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1. Introduction. Let X be a (real or complex) Banach space with
norm || -] and let B[X] denote the Banach algebra of all bounded
linear operators of X into itself with the usual operator norm |- ||z«
A family {L,;;ne N, ned} of operators in B[X] is called a linear
approximation process on X if for every fe X,

(1) lim || L,,(f) — fllx =0 uniformly in ve 4,

where N denotes the set of all natural numbers and 4 is an arbitrary
index set ([17]).

In [17] we studied the direct estimates of the rate of convergence
of L,,(f) to f (in the sense of (1)) for linear approximation processes
{L,; n € N, M € 4} of convolution operators or multiplier operators in B[X].
Here we determine the optimal rate of this convergence.

For this purpose, we introduce the following definition.

DEFINITION 1. Let & = {L,;; n€ N, v € 4} be a linear approximation
process on X. Suppose that there exists a family {4, ne N, ne 4} of
positive real numbers with lim,_. 6, ; = 0 uniformly in A€ 4, such that
every feX for which || L,,(f) — fllx =000, (n— o) uniformly in
M€ A is an invariant element of &, i.e., L, ,(f) = f for all ne N, nve 4,
and the set

S[X; Ll ={feX; ||L.,(f) — fllx =000, (n— o)
uniformly in A\ € 4}

contains at least one noninvariant element of <. Then & is said to

be saturated with order (4,,), and S[X;.&’] is called its Favard class
or saturation class.

REMARK 1. If, for a sequence {L,},.y of operators in B[ X] converg-
ing strongly to the identity operator, L,, = L, for all ne N, v e 4, then
this concept coincides with the usual one ([4; p. 434], cf. [2; p. 25], [8],
[15]), which was first introduced by Favard for summation methods of
Fourier series in a lecture in 1947 (cf. [7]). Nowadays there is a vast
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literature concerning saturation for various summation processes. Satur-
ation theory for summation processes of abstract Fourier series in a
Banach space is treated by Butzer, Nessel and Trebels [5] and by
Gopalan [8], and saturation behavior of approximation processes of
Voronovskaja-type operators in arbitrary Banach spaces is treated by
the author [16] (for detailed bibliographical comments one may refer

to [2], [3], [4], [6D).

The problem of saturation is to establish the existence of the
saturation order (0,;), and to characterize the saturation class S[X; <]
of a given linear approximation process .&~.

In this paper we study the problems of saturation for linear approxi-
mation processes & = {L, ;; n € N, » € 4} of multiplier operators in B[X].
These are discussed in the setting of asymptotic relations of Voronovskaja’s
type which characterize the saturation class S[X; <] in terms of relative
completions of Banach subspaces of X (cf. [2; Sec. 2.2], [4; Sec. 10.4]).

Consequently, we have the saturation theorem for linear approxi-
mation processes on X of convolution operators considered in [17]. We
also give applications to the approximation problem of various summation
processes of multiplier operators, which are induced by a general method
of summability in connection with families of infinite matrices of scalars.
This method includes the usual matrix summability, the F-summability
(the method of almost convergence) and the F,-summability of Lorentz
[11] (ef. [10], [14]), the A -summability of Mazhar and Siddigi [13] and
the .o7-summability of Bell [1] (cf. [12]).

2. Regularization processes. Here we introduce the notion of a
regularization process of operators, which may be an essential tool for
characterizing the saturation class of linear approximation processes in
question satisfying Voronovskaja-type conditions.

Let Z denote the set of all integers, and let & denote the set of
all sequences a = {a,};., of scalars. With the terminology as in [17]
(cf. [5]), let {P;};., be a total, fundamental sequence of mutually orthog-
onal projections in B[X]. Then with each fe X one may associate its
(formal) Fourier series expansion (with respect to {P;}) f ~ 37— P;(f).
An operator Ae B[X] is called a multiplier operator if there exists a
sequence a €.%” such that for every feX, A(f) ~>>_.a;P;,(f), and
the following notation is used:

A~3 aP;.

Let {T,;;te R}, R being the real line, be a family of operators in
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B[X] such that sup{|| T\ ||six; t € R} is finite and

(2) T,~ > exp(cit)P; (teR),

j=—o0

where 7 = {r;} is a sequence in .. We observe that in [17; Proposi-
tion 2] it is shown that the family {T,} is a strongly continuous group
of operators in B[X] with the infinitesimal generator G with domain
D(G) satisfying G(f) ~ >X5%_.. 7;P;(f) for every feD(G) and that if,
with the Cesaro mean operator g, = X7, {1 — |j|/(n + 1)}P; (of order
1), the sequence {o,} is uniformly bounded, i.e.,

3) sup |0 |sin < oo,

then D(G) ={feX; 9~ D5 _.7;P;(f) for some ge X}. Moreover, with
each function % ¢ L, (the Banach space of all 27-periodic, Lebesgue inte-

grable functions ¥ with the norm | k|,=(1/27) S” |k(t)|dt) and the iden-
tity operator Ie B[X], the convolution operator %4*Ic B[X] defined by

(4) k+I(f) =k+f = (1/2m) S_rk(t)Tt(f)dt (feX),
the integral being a Bochner integral, is a multiplier operator such that
(5) keI~ 3 kP Ky = (1/27:)8" k() exp (c;t)dt .

