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ON POLARIZED VARIETIES OF SMALL J-GENERA
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Introduction. The purpose of this paper is to generalize the theory
of J-genus of polarized varieties (cf. [Fl], [F2], [F4] etc.) to the positive
characteristic cases. This is accomplished by weakening the assumptions
on singularities in our previous results in such a way that we can avoid
the use of the strong Bertini theorem and the desingularization theory
of Hironaka. Moreover, for the vanishing theorem of Kodaira, we can
sometimes substitute the vanishing theorem of Serre. Furthermore, with
the help of the theory of liftings to characteristic zero, we obtain most
results in [Fl], [F2] and [F4] which were proved by transcendental methods.

This article is organized as follows: In §1 we review basic notions.
In § 2 we prove the fundamental inequality dim Bs | L | < Δ{ V, L) for any
polarized variety (V, L). In §3 we give a couple of sufficient conditions
for the existence of a ladder of (F, L). As an application, a criterion
for the very ampleness of L is obtained. In §4 we study the case
J(V, L) = 0 and establish the same classification theorem as that in [Fl].
In §5 and §6 we consider the case A(V, L) = 1. An appendix is devoted
to liftability problems.

This paper was completed mostly when the author was a Miller
Fellow at the University of California, Berkeley. He would like to
express his hearty thanks to the Miller Institute and to Professors R.
Hartshorne, A. Ogus and many people there, with whom he enjoyed
valuable opportunities to study. He thanks also Professor Badescu, who
showed the use of the theory of liftings in his article [B].

Notation, convention and terminology. Basically we employ the
notation in [Fl], [F2], [F3] and [F4], which is similar to that of [EGA],
We work usually in the category of ^-schemes of finite type, where &
is an algebraically closed field of any characteristic. In many statements
(especially where we use the word "generic"), $ is implicitly assumed
further to be "sufficiently big", that means, all the objects in concern
can be defined over a subfield k such that tr. deg($/&) = °o. In other
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words, Si is a so-called universal domain. A point means a ^-rational
point, even when we say "generic". Thus, our "generic point9' is similar
to that of Weil [W]. A variety means an irreducible, reduced, proper
^-scheme. A manifold is a non-singular variety. Line bundles are
identified with the invertible sheaves of their sections. Tensor products
of line bundles are denoted additively. Multiplicative notations are used
for intersection products in Chow rings.

We show some examples of symbols.
[A]: The line bundle associated with a linear system A of Cartier divisors.
BsA: The intersection of all the members of A.
pA: The rational mapping defined by A.
\L\: The complete linear system associated with a line bundle L.
^[L]: = &~ ®<?£f, for a coherent sheaf ^ 7 where £f is the invertible

sheaf corresponding to L.
Lτ: The pull-back of L to a space T by a given morphism. However,

when there is no danger of confusion, we write simply L instead
of Lτ.

ωv: The dualizing sheaf of a locally Macaulay variety V.
KM: The canonical bundle of a manifold M.
Ha9 Hβ, •••: The (pull-backs of) ^( l) ' s of protective spaces Paf Ph •••

indicated by the same Greek letters.

1. Basic notions. (1.1) A prepolarized variety is a pair (V, L) of
a variety V and a line bundle L on V. It is called a polarized variety
if L is ample (not necessarily very ample).

(1.2) Since the Hubert polynomial X(V, tL) is integer valued for
every teZ, there are integers Xo, ••-,%„ such that X{ V, tL) = Σ?=o Xjt^/jl,
where n = dimF and tίn = t(t + l)(ί + 2) (ί + (j - 1)). These Z/s
are invariants of (V, L). In particular we set d(V, L) = %„(V, L) and

By the Riemann-Roch theorem, we have d(V, L) = Ln. If V is non-
singular, we have 2g(V, L) - 2 = (Kv + (n - l)L)Ln~\

If V is a curve, then #(V, L) = h\V, ^v) Hence, in view of (1.3)
below, we call g(V, L) the sectional genus of (V, L).

(1.3) If D is an irreducible reduced member of |L | , then Xr(D, LD) —
Xr+i(V, L) for any r ^ 0. In particular, d(D, LD) = d(V, L) and g(D, LD) =
#(V, -L). For a proof, see [PI; Proposition 1.3].

(1.4) The total deficiency of (F, L) is defined to be Δ(V, L) = n +
d(V, L) — h°(V, L). This is also called the J-genus. More generally,
we define d(V, A) = n + d{V, [A]) — (1 + aim A) for a linear system A
on F. Then, of course, A(V, L) = A(V, \L\).



POLARIZED VARIETIES 321

(1.5) Let V, L and D be as in (1.3). Then we have 0 ^ Δ(V, L) -
A(D, LD) <* h\V, ^γ). Moreover, the following conditions are equivalent
to each other:

(a) Δ(V,L) = J(D,LD).
(b) H\V, L)-»'H°(D, LD) is surjective.
(c) \L\D=\LD\.
(1.6) Let (F, L) be a prepolarized variety. An irreducible reduced

member D of \L\ is called a rung of (V, L). It is said to be regular
if the conditions (a), (b) and (c) in (1.5) are satisfied. A sequence V =
Dn z> JDW_! 3 Z) Dx of subvarieties of V with j = dim JD, is called a
ladder of (F, L) if each Dy is a rung of (Dj+1, L). This ladder is said
to be regular if so is each rung Dj. By (1.5), this is equivalent to saying
Δ(V, L) = Δ(DU L).

(1.7) One easily sees Δ(V, L) - Δ(D, LD) = dimCoker(iϊ0(F, L) ->
H\D9L)) for any rung D of (V, L). This was called the deficiency in
classical geometry. Now, suppose that (V, L) has a ladder V = DnZD
• Z) Dx and that LI)l = [DQ] for some divisor JD0 on Dx. Set J y =
dim Cokerti ϊ 0 ^, L) -> ίί^A-i, £))- Since z/(A, L) = Λ, we have J( F, L) =
Λ + + z/n. This is why we call it the total deficiency. Obviously

L) ^ 0 if (F, L) has a ladder.

2. Fundamental inequality. (2.1) The purpose of this section is
to prove the following:

THEOREM. Let Λ be a linear system on a variety V such that L =
[Λ] is ample. Then dim BsΛ < Δ(V, A), where dim 0 is defined to be — 1.

The proof given in this section is an amalgam of the argument in
[PI; Theorem 1.9] and that of [MM; Theorem 3]. First we review
several preliminary facts.

(2.2) Let S be a proper ^-scheme such that any irreducible component
of its support is of dimension n. If there is an embedding of S into a
manifold M with N = dimM, we define &q = &^~g(^S} ωM). Actually,
3ίq is independent of the choice of such an embedding and can be de-
fined without assuming the existence of one (see, e.g., [F5; §1]). One
easily sees that ϋ^ ? = 0 unless 0 ^ q <; n, and that dim Supp(«S^9) ^ q.
Moreover, Supp(^n) = Supp(S). If S is locally Macaulay, then 3ίn is
the dualizing sheaf ωs of S.

DEFINITION (2.3). Let x be a point on S and let k be an integer with
1 <; k 5̂  n. S is said to be k-Macaulay at x if dimY<; q — k for any
0 ^ q < n and any component Y of Supp(^g) such that x e Y, where we
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define dim 0 = — oo. S is said to be k-Macaulay if it is so at every
point on S.

