$ and $X\in \mathfrak{g}$. In fact, by (1.2), (1.5) and (2.7) we see $\psi([A,X])=\psi([JA,JX])=2\eta(A,JX)=0$. Assume $\mathfrak{g}=\mathfrak{l}+\mathfrak{r}$. Then, we have JX=A+B and X'=A'+B' for $X,X'\in \mathfrak{g}$, where $A,A'\in \mathfrak{l}$ and $B,B'\in \mathfrak{r}$. Since $\psi([A,Y])=0$

 $\psi([A', Y']) = 0$ for all $Y, Y' \in \mathfrak{g}$ and since \mathfrak{r} is commutative, it follows that $2\eta(X, X') = \psi([JX, X']) = \psi([A + B, A' + B']) = \psi([B, B']) = 0$. This contradicts the assumption (2.2), and hence the lemma is proved.

We now prove Proposition under the assumption that the center of g is zero. Suppose that g is semi-simple. Then, by a result of Koszul [6], h is non-degenerate, which contradicts the assumption (2.2). Therefore g is not semi-simple, i.e., there exists a non-zero commutative ideal r. Since $\dim g/\mathfrak{k}=4$, we have $\dim \mathfrak{r}=1,2,3,4$ by Lemma 2. In the case $\dim \mathfrak{r}=1$, there is nothing to prove. We consider the cases $\dim \mathfrak{r}=2,3,4$. Using Lemma 6, we see $\dim \mathfrak{r}\neq 4$. For, if $\dim \mathfrak{r}=4$, then $\mathfrak{g}=\mathfrak{k}+\mathfrak{r}=\mathfrak{l}+\mathfrak{r}$ by Lemma 2. This contradicts Lemma 6. We show that r contains an ideal satisfying the assertions of Proposition in the cases $\dim \mathfrak{r}=2,3$.

First, suppose $\dim \mathfrak{r}=3$. Since $\dim \mathfrak{g}/\mathfrak{l}=2$, we see $\dim \mathfrak{l}\cap \mathfrak{r}\neq 0$. Lemma 6 and the fact $\dim \mathfrak{g}/\mathfrak{l}=2$ yield $\dim \mathfrak{l}\cap \mathfrak{r}\neq 1$. Furthermore, since $\dim \mathfrak{l}/\mathfrak{k}=2$, we see $\dim \mathfrak{l}\cap \mathfrak{r}\neq 3$ by Lemma 2. Hence $\dim \mathfrak{l}\cap \mathfrak{r}=2$. We have $J(\mathfrak{l}\cap \mathfrak{r})\subset \mathfrak{l}=\mathfrak{k}+\mathfrak{l}\cap \mathfrak{r}$, because \mathfrak{l} is J-invariant and $\mathfrak{k}\cap (\mathfrak{l}\cap \mathfrak{r})=\mathfrak{k}\cap \mathfrak{r}=\{0\}$ by Lemma 2. This implies that there exists an endomorphism J of g such that $J\equiv J\pmod{\mathfrak{k}}$ and $J(\mathfrak{l}\cap \mathfrak{r})\subset \mathfrak{l}\cap \mathfrak{r}$. Therefore we may suppose $J(\mathfrak{l}\cap \mathfrak{r})\subset \mathfrak{l}\cap \mathfrak{r}$. Then $J^2=-\mathrm{id}$ on $\mathfrak{l}\cap \mathfrak{r}$ by (K.1). Moreover, we have $\psi\neq 0$ on \mathfrak{r} . In fact, suppose $\psi=0$ on \mathfrak{r} . Then $\mathfrak{r}\subset \mathfrak{l}$ by Lemma 1, which contradicts $\dim \mathfrak{l}\cap \mathfrak{r}=2$. Using these facts, we can select a basis of \mathfrak{r} as follows:

$$\mathfrak{r} = \{JE, E, F\}$$
, $\mathfrak{l} \cap \mathfrak{r} = \{JE, E\}$

and

(i)
$$\psi(JE)=0$$
 , $\psi(E)=0$, $\psi(F)\neq 0$

 \mathbf{or}

(ii)
$$\psi(JE)
eq 0$$
 , $\psi(E) = 0$, $\psi(F) = 0$.

Put g' = f + Jr + r. Then $\dim_c g'/f = 1$ or 2, since g' is J-invariant, $f \cap r = \{0\}$ and $\dim_c g/f = 2$. From $\dim r = 3$, we have $\dim_c g'/f = 2$, which implies g = g' = f + Jr + r. Hence $g = f + \{JF\} + \{JE, E, F\}$ (direct sum). Further $I = f + \{JE, E\}$.

