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1. Introduction. Let M be a two dimensional compact Riemannian
manifold without boundary. Let w be a fixed point on M. For any
sufficiently small ¢ > 0, let B, be the geodesic disk of radius ¢ with the
center w. We put M, = M\ B.. Let \(¢) be the first positive eigenvalue
of the Laplacian 4 = —div grad in M, under the Dirichlet condition on
0B..

The main result of this paper is the following:

THEOREM 1. Assume n = 2. Then
(1.1) M(e) = —2m| M| (log e)™* + O((log ¢)7?)
holds as ¢ tends to zero. Here | M| denotes the area of M.

Chavel-Feldman [3] showed that M\(¢) —0 as e tends to zero.
Theorem 1 improves their result for the case » = 2. The readers may
also refer to Matsuzawa-Tanno [5] where the case M = (S?, the standard
metric) was studied.

In §2, we give the Schiffer-Spencer variational formula for the
resolvent kernels of the Laplacian with the Dirichlet condition on the
boundary. For the Schiffer-Spencer formula, the reader may refer to
Schiffer-Spencer [6] and Ozawa [7]. In [7], the author gave an asymptotic
formula for the j-th eigenvalue of the Laplacian when we cut off a
small ball of radius ¢ from a given bounded domain in R" (n = 2, 8).
In §3, we prove Theorem 1. In §4, we make a remark on the inequality
of Cheeger.

The author wishes to express his sincere gratitude to Professor S.
Tanno who brought [3] to his attention when he was preparing the
earlier version of this note.

2. A variant of the Schiffer-Spencer formula. Let L*(M) (resp.
L*(M,)) denote the Hilbert space of square integrable functions on M
(resp. M,). By A we denote the self-adjoint operator in LX(M) associated
with the Laplacian on M. Let A(¢) denote the self-adjoint operator in
L*(M,) associated with the Laplacian in M, under the Dirichlet condition
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on oM..
Let K.(x, y) be the integral kernel function of the operator (A(e) + 1)!
satisfying
Kz, y)=0 xeM, yeoM,,
and

|, K2, 1) (4, + Dp@)+,1 = 9()

for any fixed x € M, and for p e &7(M,). Here x,1 denotes the volume

element. Let K(x, y) be the integral kernel of the operator (4 + 1)
satisfying

|, K@ ) (4, + Dy@)+,1 = y@)

for any fixed x € M and for « € @>(M).

In this section we give the following proposition which is a variant
of the formula in [6, p. 290].

PRrROPOSITION 1. Let M and w be as above. Then, for any fixed
x, Yy € M\ {w}
2.1) Kz, y) — K(x, y) = (2r)(log &) K(x, w)K(y, w) + O((log &)™)
holds as ¢ tends to zero.

REMARK. It should be remarked that the remainder term O((loge)™®)
in (2.1) is not uniform with respect to x, y even if w is fixed. As for

further generalizations of the formula (2.1), we refer the reader to [7],
[8]. See also [9].

PrOOF OF PROPOSITION 1. Let d(x, w) denote the distance between
# and w. Then it is easy to see that K(x, w) + (27)'log d(x, w) is
continuously differentiable with respect to x all over M. Put
lim (K(z, w) + (27)~*log d(x, w)) = C,, ,

and
q(x, w) = Kz, w) + (27)* log d(x, w) — C, .
Then there exists C’ > 0 independent of z such that
(2.2) lgx, w)| = C'd(x, w)
holds. Let
L (x, y) = K.(x, y) — K(x, y) — 2n(—27C, + log e)'K(x, w)K(y, w) .
Then L.z, y) e €~(M, X M,),



FIRST EIGENVALUE OF THE LAPLACIAN 9

(2.3) 4y + VL (2, y) =0 =z,yeM,,
and
(2.4) L=z, Wlyeow, = —K@, Y lyeou, + K@, w)1 + DY, W) |yeon, »
where

p(y, w) = —2mq(y, w)(—27C, + loge)™ .
From (2.2), (2.4), it follows that

max | L,(z, y)| = C(x)e

as ¢ tends to zero, where C(x) denotes a continuous function of 2 € 2\ w.

