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1. Introduction. Let M be a two dimensional compact Riemannian
manifold without boundary. Let w be a fixed point on M. For any
sufficiently small ε > 0, let Bε be the geodesic disk of radius ε with the
center w. We put Mε = M\Bε. Let λ^ε) be the first positive eigenvalue
of the Laplacian Δ = -divgrad in Mε under the Dirichlet condition on
3Bε.

The main result of this paper is the following:

THEOREM 1. Assume n = 2. Then

(1.1) \(ε) = -2JΓ I M\-\\og ε)-1 + O((log ε)"2)

holds as ε tends to zero. Here \M\ denotes the area of M.

Chavel-Feldman [3] showed that λx(ε) —> 0 as ε tends to zero.
Theorem 1 improves their result for the case n = 2. The readers may
also refer to Matsuzawa-Tanno [5] where the case M = (S2, the standard
metric) was studied.

In §2, we give the Schiffer-Spencer variational formula for the
resolvent kernels of the Laplacian with the Dirichlet condition on the
boundary. For the Schiffer-Spencer formula, the reader may refer to
Schiffer-Spencer [6] and Ozawa [7], In [7], the author gave an asymptotic
formula for the j-ΐh eigenvalue of the Laplacian when we cut off a
small ball of radius ε from a given bounded domain in Rn (n = 2, 3).
In §3, we prove Theorem 1. In §4, we make a remark on the inequality
of Cheeger.

The author wishes to express his sincere gratitude to Professor S.
Tanno who brought [3] to his attention when he was preparing the
earlier version of this note.

2. A variant of the Schiffer-Spencer formula. Let L\M) (resp.
L\Mε)) denote the Hubert space of square integrable functions on M
(resp. M.). By A we denote the self-ad joint operator in L\M) associated
with the Laplacian on M. Let A(e) denote the self-adjoint operator in
L\Mε) associated with the Laplacian in Mε under the Dirichlet condition
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on 3Mε.

Let K,(x, y) be the integral kernel function of the operator (A(ε) + I)"1

satisfying

Kε{x,y) = 0 xeMε, yedMε,

and

for any fixed xeMε and for φ e ^ J f , ) . Here *yl denotes the volume
element. Let K(x, y) be the integral kernel of the operator (A + I)"1

satisfying

for any fixed xeM and for ψe(^
In this section we give the following proposition which is a variant

of the formula in [6, p. 290].

PROPOSITION 1. Let M and w be as above. Then, for any fixed
x, yeM\{w}
(2.1) Kε{x, y) - K(x, y) = (2ττ)(log e ) " 1 ^ ^ , w)K(y, w) + O((log ε)~2)
holds as ε tends to zero.

REMARK. It should be remarked that the remainder term O((logε)"2)
in (2.1) is not uniform with respect to x, y even if w is fixed. As for
further generalizations of the formula (2.1), we refer the reader to [7],
[8]. See also [9].

PROOF OF PROPOSITION 1. Let d(x, w) denote the distance between
x and w. Then it is easy to see that K(xf w) + (2π)-1 log d(x, w) is
continuously differentiate with respect to x all over M. Put

lim (K(x, w) + (27Γ)-1 log d(x, w)) - Cw ,

and

q(x, w) = K(x, w) + (27Γ)-1 log d(x, w) - Cw .

Then there exists C > 0 independent of x such that

(2.2) \q(x,w)\£C'd(x,w)

holds. Let

L.(x, y) = Kε{x, y) - K(x, y) - 2π(-2πCw + logε)"1^^, w)K(y, w) .

Then L.(x, y) e ̂ °°(Mε x Me),
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(2.3) (4, + l)Lε(x, y) = 0 x,yeMε9

and

(2.4) L.(x, y)\ye3Mε = -K(x, y)\ye3ME + K(x, w)(l + p(y, w))\yedMε,

where

p(y, w) = —2πq(y, w)(—2πCw + logs)"1 .

From (2.2), (2.4), it follows that

max I L£x, y) | ^ C(cc)ε
yedMε

as ε tends to zero, where C(x) denotes a continuous function of x eΩ\w.
Applying now the Hopf maximum principle to the solution Lt(x, y) of
the elliptic equation (2.3), we get

max I Lε(x, y) | ^ C(x)e ,
y e dM£

which implies the desired result. q.e.d.

3. Proof of Theorem 1. We put

hε(x, y) = K(x, y) + (2π)(-2πCw + l o g ε ) " 1 ^ , w)K(y, w) .