S is locally Macaulay if and only if it is w-Macaulay. S has no
embedded component if and only if it is 1-Macaulay (cf. [F5; (1.14)]).
Using the theory in [Gl; §3], we infer that S is Λ-Macaulay if and only
if it is (Sk) in the sense of [EGA; Chap. IV, (5.7.2)]. In particular, a
variety is normal if and only if it is 2-Macaulay and non-singular in
codimension one (see [EGA; (5.8.6)]).

PROPOSITION (2.4). Let D be a Cartier divisor on S and let x be a
point on D. Assume that the natural homomorphism ^ s —» <^S[D] is
injective at x. If D is k-Macaulay at x, then S is k-Macaulay at x.
On the other hand, if S is k-Macaulay at x, then D is (k — 1)-Macaulay
at x.

This follows easily from the definition.

PROPOSITION (2.5). Let A be a linear system on S. Suppose that S
is k-Macaulay and that S is (k + Y)-Macaulay at each point x e BsA.
Then a general member of A is k-Macaulay.

For a proof, use the following:

LEMMA (2.6). Let J^ be a coherent sheaf on S and let φ:
be the homomorphism induced by d e H°(S, [A]) which corresponds to a
general member D of A. Then φ is injective outside BsA.

This is a consequence of the Noetherian decomposition of ^ T See
[F5; (1.2)].

THEOREM (2.7). Let A be a linear system on a normal variety V such
that BsA = 0 . Let W be the image of the rational mapping pΛ defined
by A and let D be a generic member of A. Then: (a) D is irreducible
if dimTF^ 2, and (b) D is reduced if A is complete.

PROOF, (a) is a famous result of Zariski (cf., e.g., [Z; p. 30]). Since
V is 2-Macaulay, D is 1-Macaulay by (2.4). So it has no embedded
component. Hence, in order to prove (b), it suffices to show that any
prime component of D is of multiplicity one. Suppose the contrary.
Then, by the theory in [W; Chap. IX], the rational mapping pΛ: V-+PN,
where N — dimΛ, is factored as pΛ — Fop' for a morphism p':V—>PN,
where F is the Frobenius p-power morphism PN -»PN with p =
char(^) > 0. So A is not complete, contradicting the assumption.

THEOREM (2.8). Let A be a linear system on a variety V. Then,
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there exists a normal variety V together with a birational morphism
π:V—>V, an effective Cartier divisor E on V and a linear system A'
on V such that π*Λ — E + Λ' and Bs Ar — 0 . Moreover, the image
W= pΛ'(V) is independent of the choice of such V.

This is well-known. A proof is found, e.g., in [F5; (3.1)].

DEFINITION (2.9). Such a variety V is called a good graph of ρΛ. W
is called the image of the rational mapping pΛ.

LEMMA (2.10). Let D be an effective ample divisor on a variety V
and suppose that Supp(D) = D1 U D2 where both D± and D2 are proper
closed subsets of Supp(D). Then dim(Z)1 Π D2) ^ n — 2, where n = dimF.

PROOF. The assertion is trivial for n = 1, and follows from the
connectedness of Supp(D) when n = 2 (cf. [H; p. 79]). For n > 2, we
use the induction on n as in [Fl; Lemma 6.1].

(2.11) Now we prove the Theorem (2.1) by induction on n = dimF.
The inequality is easily proved for n = 1. So we consider the case n ^ 2.

The normalization morphism v .V —>V is finite. Therefore v*L is
ample and dim Bs(v*Λ) = dim Bs A. So it suffices to prove the inequality
for v*Λ, and hence we may assume V to be normal.

dimBsΛ — dim J3s|Λ| <; dim|Λ| — dim/ί since L is ample. Hence it
suffices to consider the case in which Λ is complete.

Now, take a good graph V of pΛ, and let E, Λr and ΫΓbe as in (2.8).
We consider the following five cases separately: (a) dim BsΛ = n, or
equivalently, A — 0 . (b) dim Bs A = n — 1 and dimW = 1. (c) dim Bs A ^
n - 2 and dimW= 1. (d) dimBsA = n-l and dimW^2. (e) dimBsA ^
n - 2 and dimTF^ 2.

Cases (a), (b) and (c). The proof is the same as that in [Fl; p. 114].
Case (d). Let S be a generic member of A! and let Ό be the cor-

responding member of A. Λf is complete since V is normal and A is
complete. Hence, by (2.7), S is irreducible and reduced. Thus the
argument in [Fl; p. 114] works without trouble. Note that we have
(2.10) in place of [Fl; Lemma 6.1], and that dimylG = dimΛ — 1 follows
from the normality of V.

Case (e). Similar to that in case (d). q.e.d.

COROLLARY (2.12). Δ(V, L) > dimBs\L\ for any polarized variety
(V, L). In particular, the A-genus is non-negative.

3. Ladders of prepolarized varieties. In this section we establish
a sufficient condition for the existence of a ladder (cf. (1.6)), which is
similar to that in [F2]. First we make the following:
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DEFINITION (3.1). A linear system i on a variety V is said to be
degenerate if dimW< dimF, where W is the image of the rational
mapping pΛ (cf. (2.8)).

PROPOSITION (3.2). Let Λ be a degenerate linear system on a variety
V such that d(V, L) > 0 and d(V, L) ^ 2Δ(V, A) - 1, where L = [A].
Suppose that B = BsA is a finite set and that V is non-singular at each
point of B. Then, a generic member D of A is irreducible and reduced.
Moreover, D is non-singular at each point of B.

The proof is almost the same as that of [F2; Proposition 3.5]. Indeed,
similarly as there, D is shown to be non-singular at each point of B.
Moreover, we see also dimΐF= n — 1, where W is the image of the
rational mapping pΛ. Hence, by (2.7), D is irreducible (as a set) if n ^
3. If n = 2, we have wEpX = EPH = EP(L - Ep - E) = -E2

P = 1 since
άimπ(E) ^ 0, where the notations are as in [F2]. This implies w —
degW = 1. So D is irreducible because a member of A! consists of one
prime component. Thus, in either case, D is irreducible. D is 1-Macaulay
by (2.5). Hence D has no embedded component. This implies that D is
reduced, since D is non-singular at each point of B (Note that B Φ 0 ,
since otherwise d(V, L) = 0 because A is degenerate).

LEMMA (3.3). Let A be a non-degenerate linear system on a variety
V such that d(V, L) ^ 2Δ(V9 A) - 1, where L = [A]. Suppose that B =
BsA is a finite set and that V is locally Macaulay at each point of B.
Then, taking generic members of A successively, one obtains a ladder
of(V,L).

PROOF. Let V be a good graph of pΛ and let π:V ->V, E, A' and
W be as in (2.8). Let D be a generic member of A and let S be the
corresponding member of A'. S is irreducible by (2.7). So D = π(S) U
π(E) = π(S) is also irreducible. D is 1-Macaulay by (2.5). Hence, to
show that D is reduced, it suffices to prove that D is of multiplicity
one at its generic point.