Applying now the Hopf maximum principle to the solution L.(x, y) of
the elliptic equation (2.3), we get

max | Lz, y)| < C(w)e ,

yeiM,
which implies the desired result. q.e.d.
3. Proof of Theorem 1. We put
h(x, y) = K(x, y) + (2r)(—27C, + log &)™ K(x, w)K(y, w) .
Let F, be the bounded linear operator in L*(M,) defined by

(F)a) = | b, w1

for any fe L¥M,).
Let ||T|,,. denote the operator norm of a bounded operator T in
LX}M,). We have the following:

LEMMA 1. There exists a positive constant C independent of € such
that
3.1) | F, — (AE) + 1), < Ce|loge|”*

holds for any sufficiently small € > 0.

PrROOF. We put Q, = F, — (A(¢) + 1)*. Q. has the integral kernel
—LJ(x,y). Thus (2.8) implies that Q.f satisfies the following:

(3.2) 4, + DQ.f)x) =0 xeM, .

In view of (2.4) and K.(x, y) = 0 for x €dM,, there exists a constant
E independent of ¢ such that

max |Q.f(x)]

< max [ |K(@, 9) — K@, w)||f@)]+1 + Be | |K@, wfw)]«1.

€M,
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By Schwarz’s inequality we get
(3.9) max |Q.f(w)| £ (1&)| + C'Ee)] f |l

for some constant C’ independent of &, where || f|,,. denotes the L*(M,)
norm of f and

Ie) = maxs |K(z, y) — K(y, w)[**,1 .
TedM, JMe

We now claim
(3.4) [I(e)| = C"e|log e[,

with a constant C” independent of ¢. Once this is proved, then the Hopf
maximum principle gives us

max | Q. f(x)| < 2C"¢|loge|*?,

which implies (3.1).

We now show (3.4). Let » be a small positive number so that there
exists a diffeomorphism ¥: B, ~ D,, where D, is the disk in R? defined
by D, ={xcR%|x| < s}. We may assume that

(8.5) e< |T(x)]| < 2¢

for any xcoM, provided ¢ (<) is sufficiently small. We have
[I(e)| = |Li(e)| + | L(e)| + |I(e)], where

(3.6) I(e)* = max S ., | K(x, y) — K(y, w)[**,1,

zedM, JM\
3.7 I(e)} = max S (K(z, y) + 2r log d(x, ¥)
zedM, JB,.\ B¢
— (K(x, w) + 2x log d(x, w)))**,1
and
(3.8) IL(e)* = (27)*max g g |log d(x, ¥) — log d(z, w)[**,1 .
redM, Be

r

It is easy to see that I,(¢) = O(¢) as ¢ tends to zero. Since we have
Kz, y) + 2nlog d(z, y) e ~(0M, x B,), we also have I(e) = O(). (3.4)
then follows from

3.9) I,(e) = O(e|log e|'®) ,

which we shall prove below.

By a change of coordinates using the diffeomorphism ¥, (3.8) is
majorized by

(3.10) C max_

|, . oglz—y| —log|ylydy,
z€Dge \ DeJ D1\ De
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with a constant C independent of . Here we used (3.5). It is easy to
see that

@1) | (ogle—yl —loglyldy
D1\ De

= % Vdﬁ Sl (log ((|&|* + 7* — 2|x|r cos 6)/r>)*)rdr .

By changing further the variable » = r7'|xz| =7, the term (38.11) is
transformed into the following:

1 2 |z|/e 5 20 —3
:[[xPS dogl! (log (1 + 72—27 cos ))p~"d7 .

We here have
(log (1 + 7* — 27 cos 6))* < max ((log |1 — 7[), (log [1 + 7[)*)

forany 0 < 6 < 2m, npel|x|, |x|/c]. Hence the term (3.11) is O(¢*|log ¢|).
We thus get (3.9), and thus (3.4). q.e.d.

We consider the following equations:
(3.12) (A4 17 = D) = | M| K(w, w) — | M|™)

(3.13) S E@)x,1=0.
Since

S K, wyx,1=1,

the right hand side of (8.12) is orthogonal to 1 in L*M), while it is
easy to see that the kernel of (A + 1)™* — 1 is spanned by 1. Therefore,
the unique solution & of (8.12), (3.13) exists in L*M).

Let F. be the linear operator defined by

(3.14 (Fog)a) = | 1w, o)1 .
Then F, is a compact self-adjoint operator in L*M), since (4 + 1)~ is a
compact linear mapping from L*(M) to &°(M). We have the following:

LEMMA 2. If we put fi(e) = 1 + 2n(—2rC, +loge)™ | M|™ and P.(x)=
| M|~ — 2n(—27C, + log &)7*&(x), then
(3.15) | (F, — E(€)P|lz2an < Cllog )™

holds as ¢ tends to zero. Here C is a constant independent of e.