Let Fε be the bounded linear operator in U(Mε) defined by

(Fεf)(x)=\ h£x,y)f(y)*yl
JMε

for any feL\Mε).
Let | |Γ| | 2 f. denote the operator norm of a bounded operator T in

L\Mε). We have the following:

LEMMA 1. There exists a positive constant C independent of ε such
that

(3.1) || Fε - (A(ε) + I)"11|2,£ ^ Cε|logε|1 / 2

holds for any sufficiently small ε > 0.

PROOF. We put Qε = Fε - (A(ε) + I)"1. Qε has the integral kernel
— Lε(x, y). Thus (2.3) implies that QJ satisfies the following:

(3.2) (4, + l)(Q./)(a) = 0 xeMε.

In view of (2.4) and Kt(x, y) = 0 for x e dMε, there exists a constant
E independent of έ such that

xedMε

^ max ( IK(x, y) - K(y, w)\\f(y)\*vl + Eε\ \K(y, w)f(y)|.
xedMε jMe JMε
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By Schwarz's inequality we get

(3.3) max | QJ(x) \ ̂  (| 7(e) | + CΈe) \\ f ||2f.
xedMε

for some constant C" independent of ε, where ||/||2,« denotes the L\Mt)
norm of / and

\K{x,y)-K{y,w)\ΐ*yί.
xedMε jMε

We now claim

with a constant C" independent of ε. Once this is proved, then the Hopf
maximum principle gives us

which implies (3.1).
We now show (3.4). Let r be a small positive number so that there

exists a diffeomorphism Ψ: Br ~> Dlf where D8 is the disk in R2 defined
by D8 = {xeR2; \x\ < s}. We may assume that

(3.5) ε< \Ψ(x)\<2ε

for any xedMε provided ε ( < r) is sufficiently small. We have
11(6)I ^ 1 (̂6)1 + I J,(6)| + 17,(6)I, where

(3.6) 7x(ε)2 = max \ \ K(x, y) - K(y, w) | 2 * , 1 ,
xedMε jM\Br

(3.7) 72(ε)2 = max t _ (K(x, y) + 2π log d(x, y)
xedMε jBr\Be

- (K(xf w) + 2π\ogd(x, w)))2*yl

and

(3.8) 73(ε)2 - (2π)2 max ( _ | log d(x, y) - log d(x, w) |2* t fl .
xedMε jBr\Bε

It is easy to see that 7x(ε) = O(ε) as ε tends to zero. Since we have
K(x, y) + 2π\ogd{x, y)e^°°(dMε x Br), we also have 72(e) = O(ε). (3.4)
then follows from

(3.9) 7,(6) = 0(61 log e r ) ,

which we shall prove below.

By a change of coordinates using the diffeomorphism Ψ, (3.8) is
majorized by

(3.10) C max_ ( (log | x - y | - log | y \)2dy ,
xeD2ε\DεJD1\Dε
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with a constant C independent of ε. Here we used (3.5). It is easy to
see that

(3.11) ί (log\x-y\-\og\y\)2dy

= JL [2π dθ [* (log ((I x I2 + r 2 - 21 x \ r cos θ)/r2)2)rdr .
4 JO Je

By changing further the variable r — r~~1\x\ = 7], the term (3.11) is
transformed into the following:

— \x\2[2πdθ[Xί/ε (log(l + η2-2ηcosθ))2ψ*dτ] .
4 JO J l s l

We here have

(log (1 + rf - 2η cos θ))2 ̂  max ((log 11 - η |)2, (log 11 + η |)2)

for any 0 <; θ ̂  2ττ, ηe[\x\, \x\/e]. Hence the term (3.11) is O(ε2|log e|).
We thus get (3.9), and thus (3.4). q.e.d.

We consider the following equations:

(3.12) ((A + I)" 1 - l)ξ(x) = |M|-1/2(ί:(α, w) - \M\~')

(3.13)

Since

the right hand side of (3.12) is orthogonal to 1 in L\M), while it is
easy to see that the kernel of (A + I)" 1 — 1 is spanned by 1. Therefore,
the unique solution ξ of (3.12), (3.13) exists in L\M).

Let Fε be the linear operator defined by

(3.14) (Fεg)(x) = \ hε(x9y)g(y)*yl.

Then Fe is a compact self-ad joint operator in L2(M), since (A + I)" 1 is a
compact linear mapping from L\M) to <^°(M). We have the following:

LEMMA 2. If we put μ(e) = 1 + 2π(-2πCw + log ε)"11 Ml"1 and φε(x) =
\M\~1/2 - 2π(-2πCw + logε)" 1 ^), then

(3.15) || (Fε - μ(ε))φε \\LHM) rg C(log ε)~2

holds as e tends to zero. Here C is a constant independent of ε.