Assume the contrary. Then S is not reduced at its generic point.
In view of the theory in [W; Chap. IX], we infer that the morphism
pAr.V -+WaP% is factored as Fop', where p' is a morphism V -> P£
and F: Pf —• Pξ is the p-power Frobenius morphism with p = char($) >
0. Let W be the image of pf and set w' = degTΓ'. Then d(V, Ha) =
pnd(V, Hβ) = pnw' deg(p') since F*Ha = pHβ. Both L and Ha are c-semi-
positive in the sense of [F3; Appendix B] as line bundles on V. Hence
d(V, L) = Ln^ Ln-'Ha ^ ^ LHr1 ^ H; since L - Ha is effective on
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V. Thus we obtain d(V,L)^pnw'. On the other hand, W is not
contained in any hyperplane since otherwise W would be contained in
some hyperplane of Pξ. Hence h\W, Hβ) ^ 1 + dimΛL So, using 0 <ί
Δ(W, Hβ) = n + w' - h\W, Hβ), we obtain n + w' ^ 1 + dim A = n +
d(V,L)-Δ(V,Λ). Thus we get d(V9 L) - Δ(V, A) ^ w' ^ p~nd(V, L).
One sees that this contradicts d(V, L) ^ 2Δ(V, A) - 1.

Thus we prove that D is a rung of (V, L). By (1.3) we verify that
d(D, L) ^ 2Δ(D, AD) — 1. Clearly AD is non-degenerate and D is locally
Macaulay at each point of B = BsAD. Therefore, we complete the proof
by induction on n.

REMARK. The above lemma is slightly weaker than its C-version
[F2; Proposition 3.4], In fact, thanks to the strong version of Bertini
theorem, we need not assume d(V, L) ^ 2Δ(Vt L) — 1 in case char(Sΐ) = 0.

THEOREM (3.4). Let (V, L) be a prepolarized variety such that d( V, L) >
0, d( V, L) ̂  2Δ( V, L) — 1. Suppose that Bs\L\ is a finite (possibly empty)
set, at each point of which V is non-singular. Then {V, L) has a ladder.

We prove this by induction on n — dimF. (3.3) applies if | L | is non-
degenerate. If L is degenerate, a generic member D of \L\ is a rung
of (V, L) by (3.2). Moreover, (3.2) enables us to apply the induction
hypothesis to (D, LD). Thus we get a ladder of (V, L).

DEFINITION (3.5). A line bundle L on a variety Vis said to be simply
generated if the graded ^-algebra G( V, L) = ©^ 0 H°( V, tL) is generated
by H\V, L). Then, for any linear basis Xu , Xr of H\V, L), G(V, L)
is a homomorphic image of the polynomial ring $t[Xu , Xr]. L is said
to be quadratically presented if it is simply generated and if the relation
ideal among Xlf , Xr is generated by polynomials of degree two.

REMARK. The above definition is apparently different from that in
[F2], but they are equivalent to each other. If L is simply generated
(resp. quadratically presented) and ample, then it is normally generated
(resp. normally presented) in the sense of [Mu]. Of course, L is very
ample in this case.

THEOREM (3.6). Let (F, L) be a prepolarized variety such that d =
d(V, L)>0,Δ = Δ(V, L)£g = g(V, L) and that (F, L) has a ladder V =
DnZ)Dn^z> ---A- Then
(a) the ladder Dn Z) A is regular if d ^ 2Δ — 1,
(b) Bβ|L| = 0 if d^2Δ,
(c) g = Δ and L is simply generated if d ^ 2Δ + 1,
(d) L is quadratically presented if d ^ 2Δ + 2.
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This theorem is proved similarly as [F2; Theorem 4.1].

COROLLARY (3.7). Let (F, L) be a prepolarized variety such that d =
d{F, L) > 0, Δ = Δ(V, L) <: g(F, L). Suppose that Bs\L\ is a finite set, at
each point of which V is non-singular. Then (F, L) has a regular ladder
if d ^ 2Δ — 1, and the implications (b), (c) and (d) in (3.6) are valid.

For a proof, combine (3.4) and (3.6).

REMARK. In order to show the existence of a ladder, we use the
assumption that 5ΐ is "sufficiently big". But this is no longer necessary
to prove the above assertions (b), (c) and (d), because the statements are
compatible with scalar extensions. We need not even assume that $ is
algebraically closed. The same remark applies to many results in this
paper, including the fundamental inequality in (2.1).

COROLLARY (3.8). Let (F, L) be as in (3.6) and suppose in addition
that L is ample. Then Hq(V, tL) = 0 for any 0 < q < dimF and teZ
if d ^ 2Δ + 1.

PROOF. We use the induction on n = dimV. In order to apply
[F3; (2.1)], we must show that the restriction mapping pt: H\V, tL) —•
H°(Dn_lf tL) is surjective for every integer t. This follows from the
surjectivity of ρ1 and the simply generatedness of LD.

4. Polarized varieties with Δ = 0. Throughout this section we let
(F, L) be a polarized variety with Δ(V, L) = 0. We put n = dimF and
d = d(V,L).

(4.1) By (2.12) we have Bs\L\ = 0 . So (V, L) has a ladder by
(3.4). Then g(V, L) = g(Dlf L) = h\Du έ?) ^ 0, where A is the one-
dimensional rung of a ladder of (V, L). Hence we can apply (3.6) to
prove the following:

THEOREM (4.2). (F, L) has a regular ladder, g(V, L) = 0 and L is
simply generated. Moreover, L is quadratically presented if d ^ 2.

COROLLARY (4.3). If d = 1, then (7, L) = (Pn, H). Ifd = 29 then V
is a hyperquadric in Pn+1 and L is ^V(l).

REMARK. AS for the characterization of protective spaces as in [Fl;
§2], the equivalence of the conditions (a), (b), (b') and (d) in [Fl; Theorem
2.1] is now established (See also [F3; §3]). But the implication (c) => (b)
seems to be unknown because of the lack of the vanishing theorem of
Kodaira. Similarly, the conditions (a) and (b) in [Fl; Theorem 2.2] are
equivalent to each other, while (c) => (b) is unknown. See also (4.15)
below.
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(4.4) For the moment we assume V to be non-singular and write
M instead of V. Then Hq(M, KM + tL) = 0 for any q > 0, t > 0 by (3.8)
and the Serre duality. Therefore, by the same argument as in [Fl; §3],
we prove the following two lemmas.

LEMMA (4.5). h\M, KM + nL) = d - 1.

LEMMA (4.6). dim Bs |KM + nL\ < n - 1 if d ^ 3.

LEMMA (4.7). Ifn = 2 and d ^ 3, then (KM + 2L)2 = 0 except in the
case (AT, L) = (P\ 2H).

PROOF. We infer (KM + 2L)2 ^ 0 from (4.6). The left hand side is
equal to (KM)2 - 8 because KML = -d - 2 by flr(Af, L) = 0. Suppose that
the inequality holds. Since L contains a non-singular rational curve,
we infer that M is rational. The classification theory of rational surfaces
(cf., e.g., [Sa; Chap. V]) says that (KM)2 > 8 implies M = P\ It follows
from d ^ 3 and g(M, L) - 0 that (AT, L) = (P2, 2H).

L E M M A (4 .8) . If n^Z and d ^ 3, then (KM + nL)2Ln~2 = 0.

