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1. Introduction. Let X be a (real or complex) Banach space with
norm || \\x and let B[X] denote the Banach algebra of all bounded
linear operators of X into itself with the usual operator norm IHUω
A family {Ln>x neN, XeA} of operators in B[X] is called a linear
approximation process on X if for every / e l ,

(1) lim || Ln,λ(f) - / \\x = 0 uniformly in X e A ,

where N denotes the set of all natural numbers and A is an arbitrary
index set ([17]).

In [17] we studied the direct estimates of the rate of convergence
of Lnyλ(f) to / (in the sense of (1)) for linear approximation processes
\Lnχ, n e N, X 6 A] of convolution operators or multiplier operators in B[X],
Here we determine the optimal rate of this convergence.

For this purpose, we introduce the following definition.

DEFINITION 1. Let ^f = {Ln>λ; n e N, X e A) be a linear approximation
process on X. Suppose that there exists a family {θntX; n e N, λ e A} of
positive real numbers with limre_oo θniλ — 0 uniformly in λ e Λf such that
every feX for which \\Lntλ(f) — f\\z = o(θntl) (%->oo) uniformly in
XeA is an invariant element of «Sf, i.e., Ln,λ(f) = f for all neN, XeA,
and the set

S[X;&] = | / e l ; \\LΛ.λ(f) -fh = O(θn,λ) (*->«,)

uniformly in XeA}

contains at least one noninvariant element of Sf. Then =5f is said to
be saturated with order (βntX), and S[X; £f] is called its Favard class
or saturation class.

REMARK 1. If, for a sequence {Ln}neN of operators in B[X] converg-
ing strongly to the identity operator, Lnιλ — Ln for all n e N, X e A, then
this concept coincides with the usual one ([4; p. 434], cf. [2; p. 25], [8],
[15]), which was first introduced by Favard for summation methods of
Fourier series in a lecture in 1947 (cf. [7]). Nowadays there is a vast
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literature concerning saturation for various summation processes. Satur-
ation theory for summation processes of abstract Fourier series in a
Banach space is treated by Butzer, Nessel and Trebels [5] and by
Gopalan [8], and saturation behavior of approximation processes of
Voronovskaja-type operators in arbitrary Banach spaces is treated by
the author [16] (for detailed bibliographical comments one may refer
to [2], [3], [4], [6]).

The problem of saturation is to establish the existence of the
saturation order (θn,λ), and to characterize the saturation class S[X; Jίf]
of a given linear approximation process ^f.

In this paper we study the problems of saturation for linear approxi-
mation processes £f = {Lntλ; n e N, X e Λ} of multiplier operators in B[X],
These are discussed in the setting of asymptotic relations of Voronovskaja's
type which characterize the saturation class S[X; Jzf] in terms of relative
completions of Banach subspaces of X (cf. [2; Sec. 2.2], [4; Sec. 10.4]).

Consequently, we have the saturation theorem for linear approxi-
mation processes on X of convolution operators considered in [17]. We
also give applications to the approximation problem of various summation
processes of multiplier operators, which are induced by a general method
of summability in connection with families of infinite matrices of scalars.
This method includes the usual matrix summability, the F-summability
(the method of almost convergence) and the i^-summability of Lorentz
[11] (cf. [10], [14]), the A^-summability of Mazhar and Siddiqi [13] and
the j^-summability of Bell [1] (cf. [12]).

2. Regularization processes. Here we introduce the notion of a
regularization process of operators, which may be an essential tool for
characterizing the saturation class of linear approximation processes in
question satisfying Voronovskaja-type conditions.

Let Z denote the set of all integers, and let Sf denote the set of
all sequences a = {aά}άGZ of scalars. With the terminology as in [17]
(cf. [5]), let {Pj}jez be a total, fundamental sequence of mutually orthog-
onal projections in 2?[-3Γ|. Then with each feX one may associate its
(formal) Fourier series expansion (with respect to {P,}) / ~ Σ?=-oo Pj(f)>
An operator AeB[X] is called a multiplier operator if there exists a
sequence aeS* such that for every / e l , A(f) ~ Σj°=-°° α, P, (/), and
the following notation is used:

Let {Tt;teR}, R being the real line, be a family of operators in
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B[X] such that sup {|| Tt \\BU1; t eR} is finite and

(2) Γ t ~ Σ

where τ = {r,-} is a sequence in ^ . We observe that in [17; Proposi-
tion 2] it is shown that the family {Tt} is a strongly continuous group
of operators in B[X] with the infinitesimal generator G with domain
D(G) satisfying G(f) ~ E ^ — τόPά(f) for every feD{G) and that if,
with the Cesaro mean operator σn = Σ*=-» U ~ I i l/(w + 1)}-Py (of order
1), the sequence {σn} is uniformly bounded, i.e.,

(3) sup | | σ J U x ] < oo ,
n

then D(G) = {feX g ~ ΣΓ=-~^Λ(/) for some g e l } . Moreover, with
each function k e 14 (the Banach space of all 2π-periodic, Lebesgue inte-

grable functions k with the norm ||A?||i = (l/27r) \ \k(t)\dt) and the iden-

tity operator IeB[X], the convolution operator k*IeB[X] defined by

( 4 ) jfc */(/) = fc * / = (1/27Γ) j * ^(ί) Γt(/)dί (/ 6 X) ,

the integral being a Bochner integral, is a multiplier operator such that

(5 ) ft * / ~ Σ ^ i » *i = (l/2π )Γ fc(ί) exp (
J

DEFINITION 2. Let M be a linear subspace of X and let <s*f be a
family of operators in B[X]. A sequence {Un}neN of operators in 2?[X]
which commute with all operators in Jϊf is called a regularization pro-
cess on M for s/ if [^(X) c M for all Λ 6 N and limn_ || Γ7n(/) - / | | x =
0 for every / e l