DEFINITION 2. Let M be a linear subspace of X and let % be a
family of operators in B[X]. A sequence {U,},.y of operators in B[X]
which commute with all operators in .7 is called a regularization pro-
cess on M for &7 if U, (X)C M for all ne N and lim, ... || U.(f) — fllx=
0 for every feX.

REMARK 2. Let M be a linear subspace of X which contains P;(X)
for each je Z, and let .o be a family of multiplier operators or con-
volution operators of the form (4) under the assumptions that {T,} is
strongly continuous and P,;T, = T,P; for all jeZ, te R instead of (2).
Let {U,}..y be a uniformly bounded sequence of multiplier operators
having the expansions U, ~ 37 _. &,(5)P; with £,(j) = 0 whenever |j| >
n, and lim,..&,(5) =1 for each je€Z. Then the sequence {U,} is a
regularization process on M for .&. Thus if (3) is satisfied, then {c,}
is a regularization process on M for .o7.

3. A saturation theorem. From now onlet ¥ = {L,;; ne€ N, e 4}
be a linear approximation process on X of multiplier operators having
the expansions
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Lo,~3 0,)P; meN, ed).

j=—o0

We set
Z'={jeZ,w,;(j) =1 for all neN, ned}

and always suppose Z' # Z. Then the following criterion will be useful
in deciding whether the saturation behavior occurs for .&~.

(S-1) There exists a family {6, ,; n € N, A € 4} of positive real numbers
with lim,..6,; = 0 uniformly in €4 and a sequence ¢ = {¢,};c,€ .S
with ¢; = 0 whenever j¢ Z’ such that for each je Z,

6) lim 6;%(w, (5) — 1) = ¢; uniformly in xe 4.
n—o0 !

PROPOSITION 1. Suppose & satisfies (S-1).

(i) If f and g are elements in X such that lim,_ . ||0:.5%(L,,(f)— f)—
dllx = 0 uniformly in N€ 4, then the Fourier series expansion of g is
given by g~ >7_w6;Pi(f). In case g =0 we have L, ,(f) = f for all
neN,MeA, i.e., fis an invariant element of & .

(ii) There exists a noninvariant element fo€¢ X of & such that
1 Los(f) = fillx = 0(,.) (n— o) uniformly in ne A,

PrROOF. The proof is essentially similar to that of Theorem 6.1 of
[56], and so we omit the details.

In view of Part (i) of Proposition 1, we introduce the following
subspaces of X associated with sequences in &:

Given a sequence v = {y;};c,€.5”, let W[X; ] denote the linear
subspace of X consisting of all fe X for which there exists an element
fye X such that fy ~ 37 . 4;P;(f). Note that fy is uniquely deter-
mined by f, since {P;} is total, and so the map Vy: f—fy defines a
closed linear operator of WI[X; ] into X. Furthermore, since P;X)cC
W[X; ] for each jeZ and {P;} is fundamental, W[X; ] is dense in X.
Obviously, (6) implies that for each fe P;X), j€Z,

lim ||0;5%(L, () — f) — Vo(f)|lx =0 uniformly in xe 4.
This relation suggests the introduction of the following definition.

DEFINITION 3. A family {A,;;ne N, xe 4} of operators in B[X] is
said to satisfy the Voronovskaja condition of type (a,; L) if there
exists a family {a,,;; n € N, \ € 4} of positive real numbers with lim, .. «, ;=
0 uniformly in ne4 and a linear operator L with domain D(L) and
range in X such that for every fe D(L)
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lim ||a,%(A,..(f) — f) — L(f) ||y =0 uniformly in ne4.

REMARK 3. If, for a sequence {4,},.y of operators in B[X], A,,=
A, for all ne N, ve 4, then this concept reduces to that due to the
author [16].

If M is a Banach subspace of X with norm | -||,, then its relative
completion, denoted by M, is the set of all fe X for which there exists
a sequence {f,},.n of elements in M such that sup,|f.||lx < = and
lim,_..||f. — fllx = 0. For the basic properties of such spaces, see [2; p.
14 ff.] and [4; Propositions 10.4.2 and 10.4.3]. Note that if V is a
closed linear operator with domain D(V) and range in X, then D(V)
becomes a Banach subspace of X under the norm ||-|,v defined by

| fllow: = [ Fllx + 1 V() lx for all feD(V).

PROPOSITION 2. Let &% ={A,;; neN,ved} be a family of oper-
ators in B[X] satisfying the Voronovskaja condition of type (a,; L),
and let fe X. Then we have: —

(i) If L is closed and fe D(L), then || A, .(f)—f|lx=0(a,,;) (n— )
uniformly in ;€ A.

(ii) If there exists a regularization process {U,},.y on D(L) for
7, then the fact that [ A,:(f) = fllx = O@.2) (n— o) uniformly in

X € 4 implies sup, || U.(f)|lowy < oo, thus fe D(L) if L is closed.

PrROOF. (i) Since .o satisfies the Voronovskaja condition of type
(a,1; L), for each ge D(L) there exists a natural number n, such that
sup {|| @ 4%(A,.29) — 9)llx; ® = M, N€ 4} is finite. Thus by the uniform
boundedness principle, there exists a constant C > 0 such that

(7) b A9 — gllx = Cllgllrw
for all n = n, Med and ge D(L). We now assume that f belongs to
D(L). Then there exists a sequence {f,.}nen of elements in D(L) and a
constant C’>0 such that ||f, |, <C’ for all me N and lim,, .. || fo.—fllx=
0. Replacing ¢ by f,. in (7), and letting m tend to infinity, we have
|A..:(f) — fllx = CC'a,,; for all n = n,, A€ 4 and so the assertion (i) is
proved.