PROOF. Similarly as in [Fl; Lemma 3.6], we may assume n = 3.
Since L is very ample, we have a non-singular member D of L . Assume
(A L) = (P2, 2H). Then (iP' + 3L)D = KD + 2L = H. So we can apply
[F3; (3.9)] to derive a contradiction. Therefore (KM + 3L)2L = (KD +
2LZ))

2{D} - 0 by (4.7).
(4.9) Now, using the above results and the techniques in [F3], we

obtain the following theorem in the same way as in [Fl].

THEOREM. Let (M, L) be a polarized manifold such that Δ(M, L) =
0 and d(M, L) ^ 3. Then (M, L) = (P(E), HE) for some ample vector
bundle E on P1 except the case (M, L) = (P2, 2H). E is a direct sum of
n line bundles of positive degrees.

(4.10) Since deg(det E) = d(M, L) in the above case, it is an easy
exercise to classify all the polarized manifolds of the type (4.9) with
given n = dim M and d(M, L). Thus, together with (4.3), we complete
the classification of polarized manifolds of J-genus zero.

(4.11) From the preceding results and especially the very ampleness
of L (see (4.2)), we obtain the following theorem by the same method
as that in [Fl; §4].

THEOREM. Let (V, L) be a polarized variety with A(V, L) = 0. Then
P\L\ embeds V into PN, where iV=dim|L | . The singular locus S of
V is a linear subspace of PN and S = Ridge(F). For any linear sub-
space T of PN such that SnT = 0 and that dim T = N - dim S - 1,
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M— T f]V is a polarized manifold with A(M, LM) = 0. Furthermore, V
is the projective join M*S.

For the definition of the join operation *, see [PI; 4.1]. If in par-
ticular S is a point, then V = M*S is the cone over M with vertex S.

(4.12) The result [Fl; Corollary 4.10] is generalized in the following
way.

PROPOSITION. Let V be a normal subvariety of PN such that
Ridge(F) Φ 0 . Then Pic(F) is a cyclic group generated by ^V(l).

PROOF. Let x be a point on Ridge(F) and let P' be the blowing-up
of P = PN with center x. Let V be the proper transform of V on P'
and let H be a hyper plane on P not containing x. Considering the
projection from x, we get a morphism Pf —> H. Let / be the restriction
of this morphism to V. Then /(V) = FΠ H, which will be denoted by
D. f makes V a P*-bundle over Ό, since V — x*D. Given any ^f e
Pic(V), we have an integer m such that the restriction of £f(m) to
each fiber of / is trivial. Then ^ = f*(Jίf(m)) is an invertible sheaf
on D, and the natural morphism f*^~ —> £f (m) is an isomorphism. Let
E be the exceptional divisor on P' over x and set X= EΓiV. Then
/ * ^ = £f(m)z = 0, since ,5^(m) comes from Pic(F). This implies ^ =
^ since fx:X-*D is an isomorphism. Hence i^(m) = f*^~ = 0 in
Pic(F'). So eŜ Cm) = 0 in Pic(F), since V is normal. Thus we have
proved the assertion.

COROLLARY (4.13). Let (V, L) be a polarized variety with J(V, L) —
0. Then V is locally Macaulay and normal, L is very ample, and
Pic(F) is generated by L if V is singular.

(4.14) In view of the preceding results, we see that the results in
[Fl; §5] concerning the deformations of polarized varieties of J-genus
zero are valid in positive characteristic cases too.

(4.15) In the case of curves, h\V, έ?v) — 0 implies the existence of
a line bundle L on V such that Δ(V, L) = 0, and hence V= P1. The
higher dimensional version of this fact would be the following:

CONJECTURE. Let (V, L) be a polarized variety with g(V, L) <̂  0.
Then Δ(V,L) = 0.

This seems to be unsolved even in the case char(^) = 0 and V is
non-singular. However, we have the following:

THEOREM (4.16). (Compare [F2; Lemme 5.1]). Let (V, L) be a polar-
ized variety with g{V, L) <; 0. Suppose that (V, L) has a ladder V = Dnz>
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j such that each rung Dό is 2-Macaulay for j ^ 2. Then

PROOF. We use the induction on n = dimF. If n — 1, the assertion
is clear. Next we consider the case n = 2. Then, D — Dx is a non-
singular rational curve since ft/(.D, ̂ ) = #(D, L) = g(V, L). So D f] S =
0 for the singular locus S of F. Hence S is a finite set because D is
ample. Therefore V is normal by the criterion of Serre (cf. (2.3)). Take
a non-singular model π: F ' - > F of V (cf. [A]). V is rational since D is
lifted to a divisor D' on V such that (2)')2 > 0 and Df = P\ On the
other hand, we have an injection H\V, π*έ7v) —> H\V\ &v) thanks to
the Leray spectral sequence. Now, putting things together, we obtain
H\V, &y) = 0. So Δ(V, L) = Δ(D, LD) = 0 by (1.5).

Finally consider the case n ^ 3. Applying the induction hypothesis
to D = £>„_!, we see J(D, L )̂ = 0. H\V, -tL) = 0 for any sufficiently
large integer t since F is 2-Macaulay. (Recall (2.3) and use the Serre
duality.) Therefore, by an argument similar to those in [So; Lemma
I-B] and [F3; (2.2)], we infer H\V, <Z?Y) = 0 from (3.8). Hence Δ(V, L) =
A(D, L) = 0 by (1.5).

5. Polarized varieties with Δ — 1. Throughout this section let
(F, L) be a polarized variety with Δ(V, L) = 1. We put w = dimF, d =
rf(V,L) and g = g(V,L).

(5.1) By (2.12), J5s|L| is at most a finite set. If F is non-singular
at each point of Bs\L\, then (F, L) has a ladder by virtue of (3.4).

LEMMA (5.2). Suppose that V is 2-Macaulay and that (F, L) has a
ladder. Then g(V, L) > 0.

PROOF. Let 7 = D B D O A be a ladder of (F, L) and assume
g(V, L) ^ 0. Then Δ(Dί9 L) = 0 since ^(A, ^ ) - ^(A, L) - ^(F, L) (cf.
(1.2) and (1.3)). In view of (1.5), we infer that there is an integer j
such that 0 < j < n, Δ(Di9 L) = 0 for any i <: n — j , and Δ(Di9 L) = 1
for any i> n — j . Then, £Γ°( F, L) —> H\ Di9 L) is sur jective for any i >
n — j . Hence we can find fl9 f2, - , fs 6 H°(V, L) such that, for each r = l,
• , i, D r is defined by the equations Λ = •• = / r = 0 in 7. /i, , /3

form a linear basis of the vector space Ker(iϊo(F, L) -»H\Dn_jf L)). Let
i4 be the linear subsystem of |L | on Fcorresponding to this vector space.
Then BsΛ = Dn_ά and Dn_s is a complete intersection in F. On the other
hand, Ώn_5 is locally Macaulay by (4.13). Hence F is locally Macaulay
at every point on Dn_ά — BsΛ. Taking a general member of A suc-
cessively we find another sequence Dn ID D^ D ID D'n_5 = Dn_ό which
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yields another ladder of (F, L) together with D/s, i^n — j. Using (2.5),
we infer that Ό\ is 2-Macaulay for any ί > n — j by the descending
induction on i. So z/(F, L) — 0 by (4.16), contradicting the hypothesis.

COROLLARY (5.3). Let (F, L) be as in (5.2). Then
(a) any ladder of (F, L) is regular,
(b) Bs\L\ = 0 if d>2,
(c) g — 1 cmtZ L is simply generated (hence very ample) if d ^ 3,
(d) L is quadratically presented if d ^ 4.