REMARK 2. Let M be a linear subspace of X which contains PS{X)
for each jeZ, and let J%f be a family of multiplier operators or con-
volution operators of the form (4) under the assumptions that {Tt} is
strongly continuous and PόTt — TtPό for all jeZ, teR instead of (2).
Let {Un}neN be a uniformly bounded sequence of multiplier operators
having the expansions Un — ΣΓ=-«ξn(J)Pj with ξn(j) = 0 whenever \j\>
n, and lim^oo ξn(j) = 1 for each j e Z. Then the sequence {Un} is a
regularization process on M for Jzf. Thus if (3) is satisfied, then {σn}
is a regularization process on ikf for

3. A saturation theorem. From now on let ^f — {Lnχ, neN,XeΛ}
be a linear approximation process on X of multiplier operators having
the expansions
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LnΛ ~ Σ MnMPj (neN,\eΛ).

We set

Z' = {j β Z; ωn,λ(j) = 1 for all w eiV, λ € A}

and always suppose Zf Φ Z. Then the following criterion will be useful
in deciding whether the saturation behavior occurs for Sf.

(S-l) There exists a family {θntλ; n e N, X e A} of positive real numbers
with lim^ooθn,λ = 0 uniformly in λ e i and a sequence ^ ^ ί ^ b e ^ e ^
with φj Φ 0 whenever j1 ί Z' such that for each j e Z,

( 6) lim θ~fλ(ωntλ(j) — 1) = ̂  uniformly in XeΛ .

PROPOSITION 1. Suppose =2f satisfies (S-l).
( i ) J/ / αwd g are elements in X such that lim^oo \\θnlλ(Lntλ(f)—f) —

g\\x = 0 uniformly in \eA, then the Fourier series expansion of g is
given by g ~ ΣΓ=-«> φjPj(f)- In case g = 0 we have LUfλ(f) = f for all
neN,XG A, i.e., f is an invariant element of Jίf.

(ii) There exists a noninvariant element foeX of ^f such that
\\Ln,x{f0) -/o|U = O(0n,j) (n-+oo) uniformly in XeA.

PROOF. The proof is essentially similar to that of Theorem 6.1 of
[5], and so we omit the details.

In view of Part (i) of Proposition 1, we introduce the following
subspaces of X associated with sequences in £f\

Given a sequence ψ = {ψj}jez^^* tet W[X; ψ] denote the linear
subspace of X consisting of all feX for which there exists an element
fψeX such that f+~ Σ*?=-~ψjPj(f). Note that f+ is uniquely deter-
mined by /, since {P5} is total, and so the map Vψ\f-^fψ defines a
closed linear operator of W[X; ψ] into X. Furthermore, since Pά{X) c
W[X; ψ] for each j eZ and {Py} is fundamental, W[X; ψ] is dense in X.
Obviously, (6) implies that for each feP, (X), jeZ,

l i m | | θ - ^ L U f ) ~ f ) - VΨ(J)\\x = 0 u n i f o r m l y inXeA.
n-»oo

This relation suggests the introduction of the following definition.

DEFINITION 3. A family {An>λ; n e N, X e A) of operators in B[X] is
said to satisfy the Voronovskaja condition of type (anχ, L) if there
exists a family {anχ, n e N, X e A) of positive real numbers with lim^oo antλ=
0 uniformly in XeA and a linear operator L with domain D(L) and
range in X such that for every feD(L)
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lim || a-\{Antl{f) - f) - L(f) \\x = 0 uniformly in λ e A .

REMARK 3. If, for a sequence {An}neN of operators in B[X], Antλ -
An for all n e N, X 6 A, then this concept reduces to that due to the
author [16].

If M is a Banach subspace of X with norm || \\M, then its relative
completion, denoted by M, is the set of all / e l for which there exists
a sequence {fn}neN of elements in M such that supJI/JI^ < oo and
lim^ooH/tt — f\\x = 0. For the basic properties of such spaces, see [2; p.
14 ff.] and [4; Propositions 10.4.2 and 10.4.3]. Note that if V is a
closed linear operator with domain D(V) and range in X, then D(V)
becomes a Banach subspace of X under the norm || |UF) defined by
II/IU, = H/llx + II V(f)\\x for all feD{V).

PROPOSITION 2. Let ^f = {Ana; neNfXeA} be a family of oper-
ators in B[X] satisfying the Voronovskaja condition of type (antλ; L),
and let /6-X". Then we have:

( i ) If L is closed and feD(L), then \\Anfλ(f)-f\\x = O(anfλ) (n->oo)
uniformly in λ e A,

(ii) // there exists a regularization process {Un}neN on D(L) for
Jϊf, then the fact that ||AntX(f) — f\\x = O(an,x) (n-^oo) uniformly in

xeA implies supn|| Un(f)\\D{L) < oo, thus feD(L) if L is closed.

PROOF. ( i ) Since s*f satisfies the Voronovskaja condition of type
(antλ;L)9 for each geD(L) there exists a natural number n0 such that
^p{\\oίήh(An,λ(g) - g)\\x; n ^ n0, XeA} is finite. Thus by the uniform
boundedness principle, there exists a constant C > 0 such that

(7) au\\AnM-0\\z
for all n ^ n0, XeA and geD(L). We now assume that /belongs to

D(L). Then there exists a sequence {/m}meiV of elements in D(L) and a
constant C > 0 such that | |/JU ( L>^C' for all meiVand lim^oo | | / m - / | | x =
0. Replacing g by fm in (7), and letting m tend to infinity, we have
\\An>λ(f) — /| |χ ίa CC'anyλ for all n^n0, XeA and so the assertion (i) is
proved.