Case (i). It suffices to show that $\{JE, E\}$ is an ideal of g. Since $\{JE, E\} = \mathfrak{l} \cap \mathfrak{r}$ is an ideal of \mathfrak{l} , we see $[\mathfrak{l}, \{JE, E\}] \subset \{JE, E\}$. The commutativity of \mathfrak{r} implies $[\{F\}, \{JE, E\}] = \{0\} \subset \{JE, E\}$. Hence it is sufficient to show $[\{JF\}, \{JE, E\}] \subset \{JE, E\}$. Since $\{JE, E, F\} = \mathfrak{r}$ is an ideal of \mathfrak{g} , we have $[JF, E] = \lambda JE + \mu E + \nu F$ for some $\lambda, \mu, \nu \in \mathbb{R}$. The

58 s. shimizu

fact $E \in I$ yields $\eta(F, E) = 0$ by (2.7). From these and from $\psi(JE) = \psi(E) = 0$, it follows that $0 = 2\eta(F, E) = \psi([JF, E]) = \lambda \psi(JE) + \mu \psi(E) + \nu \psi(F) = \nu \psi(F)$, which implies $\nu = 0$, since $\psi(F) \neq 0$. Therefore $[JF, E] = \lambda JE + \mu E \in \{JE, E\}$. Similarly, we have $[JF, JE] \in \{JE, E\}$. Thus $[\{JF\}, \{JE, E\}] \subset \{JE, E\}$.

Case (ii). It suffices to prove that $\{E\}$ is an ideal of \mathfrak{g} . Since $\{JE,E\}$ is an ideal of \mathfrak{I} , we can put $[X,E]=\lambda JE+\mu E$ for $X\in \mathfrak{I}$, where $\lambda,\mu\in R$. Then $\psi(JE)\neq 0,\,\psi(E)=0$ and $\eta(X,JE)=0$ yield $[X,E]=\mu E$ as in the case (i), which shows $[\mathfrak{I},\{E\}]\subset \{E\}$. Since \mathfrak{r} is commutative, we see $[\{F\},\{E\}]=\{0\}\subset \{E\}$. Therefore it suffices to show $[\{JF\},\{E\}]\subset \{E\}$. Put $[JF,E]=\lambda JE+\mu E+\nu F$, where $\lambda,\mu,\nu\in R$. Then, using $\psi(JE)\neq 0$, $\psi(E)=0,\,\psi(F)=0$ and $\eta(F,E)=0$, we have $[JF,E]=\mu E+\nu F$, which together with [E,F]=[JE,F]=0 and (K.3) implies $[JE,JF]=-\mu JE-\nu JF+W$, where $W\in \mathfrak{k}$. Therefore $\nu JF\in \mathfrak{k}+\{JE,E,F\}$, as $[JF,JE]\in \{JE,E,F\}$. Since the sum $\mathfrak{g}=\mathfrak{k}+\{JF\}+\{JE,E,F\}$ is direct, we see $\nu JF=0$, and hence $\nu=0$. This proves $[\{JF\},\{E\}]\subset \{E\}$.

Next, suppose $\dim \mathfrak{r}=2$. Since $\dim \mathfrak{g}/\mathfrak{l}=2$, we have $\dim \mathfrak{l}\cap \mathfrak{r}\neq 0$ by Lemma 6. If $\dim \mathfrak{l}\cap \mathfrak{r}=2$, then $\mathfrak{l}=\mathfrak{k}+\mathfrak{r}$ by Lemma 2. This shows that \mathfrak{r} is a two dimensional ideal satisfying the assertions of Proposition. Hence, in the following we may suppose $\dim \mathfrak{l}\cap \mathfrak{r}=1$. Then $\mathfrak{g}=\mathfrak{k}+J\mathfrak{r}+\mathfrak{r}$. For, putting $\mathfrak{g}'=\mathfrak{k}+J\mathfrak{r}+\mathfrak{r}$, we see $\dim_c \mathfrak{g}'/\mathfrak{k}=1$ or 2. If $\dim_c \mathfrak{g}'/\mathfrak{k}=1$, then $J\mathfrak{r}\subset \mathfrak{g}'=\mathfrak{k}+\mathfrak{r}$ by Lemma 2. This contradicts (K.1), since \mathfrak{l} is J-invariant. Therefore $\dim_c \mathfrak{g}'/\mathfrak{k}=2$, and hence $\mathfrak{g}=\mathfrak{g}'=\mathfrak{k}+J\mathfrak{r}+\mathfrak{r}$. Furthermore, we have $\psi\neq 0$ on \mathfrak{r} by Lemma 1. So we can select a basis of \mathfrak{r} as follows:

$$\mathfrak{r}=\{E,\,F\}$$
 , $\mathfrak{l}\cap\mathfrak{r}=\{E\}$

and

$$(\mathrm{iii})\quad \psi(E)=0,\quad \psi(F)
eq 0 \qquad \mathrm{or} \qquad (\mathrm{iv})\quad \psi(E)
eq 0,\quad \psi(F)=0 \; .$$

Then $g = \mathfrak{k} + \{JE, JF\} + \{E, F\}$, since $g = \mathfrak{k} + J\mathfrak{r} + \mathfrak{r}$.

In the case (iii), we can show in a method similar to that of (i) in the case of dim r=3 that $\{E\}$ is an ideal of g. Hence, in this case g contains a one dimensional ideal.

Finally we show that the case (iv) does not occur. Since $\{E\}$ is an ideal of I, we can put $[X,E]=\lambda E$ for $X\in I$, where $\lambda\in R$. Hence, from $\psi(E)\neq 0$ and $\eta(X,JE)=0$, we have [X,E]=0. In particular, we see $[E,\mathfrak{k}]=\{0\}$ and [JE,E]=0. From $\psi(E)\neq 0$, $\psi(F)=0$ and $\eta(E,F)=0$, it follows that $[JE,F]=\alpha F$ and $[JF,E]=\beta F$ for some $\alpha,\beta\in R$. Put $[JF,F]=\lambda E+\mu F$, where $\lambda,\mu\in R$. Then, putting $f=\operatorname{ad}(JF)-J\operatorname{ad}(F)$, we have $f(E)=\beta F$ and $f(F)=\lambda E+\mu F$. Noting that, for $X\in\mathfrak{g}$,

 $f(JX)\equiv Jf(X)\pmod{\mathfrak{k}}$ by (K.3), we see $f(JE)\equiv \beta JF$ and $f(JF)\equiv \lambda JE+\mu JF\pmod{\mathfrak{k}}$. These facts show $\mathrm{Tr}_{\mathfrak{g}/\mathfrak{k}}(\mathrm{ad}\,(JF)-J\,\mathrm{ad}\,(F))=2\mu.$ Since $0=\psi(F)=\mathrm{Tr}_{\mathfrak{g}/\mathfrak{k}}(\mathrm{ad}\,(JF)-J\,\mathrm{ad}\,(F))$ by (1.1), we obtain $\mu=0$, which implies $[JF,F]=\lambda E.$ By (2.2), η is definite on $\mathfrak{g}/\mathfrak{k}$. Therefore $0\neq 2\eta(F,F)=\psi([JF,F])=\lambda\psi(E)$, and hence $\lambda\neq 0$. Consequently, we have the following relations:

(2.8)
$$[JE,E]=0$$
 , $[JE,F]=\alpha F$, $[JF,E]=\beta F$, $[JF,F]=\lambda E$, $\lambda \neq 0$.

Now, by carrying out the same computation as in Shima [8, Proof of Lemma 4.1], we derive a contradiction. First, we show $\mathfrak{k}=\{0\}$. As indicated above, $[E,\mathfrak{k}]=\{0\}$. Let $W\in\mathfrak{k}$. Put $[W,F]=\mu E+\nu F$, where $\mu,\nu\in R$. Then $\psi(E)\neq 0$, $\psi(F)=0$ and (1.4) yield $[W,F]=\nu F$. From this, we obtain $\psi([JF,[W,F]])=\nu\psi([JF,F])=\lambda\nu\psi(E)$ and $\psi([JF,[W,F]])=\psi([JF,W],F])=-\nu\psi([JF,W],F])=-\nu\psi([JF,W],F])=-\nu\psi([JF,W],F])=0$. Therefore we have $2\lambda\nu\psi(E)=0$, and hence $\nu=0$ and [W,F]=0. Thus $[\mathfrak{k},\mathfrak{k}]=\{0\}$. Since $[\mathfrak{k},J\mathfrak{k}]\subset\mathfrak{k}$, $[\mathfrak{k},\mathfrak{k}]\subset\mathfrak{k}$ and $\mathfrak{k}=\{0\}$. Next, we show $2\alpha=\beta$. Using the Jacobi identity, (K.3) and $\mathfrak{k}=\{0\}$, we have

$$\begin{aligned} 0 &= [[JE, JF], F] + [[JF, F], JE] + [[F, JE], JF] \\ &= (\alpha - \beta)[JF, F] - \alpha[F, JF] = (2\alpha - \beta)[JF, F] = \lambda(2\alpha - \beta)E \;. \end{aligned}$$