COROLLARY (5.4). Le£ (F, L) δe as in (5.2). Tftew F i s a hyper cubic
if d = 3. V is a complete intersection of two hyperquadrics if d = 4.

COROLLARY (5.5). Lei (F, L) ί>e a polarized manifold with z/(F, L) =
1. Γfeen (F, L) feas a ladder, and the assertions (a), (b), (c) and (d) iw
(5.3) are valid. In particular (5.4) applies.

DEFINITION (5.6). A polarized variety (F, L) of dimension n will be
called a Del Pezzo variety if it satisfies the following conditions.

(a) A(V,L) = l.
(b) g(V,L) = l.
(c) F is locally Gorenstein and ωv = ^V[(l — w)L].
(d) H9(V, tL) = 0 /or αw?/ 0 <q <n,teZ.

REMARK (5.7). It is obvious that (c) implies (b). Moreover, if F is
non-singular and if char($) = 0, we have the following result (see [F4;
(1.9)]):

(a) and (b) - (c) => (d).

However, in general, even the following conjectures are still unproven
because of the lack of Kodaira's vanishing theorem.

CONJECTURE (5.7.1). (c) implies (d).

CONJECTURE (5.7.2). (a) and (b) imply (d).

At present, we have the following results.

(5.7.3) (a) and (b) imply (d) if d(V, L) ^ 3 and if (F, L) has a ladder.
For a proof, apply (3.8).

(5.7.4) (a) and (b) imply (d) if F is 2-Macaulay and if (F, L) has a
ladder. For a proof, see (5.11) below.

(5.7.5) (b) and (d) imply (a) and (c). See (5.9) below.
(5.7.6) (c) implies (d) if L is very ample. See (5.12) below.

LEMMA (5.8). Let (F, L) be a polarized variety such that Hq(V, tL) =
0 for any q < n = dimF and any t < 0. Then V is locally Macaulay.
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PROOF. Recall the definition of 3tq in (2.2). Combined with the
Serre duality, the local-global Ext-theory gives a spectral sequence with
Er = H>(V, &-q[tL\) converging to the dual space of H"p-9(Vf -tL)
for each integer t. Eξ*q = 0 for any p > 0, t > 0. Therefore hq(V, -tL) =
h°(V, &q[tL\) for t>0. By assumption these are zero for q <n. Hence
3ίq — 0 for q < n, since L is ample. This implies that V is locally
Macaulay.

(5.9) PROOF OF (5.7.5). Given polynomials φ(t) and ψ(t), we write
φ{t) ~ ψ(t) if deg(<? - f) < n - 1. Then, by the definition of XS(V, L)
(cf. (1.2)), we have X(V, tL) ~ dtn/n\ + (d(n - l)/2 + Ί)tn~ιl(n - 1)!, where
d = d(V, L) and 7 = χn_χ(V, L). Note also that (5.6; b) means 7 = 0.
We claim that H°(V, ωv[sL]) = 0 if s < n - 1 + Zr/d.

Indeed, suppose that there is a non-trivial homomorphism έ?v-^ωv[sL].
This must be injective because both sheaves are torsion free. Therefore
X(V, tL) <: X(V, o)y[(s + t)L]) for any t > 0. On the other hand we have
X(ωv[(s + t)L]) = (-l)nX{V, -(β + ί)L) - dt"/w! + (dβ - d(n - l)/2 - 7)*11"1/
(w — 1)!. Comparing the coefficients of tn~\ we obtain ds ^ d(̂ ι — 1) + 27.
Thus we prove the claim.

By this claim and (b) we infer Hn(V, -tL) = 0 for t < n - 1. Hence
X(V9 —tL) = 0 for 0 < t < n — 1 by the condition (d). So we may set
X(V,tL) = (t + ϊ)- -(t + n — 2)(dt2 + bt + c)/nl for some constants b
and c. By comparison of the coefficients of tn~x we obtain b — (n — l)d.
From the condition (d) and the above claim we infer X(V, #v) = 1. This
implies c = (n — ΐ)n. Thus we get:

( * ) X(V, tL) = (t + l)(t + 2) -(t + Λ - 2)(dt2 + (n - l)dt + (n - 1)Λ)/Λ! .

Together with the above claim and the condition (d), (*) implies
h°(V, L) = X(V, L) = n + d-1. This proves (a). From (*) we infer
also h\ωv[(n - 1)L]) = hn(V, (1 - n)L) = (-l)nX{V, (1 - n)L) = 1. Hence
there is a non-trivial homomorphism / : 0*v -> ωv[(n — 1)L], which must
be injective. Set i f = Coker(/). Then we get X(^[tL]) = Z(α>Γ[(ί +
w — 1)1/]) — %(V, ίL) = 0 by a calculation using (•). This implies ^ = 0
since L is ample. Thus we prove the condition (c).

LEMMA (5.10). Let (V, L) be a polarized surface satisfying the as-
sumptions of (5.7.4). Then H\V, έ?v) = 0.

PROOF. We may assume d <ί 2 by (5.7.3). First we consider the
case d = 1. Any member C of |L | is irreducible because LC = 1 and L
is ample. Moreover C is reduced because C is locally Macaulay and
hence has no embedded component. So, by (3.6; a), C is a regular rung
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of (V,L). Moreover H\C, L) = 0. Therefore the mapping H\V, d7v) -•
H\V, L) is bijective. Now, assuming H\V, 0>

v)Φθ, we take basis of both
H\ V, &v) and IP( V, L) and consider the determinant δ(φ) of the mapping
H\ V, <g?v) -> H\ V, L) induced by φ e H\ V, L). Obviously δ(0) = 0. The
above argument proves δ(φ) Φ 0 for any φ Φ 0. Hence the polynomial
function δ defined on H\V,L) = A2 has an isolated zero at the origin.
This is absurd. So we conclude that 0 = H\V9 &v).

Next we consider the case d = 2. Similarly as above, it suffices to
show the surjectivity of ψ: H\ V, L) —• H\C9 Lc) for every member C of
\L\. Note that this is equivalent to h%C, Lc) = 2. C is locally Macaulay
since so is V. Hence C has no embedded component. Since LC — 2,
there are the following three possibilities: (i) C is irreducible and
reduced, (ii) C is a union of two prime components Cγ and C2. (iii) C
is not reduced and X= Cred is a curve with LX— 1.

In case (i), h\C, Lc) = 2 because h\C, d7G) = g(C, L) = 1.
In case (ii), LCι — LC2 = 1. Hence both Gx and C2 are non-singular

rational curves because Bs\L\ = 0 by (5.3; b). Let ^ be the structure
sheaf of Cά for j = 1, 2. Let ^ be the defining ideal of Cά in C. Then
the product ideal ^L/J is supported at Cx Π C2, which is a finite set.
Hence ^J^ = 0 because C is locally Macaulay. Therefore ^ is an ^ 2 -
module. Moreover, ^ has no non-trivial subsheaf supported at finite
points, because neither &G has. Thus ^ is torsion free, and hence
invertible on C2. From g(V, L) = 1 we infer Z(C, ̂ σ ) = 0. Using the
exact sequence 0 - > ^ - > έ?c -> ̂ Ί -> 0, we obtain ^ = ^ 2 ( —2). Then
λ°(C, Lσ) = 2.

