THE FIRST EIGENVALUE OF THE LAPLACIAN ON TWO DIMENSIONAL RIEMANNIAN MANIFOLDS

Shin Ozawa

(Received August 14, 1980, revised July 7, 1981)

1. Introduction. Let M be a two dimensional compact Riemannian manifold without boundary. Let w be a fixed point on M. For any sufficiently small $\varepsilon>0$, let B_{ε} be the geodesic disk of radius ε with the center w. We put $M_{\varepsilon}=M \backslash \bar{B}_{\varepsilon}$. Let $\lambda_{1}(\varepsilon)$ be the first positive eigenvalue of the Laplacian $\Delta=-\operatorname{div}$ grad in M_{ε} under the Dirichlet condition on ∂B_{ε}.

The main result of this paper is the following:
Theorem 1. Assume $n=2$. Then

$$
\begin{equation*}
\lambda_{1}(\varepsilon)=-2 \pi|M|^{-1}(\log \varepsilon)^{-1}+O\left((\log \varepsilon)^{-2}\right) \tag{1.1}
\end{equation*}
$$

holds as ε tends to zero. Here $|M|$ denotes the area of M.
Chavel-Feldman [3] showed that $\lambda_{1}(\varepsilon) \rightarrow 0$ as ε tends to zero. Theorem 1 improves their result for the case $n=2$. The readers may also refer to Matsuzawa-Tanno [5] where the case $M=$ (S^{2}, the standard metric) was studied.

In §2, we give the Schiffer-Spencer variational formula for the resolvent kernels of the Laplacian with the Dirichlet condition on the boundary. For the Schiffer-Spencer formula, the reader may refer to Schiffer-Spencer [6] and Ozawa [7]. In [7], the author gave an asymptotic formula for the j-th eigenvalue of the Laplacian when we cut off a small ball of radius ε from a given bounded domain in $\boldsymbol{R}^{n}(n=2,3)$. In §3, we prove Theorem 1. In §4, we make a remark on the inequality of Cheeger.

The author wishes to express his sincere gratitude to Professor S. Tanno who brought [3] to his attention when he was preparing the earlier version of this note.
2. A variant of the Schiffer-Spencer formula. Let $L^{2}(M)$ (resp. $L^{2}\left(M_{\varepsilon}\right)$) denote the Hilbert space of square integrable functions on M (resp. M_{ε}). By A we denote the self-adjoint operator in $L^{2}(M)$ associated with the Laplacian on M. Let $A(\varepsilon)$ denote the self-adjoint operator in $L^{2}\left(M_{\varepsilon}\right)$ associated with the Laplacian in M_{ε} under the Dirichlet condition
on ∂M_{c}.
Let $K_{\varepsilon}(x, y)$ be the integral kernel function of the operator $(A(\varepsilon)+1)^{-1}$ satisfying

$$
K_{\varepsilon}(x, y)=0 \quad x \in M_{\varepsilon}, y \in \partial M_{\varepsilon},
$$

and

$$
\int_{M_{\varepsilon}} K_{\varepsilon}(x, y) \cdot\left(U_{y}+1\right) \varphi(y) *_{y} 1=\varphi(x)
$$

for any fixed $x \in M_{\varepsilon}$ and for $\varphi \in \mathscr{C}_{o}^{\infty}\left(M_{\varepsilon}\right)$. Here $*_{y} 1$ denotes the volume element. Let $K(x, y)$ be the integral kernel of the operator $(A+1)^{-1}$ satisfying

$$
\int_{M} K(x, y) \cdot\left(\Delta_{y}+1\right) \psi(y) *_{y} 1=\psi(x)
$$

for any fixed $x \in M$ and for $\psi \in \mathscr{C}^{\infty}(M)$.
In this section we give the following proposition which is a variant of the formula in [6, p. 290].

Proposition 1. Let M and w be as above. Then, for any fixed $x, y \in M \backslash\{w\}$
(2.1) $\quad K_{\varepsilon}(x, y)-K(x, y)=(2 \pi)(\log \varepsilon)^{-1} K(x, w) K(y, w)+O\left((\log \varepsilon)^{-2}\right)$
holds as ε tends to zero.
Remark. It should be remarked that the remainder term $O\left((\log \varepsilon)^{-2}\right)$ in (2.1) is not uniform with respect to x, y even if w is fixed. As for further generalizations of the formula (2.1), we refer the reader to [7], [8]. See also [9].

