INEQUALITIES OF FEJÉR-RIESZ TYPE FOR HOLOMORPHIC FUNCTIONS ON CERTAIN PRODUCT DOMAINS

Dedicated to the memory of Professor Teishirô Saitô

Nozomu Mochizuki

(Received October 15, 1981)

1. Introduction. Let f be a holomorphic function in a neighborhood of the closed unit disc in the complex plane C and l be a chord of the boundary circle C. Then the following inequality holds for every $p, 0<$ $p<\infty$:

$$
\begin{equation*}
\int_{l}|f(z)|^{p}|d z| \leqq K_{l} \int_{C}|f(z)|^{p}|d z| \tag{1}
\end{equation*}
$$

in which K_{l} is a constant depending only on l, and $K_{l}<1$ ([1], [5]). If l coincides with a diameter of the disc, then $K_{l}=1 / 2$ and the Fejér-Riesz inequality follows ([2]), and this is extended to the H^{p}-functions on the unit ball of $C^{n}, n \geqq 2$ ([4]).

The purpose of the present note is to obtain an inequality similar to (1) for the H^{p}-functions on a domain in C^{N} which is a product of balls in $C^{n_{j}}, j=1, \cdots, m$. This inequality gives, as a special case, an extension of (1) to H^{p}-functions on the unit polydisc in C^{n} which is not treated in [4], and we note that the constant appearing in the inequality exhibits a remarkable contrast to that for the unit ball.
2. Statements of results. Let $\boldsymbol{C}^{N}=\boldsymbol{C}^{n_{1}} \times \cdots \times \boldsymbol{C}^{n_{m}}$ and let $Z=$ $\left(Z^{1}, \cdots, Z^{m}\right) \in C^{N}$, where we shall use the notations $Z^{j}=\left(z_{1}^{j}, \cdots, z_{n_{j}}^{j}\right) \in \boldsymbol{C}^{n_{j}}$ and $X^{j}=\left(x_{1}^{j}, x_{2}^{j}, \cdots, x_{2 n_{j}-1}^{j}, x_{2 n_{j}}^{j}\right) \in R^{2 n_{j}} \quad$ with $\quad z_{k}^{j}=x_{2 k-1}^{j}+i x_{2 k}^{j}, k=1, \cdots$, $n_{j} ; j=1, \cdots, m$. We shall write $\left\|Z^{j}\right\|^{2}=\left|z_{1}^{j}\right|^{2}+\cdots+\left|z_{n_{j}}^{j}\right|^{2}$ and $\left\|X^{j}\right\|^{2}=$ $\left(x_{i}^{j}\right)^{2}+\cdots+\left(x_{2 n_{j}}^{j}\right)^{2}$. If $A^{j}=\left(a_{1}^{j}, \cdots, a_{2 n_{j}}^{j}\right) \in \boldsymbol{R}^{2 n_{j}}$, we write $A^{j} X^{j}=a_{1}^{j} x_{1}^{j}+\cdots+$ $a_{2 n_{j}}^{j} x_{2 n_{j}}^{j}$. We consider a domain $\boldsymbol{B}=\boldsymbol{B}_{1} \times \cdots \times \boldsymbol{B}_{m}$ in \boldsymbol{C}^{N}, where \boldsymbol{B}_{j} is the unit ball in $\boldsymbol{C}^{n_{j}}$ centered at the origin, i.e., \boldsymbol{B}_{j} is the set of points Z^{j} such that $\left\|Z^{j}\right\|<1$. We let $\partial \boldsymbol{B}$ stand for the Bergman-Šilov boundary of $\boldsymbol{B}, \partial \boldsymbol{B}=\partial \boldsymbol{B}_{1} \times \cdots \times \partial \boldsymbol{B}_{m}$, where $\partial \boldsymbol{B}_{j}$ is the boundary of \boldsymbol{B}_{j}. We denote the Lebesgue measure on $\partial \boldsymbol{B}$ by $d \tau$; more precisely, this means that $d \tau$ is the product measure of elements of the surface area of spheres $\partial \boldsymbol{B}_{j}$, $j=1, \cdots, m$. The Hardy space $H^{p}(\boldsymbol{B}), 0<p<\infty$, is defined and properties we need can be derived as in the case of polydiscs ([6]); especially,
if $f \in H^{p}(\boldsymbol{B})$, then the radial limit $f^{*}(\boldsymbol{Z})$ exists for almost all $Z \in \partial \boldsymbol{B}$, and $f^{*} \in L^{p}(\partial \boldsymbol{B})$. We denote by L a hyperplane in $R^{2 N}$ and by $d \sigma$ the Lebesgue measure on it.