Hence we see $2\alpha = \beta$. From this, (2.8) and (K.7), we have

$$\begin{split} 0 &= \rho([JE,F],JF) + \rho([F,JF],JE) + \rho([JF,JE],F) \\ &= \alpha \rho(F,JF) - \lambda \rho(E,JE) + (\beta - \alpha)\rho(JF,F) \\ &= (\beta - 2\alpha)\rho(JF,F) + \lambda \rho(JE,E) = \lambda \rho(JE,E) \;. \end{split}$$

This contradicts (K.6). Thus, Proposition has been proved.

3. **Proof of Theorem 1.** We keep our notations and assumptions in the previous section.

By restricting J and ρ to \mathbb{I} , we see that $(\mathbb{I}, \mathfrak{f}, J, \rho)$ is the Kähler algebra of the homogeneous Kähler manifold L/K. Let h' be the canonical hermition form of L/K. Then, putting $\eta'(X, Y) = h'_{\circ}(\pi_* X, \pi_* X)$ and $\psi'(X) = \operatorname{Tr}_{\mathbb{I}/\mathfrak{I}}(\operatorname{ad}(JX) - J\operatorname{ad}(X))$ for $X, Y \in \mathbb{I}$, we have (1.2), (1.3), (1.4) and (1.5) for the forms η' and ψ' .

Now, Theorem 1 is stated more precisely as follows:

THEOREM 1'. The homogeneous Kähler manifold L/K has zero Ricci curvature. Furthermore, if M is simply connected, then, by defining a

60 S. SHIMIZU

suitable G-invariant complex structure on G/L, the natural projection of G/K onto G/L is holomorphic.

PROOF. To begin with, we prove h'=0, which shows the first half of the theorem. By the proposition in the previous section, g contains a one dimensional ideal or a two dimensional commutative ideal r such that I = I + r. If g contains a two dimensional ideal satisfying the assertions of the proposition, then we see $\eta'=0$ by (1.2), (1.4) and the commutativity of r, and hence h'=0. Therefore we consider the case where there exists a one dimensional ideal $\{E\}$.

If $\psi(E) \neq 0$, then, using Lemmas 3, 4 and 5, we have $\mathfrak{g} = \{JE\} + \{E\} + \mathfrak{p}$ (direct sum), where $\{JE\}$, $\{E\}$, \mathfrak{p} are mutually orthogonal with respect to the form η , and η is positive definite on $\{JE\} + \{E\}$. By (2.7), we see $\mathfrak{l} \subset \mathfrak{p}$, and hence $\mathfrak{l} = \mathfrak{p}$, since $\dim \mathfrak{g}/\mathfrak{l} = \dim \mathfrak{g}/\mathfrak{p} = 2$. Therefore we have

$$(3.1) \quad \mathfrak{g} = \{JE\} + \{E\} + \mathfrak{l} \text{ (direct sum) }, \quad [E,\mathfrak{l}] = \{0\} \quad \text{and} \quad \operatorname{ad} (JE)\mathfrak{l} \subset \mathfrak{l} .$$

Let $X \in I$. Then $(\operatorname{ad}(JX) - J\operatorname{ad}(X))(E) = 0$ and $(\operatorname{ad}(JX) - J\operatorname{ad}(X))(JE) \equiv 0 \pmod{\mathfrak{k}}$ by (3.1) and (K.3). Using this fact and (3.1), we see

$$\psi(X) = \operatorname{Tr}_{{}_{\mathrm{f}}/{\mathrm{t}}}\left(\operatorname{ad}\left(JX\right) - J\operatorname{ad}\left(X\right)\right) = \operatorname{Tr}_{{}_{\mathrm{f}}/{\mathrm{t}}}\left(\operatorname{ad}\left(JX\right) - J\operatorname{ad}\left(X\right)\right) = \psi'(X)$$
.