In case (iii), X = P 1 since ΰ s | L | = 0 . Let ^K" be the sheaf of
nilpotent functions on C. C is of multiplicity two, so ^f2 = 0 at a
generic point of X Hence Λ^ = 0, since C is locally Macaulay. Thus
^V turns out to be an ^-module. By an argument similar to that in
case (ii), we infer ^4^ — ̂ x{ — 2). So we obtain h°(C, Lc) — 2 using the
exact sequence 0 —> ^4^ —> &G —> &x —> 0.

Thus, in any case, we have h°(C, Lc) = 2. From this it follows that
α/r is surjective, as desired.

(5.11) PROOF OF (5.7.4). We use the induction on n = dimF. First
consider the case n — 2. For any rung C, we have an exact sequence
H\V, (ί - 1)L) -> ̂ ( 7 , ίL) -»ίί^C, ίL) = 0 for every positive integer t.
Hence we prove H\V, tL) = 0 for ί ^ 0 by induction on t and by (5.10).
We also have an exact sequence H°(V, tL) -> H\C, tL) -+ H\V, (t - 1)L) ->
jff^y, ΐL) for every ί ^ 0. From this we obtain H\V, tL) = 0 for t ^ 0
by induction on t.
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Next we consider the case n ^ 3. By (5.3; a), any ladder V= DnZD
•--~DD1 of (F, L) is regular. Hence Bs\L\aD1. Dγ is locally Macaulay
since it is an irreducible reduced curve. So Fis locally Macaulay at every
point of D1~DBS\L\. Hence, using (2.5), we infer that a general member
D of L is 2-Macaulay. It is easy to see that the induction hypothesis
applies to (D, LD). So HQ(D, tL) = 0 for any integers t, q with 0 < q <
n - 1. Hence, applying [F3; (2.1)], we infer Hg(V, tL) = 0 for any t, q
with 2 ^ q < n. On the other hand H\V, -tL) = 0 for t > 0 since V
is 2-Macaulay. So, similary as in [So; Lemma I-B] and [F3; (2.2)], we
infer H\V, tL) = 0 for any integer t. Thus we proved the condition
(5.6; d).

(5.12) PROOF OF (5.7.6). Clearly (F, L) has a ladder since L is very
ample. So, by the same method as above, we reduce the problem to
the following:

LEMMA. Let (F, L) be a polarized surface satisfying the assumption
of (5.7.6). Then H\V, <?γ) = 0.

PROOF. When F is normal, the assertion follows from [HW; Theorem
2.2]. So we consider the case in which F is not normal. Let S be the
singular locus of F. Then dim S > 0 because F is locally Macaulay.
Hence C Γ\ S Φ 0 for any member C of \L\. From the condition (c) it
follows ωc = ^c C is irreducible and reduced if it is general. So C is
a rational curve with one singular point, where C meets S. From this
it follows also that S has only one component X of positive dimension,
and that X = P 1, because L is very ample. Take a desingularization
?r:F* —>F of F and let ^ be the cokernel of the natural injective homo-
morphism &v —> π*d7v*. It is easy to see that the support of <& is X.
Moreover, C* = π~\C) is a rational normal curve. So F* is rational
since (C*)2 > 0. Hence H\V, π+έ?v.) = 0. This implies h\V, if) = ^ ( F ,
^V). We have also H\V*f -C*) = 0, which implies H\π^v,[-L]) = 0.
Therefore h\V, <ϊf[-L]) = λ^F, -L) = λ x ( ^ ωF) = fc^V, ^V). On the
other hand, we have Λ°(ΐf[-«!,]) ^ ^ ( F , - ίL) = tfMtL]) = 0 for ί > 0.
This implies that i f is torsion free on X. So, if h\V, &) Φ 0, then
hX^l—L]) < h°(^) since L is very ample. Hence the preceding equalities
imply h\V, &) = 0, proving the assertion H\V9 <S?r) = 0.

REMARK (5.13). In (5.7.3) and (5.7.4), it might be unnecessary to
assume that (F, L) has a ladder. This is really the case if F is a normal
surface. However, in general, (F, L) does not always have a ladder
even if J = 1 and F is a normal surface. Of course, in this case, F is
singular at some point of Bs\L\.
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6. Structures of Del Pezzo manifolds. (6.1) In this section we
study the structure of a Del Pezzo manifold (Λf, L) such that L is very-
ample. Since M is non-singular, this is equivalent to saying that
Δ{M, L) = 1 and d(M, L) ^ 3 (cf. (5.5)).

As for singular polarized varieties (V, L) with A{ V, L) = 1 and very
ample L, we have the results announced in [F6]. This topic will be
treated elsewhere.

(6.2) When n = dim M = 2, M is rational by virtue of Castelnuovo's
criterion. Using the structure theory of rational surfaces (cf., e.g., [Sa;
Chap. V]), we infer that M is the blowing-up of P 2 with center being
(9 - d) points on P 2 unless M = P1 x P 1 . In the latter case d(M, L) =
c\ = 8. So, in particular, we obtain:

d(M, L) ^ 9 if n = 2. 27&e equality holds if and only if (M, L) ~
(P2,

(6.3) As for the cases n ^ 3, we have the following:

THEOREM. Let (M, L) be a Del Pezzo manifold with n = dim M ^ 3
and d = d(M, L) = Lπ ^ 3. Tftew (ikf, L) is of one of the following types.

(1) A hyper cubic, d — 3.
( 2) A complete intersection of two hyperquadrics. d = 4.
( 3 ) A linear section of the Grassmann variety parametrizing lines

in P \ embedded in P9 by Plucker coordinates, d = 5 and n <> 6 in this
case.

(4) A Segre variety P2 x P2 embedded in P 8 . d = 6.
(5) A hyperplane section of a fourfold of the above type (4).

(M, L) ^ (P(Γ), ^(1)) /or ίΛe tangent bundle T of P2 in this case.
(6) A Segre variety P1 x P1 x P 1 in P 7 . d = 6.
( 7) A blowing-up of P 3 αί α point, d = 7.
(8) A Fmmesβ threefold (P3, 2iϊ). d = 8.

This theorem was proved in [F4] in case char(^) = 0. We can apply
(5.4) if cί <S 4. Here we consider the case d ^ 6. The case d = 5 will
be treated separately because the proof is considerably longer than
those in other cases.

(6.4) In order to use the technique of lift, we fix our notation.
Given any algebraically closed field ίΐ with char($) = p > 0, let W($t)
denote the ring of Witt vectors (cf. [Se2], Chap. II, §6). This is a dis-
crete valuation ring with the residue field $, the maximal ideal is the
principal ideal (p) and the quotient field $' is a field of characteristic zero.

By S we denote Spec( W(Λ)). We let o (resp. x) be the closed (resp.
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generic) point of S. The formal completion of S at o is denoted by S.
Let M be a manifold defined over ®. We say that M is liftable

(resp. formally liftable) if there is an S-scheme /: ^ —> S (resp.
formal S-scheme / : ^£ —• S) such that the fiber over the closed point
o is isomorphic to the given ίS-scheme M. In this case ^ (resp. ^)
is called a lift (resp. formal lift) of M. A formal lift is said to be
algebraizable if it is a restriction to S of a lift over S.