PROOF. We have
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*yl .

(3.16) ((Ft - fi(ε))φt)(x)
= 4π\-2πCw + log ε)~2(| ilί Γf (x) - K(x, w)((A +

Since ξ eL\M) and (A + l)-^e<g"(M), we see that the If{M) norm of
(3.16) is O((logε)-2). q.e.d.

Let %e(x) be the characteristic function of M,. Now we want to
prove the following:

(3.17) || Fεφε - Fε(XsΦ,) ||1>t ^ Cε | log ε | ,

where C is a constant independent of ε. We put v,(x) = (Fεψε){x) —
{F.OL.φ.))(x) for a; e Mt. Then,

v.(a ) = \ hε(x,y)φε(y)

Also

(3.18) ( -

and

(3.19) | ^ ) ] x e ^

Since |Λβ(α;, i/)| ̂  C|log|cc — y\\ for some constant C independent of ε, we
get

m a x I vε(x) \ S C'e \ l o g ε\\\φε \\L2{Bε) .
xedMε

Here C is a constant independent of ε. By the Hopf maximum principle
we obtain (3.17).

By (3.1), (3.15) and (3.17), we get the following:

LEMMA 3. There exists a constant C independent of ε such that

(3.20) || ((A(e) + I ) " 1 - μ(e))(Xεφε) ||2>ε ^ C(log ε ) " 2

holds as e tends to zero. Also ||Z,9>,||2,. > 1/2 holds for any sufficiently
small ε.

We use the following:

LEMMA 4. Let Y be a complex Hilbert space. Let T be a compact
self-adjoint operator in Y. We fix τeJ?\{0} and d > 0. Assume that
there exists ψeYsatisfying \\ψ\\ > 1/2 and \\ Tψ — τψ\\< δ. Then there
exists at least one eigenvalue τ* of T which satisfies \τ* — τ\ ^ 28.

PROOF. If the set {τ; \τ — τ\ <; 25} does not contain any eigenvalue,
then || (T — τ)"1!! < l/2δ. However, this leads to a contradiction
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1/2

q.e.d.

By Lemmas 3 and 4, we have the following: There exists at least
one eigenvalue μ(ε) of (A(ε) + I)" 1 satisfying

(3.21) \μ(ε)-μ(ε)\^C'(loger\

where C is a constant independent of ε.
Let λ2(ε) be the second positive eigenvalue of the Laplacian in M

with the Dirichlet condition on dBε. By the Courant-Fischer mini-max
principle for eigenvalues, we have

(3.22) λ,(e) ^ \ > 0 ,

where λx denotes the first positive eigenvalue of the Laplacian on M.
Therefore, by (3.20) and (3.21) we see that

(λ*(6) + I)"1 = μ{e) .

Now the proof of Theorem 1 is complete.

4. A remark on Cheeger's inequality. Let N be an ̂ -dimensional
compact Riemannian manifold with smooth boundary dN Φ 0 . Let UN)
be the first positive eigenvalue of the Laplacian under the Dirichlet
condition on dN. Then the inequality of Cheeger asserts that

(4.1) UN) ̂  K(NY/A ,

where

(4.2) hD(N) = inf Vn

z
Here Z runs through all compact ^-dimensional bordered submanifolds
of N satisfying Zf]dN= 0 , and Vn^(dZ) and Vn(Z) denote the (n - 1)-
dimensional volume of dZ and the ^-dimensional volume of Z, respec-
tively. Cheeger gave (4.1) in [4] and also treated the case dN = 0 . In
that case hD(N) should be replaced with another geometric quantity.
See also Berger-Gauduchon-Mazet [1] and Buser [2]. It is well known
that Cheeger' inequality is sharp, that is, we cannot replace the constant
1/4 with any larger number for general N. See, for example, Buser [2].

If we apply Cheeger's inequality to the manifold Mεy we get a lower
bound for λ^e). Since n = 2, it is easy to see that there exists a
constant Co > 1 such that

(4.3) C-'ε < hD(Mε) < Coε

holds for any sufficiently small ε > 0. Then by Cheeger's inequality we
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get

(4.4) \(e) > C-2ε2/4 .

Since we have (1.1), (4.4) does not give a good lower bound for λL(ε)
when ε is sufficiently small. Hence the following question arises: Can
we replace the right hand side of (4.1) with another geometric quantity
which will give a good bound for λ1(Λ

r) from below when the boundary
dN is sufficiently small?
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