(ii) Suppose that there exist a constant K >0 and a natural
number m, such that ||4,.:(f) — fllx £ Ka,,, for all m = m, and all \ ¢

A. Thus, since U,A, ;= A,,U,, we have

“a;.lk{Am,Z( Un(f)) - U’n(f)} ||X § H Un”B[X] Ha;}I(Am.Z(f) - f) ”X
= K| Uallstn »
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which yields || L(U,(f))|lx < K|| U, ||stx1, since U,(f) belongs to D(L) and
¥ satisfies the Voronovskaja condition of type (a,;; L). Consequently,
for all e N we have

1 U)oy = 1 Uu) Nlx + 1 LCU(NDx = U fllx + E) | Unllpezn
and so sup, |U.(f)|lpw is finite since the sequence {U,} is uniformly

bounded. Also, lim,... || U.(f) — fllx = 0. Hence f belongs to D/(\I‘:) if
L is closed. The proof is complete.

We are now in a position to establish the saturation theorem for .&~.

THEOREM 1. Suppose that & satisfies the Voromovskaja condition
of tyve (0, V,) for some ¢ = {@;};ez € with ¢; + 0 whenever j¢ Z'.
Then & is saturated with order (6,,), and WI[X;q¢|” C S[X; &) If,
furthermore, there exists a regularization process {U,}l..n on WI[X; ¢]
for 2, then S[X; £] = W[X;¢]” ={feX; || U.(f)wixa = OD)}.

ProoF. This follows from Propositions 1 and 2.

The following condition ensures that &~ will satisfy the Voronovskaja
condition:

(S-2) There exists a family {6,,; » € N, »n € 4} of positive real num-
bers with lim, .. 8,; = 0 uniformly in Me 4, a sequence ¢ = {g;};cz €.
and a linear approximation process {@,;» €N, v€ 4} on X of multiplier
operators having the expansions

(8) Qui~ 3 Taa Py (neN,ned)
such that
(9) 0:.53(@,,2(9) — 1) = 6;7,,2(5)

for all ne N, jeZ, ne A

PROPOSITION 8. Condition (S-2) implies that < satisfies the
Voronovskaja condition of type (6, V).

ProoF. Let fe W[X;¢]. Then by (8) and (9) we have
P;(0:53(Lni(f) — 1)) = 0:3(@,,2(5) — DPi(f) = 67,20 Pi(f)
= ¢;P(Q.:(f)) = P{(Vy(@Q.,:(1)) »
and consequently,
(10) 0n2(Ln,2(f) — f) = @ua(V(f))

for all e N, v e 4, since {P;} is total and V; commutes with all multi-
plier operators on W[X; ¢]. Thus, since {@,;} is a linear approximation
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process on X, (10) implies lim, ., || 6.5(L,(f)— f)— Vs(f)|lx = 0 uniformly
in A e 4, and the proposition is proved.

As an immediate consequence of Theorem 1 and Proposition 3, we
have the following.

COROLLARY 1. Suppose that & satisfies (S-2) with ¢; = 0 whenever
jeZ'. Then & is saturated with order (0,,, and W[X; ¢]” c S[X; &].
If, in addition, there exists a regularization process {U,},.x on W[X; ¢]
for 2, then S[X; £ = WIX; " = {f € X; | Up(f) lwtxsn = OL)}.

We need the following proposition in order to derive another char-
acterization of the saturation class.

PROPOSITION 4. Let &7 = {A, ;; m€ N, ne A} be a family of operators
iwn B[X] which commute with P; for each jeZ, and let {U,},n be a
uniformly bounded sequence of multiplier operators having the expan-
stons U, ~ D7 .. &,(5)P; with £,(j) = 0 whenever |j| > n. Suppose that
&7 satisfies the Voronovskaja condition of type (., ;; L) and that P (X)C
D(L) for each jeZ. Then the implications (a)=(b)=(c) hold for an
element fe X: ’

@ | 40i(F) = Fllx = Ol (n>c0)
uniformly in \ € 4,
(b) | 3 &L = 0w s

(e) | U)oy = OQ1) .

If, in addition, lim,_. &,(j) = 1 for each jeZ, and L is closed, then (c)
implies (a).

PrOOF. Since P; and A, ; commute, we have
U Anilf) = £) = 3 &0)PAniF) = 1)
= 3 64PN = PAY

and hence
| 3 e Ans P = PAOY|| S 11 Unlln | A = s

From this inequality we conclude that (a) implies (b), since {U,} is uni-
formly bounded and .97 satisfies the Voronovskaja condition of type
(a,.; L) with Pi(f)e D(L), jeZ.
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Next we have L(U,(f)) = 5 &,()LPAS)), and so
| U llows < 1 Uallaema 15 1 + 1|, 3 6 DLPAN

which proves that (b) implies (¢), since {U,} is uniformly bounded.

Suppose now that lim,_. &,(j) = 1 for each j€Z. Then {U,} becomes
a regularization process on D(L) for .. Thus, if L is closed, then
by Proposition 2 (¢) implies (a), and the proof is completed.