Our main result is the following, in which, if $m=1$ and L passes through the origin, then the inequality holds for the constant $1 / 2$ by [4, Theorem 1].

THEOREM. Every function $f \in H^{p}(\boldsymbol{B})$ satisfies the following inequality for any $p, 0<p<\infty$, and for any hyperplane L in $R^{2 N}$:

$$
\begin{equation*}
\int_{L \cap B}|f(Z)|^{p} d \sigma(Z) \leqq 2^{-(m-1)} m^{1 / 2} \int_{\partial B}\left|f^{*}(Z)\right|^{p} d \tau(Z) \tag{2}
\end{equation*}
$$

When a single space C^{n} is considered, a point in it is denoted by $z=$ $\left(z_{1}, \cdots, z_{n}\right)$ with $z_{k}=x_{2 k-1}+i x_{2 k}, x_{j} \in \boldsymbol{R}, j=1, \cdots, 2 n$. We shall denote by Δ and T the unit polydisc in C^{n} centered at the origin and the Bergman-Šilov boundary of Δ, respectively, i.e., $\Delta=\left\{z \in C^{n}| | z_{j} \mid<1, j=\right.$ $1, \cdots, n\}$ and $T=\left\{z \in C^{n}| | z_{j} \mid=1, j=1, \cdots, n\right\}$.

Corollary. Every $f \in H^{p}(\Delta)$ satisfies the inequality for any $p, 0<$ $p<\infty$, and any L in $\boldsymbol{R}^{2 n}$:

$$
\int_{L \cap A}|f(z)|^{p} d \sigma(z) \leqq 2^{-(n-1)} n^{1 / 2} \int_{T}\left|f^{*}(z)\right|^{p} d \tau(z)
$$

3. A lemma. We shall need the following. Although this can be proved in the same way as [4, Lemma 1], slight modifications should be made.

Lemma. Let \boldsymbol{B} be the unit ball in \boldsymbol{C}^{n} centered at 0 and let L be a hyperplane in $\boldsymbol{R}^{2 n}$. Then there exists a constant K for which every holomorphic function f in a neighborhood of $\overline{\boldsymbol{B}}$ satisfies the inequality for every $p, 0<p<\infty$,

$$
\int_{L \cap B}|f(z)|^{p} d \sigma(z) \leqq K \int_{\partial B}|f(z)|^{p} d \tau(z)
$$

$K \leqq 1$ in general, and $K=1 / 2$ for any hyperplane L passing through the origin.

Proof. First, we parametrize the unit sphere $\partial \boldsymbol{B}$ by the mapping $\Phi\left(\theta_{1}, \cdots, \theta_{2 n-1}\right)=\left(x_{1}, \cdots, x_{2 n-1}, x_{2 n}\right)$, where

$$
\begin{align*}
& x_{1}=\cos \theta_{1}, \\
& x_{j}=\sin \theta_{1} \cdots \cdots \sin \theta_{j-1} \cos \theta_{j}, \quad j=2, \cdots, 2 n-1, \tag{3}\\
& x_{2 n}=\sin \theta_{1} \cdots \cdots \cdots \cdots \cdots \cdots \cdot \sin \theta_{2 n-2} \sin \theta_{2 n-1},
\end{align*}
$$