(ii) Suppose that there exist a constant K > 0 and a natural
number m0 such that ||Am,λ(/) — f\\x <; ϋΓαTO,; for all m^m0 and all λ e
ΛL Thus, since ί7nAm>; = AmfλUn, we have

~ Un{f)}\\x tί || E^IUMHa^CA.^/) - f)\\z
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which yields \\L(Un(f))\\x ^ K\\ Un\\Bίxh since Un(f) belongs to D(L) and
j*f satisfies the Voronovskaja condition of type (an>λ; L). Consequently,
for all n e N we have

II Un(f)\\mL) = II Un(f)\\x + \\L{Un{f))\\x <; {\\f\\x + K)\\ Un\\BW ,

and so supn || Un{f) \\mL) is finite since the sequence {Un} is uniformly

bounded. Also, l i m ^ || Un(f) - f\\x = 0. Hence / belongs to D(X) if
L is closed. The proof is complete.

We are now in a position to establish the saturation theorem for £f.

THEOREM 1. Suppose that £f satisfies the Voronovskaja condition
of type (θn>λ; Vφ) for some φ = {φj}jeZ^^ with φό Φ 0 whenever jiZf.
Then Sf is saturated with order (θn>λ), and W[X; φΓ a S[X; £f\. If,
furthermore, there exists a regularization process {Un}n£N on W[X\ φ]
for £*>, then S[X; &\ = W[X; φΓ = {feX; \\ Un{f) \\wix,Φ, - 0(1)}.

PROOF. This follows from Propositions 1 and 2.

The following condition ensures that Jί? will satisfy the Voronovskaja
condition:

(S-2) There exists a family {θn,λ; n eJV, XeΛ} of positive real num-
bers with lim^oo θn>λ = 0 uniformly in XeΛ, a sequence Φ = {φj}jez^^
and a linear approximation process {Qnχ, n e N, X e A} on X of multiplier
operators having the expansions

(8) Qn,λ ~ Σ ynM)Pi (n eN,Xe A)

such that

(9) O-h(ωn,λ(J) ~ 1) - ΦHnM

for all neN, j eZ,XeA.

PROPOSITION 3. Condition (S-2) implies that J?f satisfies the
Voronovskaja condition of type (θn>λ; VΦ).

PROOF. Let fe W[X;φ]. Then by (8) and (9) we have

and consequently,

(10) θ-\{LUf) - f) - Q

for all n e N, X e A, since {Pά} is total and Vφ commutes with all multi-
plier operators on W[X; φ\. Thus, since {Qn,λ} is a linear approximation
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process on X, (10) implies l i m ^ \\θnh(Ln,λ(f)-f)- VΦ(f)\\x = 0 uniformly
in λ G A, and the proposition is proved.

As an immediate consequence of Theorem 1 and Proposition 3, we
have the following.

COROLLARY 1. Suppose that £f satisfies (S-2) with φ, Φ 0 whenever
j ί Z'. Then &> is saturated with order (θn,λ), and W[X; φΓ c S[X; £?].
If, in addition, there exists a regularization process {Un}neN on W[X; φ]
for J2f, then S[X; Sf\ = W[X; φ]~ = ί / e l ; || Un(f)\\πu«i = 0(1)}.

We need the following proposition in order to derive another char-
acterization of the saturation class.

PROPOSITION 4. Let jzf = {AnJ; neN,XeΛ} be a family of operators
in B[X] which commute with P5 for each jeZ, and let {Un}nBN be a
uniformly bounded sequence of multiplier operators having the expan-
sions Un ~ ΣΓ=-- ζn(J)Pj wtth ξn(j) = 0 whenever \j\ > n. Suppose that
£/ satisfies the Voronovskaja condition of type (θίn>λ; L) and that Pj(X)d
D (L) for each j e Z. Then the implications (a) ==* (b) ==> (c) hold for an
element fsX:

(a) \\AUf) - f\\z = O(anιλ) (n^oo)

uniformly in λ e Λ;

Σ £»(J)L(P,(/))|| = 0 ( 1 ) ;(b) Σ £ ( J ( , ( / | |

(c) \\Un(f)\\mL) = 0(1).

//, in addition, lim^oo ξn(j) — 1 for each j e Z, and L is closed, then (c)
implies (a).

PROOF. Since Pό and Amyλ commute, we have

Un(AUf) - f) = Σ ζn(j)PAAmΛf) - /)
j=-n

and hence

^ II uΛ\\Bίt]\\Amtλ{f) - /| | x .

From this inequality we conclude that (a) implies (b), since {Un} is uni-
formly bounded and j& satisfies the Voronovskaja condition of type
(antλ;L) with P3 (f)eD(L), jeZ.
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Next we have L(Un(f)) = Σ"=-6.0WW)). and so

II W ) I U , ^ II ΪUΛXIII/HX + II Σ ξni3)UPi(/))\\z ,
j

which proves that (b) implies (c), since {Un} is uniformly bounded.
Suppose now that lim,^ ξn(j) = 1 for each j e Z. Then {Un} becomes

a regularization process on D(L) for J^f. Thus, if L is closed, then
by Proposition 2 (c) implies (a), and the proof is completed.

Proposition 4 yields the following additional characterization of the
saturation class of Sf.