Proposition 4 yields the following additional characterization of the
saturation class of &~.

THEOREM 2. Suppose that & satisfies the Voronovskaja condition
of type (0., V;) for some ¢ = {p;};ez €. with ¢; + 0 whenever j¢ Z’,
and let {U,}..y be as in Proposition 4 with the additional assumption
that lim,_.&,(7) =1 for each jeZ. Then & is saturated with order
(0.2, and S[X; <] = W[X; ¢]” = V[X; {U.}, 6], where

3 0P| = o).

PrROOF. This follows from Theorem 1 and Proposition 4.

VIX; (U, 8l = {f e X;

As an immediate consequence of Theorem 2 and Proposition 3, we
have the following.

COROLLARY 2. Suppose that & satisfies (S-2) with ¢; = 0 whenever
jeZ', and let {U,} be as in Theorem 2. Then the conclusion of Theorem
2 holds.

In particular, the uniform boundedness of the Cesaro mean operators
o, gives the following.

THEOREM 3. Suppose that & satisfies the Voronovskaja condition
of type (0, Vi) for some ¢ = {p;};ez€ S with ¢; + 0 whenever j¢Z',
and (3) is satisfied. Then & is saturated with order (6,,), and

S[X; ] = WIX; ¢]” = V[X;{a.}, 4] .

COROLLARY 3. Suppose that & satisfies (S-2) with ¢; # 0 whenever

jeZ’', and (3) 18 satisfied. Then the conclusion of Theorem 3 holds.

4. Applications. Let {T,;tc R} and G be as in Section 2. For
r=20,1,2, ---, the operator G" is defined inductively by the relations
G =1 G =G,

D(G") = {f; fe D(G"™) and G"'(f) e D(G)}
and
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Gr(f) = G(Gr—l(f))’ fe D(Gr)r r= 11 27 Tt

In view of (4) and (5) all the results obtained in Section 38 are
applicable to linear approximation processes % = {k,,*I;ne N, e A}
on X, with %, ,€ L}, having the expansions

B+ I~ 3% KaiPsy KaiG) = (20 Fos(t) exp (z,8)dt .

In particular, we have the following.

THEOREM 4. Let {k,;;neN, e 4} be a family of functions in L,
such that

11) sup {||k.2ll; neN, ved} < o .
Suppose that for the family 2% the condition (S-2) holds with ¢={r7};c,
for some reN and t; + 0 whenever j¢Z', and that (3) is satisfied.
Then 27 is saturated with order (0,., and S[X; 2] = Df(\é’) = VI[X;
{o.}, {z3}].

Proor. Since {P;} is fundamental, the conditions (11) and (S-2)
imply that ¢ is a linear approximation process on X. By Proposition

2 of [17] and by induction on » we have G'(f) ~ 3.7 _.. 77P,;(f) for every
feD(G"), and

DG = {feX;g~'§wT§ ;(f) for some geX} ,

and so W[X;¢] = D(G") and V; = G", where ¢ = {r}}. Thus the desired
result follows from Corollary 3.

COROLLARY 4. Let {k,;} be as in Theorem 4 Euith the a@ditional
assumptions that each k., ; is non-negative and lim,_., {k, ,(0)—Re (k, ;(1))}=
0 untformly in N € A, where

£ = (1/27:)8" ko (De'dt (meN, jeZ, ned)
and Re (l?,l,z(l)) denotes the real part of IE,,J(l). ASuppose thgt for the
family 9% the condition (S-2) holds with 6, = k, ,(0) — Re (k,,(1)) and
¢ = {T7};jcz Sfor some reN and 7; #0 whene'vefrA jeZ’, amlA that (3) 1s
satisfied. Then 9 is saturated with order (k,0) — Re (k, (1)), and
S[X; %] = D(G) = V[X;{a.}, {z3}].

In view of the particular cases 7; = —ij and r = 2, we make the
following remark:

REMARK 4. Let {k,;;ne N, »€ 4} be a family of non-negative, even
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functions in L, satisfying k., ,(0) =1 for all ne N, v e 4, and lim,_...(1—
I?,L,l(l)) = 0 uniformly in ne 4, and let 7; = —ij, j€Z. Then for the
family 2", one has several conditions equivalent to (S-1) with 4, ,=1—
Ign,z(l) and ¢; = —j° That is, the following are equivalent:

(i) For each jeZ,

lim (k. .(5) — 1)/ — k, ,(1)) = —4* uniformly in ne 4 ;

(ii) (i) holds for 57 = 2;

(iii) Snkn,z(t) sin* (¢/2)dt = o(1 — IEM(l)) (m— o) uniformly in \ € 4;
0

(iv) For any fixed ¢ satisfying 0 < ¢ < 7,

lim | kadt = ol — k(1) (2 o)

n—oo

uniformly in )\ e 4.

The proof of these equivalences is essentially similar to that of
Theorem 3.8 in [6], and so we omit the details.

DEFINITION 4. Let B = {A"”; Axe 4} be a family of infinite matrices
A® = (@), »z0 Oof scalars. A sequence {f,} of elements in X is said to
be B-summable to f if

(12) lim S, a® f, = f uniformly in ne 4,
0

n—oo M=

where it is assumed that the series in (12) converge for each n and .