Therefore $\psi = \psi'$ on \mathfrak{l} . From this and (1.2), we have $2\eta(X, X') = \psi([JX, X']) = \psi'([JX, X']) = 2\eta'(X, X')$ for $X, X' \in \mathfrak{l}$. Since $\eta = 0$ on \mathfrak{l} , we see $\eta' = 0$ on \mathfrak{l} , and hence h' = 0.

If $\psi(E)=0$, then $\{E\}\subset \mathfrak{l}$ by Lemma 1. Using (2.3) and (K.1), we have

$$\mathfrak{I} = \{JE\} + \{E\} + \mathfrak{k}.$$

We show $\psi'(E)=0$. Otherwise $[E,\mathfrak{k}]=\{0\}$ by Lemma 3 (a), and hence, by Lemma 3 (b), $[JE,\mathfrak{k}]=\{0\}$ with a suitable linear endomorphism J of g belonging to the Kähler algebra of M=G/K. Furthermore, we have $[JE,E]\neq 0$ by (3.2) (cf. Lemma 4). We may assume [JE,E]=E with a suitable $E\neq 0$. From these, it follows by Lemma 5 that $\eta(E,E)>0$. This contradicts $E\in \mathbb{I}$. Therefore, we see $\psi'(E)=0$. Using this fact, we have $2\eta'(E,E)=\psi'([JE,E])=0$, which implies $\eta'=0$ on \mathbb{I} by (3.2). Thus, h'=0 is proved.

Next, we prove that the natural projection of G/K onto G/L is holomorphic, if M is simply connected and if we define a suitable G-invariant complex structure on G/L. Since M is simply connected, K is connected, and hence so is L by the connectedness of L/K. Therefore,

the G-invariant complex structures on G/L are in a natural one-to-one correspondence with the linear endomorphisms \bar{J} of $\mathfrak{g} \pmod{\mathfrak{l}}$ satisfying the following properties (cf. [5, p. 217]):

$$\bar{J}\mathfrak{l}\subset\mathfrak{l}\;,\qquad \bar{J}^{2}\equiv-\mathrm{id}\;(\mathrm{mod}\;\mathfrak{l})\;,$$

$$[A, \bar{J}X] \equiv \bar{J}[A, X] \pmod{1},$$

$$(3.5) [\bar{J}X, \bar{J}Y] \equiv \bar{J}[\bar{J}X, Y] + \bar{J}[X, \bar{J}Y] + [X, Y] \pmod{1},$$

where $X, Y \in \mathfrak{g}$, $A \in \mathfrak{I}$. We show that the linear endomorphism J of \mathfrak{g} belonging to the Kähler algebra of M = G/K satisfies the above three properties. If this can be done, then it is easily seen that the natural projection of G/K onto G/L with the G-invariant complex structure corresponding to J is holomorphic.

It is clear that (K.1) and (K.3) imply (3.3) and (3.5), respectively. We show by using the proposition that (K.2) implies (3.4). If g contains a two dimensional commutative ideal \mathfrak{r} with $\mathfrak{l}=\mathfrak{k}+\mathfrak{r}$, then we see easily that (K.2) implies (3.4), since $[\mathfrak{r},\mathfrak{g}]\subset\mathfrak{r}\subset\mathfrak{l}$. Hence we consider the case where there exists a one dimensional ideal $\{E\}$.

If $\psi(E) \neq 0$, then $[E, \mathfrak{l}] = \{0\}$ and ad $(JE)\mathfrak{l} \subset \mathfrak{l}$ by (3.1). From this, we have $[A, JE] \equiv J[A, E]$ and $[A, J(JE)] \equiv J[A, JE] \pmod{\mathfrak{l}}$ for $A \in \mathfrak{l}$. Since $\mathfrak{g} = \{JE\} + \{E\} + \mathfrak{l}$ by (3.1), this implies (3.4).

If $\psi(E)=0$, then $\mathfrak{l}=\{JE\}+\{E\}+\mathfrak{k}$ by (3.2). Since $\{E\}$ is an ideal, we see $[E,JX]\equiv J[E,X]\pmod{\mathfrak{l}}$ for $X\in\mathfrak{g}$. This implies $[JE,JX]\equiv J[JE,X]\pmod{\mathfrak{l}}$, since $[JE,JX]-J[JE,X]\equiv J([E,JX]-J[E,X])\pmod{\mathfrak{l}}$ by (K.3). From these and from (K.2), we have (3.4). Thus, the theorem is established.