Proof of Proposition 1. Let $d(x, w)$ denote the distance between x and w. Then it is easy to see that $K(x, w)+(2 \pi)^{-1} \log d(x, w)$ is continuously differentiable with respect to x all over M. Put

$$
\lim _{x \rightarrow w}\left(K(x, w)+(2 \pi)^{-1} \log d(x, w)\right)=C_{w},
$$

and

$$
q(x, w)=K(x, w)+(2 \pi)^{-1} \log d(x, w)-C_{w} .
$$

Then there exists $C^{\prime}>0$ independent of x such that

$$
\begin{equation*}
|q(x, w)| \leqq C^{\prime} d(x, w) \tag{2.2}
\end{equation*}
$$

holds. Let

$$
L_{\varepsilon}(x, y)=K_{\varepsilon}(x, y)-K(x, y)-2 \pi\left(-2 \pi C_{w}+\log \varepsilon\right)^{-1} K(x, w) K(y, w) .
$$

Then $L_{\varepsilon}(x, y) \in \mathscr{C}^{\infty}\left(M_{\varepsilon} \times M_{\varepsilon}\right)$,

$$
\begin{equation*}
\left(U_{y}+1\right) L_{\varepsilon}(x, y)=0 \quad x, y \in M_{\varepsilon}, \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.L_{\varepsilon}(x, y)\right|_{y \in \partial M_{\varepsilon}}=-\left.K(x, y)\right|_{y \in \partial M_{\varepsilon}}+\left.K(x, w)(1+p(y, w))\right|_{y \in \partial M_{\varepsilon}}, \tag{2.4}
\end{equation*}
$$

where

$$
p(y, w)=-2 \pi q(y, w)\left(-2 \pi C_{w}+\log \varepsilon\right)^{-1}
$$

From (2.2), (2.4), it follows that

$$
\max _{y \in \partial M_{\varepsilon}}\left|L_{\varepsilon}(x, y)\right| \leqq C(x) \varepsilon
$$

as ε tends to zero, where $C(x)$ denotes a continuous function of $x \in \Omega \backslash w$. Applying now the Hopf maximum principle to the solution $L_{\varepsilon}(x, y)$ of the elliptic equation (2.3), we get

$$
\max _{y \in \partial M_{\varepsilon}}\left|L_{\varepsilon}(x, y)\right| \leqq C(x) \varepsilon,
$$

which implies the desired result.
3. Proof of Theorem 1. We put

$$
h_{\varepsilon}(x, y)=K(x, y)+(2 \pi)\left(-2 \pi C_{w}+\log \varepsilon\right)^{-1} K(x, w) K(y, w)
$$

Let F_{ε} be the bounded linear operator in $L^{2}\left(M_{\varepsilon}\right)$ defined by

$$
\left(F_{\varepsilon} f\right)(x)=\int_{M_{\varepsilon}} h_{\varepsilon}(x, y) f(y) *_{y} 1
$$

for any $f \in L^{2}\left(M_{\varepsilon}\right)$.
Let $\|T\|_{2, e}$ denote the operator norm of a bounded operator T in $L^{2}\left(M_{\varepsilon}\right)$. We have the following:

Lemma 1. There exists a positive constant C independent of ε such that

$$
\begin{equation*}
\left\|F_{\varepsilon}-(A(\varepsilon)+1)^{-1}\right\|_{2, \varepsilon} \leqq C \varepsilon|\log \varepsilon|^{1 / 2} \tag{3.1}
\end{equation*}
$$

holds for any sufficiently small $\varepsilon>0$.
Proof. We put $Q_{\varepsilon}=F_{\varepsilon}-(A(\varepsilon)+1)^{-1}$. Q_{ε} has the integral kernel $-L_{\varepsilon}(x, y)$. Thus (2.3) implies that $Q_{\varepsilon} f$ satisfies the following:

$$
\begin{equation*}
\left(U_{x}+1\right)\left(Q_{\varepsilon} f\right)(x)=0 \quad x \in M_{\varepsilon} . \tag{3.2}
\end{equation*}
$$