We shall now mention some examples.

1°) If, for some matrix A, A? = A for all e, then B-summa-
bility is just matrix summability by A. In particular, if for every e
A, A?® ig the unit matrix, then {f,} is B-summable to f if and only if
it converges to f.

(2°) Let {{g%},s0; ne 4} be a family of sequences of scalars such
that QP = >, ¢® + 0 for all n, n. Let

ad =q?,./QP for0<m=<n

13
(13) =0 form>mn.

Then we call the B-summability (&, ¢¥)-summability.

(8°) Let A be a subset of R. If each entry a{), is a non-negative
continuous function on /4 such that >2,a = 1 for each n and A\, then
we call the B-summability (W, a{l)-summability. The concrete examples
of this type are the following:
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A4c[0,1], al = <n>k’”(1 —A)"™ for0<m=<n
(14) m

=0 for m >n.
(15) AcC[0, ), al = exp (—nA)(n\)™/m! .

(4°) If 4 is the set of all non-negative integers and X is the
Banach space of all real or complex numbers, then B-summability reduces
to the method of summability considered by Bell [1] (cf. [12]), which
not only includes the F-summability (method of almost convergence)
and the F,-summability of Lorentz [11] but also includes the Az-summa-
bility of Mazhar and Siddigi [13].

DEFINITION 5. Let B be as in Definition 4. B is said to be regular
if it satisfies the following conditions:

(A-1) For each m =0,1, ---, lim,_...al = 0 uniformly in x e 4.

(A-2) lim,_. >%-,al® =1 uniformly in ) e 4.

(A-8) For each meN,ned, al =S olal| < o, and there exists
a natural number n, such that sup {a!?; n = n, N 4} < .

Note that if B is positive, i.e., as = 0 for all #, m, » and 33, al=
1 for every m, \, then conditions (A-2) and (A-3) already hold. For
instance, the matrices B defined by (13), (14) and (15), respectively, have
these properties.

The basic relationship between the regularity of B and B-summa-
bility is the following result which is a generalization of Theorem 2 of
[1] to an arbitrary Banach space setting.

PROPOSITION 5. A family of infinite matrices of scalars, B={(a);
€ A}, 18 regular if and only if it satisfies the following condition:
(A-4) FEach convergent sequence in X is B-summable to its limit.

ProoF. It is straightforward that if B is regular, then it satisfies
(A-4). Suppose now that (A-4) holds. Let ¢(X) denote the Banach space
of all convergent sequences {f,} of elements in X with norm ||{fn}|.cx,=
sup,, || f,,,||X Let f be a fixed non-zero element in X. For each j =
0,1,2, --+, define the sequence {f'} by f’ = f for m = j, and £ =0
for m+#j. Then lim,, ... =0, and so (A-4) implies 0=1lim,_., >\%_, a$?, ,f,”
lim, ., a) f uniformly in M e 4. Consequently, for each j =0,1,2,
we have lim,_. a{) = 0 uniformly in x € 4. Next we define the sequence
{ful by f.=f for all m, and so lim,..f, =/ Thus (A-4) im-
plies f=lim, ... >0 el f; = lim, .. 270 alf, uniformly in Ae 4, and so
lim,_. >\, ay) =1 uniformly in xe€4. Thus conditions (A-1) and (A-2)
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are proved.

Finally, we show (A-3). We first prove that for each neN,\e4,
a? < . Indeed, if a!®» = c for some » and A, then there exists a
natural number p and a sequence {¢;} of positive real numbers such that
lim; ..&; =0 and Z, pe |af)| = . Now, define the sequence {g,} by

g;=0for j=0,1,---, p—1, and g; =¢;sgnallf for j=p,p + 1, -
where sgnz = |z|/z for every scalar 2z 0, and sgn0 =0. Then We
have lim;...g; =0 and |37 ailg;llx = || fllx 255 l€;08}| = 0. This con-

tradicts the convergence of >, ,alg;,, Now, for each neN,ned we
define the transformation 7, ;: ¢(X)—X by ¥, ({fi}) = D50 aldfi. ,.is
clearly linear. Since

1T ({fDlx = E lasi |11 £illx = @ [{F} oo

for all {f;}ec(X), ¥,, is bounded and ||¥,;| < a®. Actually this
inequality is an equality. Indeed, let 2 be an element in X with ||&||,=

1. For each m =0,1,2, ---, we define the sequence {r{™} by h{™ =
sgnah for j=0,1,.---, m, and R =0 for j=m+ 1, m+2 ---.
Then we have lim;_. h""’ =0 and |[{{™}]||.xy = 1. Thus

”qfﬂ 2 ” > H Z a(l)h(m)

| =S lel,

which yields the desired result. Since B satisfies (A-4), for every {f;} e
¢(X) we have lim, . 7, ;{f;}) = lim;... f;, and by the uniform bounded-
ness principle there exists a natural number %, such that

sup{aP;n = n, ved} =sup {||T,..ll;m = n, ved} < =,

and (A-3) is proved. Therefore (A-4) implies (A-1), (A-2) and (A-3), and
the proof is complete.