THEOREM 2. Suppose that Jίf satisfies the Voronovskaja condition
of type (θntλ; VΦ) for some <j> = {φj}jeZ£^ with φά Φ 0 whenever j ίZ',
and let {Un}ne]S be as in Proposition 4 with the additional assumption
that lim^oo ξn(j) = 1 for each j e Z. Then Jϊf is saturated with order
(θn,λ), and S[X; £?] = W[X; ψΓ = V[X; {Un}, φ], where

V[X; {Un), φ]=\feX; ± Ui)ΦόP^f) = 0(1)1 .

PROOF. This follows from Theorem 1 and Proposition 4.

As an immediate consequence of Theorem 2 and Proposition 3, we
have the following.

COROLLARY 2. Suppose that Sf satisfies (S-2) with φά Φ 0 whenever
j &Z', and let {Un}be as in Theorem 2. Then the conclusion of Theorem
2 holds.

In particular, the uniform boundedness of the Cesaro mean operators
σn gives the following.

THEOREM 3. Suppose that ^ satisfies the Voronovskaja condition
of type (θΛtλ; VΦ) for some φ — {φj}3ez^^ with φd Φ 0 whenever j $ Z',
and (3) is satisfied. Then Sf is saturated with order (θn>λ), and

S[X; £f\ = W[X; φ]~ = V[X; {σn}, φ] .

COROLLARY 3. Suppose that J?f satisfies (S-2) with φά Φ 0 whenever
j ί Z', and (3) is satisfied. Then the conclusion of Theorem 3 holds.

4. Applications. Let {Tt;teR} and G be as in Section 2. For
r = 0, 1, 2, , the operator Gr is defined inductively by the relations
G° = /, G1 = G,

D(G*) = {/; fe D(G^) and G"\f) e D(G)}

and
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G'(/) - G(G'-\f)), feD(G'), r = 1, 2, - .

In view of (4) and (5) all the results obtained in Section 3 are
applicable to linear approximation processes 3έΓ = {kn>λ*I; neN, XeΛ]
on X, with kntλ e L\π, having the expansions

Ka*I~ Σ κn,λ(3)Pjf *n,iU) = (1/2*0Γ Ktf) exp {τόt)dt .
j = -oo J-π

In particular, we have the following.

THEOREM 4. Let {kn>λ; neN, XeΛ} be a family of functions in L\z

such that

(11) sup {|| knA | | i ; n e N, λ e Λ) < oo .

Suppose that for the family 5ίΓ the condition (S-2) holds with φ={τrj}jez

for some r eN and τ5 Φ 0 whenever j $ Z', and that (3) is satisfied.

Then J T is saturated with order (θn λ), and S[X; 3T\ = D(Gr) = V[X;

R J , {τj}].

PROOF. Since {P̂  } is fundamental, the conditions (11) and (S-2)
imply that JsΓ is a linear approximation process on X. By Proposition
2 of [17] and by induction on r we have Gr(f) ~ Σ7=-oo τrjPά(f) for every
feD(Gr), and

D(G') = ί/eX;^ - Σ rjPX/) for some ge
I j

and so ΫΓ[JΓ; ̂ ] = D(Gr) and F^ = Gr, where φ = {r̂ }. Thus the desired
result follows from Corollary 3.

COROLLARY 4. Let {kn>λ} be as in Theorem 4 with the additional
assumptions that each kntλ is non-negative and lim^oo {ίcntλ(0) — Re (ίcntλ(l))} =
0 uniformly in λ e Λ, where

K,xU) = (l/2τr)(* kUt)e-iύtdt (n e N, j eZ,\eΛ)

and Re (fcn,;(l)) denotes the real part of ίcntλ(l). Suppose that for the

family J?Γ the condition (S-2) holds with θntX = kntλ(0) — Re (kntλ(l)) and

Φ = Mhez / o r s o m e re iV αweZ ry ^ 0 whenever j$Z', and that (3) is

satisfied. Then 3ίΓ is saturated with order (kn>λ(0) — Re (ίcntλ(l)))9 and

S[X; 3ίT\ = D(G') = V[X; {σn}, {τ;}].

In view of the particular cases τs = —ij and r = 2, we make the
following remark:

REMARK 4. Let {knχ, neN,xeΛ} be a family of non-negative, even
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functions in L\π satisfying ίcn>λ(0) = 1 for all neN, XeΛ, and limn_co(l —
kna(ΐ)) = 0 uniformly in XeΛ, and let τs = —ίj, jeZ. Then for the
family ^2Γ, one has several conditions equivalent to (S-l) with θn>λ = l —
kn>λ(ϊ) and ^ = — j 2 . That is, the following are equivalent:

( i ) For each j e Z,

Jim (£n,,(j) - 1)/(1 - fcnt2(l)) = - j 2 uniformly i n λ G i ;

(ii) (i) holds for j = 2;

(iii) ί \ j(t) sin4 (ί/2)dί = o(l - ίcn /I)) (n-+<*>) uniformly in XeΛ;
Jo

(iv) For any fixed d satisfying 0 < δ < π,

lim ί kn,λ(fi)dt = o(l - ftnιi(l)) (w-> - )

uniformly in XeΛ.

The proof of these equivalences is essentially similar to that of
Theorem 3.8 in [6], and so we omit the details.

DEFINITION 4. Let B = {AU);XeΛ} be a family of infinite matrices
AU) = (a{»l)n>mZ0 of scalars. A sequence {fn} of elements in X is said to
be -B-summable to / if

(12) lim Σ αS?i/» = / uniformly in X e Λ ,
n->oo m = 0

where it is assumed that the series in (12) converge for each n and λ.