Similarly we define the notion of the liftability of various objects
defined over $. For example, given an effective divisor D on ikf, we
say that the pair (ilf, D) is liftable if there is a lift / : ^ —> S of M and
if there is an effective Cartier divisor 3f on ^ whose restriction to
M is D.

(6.5) Let JD be an effective divisor on a manifold M. Let ^ be
the ^-ideal defining Zλ Then the sheaf ΘM of vector fields on M can be
viewed as the sheaf of derivations of d7M, so we have a natural homo-
morphism ΘM -> ^^(J^j^2, &u\^) The kernel of this homomorphism
will be denoted by θ(M, D).

If D has no singularities other than normal crossings, then Θ(M, D)
is locally free and is the dual of the sheaf i2L(log D) of rational 1-forms
with only logarithmic poles along D. If D is non-singular, we have a
natural exact sequence 0 —> θ(Mf D)-*ΘM-> ^r —> 0 where ^ f is the
normal sheaf ^ [ D ] of D in Λf.

PROPOSITION (6.6). Let (Λf, L) 6e α Dβϊ Pea ̂ o threefold defined over
& with d = d(M, L) ^ 5 α̂ icί ϊeί D be a general member of \L\. Then
the pair (Λf, JD) is liftable.

PROOF. D is non-singular since L is very ample. So D is a Del
Pezzo surface as in (6.2). We will prove H2(M, Θ(M, D)) = 0 and then
apply the criterion (Al) in the appendix. By virtue of the exact sequence
0 -> θ(M, D) -> ΘM -> <?D[L] -> 0, it suffices to show H\M, ΘM) = 0. For
this purpose we use a couple of lemmas.

LEMMA (6.7). H\S, θs) = 0 for any Del Pezzo surface with d ^ 5.

This is obvious if S = P1 x P 1 . So we may assume that S is the
blowing-up of P2 at 9 — d points. No three of them are collinear be-
cause —Ks is ample. Hence these 9 — d (^4) points are in a general
position. The assertion follows easily from this.

LEMMA (6.8). H\D, ΘD[tL\) = 0 for any t ^ 0.

PROOF. Any general member C of L is a non-singular elliptic curve.
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Using the exact sequence 0 —> Θc -»{ΘD)C —> έ?c[L] —> 0, we obtain iϊ^C,
θ ^ ί L D = 0 for any ί 2Ϊ 1. Hence, in view of the exact sequence 0 ->
θD[(t - 1)L] -> ΘD[tL] -> β^ίL^ -> 0, we infer that h\D, θD[tL]) is a de-
creasing function on t for £ > 0. So the assertion is proved by induction
on t since (6.7) applies in case t = 0.

(6.9) PROOF OF (6.6), CONTINUED. From (6.8) and the exact sequence
0 -> ΘD -> (ΘM)D -> έ?D[L] -> 0, we infer that H\D, ΘM[tL]D) = 0 for any
ί ^ 0. Therefore, [F3; (2.1)] applies and we get H\M, ΘM) = 0.

(6.10) Let M, L, D be as in (6.6) and let ( ^ 3f) be a lift of (Λf, JD)
over S = Spec(TF(ί£)). Let (M',Df) be its generic fiber over x and set
£f=[&]e Pic(^fΓ) and L' = [2)'] 6 Pic(M'). Then:

LEMMA. (ΛP, L') is α Dei Pe^ ̂ o manifold with d(M', U) = d(M, L).

PROOF. Clearly / : ΛZ -> S is smooth and flat. So the Hubert poly-
nomials of (Λf, L) and (AT, L') are the same. Hence d(M', L') = d(Jlf, L)
and ^(ikf, L')=g(M, L) = l. Moreover, H\M, L)=0 implies that h°(M, L) =
rank(Λ-Sf) = λ°(ΛΓ', -&')- So A(M\ U) = J(ilί, L) - 1.

COROLLARY (6.11). Lei (M, L) be a Del Pezzo manifold with n =
dim M ^ 3. Γfee^ d = d(Λf, L) ^ 8.

PROOF. We derive a contradiction assuming d >̂ 9. Taking general
hyperplane sections successively, we reduce the problem to the case
n = 3. Take a general member 2) of \L\ further. Then ΰ is a Del
Pezzo surface with d ^ 9, so CD, LD) = (P2, 3£Γ). The pair (Λf, Z>) is
liftable by (6.6). But we cannot have such a pair in the characteristic
zero case, contradicting the above Lemma (6.10).

REMARK. The impossibility of the existence of such a pair (M, D)
was first proved by Tango [T] by a completely different method. The
above argument is due to Badescu [B], who considered the case d = 8
too (see (6.17) below).

(6.12) In order to proceed further, we need to study the restriction
mapping Pic(Λf) —> Pic(Z>) more precisely. Letting things be as in (6.10),
we will reduce the problem to zero-characteristic cases. We begin with
the following:

LEMMA. Let (^^ .£§-) be the restriction of {^j£, 2$) over the formal
completion S. Then Pic(^Γ) -> Pic(Af) and Pic(^) -> Pic(D) are bijective.

PROOF. The injectivity (resp. surjectivity) follows from H\M, έ?M) =
H\D, έ?D) = 0 (resp. H\M9 έ?M) = H\D, έ?D) = 0) by standard arguments
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based on a natural exact sequence 0 -> &M —> ^ / —> ^y^ —• 0, where ^ x

is the sheaf of (multiplicative) groups consisting of invertible sections
of

LEMMA (6.13). The natural mappings P i c ( ^ ) - > P i c ( ^ ) αwcϊ Pi
u^) are bijective.bijective.

PROOF. The injectivity is clear. To prove the surjectivity, let I*7

be any line bundle on ^f. Since ^f is ample, we can find an exact
sequence A—>B—>F-±0 such that A and B are direct sums of line bundles
of the forms u^, w/s being integers. Extending each uitSf to ui=Sf on
^/ίj we extend A and J5 to vector bundles s/ and ^ on ^*C We easily
see that the homomorphism A-+B is extended to a homomorphism
ψ: sf -> ̂ . Setting ^ = Coker(^), we have ^ > = F. This implies
that &~ is invertible on an open subscheme of ^£ containing the closed
fiber, hence &~ is invertible on the whole space ,^fl Similarly we prove
the surjectivity of Pic(^) ->Pic(^).

LEMMA (6.14). The restriction mappings Y\o,(^£) —> Pic(Λf;) α^d
Pic(^)-> Pic(D') are bijective.

PROOF. The surjectivity follows from the smoothness of ^ and
^ . The injectivity follows from the fact that ^£ — M' = M (resp.
£2f — Df = D) is a Car tier divisor defined by the principal ideal p^^
(resp. p^) = έ?^ (resp. ^ ) .

(6.15) Let $* be the algebraic closure of 3B' and let Λf* and D* be
the scalar extensions of M' and Z)' respectively over Spec(ί£*). Then
we have:

LEMMA. The natural mappings Pic(Af') ~>Pic(ilf*) α^ώ Pic(D')-^
Pic(Z)*) are bijective.

PROOF. From the preceding lemmas we obtain a bijection Pic(D') —>
Pic(D). Moreover, this is compatible with the intersection pairings.
Therefore rank(Pic(D')) = 10 - d = rank(Pic(I>*)) and the determinant of
the intersection number matrix with respect to an integral base of
Pic(D') is (—ϊ)9~d. From these observations we infer that Pic(D')—>
Pic(D*) is bijective.