If, for an infinite real or complex matrix A = (a,.), (@) = (Cm)
for all » e 4, then from Proposition 5 we obtain a generalization of the
classical theorem of Silverman-Toeplitz on the regularity of the method
of summability by A to an arbitrary Banach space setting. Let 0 <
a<b=<1. Then B={@al); a <\ =b}, al) being defined by (14), is
regular, and so by Proposition 5 it satisfies (A-4). Let 0 < ¢ <d < .
Then B = {(a¥); ¢ <\ =< d}, o, being defined by (15), is regular and
thus it satisfies (A-4).

Let {L,} be a uniformly bounded sequence of multiplier operators
‘in B[X] having the expansions

(16) L, ~ 3 LGP,
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and let B = {(a{); v € 4} be a family of infinite matrices of scalars such
that for each n, A, Sy |aih| < . For each n, » we define the operator
A, ; of X into itself by

1 A,; =3 aBL,,
which is a multiplier operator such that

(18) Ani~ 3 Ga@Ps s Caild) = 3088.30) -

Thus all the results obtained in Section 3 are applicable to linear approx-
imation processes .7 = {4, ;; n € N, » € 4} of multiplier operators defined
by (17), having the expansions (18) with (16). In particular, we have
the following.

THEOREM 5. Let {U,} be as in Theorem 2. Let {L,} be a uniformly
bounded sequence of multiplier operators in B[X] having the expansions
(16), and let B = {(ah); ne A} be a family of infinite matrices of nmon-
negative real mumbers such that for each m, N, 32 _,ald =1. Assume
that P+ Z, where P={je€Z;{,(j) =1 for all neN}. Suppose that
there exists a sequence {0,} of positive real numbers which is B-summable
to zero and a sequence ¢ = {§;};ez € with ¢; + 0 whenever j& P such
that C.(j) — 1 =0,¢; for all neN, jeZ. Then the family &7 is satu-
rated with order (0,,), where 0,; = > adf,, and

S[X; 7] = WIX; 91" = VIX;{U.}, ¢] .
PrOOF. For all ne N, ve 4 and all jeZ, we have
(19) Caa(g) — 1= 0,,.9;,

from which it follows that .o~ is a linear approximation process on X,
since {P;} is fundamental and

sup {|| 4,.;|lzxs e N, v e 4} < sup | L || sexn < oo .

Also, (19) implies that .o~ satisfies (S-2) with @, ; = I. Thus the desired
result follows from Corollary 2.

COROLLARY 5. Let {L,} be a uniformly bounded sequence of multi-
plier operators in B[X] having the expansions (16) with the additional
assumption that {,(5) = 0 whenever |j| > n, and let B be as in Theorem
5 with the additional assumption that it satisfies (A-1). Suppose that
there exists a sequence {0,} of positive real mumbers converging to zero
and a sequence ¢ = {§;}ic, €. with ¢; +# 0 whenever j¢ P, P being as
in Theorem 5, such that C.(j) —1=0,¢; for all neN and all j€Z.
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Then &7 is saturated with order (0,;), where 0,, = Da_,al0., and
S[X; 7] = W[X; ¢]” = VIX; {L.}, ¢].

Proor. Since B is regular, by Proposition 5 for X = R, {6,} is B-
summable to zero. Therefore the claim of the corollary follows from
Theorem 5.

Let {b,} be a sequence of functions in Lj. such that sup, ||b, |, < c°.
Then, for each n, » we have

(20) B.; = 3 a0, D) = ( 3y aib; )1,
=0 =0

which is a multiplier operator in B[X], and so all the results obtained
are applicable to linear approximation processes <& = {B, ;;n e N, \ € 4},
where each operator B, is defined by (20). In particular, in view of
Theorems 4 and 5, we have the following.

THEOREM 6. Suppose that (3) is satisfied and t; # 0 whenever j ¢ Q,
where

Q={1eZ;B.(9) =1 for all neN}, Q@+ Z
and

8.) = wzm|" bW exp ()it (meN,jez).
Let B be as in Theorem 5. Suppose that there exists a sequemce {0,} of
positive real numbers which is B-summable to zero such that for some

reN, B.(3) — 1 = p,7; for all ne N and all jeZ. Then & is saturated
with order (0,.), where p,; = S0 ahp,, and

SIX; 2] = DG") = VIX; 0.}, {3}] .

COROLLARY 6. Let {b,} be as above with the additional assumption
that each b, is non-negative. Suppose that (3) is satisfied and 7; % 0
whenever j¢Q, @ being as in Theorem 6.

(i) Let B as in Theorem 5. If the hypothesis of Theorem 6 is
satisfied with p, = 5,,(0) — Re (Bn(l)), then the conclusion of Theorem 6
holds.

(ii) Let B as in Corollary 5. If lim,_..p, =0, where p, = b,(0) —
Re (b,(1)) and for some 7€ N, B.(3) — 1 = p,7; for all ne N and all je
Z, then the conclusion of Theorem 6 holds.

REMARK 5. For each neN,ned let b,, = Do aib,. Then, apply-
ing Proposition 1 and Corollary 1 of [17], we have the following state-
ments (i) and (ii), which include the corresponding results of Remark 2
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of [17] for the almost convergence.

(i) If {b,;;neN,ved} is an approximate identity ([17; Definition
2]), then <# = {b,,*I; n € N, \» € 4} is a linear approximation process on X.