$0 \leqq \theta_{1}, \cdots, \theta_{2 n-2} \leqq \pi, 0 \leqq \theta_{2 n-1}<2 \pi$. With respect to this parametrization, we have $d \tau=\Pi_{j=1}^{2 n-2}\left(\sin \theta_{j}\right)^{2 n-j-1} d \theta_{1} \cdots d \theta_{2 n-1}$. Next we begin with the hyperplane $L, L \cap B \neq \varnothing$, defined by the equation $x_{2 n}=a, 0 \leqq a<1$. Functions $x_{1}, \cdots, x_{2 n-1}$ in (3) and $x_{2 n}=a$ can be used as a parametrization Ψ for $L \cap B, \Psi: G \rightarrow L \cap B$, where G is defined by $G=\left\{\left(\theta_{1}, \cdots, \theta_{2 n-1}\right) \in\right.$ $\left.\boldsymbol{R}^{2 n-1} \mid\left\|\Psi\left(\theta_{1}, \cdots, \theta_{2 n-1}\right)\right\|<1,0<\theta_{j}<\pi, j=1, \cdots, 2 n-1\right\}$, and we have $d \sigma=\prod_{j=1}^{2 n-1}\left(\sin \theta_{j}\right)^{2 n-j} d \theta_{1} \cdots d \theta_{2 n-1}$. Writing $\theta^{\prime}=\left(\theta_{1}, \cdots, \theta_{2 n-2}\right)$ and $Q=$ $(0, \pi) \times \cdots \times(0, \pi) \subset \boldsymbol{R}^{2 n-2}$, we define $D=\left\{\theta^{\prime} \in Q \mid\left(\theta^{\prime}, \theta_{2 n-1}\right) \in G\right.$ for some $\left.\theta_{2 n-1} \in(0, \pi)\right\}$. Take an arbitrary point $\theta^{\prime} \in D$, and let $\left(\theta^{\prime}, \theta_{2 n-1}\right) \in G$. Then θ^{\prime} determines a point $z^{\prime}=\left(z_{1}, \cdots, z_{n-1}\right)$, and $\theta_{2 n-1}$ satisfies the inequality

$$
\left(\sin \theta_{1} \cdots \sin \theta_{2 n-2}\right)^{2}\left(\cos \theta_{2 n-1}\right)^{2}+a^{2}<1-\left\|z^{\prime}\right\|^{2},
$$

where $\left\|z^{\prime}\right\|^{2}=\left|z_{1}\right|^{2}+\cdots+\left|z_{n-1}\right|^{2}$, hence runs through an interval $(\alpha, \beta) \subset$ $(0, \pi)$. The corresponding point $z_{n}=x_{2 n-1}+i a$ lies on a chord l of a circle C in C of radius $\left(1-\left\|z^{\prime}\right\|^{2}\right)^{1 / 2}$. On the other hand, for a point $z_{n} \in C$, we can write $z_{n}=\left(1-\left\|z^{\prime}\right\|^{2}\right)^{1 / 2} e^{i t}, 0 \leqq t<2 \pi$, and $\left(z^{\prime}, z_{n}\right)=\Phi\left(\theta^{\prime}, t\right)$. Now the inequality (1) implies that

$$
\begin{aligned}
J: & =\int_{l}\left|f\left(z^{\prime}, z_{n}\right)\right|^{p}\left|d z_{n}\right| \\
& \leqq K_{l}\left(1-\left\|z^{\prime}\right\|^{2}\right)^{1 / 2} \int_{0}^{2 \pi}\left|f\left(z^{\prime},\left(1-\left\|z^{\prime}\right\|^{2}\right)^{1 / 2} e^{i t}\right)\right|^{p} d t
\end{aligned}
$$

here, since $\left|d z_{n}\right|=\sin \theta_{1} \cdots \sin \theta_{2 n-1} d \theta_{2 n-1}, \theta_{2 n-1} \in(\alpha, \beta)$, on the left-hand side, we get

$$
J=\int_{\alpha}^{\beta}\left|(f \circ \Psi)\left(\theta^{\prime}, \theta_{2 n-1}\right)\right|^{p} \sin \theta_{1} \cdots \sin \theta_{2 n-1} d \theta_{2 n-1}
$$