We shall now mention some examples.
(1°) If, for some matrix A, AU) = A for all XeΛ, then jB-summa-

bility is just matrix summability by A. In particular, if for every X e
Λ, AU) is the unit matrix, then {fn} is 2?-summable to / if and only if
it converges to /.

(2°) Let {{qn^n^o'y XeΛ} be a family of sequences of scalars such
that Qlλ) = Σ?= o qf Φ 0 for all n, λ. Let

αίϋ - qϊLJQ? for 0 ^ m ^ n

= 0 for m > n .

Then we call the ί?-summability (JV, q
(3°) Let Λ be a subset of iί. If each entry α£U is a non-negative

continuous function on Λ such that Σ?=o α»y = 1 for each n and λ, then
we call the i?-summability (W, α^)-summability. The concrete examples
of this type are the following:
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A c [0,1], oίii = I% )xm(l - X)"-m for 0 ^ m ^ Λ
(14) W

= 0 for m > n .

(15) 4 c [0, oo), α& = exp (-n\)(n\)m/ml .

(4°) If /I is the set of all non-negative integers and X is the
Banach space of all real or complex numbers, then B-summability reduces
to the method of summability considered by Bell [1] (cf. [12]), which
not only includes the F-summability (method of almost convergence)
and the .FVsummability of Lorentz [11] but also includes the Arsumma-
bility of Mazhar and Siddiqi [13].

DEFINITION 5. Let B be as in Definition 4. B is said to be regular
if it satisfies the following conditions:

(A-l) For each m = 0, 1, , limn_oo aim = 0 uniformly in λ e A.
(A-2) limn_oo Σϊ=o a»i = 1 uniformly in XeA.
(A-3) For each n e N, X 6 Λ, α» > = ΣΞ=o | a»l [ < °°, and there exists

a natural number n0 such that sup {a^; n ^ nQf X e A} < oo.

Note that if B is positive, i.e., a{

n

λi ̂  0 for all n, m, λ and Σ Γ = o ^ =
1 for every n, λ, then conditions (A-2) and (A-3) already hold. For
instance, the matrices B defined by (13), (14) and (15), respectively, have
these properties.

The basic relationship between the regularity of B and ΰ-summa-
bility is the following result which is a generalization of Theorem 2 of
[1] to an arbitrary Banach space setting.

PROPOSITION 5. A family of infinite matrices of scalars, B={(aιnί);
Xe A}, is regular if and only if it satisfies the following condition:

(A-4) Each convergent sequence in X is B-summable to its limit.

PROOF. It is straightforward that if B is regular, then it satisfies
(A-4). Suppose now that (A-4) holds. Let c{X) denote the Banach space
of all convergent sequences {/m} of elements in X with norm ||{/«}||e(χ,=
sup m | | / m | | x . Let / be a fixed non-zero element in X. For each j =
0,1, 2, , define the sequence {/£}} by f^ = / for m = j, and fϋ] = 0
for mΦj. Then l i m ^ / j / ^ 0 , and so (A-4) implies O ^ i m ^ Σ ϊ - o α & Λ ^
lim^ooα^/ uniformly in XeA. Consequently, for each j = 0, 1, 2, •••,
we have limre_ooα»y = 0 uniformly in XeA. Next we define the sequence
{/J by fm=f for all m, and so l i m ^ / m = / . Thus (A-4) im-
plies / = limn^ooΣ?=oαni/i = limn_o» Σ?=o α»i/> uniformly in \eΛ9 and so
limn_>ooΣ?=oα$ = 1 uniformly in XeA. Thus conditions (A-l) and (A-2)
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are proved.
Finally, we show (A-3). We first prove that for each neN,XeΛ,

a{n] < oo. Indeed, if α^ = oo for some n and λ, then there exists a
natural number p and a sequence {ε5} of positive real numbers such that
lim^oo e3- = 0 and Σ?=* εd \ α$ | = oo. Now, define the sequence {gd} by
gάf = 0 f or j = 0,1, , p - 1, and gά = e, sgn α # / f or j = py p + 1,
where sgn 2 = \z\/z for every scalar z Φ 0, and sgn 0 = 0. Then we
have lim^oo gά = 0 and || ΣJU <• 0; ||* = II / IU Σj=P I Qj< I = °°. This con-
tradicts the convergence of Σ~=o α /ffy Now, for each ^ 6 iV, λ 6 ̂ 1 we
define the transformation yn>ji: c(X)-+X by ^^({/y}) = Σ?=oαίy/y. ^,^ is
clearly linear. Since

ll*..2({Λ})llz ^ Σ Klll/ilU ^ αίίΊlίΛϊlUx)

for all {/yje^l), S ^ is bounded and | |?"n f i | | ^ α^. Actually this
inequality is an equality. Indeed, let h be an element in X with ||Λ||Z =
1. For each m = 0,1, 2, •••, we define the sequence {/̂ m)} by h^ =
sgn αίjfe for j = 0,1, , m, and h^ = 0 for j = m + 1, m + 2,
Then we have lim^cofc^ = 0 and ||{^m)}||c(χ) = 1. Thus

3=0* a | 1 * — - x ^o

which yields the desired result. Since B satisfies (A-4), for every {/,-} e
c(X) we have limn_oo Ψn,λ({fi}) — linii-oo //, and by the uniform bounded-
ness principle there exists a natural number n0 such that

sup{alί]; n^no,xeΛ} = sup {\\Ψnti\\;n^ no,XeΛ} < 00 ,

and (A-3) is proved. Therefore (A-4) implies (A-l), (A-2) and (A-3), and
the proof is complete.