In view of (2.4) and $K_{\varepsilon}(x, y)=0$ for $x \in \partial M_{\varepsilon}$, there exists a constant E independent of ε such that

$$
\begin{aligned}
& \max _{x \in \partial M_{\varepsilon}}\left|Q_{\varepsilon} f(x)\right| \\
& \quad \leqq \max _{x \in \partial M_{\varepsilon}} \int_{M_{\varepsilon}}|K(x, y)-K(y, w)||f(y)| *_{y} 1+E \varepsilon \int_{M_{\varepsilon}}|K(y, w) f(y)| *_{y} 1
\end{aligned}
$$

By Schwarz's inequality we get

$$
\begin{equation*}
\max _{x \in \partial M_{\varepsilon}}\left|Q_{\varepsilon} f(x)\right| \leqq\left(|I(\varepsilon)|+C^{\prime} E \varepsilon\right)\|f\|_{2, \varepsilon} \tag{3.3}
\end{equation*}
$$

for some constant C^{\prime} independent of ε, where $\|f\|_{2, \varepsilon}$ denotes the $L^{2}\left(M_{\varepsilon}\right)$ norm of f and

$$
I(\varepsilon)^{2}=\max _{x \in \partial M_{\varepsilon}} \int_{M_{\varepsilon}}|K(x, y)-K(y, w)|^{2} *_{y} 1 .
$$

We now claim

$$
\begin{equation*}
|I(\varepsilon)| \leqq C^{\prime \prime} \varepsilon|\log \varepsilon|^{1 / 2} \tag{3.4}
\end{equation*}
$$

with a constant $C^{\prime \prime}$ independent of ε. Once this is proved, then the Hopf maximum principle gives us

$$
\max _{x \in M_{\varepsilon}}\left|Q_{\varepsilon} f(x)\right| \leqq 2 C^{\prime \prime} \varepsilon|\log \varepsilon|^{1 / 2}
$$

which implies (3.1).
We now show (3.4). Let r be a small positive number so that there exists a diffeomorphism $\Psi: \bar{B}_{r} \xrightarrow{\sim} \bar{D}_{1}$, where D_{s} is the disk in R^{2} defined by $D_{s}=\left\{x \in \boldsymbol{R}^{2} ;|x|<s\right\}$. We may assume that

$$
\begin{equation*}
\varepsilon<|\Psi(x)|<2 \varepsilon \tag{3.5}
\end{equation*}
$$

for any $x \in \partial M_{\varepsilon}$ provided $\varepsilon(<r)$ is sufficiently small. We have $|I(\varepsilon)| \leqq\left|I_{1}(\varepsilon)\right|+\left|I_{2}(\varepsilon)\right|+\left|I_{3}(\varepsilon)\right|$, where

$$
\begin{gather*}
I_{1}(\varepsilon)^{2}=\max _{x \in \partial M_{\varepsilon}} \int_{M \backslash B_{r}}|K(x, y)-K(y, w)|^{2} *_{y} 1, \tag{3.6}\\
I_{2}(\varepsilon)^{2}=\max _{x \in \partial M_{\varepsilon}} \int_{B_{r} \backslash \bar{B}_{\varepsilon}}(K(x, y)+2 \pi \log d(x, y) \tag{3.7}\\
\quad-(K(x, w)+2 \pi \log d(x, w)))^{2} *_{y} 1
\end{gather*}
$$

and

$$
\begin{equation*}
I_{3}(\varepsilon)^{2}=(2 \pi)^{2} \max _{x \in \partial M_{\varepsilon}} \int_{B_{r} \backslash \overline{B_{\varepsilon}}}|\log d(x, y)-\log d(x, w)|^{2} *_{y} 1 . \tag{3.8}
\end{equation*}
$$

It is easy to see that $I_{1}(\varepsilon)=O(\varepsilon)$ as ε tends to zero. Since we have $K(x, y)+2 \pi \log d(x, y) \in \mathscr{C}^{\infty}\left(\partial M_{\varepsilon} \times B_{r}\right)$, we also have $I_{2}(\varepsilon)=O(\varepsilon)$. (3.4) then follows from

$$
\begin{equation*}
I_{3}(\varepsilon)=O\left(\varepsilon|\log \varepsilon|^{1 / 2}\right), \tag{3.9}
\end{equation*}
$$

which we shall prove below.
By a change of coordinates using the diffeomorphism Ψ, (3.8) is majorized by

$$
\begin{equation*}
C \max _{x \in D_{2 \varepsilon} \backslash \bar{D}_{\varepsilon}} \int_{D_{1} \backslash D_{\varepsilon}}(\log |x-y|-\log |y|)^{2} d y, \tag{3.10}
\end{equation*}
$$

with a constant C independent of ε. Here we used (3.5). It is easy to see that

$$
\begin{align*}
\int_{D_{1} \backslash D_{\varepsilon}} & (\log |x-y|-\log |y|)^{2} d y \tag{3.11}\\
& =\frac{1}{4} \int_{0}^{2 \pi} d \theta \int_{\varepsilon}^{1}\left(\log \left(\left(|x|^{2}+r^{2}-2|x| r \cos \theta\right) / r^{2}\right)^{2}\right) r d r .
\end{align*}
$$