It follows that

$$
\begin{aligned}
& \int_{L \cap B}|f(z)|^{p} d \sigma(z) \\
& =\int_{G}\left|(f \circ \Psi)\left(\theta_{1}, \cdots, \theta_{2 n-2}, \theta_{2 n-1}\right)\right|^{p} \prod_{j=1}^{2 n-1}\left(\sin \theta_{j}\right)^{2 n-j} d \theta_{1} \cdots d \theta_{2 n-1} \\
& =\int_{D} d \theta_{1} \cdots d \theta_{2 n-2} \int_{\alpha}^{\beta}\left|(f \circ \Psi)\left(\theta^{\prime}, \theta_{2 n-1}\right)\right|^{2 n} \prod_{j=1}^{2 n-2}\left(\sin \theta_{j}\right)^{2 n-j-1} \sin \theta_{1} \cdots \sin \theta_{2 n-1} d \theta_{2 n-1} \\
& \leqq \int_{D}^{2 n-2} \prod_{j=1}^{2 n}\left(\sin \theta_{j}\right)^{2 n-j-1} d \theta_{1} \cdots d \theta_{2 n-2} \int_{0}^{2 \pi}\left|f\left(z^{\prime},\left(1-\left\|z^{\prime}\right\|^{2}\right)^{1 / 2} e^{i t}\right)\right|^{p}\left(1-\left\|z^{\prime}\right\|^{2}\right)^{1 / 2} d t \\
& \leqq \int_{Q} d \theta_{1} \cdots d \theta_{2 n-2} \int_{0}^{2 \pi}\left|f\left(z^{\prime}, z_{n}\right)\right|^{p}\left|z_{n}\right| \prod_{j=1}^{2 n-2}\left(\sin \theta_{j}\right)^{2 n-j-1} d t \\
& =\int_{\partial B}|f(z)|^{p}\left|z_{n}\right| d \tau(z) \leqq \int_{\partial B}|f(z)|^{p} d \tau(z) .
\end{aligned}
$$

Finally, let L be an arbitrary hyperplane in $\boldsymbol{R}^{2 n}, L \cap B \neq \varnothing$. Take a unit vector w in C^{n} orthogonal to L with respect to the real inner product $\operatorname{Re}\langle u, v\rangle$ of $\boldsymbol{R}^{2 n}$, where $\langle u, v\rangle=\sum_{j=1}^{n} u_{j} \bar{v}_{j}$ for $u=\left(u_{1}, \cdots, u_{n}\right)$, $v=\left(v_{1}, \cdots, v_{n}\right) \in \boldsymbol{C}^{n}$. Choose a unitary transformation U in C^{n} so that $U w=(0, \cdots, 0, i)$. Then $L^{\prime}:=U(L)$ is a hyperplane defined by the equation $\operatorname{Im} z_{n}^{\prime}=$ const., $z^{\prime}=\left(z_{1}^{\prime}, \cdots, z_{n}^{\prime}\right) \in L^{\prime}$. Hence, denoting by $d \sigma^{\prime}$ the measure on L^{\prime}, we get

$$
\int_{L^{\prime} \cap \boldsymbol{B}}\left|\left(f \circ U^{-1}\right)\left(z^{\prime}\right)\right|^{p} d \sigma^{\prime}\left(z^{\prime}\right) \leqq \int_{\partial B}\left|\left(f \circ U^{-1}\right)\left(z^{\prime}\right)\right|^{p} d \tau\left(z^{\prime}\right) .
$$

It follows that

$$
\int_{L \cap B}|f(z)|^{p} d \sigma(z) \leqq \int_{\partial B}|f(z)|^{p} d \tau(z)
$$

Remark. Let $U z=z^{\prime}$. Then $\left|z_{n}^{\prime}\right|=\left|\left\langle z^{\prime},(0, \cdots, 0, i)\right\rangle\right|=\left|\left\langle z^{\prime}, w^{\prime}\right\rangle\right| ;$ hence we have

$$
\int_{L_{\cap B}}|f(z)|^{p} d \sigma(z) \leqq K \int_{\partial \boldsymbol{B}}|f(z)|^{p}\left|\left\langle z, w^{\prime}\right\rangle\right| d \tau(z)
$$

4. Proof of Theorem. Let L be a hyperplane in $\boldsymbol{R}^{2 N}, L \cap \boldsymbol{B} \neq \varnothing$, defined by the equation $\sum_{j=1}^{m} A^{j} X^{j}+a=0$, where $A^{j}=\left(a_{1}^{j}, \cdots, a_{2 n_{j}}^{j}\right) \in$ $\boldsymbol{R}^{2 n_{j}}, j=1, \cdots, m$, and $a \in \boldsymbol{R}$. We may suppose that $\left\|A^{m}\right\| \prod_{j=1}^{m-1}\left(2 n_{j}\right)$ is the maximum among the values $\left\|A^{k}\right\| \prod_{j \neq k}\left(2 n_{j}\right), k=1, \cdots, m$, and that $a_{2 n_{m}}^{m} \neq 0$. We shall derive the inequality:

$$
\int_{L \cap B}|f(\boldsymbol{Z})|^{p} d \sigma(\boldsymbol{Z}) \leqq\left(\sum_{j=1}^{m}\left\|A^{j}\right\|^{2}\right)^{1 / 2}\left\|A^{m}\right\|^{-1} \prod_{j=1}^{m-1}\left(2 n_{j}\right)^{-1} \int_{\partial \boldsymbol{B}}\left|f^{*}(\boldsymbol{Z})\right|^{p} d \tau(\boldsymbol{Z})
$$