(ii) Suppose that B is positive and each b, is non-negative. If
{6,(0)} and {6,(0) — Re (b,(1))} are B-summable to one and zero, respec-
tively, then <Z is a linear approximation process on X. Furthermore,
applying Theorem 4 of [17] we have a quantitative version of (ii) which
estimates the rate of convergence for the methods of B-summability.

These results are applicable to the methods of B-summability of
the above-mentioned examples (1°), (2°) and (3°), respectively.

Now as examples of multiplier operators considered in Corollary 5,
let us mention the following:

(5°) The typical mean operator Rt of order £ > 0 is defined by

n

R; =23 {1 —(jl/(n + 1))}P;

%
(cf. [5]). Suppose that {R%:} is uniformly bounded and let A, ; be defined
by (17) with L, = R%. Then we have:

(i) Let B as in Theorem 5. If {1/(n + 1)°} is B-summable to zero,
then the family .o ={A, ;; n € N, » € 4} is saturated with order (C\n_, aih
(m + 1)), and S[X; o7 = W[X; {—[j}" = VIX; {R3}, {—15 ]

(ii) Let B as in Corollary 5. Then the conclusion of (i) holds.

(6°) Let 0 = {d,} be a sequence of positive real numbers and let
£ > 0. We define the operator S*® by

8,50 = (1/(0, + 1))(@.8, + R3) ,

where S, denotes the n-th partial sum operator, i.e., S, = >\, P;. It
is easily seen that

n

8,70 = 3, {1 = |517/((6, + L)(n + L)}P; ,

J=—n
which reduces to the arithmetic mean operator (S, + ¢,)/2 of S, and o,

for 6 = {1} and £ = 1. Statements analogous to parts (i) and (ii) of (5°)
may be derived for the sequences {S.*}.

REMARK 6. The Cesiro mean operator ¢f of order x> —1 is defined
by

n n ._|_

or = 1/AP) 3 AR Py, AP = < IC>
j=—n n

(cf. [5]). Obviously, o), =S, and ¢, =0,. Note that {o;} converges

strongly to I if and only if it is uniformly bounded.
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In view of Proposition 5, we make the following remark on Example
2°).

REMARK 7. Let {{¢¥}.s0; M€ 4} be a family of sequences of non-
negative real numbers such that ¢*>0 for all x4, and let B={(a®);
» € 4}, where each entry o, is defined by (13). Then the following are
equivalent:

(i) B is regular;

(ii) lim,...q?®/QY = 0 uniformly in )€ 4;

(iii) B satisfies (A-4).

By this result we see that lim, ... ||f, — f||x = 0 implies

WAS) 3 ALf; — 1| =0

uniformly in k€0, a], 0 < a < oo.

As another example of the application of Proposition 5, we consider
a modification of the Cesaro mean operators for sequences in X. Let
{f.} be a sequence of elements in X, and let

lim

n—co

Ci = (UAD) S AL, f; k> —1, n=0,1,2--.

Then, by Proposition 5, we conclude that lim,.. ||C; — f|lx =0 implies
lim,... ||Ci** — f|lx = 0 uniformly in pefa,b], 0 < a <b < . In parti-
cular, if >, f. = f, then lim,... C/ = f uniformly in p €[a, b].

Next we shall consider the case where X is a homogeneous Banach
subspace of Li,. For the definition and examples of such spaces, see
[17] (ef. [9; p. 14], [18; p. 206]). Defining the sequence {P,};., by P;(f)(t)=
f(j)ei”, it is obvious that {P;} is a total, fundamental sequence of
mutually orthogonal projections in B[X], since lim,..|c.(9) — gllx =0
whenever g belongs to X by [9; Theorems 2.11 and 2.12]. Consequently,
under this setting all the results obtained in this paper are applicable
to homogeneous Banach spaces X.

Besides, in connection with the methods of B-summability in homo-
geneous Banach subspaces X of L!. we recast Part (ii) of Remark 5 by
the test functions as follows:

Let B and {b,} be as in Part (ii) of Remark 5 and let wu,t) =1,
u,(t) = sint and wu,(t) = cos ¢ for all te R. Then the following are equi-
valent:

(i) {b,*f} is B-summable to f for every fe X;

(ii) {b,*u;} is B-summable to u; for j =0, 1, 2;

(ii) {6,(0)} and {b,(0) — Re (b,(1))} are B-summable to one and zero,
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respectively.

This immediately follows from [17; Theorem 5] and the equivalence
of (i) and (ii) extends King and Swetits [10; Theorem 5] on the almost
convergence for sequences of positive convolution integral operators on
C.., the Banach space of all 2z-periodic, real-valued continuous functions
on R, to the more general methods of B-summability in homogeneous
Banach subspaces X of Li..

Finally, we shall consider the case where X is a Hilbert space with
inner product ¢-,->. Let {¢,},», be a closed orthonormal system in X,
that is, a sequence of elements in X such that the linear subspace of
X spanned by {e,} is dense in X and (e, e,) = 0,. for all n, m =0,
where 0,, is Kronecker’s symbol. Defining the sequence {P;};., by
P,(f) = {f, e;ye; for j =0 and P;(f) =0 for j <0, it is seen that {P;}
is a total, fundamental sequence of mutually orthogonal projections in
B[X] (cf. [6; Remark in Sec. 2], [17; Remark 8], [19; Sec. 4 of Chapter
I}). Consequently, under this setting all the results obtained in this
paper are applicable to the saturation problems in Hilbert spaces X.