By changing further the variable $r=r^{-1}|x|=\eta$, the term (3.11) is transformed into the following:

$$
\frac{1}{4}|x|^{2} \int_{0}^{2 \pi} d \theta \int_{|x|}^{|x| / \varepsilon}\left(\log \left(1+\eta^{2}-2 \eta \cos \theta\right)\right)^{2} \eta^{-3} d \eta
$$

We here have

$$
\left(\log \left(1+\eta^{2}-2 \eta \cos \theta\right)\right)^{2} \leqq \max \left((\log |1-\eta|)^{2},(\log |1+\eta|)^{2}\right)
$$

for any $0 \leqq \theta \leqq 2 \pi, \eta \in[|x|,|x| / \varepsilon]$. Hence the term (3.11) is $O\left(\varepsilon^{2}|\log \varepsilon|\right)$. We thus get (3.9), and thus (3.4).

We consider the following equations:

$$
\begin{gather*}
\left((A+1)^{-1}-1\right) \xi(x)=|M|^{-1 / 2}\left(K(x, w)-|M|^{-1}\right) \tag{3.12}\\
\int_{M} \xi(x) *_{x} 1=0 \tag{3.13}
\end{gather*}
$$

Since

$$
\int_{M} K(x, w) *_{x} 1=1
$$

the right hand side of (3.12) is orthogonal to 1 in $L^{2}(M)$, while it is easy to see that the kernel of $(A+1)^{-1}-1$ is spanned by 1 . Therefore, the unique solution ξ of (3.12), (3.13) exists in $L^{2}(M)$.

Let $\widetilde{F}_{\varepsilon}$ be the linear operator defined by

$$
\begin{equation*}
\left(\widetilde{F}_{\varepsilon} g\right)(x)=\int_{M} h_{\varepsilon}(x, y) g(y) *_{y} 1 \tag{3.14}
\end{equation*}
$$

Then $\widetilde{F}_{\varepsilon}$ is a compact self-adjoint operator in $L^{2}(M)$, since $(A+1)^{-1}$ is a compact linear mapping from $L^{2}(M)$ to $\mathscr{C}^{\circ}(M)$. We have the following:

LEMMA 2. If we put $\tilde{\mu}(\varepsilon)=1+2 \pi\left(-2 \pi C_{w}+\log \varepsilon\right)^{-1}|M|^{-1}$ and $\widetilde{\varphi}_{\varepsilon}(x)=$ $|M|^{-1 / 2}-2 \pi\left(-2 \pi C_{w}+\log \varepsilon\right)^{-1} \xi(x)$, then

$$
\begin{equation*}
\left\|\left(\widetilde{F_{\varepsilon}}-\tilde{\mu}(\varepsilon)\right) \widetilde{\mathscr{P}}_{\varepsilon}\right\|_{L^{2}(M)} \leqq C(\log \varepsilon)^{-2} \tag{3.15}
\end{equation*}
$$

holds as ε tends to zero. Here C is a constant independent of ε.
Proof. We have

$$
\begin{align*}
& \left(\left(\widetilde{F}_{\varepsilon}-\widetilde{\mu}(\varepsilon)\right) \widetilde{\rho}_{\varepsilon}\right)(x) \tag{3.16}\\
& \quad=4 \pi^{2}\left(-2 \pi C_{w}+\log \varepsilon\right)^{-2}\left(|M|^{-1} \xi(x)-K(x, w)\left((A+1)^{-1} \xi\right)(w)\right)
\end{align*}
$$

Since $\xi \in L^{2}(M)$ and $(A+1)^{-1} \xi \in \mathscr{C}^{0}(M)$, we see that the $L^{2}(M)$ norm of (3.16) is $O\left((\log \varepsilon)^{-2}\right)$.
q.e.d.