This is sufficient, because, letting $\left\|A^{k}\right\|=\max \left\{\left\|A^{j}\right\| \mid j=1, \cdots, m\right\}$, we have

$$
\begin{aligned}
\left(\sum\left\|A^{j}\right\|^{2}\right)^{1 / 2}\left\|A^{m}\right\|^{-1} \prod_{j=1}^{m-1}\left(2 n_{j}\right)^{-1} & \leqq\left(\sum\left\|A^{j}\right\|^{2}\right)^{1 / 2}\left\|A^{k}\right\|^{-1} \prod_{j \neq k}\left(2 n_{j}\right)^{-1} \\
& \leqq m^{1 / 2} 2^{-(m-1)}
\end{aligned}
$$

Now, the defining equation of L becomes

$$
\begin{equation*}
x_{2 n_{m}}^{m}=\sum_{j=1}^{m-1} B^{j} X^{j}+B^{m \prime} X^{m \prime}+b \tag{4}
\end{equation*}
$$

where $B^{j}=\left(b_{1}^{j}, \cdots, b_{2 n_{j}}^{j}\right), j=1, \cdots, m-1, B^{m \prime}=\left(b_{1}^{m}, \cdots, b_{2 n_{m}-1}^{m}\right)$ with $b_{k}^{j}=$ $-a_{k}^{j}\left(a_{2 n_{m}}^{m}\right)^{-1}$, and $X^{m \prime}=\left(x_{1}^{m}, \cdots, x_{2 n_{m}-1}^{m}\right)$. First, we shall prove the above inequality for functions f holomorphic in a neighborhood of $\overline{\boldsymbol{B}}$. It suffices to show

$$
\begin{equation*}
\int_{L \cap B}|f(Z)|^{p} d \sigma(Z) \leqq c_{m} c_{1}^{-1} \prod_{j=1}^{m-1}\left(2 n_{j}\right)^{-1} \int_{\partial \boldsymbol{B}}|f(\boldsymbol{Z})|^{p} d \tau(\boldsymbol{Z}) \tag{5}
\end{equation*}
$$

where $c_{m}=\left(\left\|B^{1}\right\|^{2}+\cdots+\left\|B^{m}\right\|^{2}\right)^{1 / 2}, c_{1}=\left\|B^{m}\right\|$ with $B^{m}=\left(b_{1}^{m}, \cdots, b_{2 n_{m}-1}^{m}\right.$, -1). Since the case $m=1$ is proved in Lemma, we have only to verify the inequality (5) under the assumption that the case $m-1$ is valid. Let G be the open subset of $R^{2 N-1}$ consisting of points $\left(X^{1}, \cdots, X^{m-1}, X^{m \prime}\right) \in R^{2 N-1}$ such that $\left\|X^{j}\right\|<1, j=1, \cdots, m-1$, and $\left\|X^{m \prime}\right\|^{2}+\left(x_{2 n_{m}}^{m}\right)^{2}<1$, where $x_{2 n_{m}}^{m}$ is the function of $X^{1}, \cdots, X^{m-1}, X^{m \prime}$ defined by the equation (4). Let $\Psi: G \rightarrow L \cap B$ be the transformation defined by $X^{j}=X^{j}, j=1, \cdots, m-1$, and $X^{m}=\left(X^{m \prime}, x_{2_{m}}^{m}\right)$. The measure $d \sigma$ on $L \cap B$ with respect to this parametrization is $d \sigma=c_{m} d X^{1} \cdots$ $d X^{m-1} d X^{m \prime}$, where we write $d X^{j}=d x_{1}^{j} \cdots d x_{2 n_{j}}^{j}, j=1, \cdots, m-1$, and $d X^{m \prime}=d x_{1}^{m} \cdots d x_{2 n_{m}-1}^{m}$. Let $D=\left\{X^{1} \in \boldsymbol{B}_{1} \mid\left(X^{1}, X^{2}, \cdots, X^{m \prime}\right) \in G\right.$ for some $\left.\left(X^{2}, \cdots, X^{m \prime}\right) \in \boldsymbol{R}^{2\left(N-n_{1}\right)-1}\right\}$. Take an arbitrary point $X^{1} \in D$. Then a hyperplane $L^{\prime}:=L^{\prime}\left(X^{1}\right)$ in $R^{2\left(N-n_{1}\right)}$ is determined by the equation

$$
x_{2 n_{m}}^{m}=\sum_{j=2}^{m-1} B^{j} X^{j}+B^{m \prime} X^{m \prime}+\left(B^{1} X^{1}+b\right)
$$