We now consider the Hilbert space L*(E) of all measurable, square
integrable functions on E, where E is a subset of R. Recall that the
inner product in this space is defined by

0y = | roeat  (f, ge LB .

We close with the following concrete examples of closed orthonormal
systems {e,},», in L*E).
(I) Jacobi system. Let E=[—1,1] and ¢ > —1, 3> —1. Let

e(t) = eP(t) = b PP(E), =n=0,1,2---,

where

plad — {(2?’& +a+B+DI(n+1DI(n+a+ B+ 1)}1/2
n 2a+ﬁ+1r(n 4+ a+ 1)1—,(n T+ B ¥ 1)

and P,*#(t) is the Jacobi polynomial (ef. [20; Chapter IV]):

pengy = S0 gye + )

Tt — orret + o)

2™ ! d
=3 (n ! a><n ’ é){(t = D2pi{(t + D2y .
j=o J n—=1J

The following particular selections a and B carry special names.
a =0, 8 =0: Legendre system.
a = —1/2, 8 = —1/2: Chebyshev system of the first kind.
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a =1/2, 3 = 1/2: Chebyshev system of the second kind.
a = B: Ultraspherical (Gegenbauer) system.
(II) Laguerre system. Let E =[0, ) and o« > —1. Let

e.(t) = e’(t) = {n!/['(a + n + L)} exp (—t/2)t*"L;"(¢) ,
where L{®(t) is the Laguerre polynomial (cf. [20; Chapter V]):

L&) = (1/n!) exp <t>t-“—$"—n{exp (—tytr+e)

= 3

J

(2% oyt
(III) Hermite system. Let E = R, and let
e, (t) = (2'n!) ™ exp (—t*/2)H, (1) ,
where H,(t) is the Hermite polynomial (cf. [20; Chapter V|):
T

=l {17/ — 2)D)eey

H,(t) = (—1)" exp (¢")

REMARK 8. The ultraspherical, Laguerre and Hermite systems in
L?(E) are similarly considered for various values of p, 1< p < - and
we omit the details (cf. [5], [8], [21]).

(IV) Bessel system. Let E = (0,1) and v > —1. Let

e.(t) = e (t) = (20)°J,(tnt)[,11(tn) »
where J,(t) is the Bessel function (of the first kind), i.e.,

JA0) = (tf2) 3 (=176 T + 5 + D))e/2)

and {g¢,} is the sequence of positive zeros of J,(t), arranged in ascend-
ing order of magnitude (cf. [20; Sec. 1.7.1], [21]). It should be noted
that the Bessel series converge in L?(0, 1) whenever v = —1/2 and 1<
P < o ([21; Theorem 4.1]), which establishes the convergence of Dini
series in the same spaces ([21; Theorem 7.1]).

(V) Haar system. Let E =[0,1] and let {¢,} be the sequence of
Haar functions on E defined as follows:

el(t) = XE(t) ’
ea(t) = 2 (Ao (2™Ht — 21 + 2) — Xpo(2™HE — 20 + 1)},
m=2"+jm=0,12---; j=12 --- 2",
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where X.(t) denotes the characteristic function of the interval F. It
should be noted that the Haar series converge in L?(0, 1) whenever
1< p< o (cf. [19; pp. 13-16]).

(VI) Walsh system. Let E = [0,1]. The Rademacher functions are
defined by

'ro(t) = x[o,l/z)(t) - x[1/2,1)(t): 7ot + 1) = 7)), r.(t) = "'o(znt) (n = 19 2, - -) .
Let {e,} be the sequence of Walsh functions on E defined as follows:

eo(t) =1 ’ en(t) = /rnl(t)rnz(t) o ,rnm(t) ’
M=2M L2 £ 2, > > e >, 20,

It should be noted that the Walsh system is orthogonal, fundamental
and total in L?(0, 1) whenever 1 < p < c (cf. [19; pp. 396-406]).
We make the following final remark.

REMARK 9. Let R? denote the d-dimensional Euclidean space with
elements x = (x,, x,, - - -, 2;) and inner product

Y =Y+ LYy + o+ XY -

Let T? be the d-dimensional torus and Z¢ the set of all lattice points
in R% i.e., the d-fold Cartesian product of Z. Let L*(T?%), 1<p <
and C(T?% be the Banach spaces of all p-th power Lebesgue integrable
functions and continuous functions on 7% which are 2r-periodic in each
coordinate variable with standard norms ||-||, and ||-||. defined by

{@em| 1r@Prdz}” and max{f@}eeTy,

respectively. Now it is easy to state a strict d-dimensional analogue
of homogeneous Banach subspaces of Li. (=L*T")) and L*(T%, 1 <» <
o and C(T?) are such spaces, respectively (cf. [18; p. 206]). Let X be
a homogeneous Banach space of L}(T?. Then the total, fundamental
sequence {P;};., of mutually orthogonal projections in B[X] is naturally
induced from the Fourier coefficients of f € X defined by

Fm) = (2n)—d§Td f(@) exp (—im-w)de, meZ?,

and we omit the details. Concerning the Fourier series expansions in
association with spherical harmonics in the spaces L?(S?), 1< p <
and C(S?%), where S¢ denotes the surface of the unit sphere in R? one
may consult [5; Sec. 8.4].
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