Let $\chi_{\varepsilon}(x)$ be the characteristic function of M_{s}. Now we want to prove the following:

$$
\begin{equation*}
\left\|\tilde{F}_{\varepsilon} \widetilde{\mathscr{\varphi}}_{\varepsilon}-F_{\varepsilon}\left(\chi_{\varepsilon} \widetilde{\mathscr{P}}_{\varepsilon}\right)\right\|_{2, \varepsilon} \leqq C \varepsilon|\log \varepsilon| \tag{3.17}
\end{equation*}
$$

where C is a constant independent of ε. We put $v_{\varepsilon}(x)=\left(\widetilde{F}_{\varepsilon} \widetilde{\mathscr{P}}_{\varepsilon}\right)(x)-$ $\left(F_{\varepsilon}\left(\chi_{\varepsilon} \widetilde{s}_{\varepsilon}\right)\right)(x)$ for $x \in M_{\varepsilon}$. Then,

$$
v_{\varepsilon}(x)=\int_{B_{\varepsilon}} h_{\varepsilon}(x, y) \widetilde{\varphi}_{\varepsilon}(y) *_{y} 1
$$

Also

$$
\begin{equation*}
(-\Delta+1) v_{\varepsilon}(x)=0 \quad x \in M_{\varepsilon} \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|v_{\varepsilon}(x)\right|_{x \in \partial M_{\varepsilon}} \leqq\left.\left(\int_{B_{\varepsilon}} h_{\varepsilon}(x, y)^{2} *_{y} 1\right)^{1 / 2}\right|_{x \in \partial M_{\varepsilon}}\left\|\widetilde{\varphi}_{\varepsilon}\right\|_{L^{2}\left(B_{\varepsilon}\right)} \tag{3.19}
\end{equation*}
$$

Since $\left|h_{\varepsilon}(x, y)\right| \leqq C|\log | x-y \|$ for some constant C independent of ε, we get

$$
\max _{x \in \partial M_{\varepsilon}}\left|v_{\varepsilon}(x)\right| \leqq C^{\prime} \varepsilon|\log \varepsilon|\left\|\widetilde{\mathscr{P}}_{\varepsilon}\right\|_{L^{2}\left(B_{\varepsilon}\right)}
$$

Here C^{\prime} is a constant independent of ε. By the Hopf maximum principle we obtain (3.17).

By (3.1), (3.15) and (3.17), we get the following:
Lemma 3. There exists a constant C independent of ε such that

$$
\begin{equation*}
\left\|\left((A(\varepsilon)+1)^{-1}-\tilde{\mu}(\varepsilon)\right)\left(\chi_{\varepsilon} \widetilde{\varphi}_{\varepsilon}\right)\right\|_{2, \varepsilon} \leqq C(\log \varepsilon)^{-2} \tag{3.20}
\end{equation*}
$$

holds as ε tends to zero. Also $\left\|\chi_{\varepsilon} \widetilde{\varphi}_{\varepsilon}\right\|_{2, \varepsilon}>1 / 2$ holds for any sufficiently small ε.

We use the following:
Lemma 4. Let Y be a complex Hilbert space. Let T be a compact self-adjoint operator in Y. We fix $\tau \in R \backslash\{0\}$ and $\delta>0$. Assume that there exists $\psi \in Y$ satisfying $\|\psi\|>1 / 2$ and $\|T \psi-\tau \psi\|<\delta$. Then there exists at least one eigenvalue τ^{*} of T which satisfies $\left|\tau^{*}-\tau\right| \leqq 2 \delta$.

Proof. If the set $\{\tilde{\tau} ;|\tilde{\tau}-\tau| \leqq 2 \delta\}$ does not contain any eigenvalue, then $\left\|(T-\tau)^{-1}\right\|<1 / 2 \delta$. However, this leads to a contradiction

$$
1 / 2<\left\|(T-\tau)^{-1}(T \psi-\tau \psi)\right\| \leqq 1 / 2
$$

q.e.d.