Let $G^{\prime}\left(X^{1}\right)$ be the open subset of $R^{\left(N-n_{1}\right)-1}$ such that $\left\|X^{j}\right\|<1, j=2, \cdots$, $m-1$, and $\left\|X^{m \prime}\right\|^{2}+\left(x_{2 n_{m}}^{m}\right)^{2}<1$. Then a parametrization $\Psi^{\prime}: G^{\prime}\left(X^{1}\right) \rightarrow$ $L^{\prime} \cap \boldsymbol{B}^{\prime}$, where $\boldsymbol{B}^{\prime}=\boldsymbol{B}_{2} \times \cdots \times \boldsymbol{B}_{m}$, is defined by $X^{j}=X^{j}, j=2, \cdots$, $m-1$, and $X^{m}=\left(X^{m \prime}, x_{2 n_{m}}^{m}\right)$. The measure $d \sigma^{\prime}$ on $L^{\prime} \cap \boldsymbol{B}^{\prime}$ is given by $d \sigma^{\prime}=c_{m-1} d X^{2} \cdots d X^{m \prime}, c_{m-1}=\left(\left\|B^{2}\right\|^{2}+\cdots+\left\|B^{m}\right\|^{2}\right)^{1 / 2}$. Note that the set $G^{\prime}\left(X^{1}\right)$ consists of points ($X^{2}, \cdots, X^{m \prime}$) such that ($X^{1}, X^{2}, \cdots, X^{m \prime}$) $\in G$. For an arbitrary function f holomorphic in a neighborhood of $\overline{\boldsymbol{B}}$ and p, $0<p<\infty$, we have

$$
\begin{aligned}
I: & =\int_{L_{\cap B}}|f(Z)|^{p} d \sigma(Z)=c_{m} \int_{G}\left|(f \circ \Psi)\left(X^{1}, X^{2}, \cdots, X^{m \prime}\right)\right|^{p} d X^{1} d X^{2} \cdots d X^{m \prime} \\
& =c_{m} \int_{D} d X^{1} \int_{G^{\prime}\left(X^{1}\right)}\left|f\left(X^{1}, \Psi^{\prime}\left(X^{2}, \cdots, X^{m \prime}\right)\right)\right|^{p} d X^{2} \cdots d X^{m \prime} \\
& =c_{m} c_{m-1}^{-1} \int_{D} d X^{1} \int_{L^{\prime} \cap B^{\prime}}\left|f\left(Z^{1}, Z^{\prime}\right)\right|^{p} d \sigma^{\prime}\left(Z^{\prime}\right)
\end{aligned}
$$

where we write $Z^{\prime}=\left(Z^{2}, \cdots, Z^{m}\right)$. The induction hypothesis implies that

$$
\int_{L^{\prime} \cap B^{\prime}}\left|f\left(Z^{1}, Z^{\prime}\right)\right|^{p} d \sigma^{\prime}\left(Z^{\prime}\right) \leqq c_{m-1} c_{1}^{-1} \prod_{j=2}^{m-1}\left(2 n_{j}\right)^{-1} \int_{\partial B^{\prime}}\left|f\left(Z^{1}, Z^{\prime}\right)\right|^{p} d \tau^{\prime}\left(Z^{\prime}\right)
$$

where $d \tau^{\prime}$ denotes the measure on $\partial \boldsymbol{B}^{\prime}$, hence