It is clear that Pic(M') -»Pic(Λf*) is injective. Moreover, its image
is the largest space on which G = Gal(Λ*/SΪ') acts trivially (cf , e.g.,
[MR; Lemma 4]). On the other hand, Pic(ikf*)->Pic(.D*) is injective by
Lefschetz' theorem and G acts trivially on Pic(D*) by the above argument.
Therefore G acts trivially on Pic(Λf*), which implies our assertion.
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(6.16) By virtue of the preceding lemmas altogether we obtain the
following natural commutative diagram:

Pic(M) > Pic(Z>)

ill ι\\
Pic(M*) > Pic(Z3*) .

Now we will prove the theorem (6.3) in case d ^ 6.
(6.17) In view of (6.11), we first consider the case d = 8.
Suppose that n = 3. A general member D of \L\ is a Del Pezzo

surface with d = 8. The pair (Λf, Z>) is liftable by (6.6) and we let the
notation be as in the above lemmas. Using (6.10) and [F4; (5.6)], we
obtain (AT*, L*) ~ (P3, 2JEΓ). So L = 2F for some 2<τePic(ilf) by (6.16).
It is now easy to show (M, ί1) ^ (P3, ̂ (1)).

Next we derive a contradiction assuming n^ £. Similarly as in
(6.11), we may assume n — 4. We sketch here two different proofs.

FIRST PROOF. Take a general member D of \L\. Then (23, LD) is a
Del Pezzo threefold with d = 8, hence we have (D, LD) = (P3, 2H). By
[H; p. 178] we infer that Pic(Λf) —> Pic (23) is bijective. In particular
L = 2F for some FePic(M). Then 8 = d(M, L) = L4 = (2F)4 = 16F4,
which is absurd.

SECOND PROOF. We see H\M, ΘM) = 0 by a method similar to that
in (6.9). From this we infer that the pair (Λf, 23) is liftable similarly as
in (6.6). But such a pair does not exist in the characteristic zero case.

REMARK. This second argument works in several other cases too.
In the following we consider chiefly variants of the above first proof.

(6.18) Here we consider the case d — Ί.
Suppose first that n = 3. In view of (6.2) we infer that a general

member 23 of \L\ is isomorphic to the blowing-up of P2 with center
being two points. Let C be the strict transform of the line passing
these points. Using (6.16) and [F4; (5.8)], we infer that FD = [C] in
Pic(jD) for some J^ePic(ilf). We have H\D, FD - tL) = 0 for any t ^ 0
by a technique similar to that in (6.8). Hence, by [F3; (2.3)], we have
a member E of \F\ such that ED = C, which is an exceptional curve on
D. In view of [F3; §5] we infer that E can be blown down to a smooth
point. Similarly as in [F4; (5.8)], we see that the manifold thus obtained
is P 3 . So M is the blowing-up of P 3 at a point.

Next we derive a contradiction assuming n ^ 4. We may assume
n = 4. Then a general member D of \L\ is a Del Pezzo threefold of
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the above type. By the Lefschetz theorem Pic(ikf) -* Pic(D) is bijective
(see [H; p. 178]). We can prove also H\D, E - tL) = 0 for any t ^ 0,
where E is the exceptional divisor on D as above. From this we infer
that E is the restriction to D of an effective divisor on M, and that
this divisor can be contracted to a non-singular point. Similarly as in
[F4; (5.5)], we get a Del Pezzo fourfold with d = 8 by this contraction.
This is impossible by (6.17).

(6.19) Here we consider the case d = 6.
Suppose first that that n — 3. In view of (6.2) we infer that a

general member D of \L\ is isomorphic to the blowing-up of P2 with
center being three different non-collinear points q19 q2, q3. Let H be the
pull-back of ^ ( 1 ) to D and let E5 be the exceptional curve over q5 for
each j = 1, 2, 3. Let things be as in (6.16). Then M* is either of the
type (6.3; 5) or of the type (6) by [F4].

If M* is of the type (5), then we infer that H comes from Pic(Λf)
by (6.16). Similarly as above and as in [F4], we can extend the bira-
tional morphisms p]Hl:D—>P2 and P\L-H\ D->P2 to morphisms defined
on M, which give rise to an inclusion McP2 x P2. So M is of the
type (5).

If M* is of the type (6), then we infer that H - Eu H - E2 and
H — E3 come from Pic(Af). Similarly as in [F4], the rational mappings
defined by the linear systems associated with these line bundles give
an isomorphism M = P1 x P1 x P1. Thus M is of the type (6).

In case n = 4, we see M = P2 x P2 similarly as in [F4], If n ^ 5,
we derive a contradiction as above or as in [F4].

REMARK (6.20). In case d = 5, we can show that Pic(Af) is generated
by L. However, this is not sufficient to prove (6.3; 3). This case will
be treated in a forthcoming paper.

Appendix. Here we prove a couple of liftability criteria. We use
the notation introduced in (6.4) and (6.5).

THEOREM (Al). Let D be a reduced effective divisor on a manifold
M defined over $. Then the pair (M9 D) is formally liftable if H\M,
Θ(M, D)) = 0. 1/ in addition there is an ample divisor on M whose
support is contained in D, then any formal lift of(M, D) is algebraizable.

PROOF. The formal liftability is proved quite similarly as in [G2;
Expose III, Cor. 6. 10], where the case D — 0 is considered. Indeed,
as a substitute for [G2; Prop. 6.1], one easily shows that the sheaf of
infinitesimal automorphisms of the pair (Λf, D) is Θ(M, D). The assertion
about the algebraizability is well-known.
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(A2) Given a prepolarized manifold (Λf, L), we let P = P(έ?M © L)
and let J5_ and D+ be the sections of the PMmndle π: P-> M correspond-
ing to the quotient bundles &M and L respectively. Let H be the
tautological line bundle ^,(1). Then [D_] = H-π*L, [ZλJ = if in Pic(P)
and jHi)_ = &, HD+ = L. Hence the normal bundles of D_ and D+ are
— L and L respectively. Set D .= D- + D+.

We have a natural surjective homomorphism /: β(P, 1?) —> τr*Θ,¥, and
it is easy to see Ker(/) = ^P. Taking π* we obtain the following exact
sequence: 0 -> ^ -> π*© (P, I>) -> θ* -> 0. We denote π*θ (P, D) by
Θ(M,L). The extension class c e E x t 1 ^ , <?M) = H\M, Ωι

M) defined by
the above sequence is essentially the Chern class of L.

THEOREM (A3). (Λf, L) is formally liftable if H\M, Θ(M, L)) = 0.
If L is ample, any formal lift of (Λf, L) is algebraizable.

PROOF. Let the notation be as above. Then H2(P, β(P, D)) = H\M,
Θ(M, L)) follows from a calculation of the Leray spectral sequence. So
the assumption implies that (P, D) is formally liftable by (Al). Let P
and D+ be a formal lift of P and D+ (on P) respectively. Then the
pair φ+f the normal bundle of D+ in P) is a formal lift of (Λf, L).

REMARK. The above sheaves θ{M9 D) in (Al) and Θ(Λf, L) in (A2)
play important roles in the deformation theory too. This is no wonder
because there is a close relation between the lift theory and the defor-
mation theory.
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