By Lemmas 3 and 4, we have the following: There exists at least one eigenvalue $\hat{\mu}(\varepsilon)$ of $(A(\varepsilon)+1)^{-1}$ satisfying

$$
\begin{equation*}
|\hat{\mu}(\varepsilon)-\tilde{\mu}(\varepsilon)| \leqq C^{\prime}(\log \varepsilon)^{-2} \tag{3.21}
\end{equation*}
$$

where C^{\prime} is a constant independent of ε.
Let $\lambda_{2}(\varepsilon)$ be the second positive eigenvalue of the Laplacian in M with the Dirichlet condition on ∂B_{ε}. By the Courant-Fischer mini-max principle for eigenvalues, we have

$$
\begin{equation*}
\lambda_{2}(\varepsilon) \geqq \lambda_{1}>0, \tag{3.22}
\end{equation*}
$$

where λ_{1} denotes the first positive eigenvalue of the Laplacian on M. Therefore, by (3.20) and (3.21) we see that

$$
\left(\lambda_{1}(\varepsilon)+1\right)^{-1}=\widehat{\mu}(\varepsilon)
$$

Now the proof of Theorem 1 is complete.
4. A remark on Cheeger's inequality. Let N be an n-dimensional compact Riemannian manifold with smooth boundary $\partial N \neq \varnothing$. Let $\lambda_{1}(N)$ be the first positive eigenvalue of the Laplacian under the Dirichlet condition on ∂N. Then the inequality of Cheeger asserts that

$$
\begin{equation*}
\lambda_{1}(N) \geqq h_{D}(N)^{2} / 4, \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{D}(N)=\inf _{Z} V_{n-1}(\partial Z) / V_{n}(Z) \tag{4.2}
\end{equation*}
$$

Here Z runs through all compact n-dimensional bordered submanifolds of N satisfying $Z \cap \partial N=\varnothing$, and $V_{n-1}(\partial Z)$ and $V_{n}(Z)$ denote the $(n-1)$ dimensional volume of ∂Z and the n-dimensional volume of Z, respectively. Cheeger gave (4.1) in [4] and also treated the case $\partial N=\varnothing$. In that case $h_{D}(N)$ should be replaced with another geometric quantity. See also Berger-Gauduchon-Mazet [1] and Buser [2]. It is well known that Cheeger' inequality is sharp, that is, we cannot replace the constant $1 / 4$ with any larger number for general N. See, for example, Buser [2].

If we apply Cheeger's inequality to the manifold M_{ε}, we get a lower bound for $\lambda_{1}(\varepsilon)$. Since $n=2$, it is easy to see that there exists a constant $C_{o}>1$ such that

$$
\begin{equation*}
C_{o}^{-1} \varepsilon<h_{D}\left(M_{\varepsilon}\right)<C_{o} \varepsilon \tag{4.3}
\end{equation*}
$$

holds for any sufficiently small $\varepsilon>0$. Then by Cheeger's inequality we
get

$$
\begin{equation*}
\lambda_{1}(\varepsilon)>C_{o}^{-2} \varepsilon^{2} / 4 \tag{4.4}
\end{equation*}
$$

Since we have (1.1), (4.4) does not give a good lower bound for $\lambda_{1}(\varepsilon)$ when ε is sufficiently small. Hence the following question arises: Can we replace the right hand side of (4.1) with another geometric quantity which will give a good bound for $\lambda_{1}(N)$ from below when the boundary ∂N is sufficiently small?

References

[1] M. Berger, P. Gaudhon and E. Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Math. 194, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
[2] P. Buser, On Cheeger's inequality $\lambda_{1} \geqq h^{2} / 4$, Proceedings of Symposia in Pure Math. Vol. 36, American Math. Soc. Providence, Rhode Island, 1980, 29-77.
[3] I. Chavel and E. A. Feldman, Spectra of domains in compact manifolds, J. Functional Analysis 30 (1978), 198-222.
[4] J. Cheeger, A Lower Bound for the Smallest Eigenvalue of the Laplacian, Problems in Analysis, Princeton Univ. Press, Princeton, N. J., 1970.
[5] T. Matsuzawa and S. Tanno, Estimates of the first eigenvalues of a big cup domain of a 2 -sphere, (preprint).
[6] M. Schiffer and D. C. Spencer, Functionals of Finite Riemann Surfaces, Princeton Univ. Press, Princeton, N. J., 1954.
[7] S. Ozawa, Singular variation of domains and eigenvalues of the Laplacian, to appear.
[8] S. Ozawa, Surgery of domains and Green's kernels of the Laplacian, Proc. Japan Acad. 56 (1980), 459-461.
[9] S. Ozawa, Singular Hadamard's variation of domains and eigenvalues of the Laplacian, II, Ibid. 57 (1981), 242-246.
Department of Mathematics
Faculty of Science
University of Tokyo
Tokyo, 113
Japan