$$
\begin{aligned}
I & \leqq c_{m} c_{1}^{-1} \prod_{j=2}^{m-1}\left(2 n_{j}\right)^{-1} \int_{D} d X^{1} \int_{\partial B^{\prime}}\left|f\left(Z^{1}, Z^{\prime}\right)\right|^{p} d \tau^{\prime}\left(Z^{\prime}\right) \\
& \leqq c_{m} c_{1}^{-1} \prod_{j=2}^{m-1}\left(2 n_{j}\right)^{-1} \int_{B_{1}} d X^{1} \int_{\partial B^{\prime}}\left|f\left(Z^{1}, Z^{\prime}\right)\right|^{p} d \tau^{\prime}\left(Z^{\prime}\right) \\
& =c_{m} c_{1}^{-1} \prod_{j=2}^{m-1}\left(2 n_{j}\right)^{-1} \int_{0}^{1} r^{2 n_{1}-1} d r \int_{\partial B_{1}} d \tau_{1}\left(Z^{1}\right) \int_{\partial B^{\prime}}\left|f\left(r Z^{1}, Z^{\prime}\right)\right|^{p} d \tau^{\prime}\left(Z^{\prime}\right),
\end{aligned}
$$

where $d \tau_{1}$ denotes the measure on $\partial \boldsymbol{B}_{1}$. Here, since $f\left(\boldsymbol{Z}^{1}, \boldsymbol{Z}^{\prime}\right)$ is a holomorphic function of Z^{1} in a neighborhood of \bar{B}_{1} for every $Z^{\prime} \in \partial \boldsymbol{B}^{\prime}$, we see by [3, Lemma 2] that

$$
\int_{\partial B_{1}}\left|f\left(r Z^{1}, Z^{\prime}\right)\right|^{p} d \tau_{1}\left(Z^{1}\right) \leqq \int_{\partial B_{1}}\left|f\left(Z^{1}, Z^{\prime}\right)\right|^{p} d \tau_{1}\left(Z^{1}\right)
$$

hence

$$
\begin{aligned}
I & \leqq c_{m} c_{1}^{-1} \prod_{j=2}^{m-1}\left(2 n_{j}\right)^{-1}\left(2 n_{1}\right)^{-1} \int_{\partial B^{\prime}} d \tau^{\prime}\left(Z^{\prime}\right) \int_{\partial \mathbf{B}_{1}}\left|f\left(\boldsymbol{Z}^{1}, Z^{\prime}\right)\right|^{p} d \tau_{1}\left(\boldsymbol{Z}^{1}\right) \\
& =c_{m} c_{1}^{-1} \prod_{j=1}^{m-1}\left(2 n_{j}\right)^{-1} \int_{\partial \boldsymbol{B}}|f(\boldsymbol{Z})|^{p} d \tau(\boldsymbol{Z}) .
\end{aligned}
$$

Now take an arbitrary function $f \in H^{p}(\boldsymbol{B}), 0<p<\infty$. Then, from Fatou's lemma and the inequality (2) which is valid for functions $f(r Z), 0<r<$ 1 , holomorphic in neighborhoods of $\overline{\boldsymbol{B}}$, it follows that

$$
\begin{aligned}
\int_{L \cap B}|f(Z)|^{p} d \sigma(Z) & \leqq \liminf _{r \rightarrow 1} \int_{L_{\cap} B}|f(r Z)|^{p} d \sigma(Z) \\
& \leqq \lim _{r \rightarrow 1} 2^{-(m-1)} m^{1 / 2} \int_{\partial \mathbf{B}}|f(r Z)|^{p} d \tau(Z) \\
& =2^{-(m-1)} m^{1 / 2} \int_{\partial \mathbf{B}}\left|f^{*}(Z)\right|^{p} d \tau(Z)
\end{aligned}
$$

The proof is completed.

References

[1] F. Carlson, Quelques inégalités concernant les fonctions analytiques, Ark. Mat. Astr. Fys. 29B, No. 11 (1943).
[2] L. Fejér and F. Riesz, Uber einige funktionentheoretische Ungleichungen, Math. Z. 11 (1921), 305-314.
[3] K. T. Hahn and J. Mitchell, H^{p} spaces on bounded symmetric domains, Trans. Am. Math. Soc. 146 (1969), 521-531.
[4] M. Hasumi and N. Mochizuki, Fejér-Riesz inequality for holomorphic functions of several complex variables, Tôhoku Math. J. 33 (1981), 493-501.
[5] M. Riesz, Remarque sur les fonctions holomorphes, Acta Sci. Math. 12 (1950), 53-56.
[6] W. Rudin, Function theory in polydises, Benjamin, New York, 1969.
College of General Education
Tôнокu University
Kawauchi, Sendai, 980
Japan