REMARK. By the above theorem, we see that a complex two dimensional connected and simply connected homogeneous Kähler manifold with degenerate and non-zero canonical hermitian form is a holomorphic fiber bundle whose base space is the unit disk or the Riemann sphere and whose fiber is the complex plane.

4. Known results and their consequence. Let M = G/K be a complex n-dimensional connected homogeneous Kähler manifold with the canonical hermitian form h, where G acts effectively on M. In the investigation of M, the form h plays an important role. Now, we state the known results about the structure of M.

When h is either definite or zero, the following hold:

(a) If the Ricci curvature of M is negative, then M is a homogeneous bounded domain in C^n .

- (b) If M has zero Ricci curvature, then M is a locally flat homogeneous Kähler manifold, and hence M is obtained by factoring C^n by some lattice (cf. [1, Theorem 1]).
- (c) If the Ricci curvature of M is positive, then G is compact and semi-simple, and hence M is a simply connected compact homogeneous Kähler manifold (see [7, Corollary]).

When h is non-degenerate and not definite, the following are valid:

- (d) Suppose that M is simply connected and that the signature of h is (2, 2(n-1)). Then, if either G is semi-simple or G contains a one parameter normal subgroup, M = G/K is a holomorphic fiber bundle whose base space is the unit disk and whose fiber is a homogeneous Kähler manifold of a compact semi-simple Lie group (see [8, Theorem 1]).
- (e) If $\dim_c M = 2$ and if the signature of h is (2, 2), then G is semi-simple or G contains a one parameter normal subgroup (see [8, Theorem 2]).

Using these results and Theorem 1' with its remark, we see that the types of complex two dimensional connected and simply connected homogeneous Kähler manifolds M are the following six ones (cf. [8, Section 5]):

- (i) Homogeneous bounded domains in C^2 . Hence M is $\{z \in C; |z| < 1\} \times \{z \in C; |z| < 1\}$ or $\{(z_1, z_2) \in C^2; |z_1|^2 + |z_2|^2 < 1\}$.
- (ii) Complex two dimensional compact hermitian symmetric spaces. Hence M is $P_1(C) \times P_1(C)$ or $P_2(C)$, where $P_n(C)$ is the complex n-dimensional projective space.
- (iii) A holomorphic fiber bundle whose base space is the unit disk and whose fiber is $P_1(C)$.
- (iv) A holomorphic fiber bundle whose base space is the unit disk and whose fiber is C.
- (v) A holomorphic fiber bundle whose base space is $P_1(C)$ and whose fiber is C.
 - (vi) C^2 .

From these, we obtain the following.

THEOREM 2. Let M be a connected homogeneous Kähler manifold of complex dimension two. If M contains no complex line, then M is a homogeneous bounded domain in \mathbb{C}^2 .

REMARK. It should be remarked that Shima [9] proved the following theorem:

Let M be a connected homogeneous Kähler manifold admitting a simply transitive solvable Lie group. Assume that M contains no com-

plex line. Then M is a homogeneous bounded domain.

REFERENCES

- D. V. ALEKSEEVSKII AND B. N. KIMEL'FEL'D, Structure of homogeneous Riemann spaces with zero Ricci curvature, Functional Anal. Appl. 9 (1975), no. 2, 97-102.
- [2] S. G. GINDIKIN, I. I. PJATECKII-SAPIRO AND E. B. VINBERG, Homogeneous Kähler manifolds, in "Geometry of Homogeneous Bounded Domains", Centro Int. Math. Estivo, 3 Ciclo, Urbino, Italy, 1967, 3-87.
- [3] J. HANO AND S. KOBAYASHI, A fibering of a class of homogeneous complex manifolds, Trans. Amer. Math. Soc. 94 (1960), 233-243.
- [4] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, Inc. New York, 1969.
- [5] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Interscience, New York, 1969.
- [6] L. Koszul, Sur la forme hermitienne canonique des espaces homogénes complexes, Canad. J. Math. 7 (1955), 562-576.
- [7] H. Shima. On homogeneous complex manifolds with negative definite canonical hermitian form, Proc. Japan Acad. 46 (1970), 209-211.
- [8] H. Shima, On homogeneous Kähler manifolds with non-degenerate canonical hermitian form of signature (2, 2(n-1)), Osaka J. Math. 10 (1973), 477-493.
- [9] H. SHIMA, Remarks on homogeneous Kähler manifolds, preprint.

MATHEMATICAL INSTITUTE TÔHOKU UNIVERSITY SENDAI, 980 JAPAN