If, for an infinite real or complex matrix A — (αnm), (α»i) = (αnm)
for all XeΛ, then from Proposition 5 we obtain a generalization of the
classical theorem of Silverman-Toeplitz on the regularity of the method
of summability by A to an arbitrary Banach space setting. Let 0 <
a < b ^ 1. Then B = {(αiϊ); α ^ λ ^ 6}, α& being defined by (14), is
regular, and so by Proposition 5 it satisfies (A-4). Let 0 <; c < d < 00.
Then B = {(a{

n

λi); c<*X<Ld}, a^m being defined by (15), is regular and
thus it satisfies (A-4).

Let {Ln} be a uniformly bounded sequence of multiplier operators
in B[X] having the expansions

(16) Ln ~ Σ
i
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and let B = {(αϊi); XeΛ} be a family of infinite matrices of scalars such
that for each n, λ, Σm=o I α«» I < °° - For each n, λ we define the operator
Antλ of X into itself by

(17) An,λ =
m=0

which is a multiplier operator such that

(18) An,x ~ Σ C.,i(i)Pi , C..i(i) = Σ α«i
j 0Σ

Thus all the results obtained in Section 3 are applicable to linear approx-
imation processes stf — {Antλ; neN,XeΛ} of multiplier operators defined
by (17), having the expansions (18) with (16). In particular, we have
the following.

THEOREM 5. Let {Un} be as in Theorem 2. Let {Ln} be a uniformly
bounded sequence of multiplier operators in B[X] having the expansions
(16), and let B = {((&««); λ 6 Λ} be a family of infinite matrices of non-
negative real numbers such that for each n, λ, ΣS=o«im = l Assume
that P Φ Z, where P = {j e Z; ζn(j) = 1 for all neN}. Suppose that
there exists a sequence {θn} of positive real numbers which is B-summable
to zero and a sequence φ = {φj}jez^^ with φά Φ 0 whenever j&P such
that ζn(j) — 1 = θnφd for all neN, j eZ. Then the family Jzf is satu-
rated with order (θntλ), where θn>λ = Σm=o αim#TO, and

S[X; &\ = W[X; <fΓ = V[X; {Un}, φ] .

PROOF. For all n e JV, λ e A and all j 6 Z, we have

(19) ZnM ~ 1 = θ^φi ,

from which it follows that J ^ is a linear approximation process on X,
since {Pj} is fundamental and

sup {|| AnA||s[x]; n e JV, λ e Λ) ^ sup | | L n | | B [ X ] < oo .

Also, (19) implies that J ^ satisfies (S-2) with Qn>λ = I. Thus the desired
result follows from Corollary 2.

COROLLARY 5. Let {Ln} be a uniformly bounded sequence of multi-
plier operators in B[X] having the expansions (16) with the additional
assumption that ζn(j) = 0 whenever \j\ > n, and let B be as in Theorem
5 with the additional assumption that it satisfies (A-l). Suppose that
there exists a sequence {θn} of positive real numbers converging to zero
and a sequence φ = {φj}jez^^ with φ5φ 0 whenever j$P, P being as
in Theorem 5, such that ζn(j) — 1 = θnφά for all neN and all jeZ.
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Then Jzf is saturated with order (θntλ), where θn λ — Σ«=o
S[X; J ^ ] = W[X; φΓ = V[Z; {Ln}, φ].

PROOF. Since B is regular, by Proposition 5 for X = R, {θn} is B-
summable to zero. Therefore the claim of the corollary follows from
Theorem 5.

Let {bn} be a sequence of functions in L\π such that supn ||6n||i < °°.
Then, for each n, λ we have

(20) Bn>λ = Σ αίί|(δy * /) = ( Σ *ϊ}h ) * I f

which is a multiplier operator in B[X], and so all the results obtained
are applicable to linear approximation processes & = {Bnjλ; neN,XeΛ},
where each operator Bnλ is defined by (20). In particular, in view of
Theorems 4 and 5, we have the following.

THEOREM 6. Suppose that (3) is satisfied and τ5 Φ 0 whenever j $Q9

where

Q = {je Z; βn(j) = 1 for all neN}, QΦZ

and

βn(j) = (l/2;r) Γ bn(t) exp (zjt)dt (n eNJeZ).
J-7Γ

Let B be as in Theorem 5. Suppose that there exists a sequence {pn} of
positive real numbers which is B-summable to zero such that for some
r 6 N, βn(j) — 1 = pnτ) for all neN and all j e Z. Then & is saturated
with order (pnti), where pn>λ = Σ ϊ = 0 a{

n

xlpm, and

S[Z; &f\ = D(Gη = V[X; {σn}, {τ;}] .

COROLLARY 6. Let {bn} be as above with the additional assumption
that each bn is non-negative. Suppose that (3) is satisfied and τ5 Φ 0
whenever j £ Q, Q being as in Theorem 6.

( i ) Let B as in Theorem 5. // the hypothesis of Theorem 6 is
satisfied with pn = Sn(0) — Re (6n(l)), then the conclusion of Theorem 6
holds.

(ii) Let B as in Corollary 5. If lim^oo^ = 0, where pn — 6n(0) —
Re (6n(l)) and for some reN, βn(j) — 1 = ρnτ

r

5 for all neN and all j e
Z, then the conclusion of Theorem 6 holds.