ProOF. We have
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3.16)  ((F. — fe)P)@)
= 4n*(—27C, + log &)”*(| M|74(x) — K(w, w)(A + 1)7&)(w)) -

Since ¢e L*(M) and (A + 1)¢e & (M), we see that the L}(M) norm of
(3.16) is O((log &)™). g.e.d.

Let X.(x) be the characteristic function of M. Now we want to
prove the following:

(3'17) H F,eézv)s - Ft(xsés) ||2,s é Cell()g 8] ’
where C is a constant independent of e. We put v.(x) = (F.%.)(x) —
(F.(X.?.))(x) for x ¢ M,. Then,

v(x) = SE he(x, YP.(y)*,1 .

Also
(3.18) (—4 + Do) =0 zeM.
and
/ 1/2 -
(3.19) e, S ([ 2o, 902)"| 118

Since |k (x, y)| < C|log|x — y|| for some constant C independent of ¢, we
get

max | v,(@)| = C'e[log e|[| .|z, -
Here C’ is a constant independent of ¢. By the Hopf maximum principle

we obtain (3.17).
By (3.1), (8.15) and (3.17), we get the following:

LEMMA 8. There exists a constant C independent of € such that
(3.20) 1((AG) + 1) — AE)NXP) |l < Cllog )™

holds as ¢ tends to zero. Also ||X.P.|.,. > 1/2 holds for any sufficiently
small e.

We use the following:

LEMMA 4. Let Y be a complex Hilbert space. Let T be a compact
self-adjoint operator in Y. We fix e R\{0} and 6 > 0. Assume that
there exists 4 € Y satisfying |4 | > 1/2 and | Ty — 74| < 0. Then there
exists at least one eigenvalue t* of T which satisfies |t* — 7| =< 20.

Proor. If the set {%;|% — 7| < 26} does not contain any eigenvalue,
then ||[(T — 7)7'|| < 1/26. However, this leads to a contradiction
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12 <|(T — o)™ (Ty — )| = 1/2.
q.e.d.

By Lemmas 3 and 4, we have the following: There exists at least
one eigenvalue f(e) of (A(e) + 1) satisfying

(3.21) [fie) — fi(e)| = C'(log e)~*

where C’ is a constant independent of .

Let 2\,(e) be the second positive eigenvalue of the Laplacian in M
with the Dirichlet condition on 0B.. By the Courant-Fischer mini-max
principle for eigenvalues, we have

(3.22) () =N >0,

where ), denotes the first positive eigenvalue of the Laplacian on M.
Therefore, by (3.20) and (3.21) we see that

() + 1)t = fie) -
Now the proof of Theorem 1 is complete.
4. A remark on Cheeger’s inequality. Let N be an n-dimensional
compact Riemannian manifold with smooth boundary oN = @. Let \(N)

be the first positive eigenvalue of the Laplacian under the Dirichlet
condition on dN. Then the inequality of Cheeger asserts that

4.1) M(N) = hp(N)? /4,
where
(4.2) hy(N) = ierf V. i(0Z)|V(Z) .

Here Z runs through all compact n-dimensional bordered submanifolds
of N satisfying ZNoN = @, and V,_,(0Z) and V,(Z) denote the (n — 1)-
dimensional volume of 0Z and the n-dimensional volume of Z, respec-
tively. Cheeger gave (4.1) in [4] and also treated the case oN = @. In
that case h,(N) should be replaced with another geometric quantity.
See also Berger-Gauduchon-Mazet [1] and Buser [2]. It is well known
that Cheeger’ inequality is sharp, that is, we cannot replace the constant
1/4 with any larger number for general N. See, for example, Buser [2].

If we apply Cheeger’s inequality to the manifold M., we get a lower
bound for M\(¢). Since » =2, it is easy to see that there exists a
constant C, > 1 such that

(4.3) C;le < hp(M,) < Ce
holds for any sufficiently small ¢ > 0. Then by Cheeger’s inequality we
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get
(4.4)

S. 0ZAWA

M(E) > Cre/d .

Since we have (1.1), (4.4) does not give a good lower bound for X\(e)
when ¢ is sufficiently small. Hence the following question arises: Can
we replace the right hand side of (4.1) with another geometric quantity
which will give a good bound for A, (N) from below when the boundary
oN is sufficiently small?
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