REMARK 5. For each neN, XeΛ let bn>λ = Σϊ=oa^J>m. Then, apply-
ing Proposition 1 and Corollary 1 of [17], we have the following state-
ments (i) and (ii), which include the corresponding results of Remark 2
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of [17] for the almost convergence.
( i ) If {bnyλ; neN,XeΛ} is an approximate identity ([17; Definition

2]), then & = {bn>λ*I; n eN, λ e A) is a linear approximation process on X.
(ii) Suppose that B is positive and each bn is non-negative. If

{bn(0)} and {δn(0) — Re (6n(l))} are I?-summable to one and zero, respec-
tively, then & is a linear approximation process on X. Furthermore,
applying Theorem 4 of [17] we have a quantitative version of (ii) which
estimates the rate of convergence for the methods of .B-summability.

These results are applicable to the methods of j?-summability of
the above-mentioned examples (1°), (2°) and (3°), respectively.

Now as examples of multiplier operators considered in Corollary 5,
let us mention the following:

(5°) The typical mean operator Rκ

n of order K > 0 is defined by

(cf. [5]). Suppose that {Rκ

n} is uniformly bounded and let Antλ be defined
by (17) with Lm = ift. Then we have:

( i ) Let B as in Theorem 5. If {l/(n + 1)*} is 5-summable to zero,
then the family Jϊf = {An>λ; n e N, X e Λ} is saturated with order (ΣS=o α£5ί/
(m + 1)0, and S[X; j * \ = W[X; {-| i l ' ϊΓ = V[X; {Rκ

n}, {-\j\*}].
(ii) Let B as in Corollary 5. Then the conclusion of (i) holds.
(6°) Let d = {δn} be a sequence of positive real numbers and let

K > 0. We define the operator S^κ) by

S» -> = (l/(δn + l))(3nSn + Bi) ,

where Sn denotes the w-th partial sum operator, i.e., Sn = Σ*=-»-Pi It
is easily seen that

S ^ = ±{1- \j\</((8n + 1)(Λ + 1Y)}PJ ,

which reduces to the arithmetic mean operator (Sn + σn)/2 of Sn and σn

for 3 = {1} and K = 1. Statements analogous to parts (i) and (ii) of (5°)
may be derived for the sequences {Siδu)}.

REMARK 6. The Cesaro mean operator σκ

n of order κ>— 1 is defined
by

in + K

(cf. [5]). Obviously, σ°n = Sn and σi = σn. Note that {σκ

n} converges
strongly to I if and only if it is uniformly bounded.
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In view of Proposition 5, we make the following remark on Example
(2°).

REMARK 7. Let {{g^}^; λeΛ} be a family of sequences of non-
negative real numbers such that qoλ)>O for all XeΛ, and let JB = {(αiU);
XeΛ}, where each entry a\H is defined by (13). Then the following are
equivalent:

( i ) B is regular;
(i i) lim^oo q{

n

λ)/Qίλ) = 0 uniformly in XeΛ;
(iii) B satisfies (A-4).

By this result we see that limn_oo | |/n — f\\x — 0 implies

)±
uniformly in tc e (0, a], 0 < a < °o.

As another example of the application of Proposition 5, we consider
a modification of the Cesaro mean operators for sequences in X. Let
{fn} be a sequence of elements in X, and let

± A ^ 3 fjf * > - 1 , n = 0 , l , 2 - - .
i=o

Then, by Proposition 5, we conclude that lim^oo \\C£ — f\\x = 0 implies
lim^oo ||Cί+ / ϊ - f\\x = 0 uniformly in p 6 [α, 6], 0 < a < b < oo. In parti-
cular, if Σ £ U Λ = /, then lim^oo C£ = f uniformly in p e [α, 6].

Next we shall consider the case where X is a homogeneous Banach
subspace of L\π. For the definition and examples of such spaces, see
[17] (cf. [9; p. 14], [18; p. 206]). Defining the sequence {P,},^ by P i(/)(ί) =
f(j)eijt> it is obvious that {P5 } is a total, fundamental sequence of
mutually orthogonal projections in B[X], since lim^oo \\σn(g) — g\\x — 0
whenever # belongs to X by [9; Theorems 2.11 and 2.12]. Consequently,
under this setting all the results obtained in this paper are applicable
to homogeneous Banach spaces X.

Besides, in connection with the methods of i?-summability in homo-
geneous Banach subspaces X of L\π we recast Part (ii) of Remark 5 by
the test functions as follows:

Let B and {bn} be as in Part (ii) of Remark 5 and let uQ(t) = 1,
uλ(t) = sin t and u2(t) = cos t for all t e R. Then the following are equi-
valent:

( i ) {&«*/} is J5-summable to / for every / e l ;
(i i) {bn * Uj} is B-summable to uά for j = 0, 1, 2;
(iii) {bn(0)} and {bn(0) — Re (£„(!))} are JB-summable to one and zero,
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respectively.
This immediately follows from [17; Theorem 5] and the equivalence

of (i) and (ii) extends King and Swetits [10; Theorem 5] on the almost
convergence for sequences of positive convolution integral operators on
C2Jr, the Banach space of all 2π-periodic, real-valued continuous functions
on R, to the more general methods of J?-summability in homogeneous
Banach subspaces X of L\π.

Finally, we shall consider the case where X is a Hubert space with
inner product <•,•>. Let {en}n^0 be a closed orthonormal system in X,
that is, a sequence of elements in X such that the linear subspace of
X spanned by {en} is dense in X and (en, em} — δn>m for all n, m ^ 0,
where δn,m is Kronecker's symbol. Defining the sequence {Pj}jez by
p.(/) = </f eά)eά for j ^ 0 and Ps(f) = 0 for j < 0, it is seen that {Ps}
is a total, fundamental sequence of mutually orthogonal projections in
B[X] (cf. [5; Remark in Sec. 2], [17; Remark 8], [19; Sec. 4 of Chapter
I]). Consequently, under this setting all the results obtained in this
paper are applicable to the saturation problems in Hubert spaces X.

We now consider the Hubert space L\E) of all measurable, square
integrable functions on E, where E is a subset of R. Recall that the
inner product in this space is defined by

</, 9> = ί f(tW)dt (/, g 6 L\E)) .
JE

We close with the following concrete examples of closed orthonormal
systems {en}n^0 in L\E).

( I ) Jacobi system. Let E = [ — 1, 1] and a > — 1 , β > — 1 . Let

en(t) = eίa'β\t) = W:-»Pi*>fi\t), n = 0, 1, 2, ,

where

hi«tβ) = j (2n + a + β + ΐ)Γ(n + l)Γ(n + a + β + 1) | 1 /

I 2a+β+1Γ(n + a + l)Γ(n + β + 1)

and Pi° β)(t) is the Jacobi polynomial (cf. [20; Chapter IV]):

Pir>»(t) = t ^ α t)-«(i + t)-βt α t)(i + t)
2nnl dtn

- ty+a(i

n -
The following particular selections a and β carry special names.
a = 0, β = 0: Legendre system.
α = —1/2, /3 = —1/2: Chebyshev system of the first kind.
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a = 1/2, β = 1/2: Chebyshev system of the second kind.
a = β: Ultraspherical (Gegenbauer) system.

(II) Laguerre system. Let E = [0, oo) and α > — 1. Let

en(ί) = βiβί(ί) - {nl/Γ(a + n + ΐ)Y»exp(-tl2)r'*L<*\t) ,

where L(^\t) is the Laguerre polynomial (cf. [20; Chapter V]):

» /% + a

= Σ .
(III) Hermite system. Let E = R, and let

βn(ί) = (2^!)-1/2π-1/4exp(-f/2)Jff7l(ί) ,

where fΓn(ί) is the Hermite polynomial (cf. [20; Chapter VJ):

Hn(t) = (- l) exp (f)- | l- exp (-ί2)

= w! E ' K - I W O ' ! ^ ~ 2i)!)}(2t)"-" .

REMARK 8. The ultraspherical, Laguerre and Hermite systems in
LP(E) are similarly considered for various values of p, 1 <; p < oo and
we omit the details (cf. [5], [8], [21]).

(IV) Bessel system. Let E = (0, 1) and v > - 1 . Let

en(t) = e?{t) = (2ty>JM)/J»+M ,

where Ju(t) is the Bessel function (of the first kind), i.e.,

and {μj is the sequence of positive zeros of Jv(t)f arranged in ascend-
ing order of magnitude (cf. [20; Sec. 1.7.1], [21]). It should be noted
that the Bessel series converge in Lp(0, 1) whenever v ^ —1/2 and 1 <
p < oo ([21; Theorem 4.1]), which establishes the convergence of Dini
series in the same spaces ([21; Theorem 7.1]).

(V) Haar system. Let E = [0, 1] and let {en} be the sequence of
Haar functions on E defined as follows:

en(t) = 2™/2{%[0,1)(2-+1£ - 2n + 2) - %[0,χ)(2m+1ί - 2n + 1)} ,

(w = 2* + i, m = 0, 1, 2, •; j = 1, 2, , 2") ,
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where XF(t) denotes the characteristic function of the interval F. It
should be noted that the Haar series converge in Lp(0, 1) whenever
1 ^ p < oo (cf. [19; pp. 13-16]).

(VI) Walsh system. Let E = [0, 1]. The Rademacher functions are
defined by

Let {en} be the sequence of Walsh functions on E defined as follows:

eo(t) = 1 , en(t) = rni(ί)rna(ί) rnjt) ,

n = 2ni + 2*2 + + 2n™ , n, > w2 > > nm ^ 0 .

It should be noted that the Walsh system is orthogonal, fundamental
and total in Lp(0, 1) whenever 1 ^ p < oo (cf. [19; pp. 396-406]).

We make the following final remark.

REMARK 9. Let Rd denote the d-dimensional Euclidean space with
elements x = (xl9 x2, , xd) and inner product

x' y — XχVi + KM* + + xdyd .

Let Td be the cί-dimensional torus and Zd the set of all lattice points
in Rd, i.e., the d-fold Cartesian product of Z. Let Lp(Td), 1 <: p < oo
and C{Td) be the Banach spaces of all p-th power Lebesgue integrable
functions and continuous functions on Γ^ which are 2π-periodic in each
coordinate variable with standard norms || ||p and || ||oo defined by

| / ( ^ ) | ^ | V P and max{|/(^) |;^eΓ d},

respectively. Now it is easy to state a strict d-dimensional analogue
of homogeneous Banach subspaces of L\π (^L^Γ1)) and Lp(Td), 1 <; p <
oo and C(Td) are such spaces, respectively (cf. [18; p. 206]). Let X be
a homogeneous Banach space of L\Td). Then the total, fundamental
sequence {Pj}jez of mutually orthogonal projections in B[X] is naturally
induced from the Fourier coefficients of / e X defined by

f(m) = (2π)~d\ f(x) exp ( — im-x)dx , meZd ,

and we omit the details. Concerning the Fourier series expansions in
association with spherical harmonics in the spaces Lp(βd), 1 ^ p < 00
and C(Sd), where Sd denotes the surface of the unit sphere in Rd, one
may consult [5; Sec. 8.4].
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