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1. Introduction. In his paper [12], Yamabe asked whether any
compact C°°-Riemannian manifold of dimension ^ 3 can be deformed
conformally to a C°°-Riemannian manifold of constant scalar curvature,
and proposed to solve the question by reducing it to a non-linear eigen-
value problem which consists of finding a strict positive C°° function u
on a compact Riemannian manifold (M, g) together with a constant λ so
that one has

(1.1) - ( 4 ( Λ - l)/(n - 2))Δu + Ru = Xu{n+2)nn'2)

where Δ is the usual Laplace-Beltrami operator and R = R{x) denotes
the scalar curvature defined by the metric g.

As pointed out by Trudinger [11] there was a gap in Yamabe's proof,
and the problem is still unsolved as it stands. An almost complete
solution, however, has recently been achieved by Aubin [1], [2]. In fact,
introducing the functional

(1.2) J(u) = \ (κ\Vu\2

K = A(n - l)/(n - 2) , N = 2n/(n - 2)

where V denotes the covariaht derivation, dω the volume element relative
to the metric g, and the number

(1.3) μ - inf {J(u); u e H\M\ u Φ 0}

here H\M) implying as usual the Sobolev space of degree one, he proved
that for any compact Riemannian manifold of dimension ^ 3 there holds
an inequality μ ^ n(n — l)α>2

re

/n with ωn denoting the surface area of
^-sphere Sn, and, among others, the following:

THEOREM. If μ < n(n — l)ω^/n, there exists a strictly positive C°°
function on (M, g) satisfying (1.1) with \ = μ. (This gives a partial
answer to Yamabe's problem.)

The purpose of this paper is to give a simplified proof of the above
result, using a different approach from that of Aubin, but similar in
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some way to that of Eliasson whose argument seems to be incomplete
[6, p. 325].

Actually, we apply directly to the functional (1.2) the so-called
variational method, combined with the steepest decent method to obtain
a modified minimizing sequence which converges in H\M) to an extremum
u attaining the minimum μ. In this context, it becomes clearer that
the sharp Sobolev inequality due to Aubin plays a crucial role in the
proof of the non-triviality of the extremum.

In the final section, we consider Yamabe's problem on non-compact
manifolds. Rather restrictive conditions herein imposed are in order to
guarantee the applicability of Trudinger's regularity theorem for weak
solutions of (1.1), and the validity of a sharp Sobolev inequality.

The results of this paper were presented in the Symposium on "Non-
linear problem in geometry", held at Katata, Japan, in 1978.

2. A general theory of the isoperimetric problem by the steepest
descent method. Let jzf, έ% be two real valued C2-functionals defined
on a Hubert space H with || || and ( , ) denoting the norm and the
scalar product, respectively. Define ^£ as ^€" = {u e H; &(u) = 1} and

(J^'(u), v) = (d/dε)J^(u + εv)\ε=0, (&?\u), v) = (d/dε)^(u + εv)\ε=0.

Here we identify the operators j&'(u)9 &\u) with the elements in H
by Riesz's theorem.

THEOREM 2.1 (Berger [5, p. 124]). Consider the critical points of
the functional J^ restricted to ^*C // &\u) Φ 0 on ^ , then a critical
point u0 of J^f on ^ satisfies the equation

(2.1) J*"(uo)-X(uQ)^\uo) = O where λW = ( J / ' ( 4 έ?'(u0)) II^'WII"2.

The following theorem is a slight generalization of Theorem (3.2.11)
of Berger [5].

THEOREM 2.2. Assume that Stf is bounded from below on ^€ and
&\u) Φ 0 for u 6 ̂ . We consider the following initial value problem:

(2.2) (d/dt)u(t) = Jίf(u{t)) , u(0) = u0

where <%?(u) = -J#"(u) + X(u)^\u) with X(u) = (J^'(u), &\u)) \\&'{u) \\~\
Then, there exists a solution u(t)eC\[0, oo); H) of (2.2) satisfying

(2.3) [°\\Jgf(u(s))\\2ds<
Jo

PROOF. A s j / e C2(H, R) and &\v) ^ O o n j j ' i s a C2-Hilbert
manifold. Moreover, as (<%?{u), &\u)) = 0 on ^*C <%f is a C'-tangent
vector field on ^ C We thus have a solution u{t) of (2.2) at least locally
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in time. (See, Lang [8, p. 83].) Along u(t), we have

(2.4) (d/dt)J*f(u(t)) = (j*"(w(ί))f (d/dt)u(t))

= - | | j ^ ' M t ) ) ! ! 1 + (j*"(u(t)), &r{u(t))y WMO) II"2 ^ o .

(2.5) (d/d)^(u(t)) = (^'(tt(t)), (d/dtMt)) = 0 , i.e., tι(t) 6 ^ r .

Suppose now that w(t) exists only locally in time, that is, the
maximal interval of existence is given by [0, t*) with t* < oo. Then
for 0 <: ίlf ί2 < ί*, we have

(2.6)

On the other hand,

(2.7) J*f(u(t2)) - J^(ufe)) = P(d/ds)J^(u(s))ds = -\2\\<%?{u{s)) fds .
J*i J*i

As J ^ is bounded from below on ^ we find from (2.6), (2.7) that {u(t)}
forms a Cauchy sequence in H when t converges to t*. Thus, limt_t* w(£)
exists in H. Consequently, applying the local existence theorem at t = t*,
we can extend u(t) up to t = t*f contradicting thus the maximality of
ί*. Therefore t* = oo. Finally by our assumption, (2.3) follows from
(2.7). q.e.d.

REMARK. AS J^ is a bounded from below on ^ C there exists
μ — mί^Jtf{u). Whether there exists w o e ^ such that μ = *£f(uQ)f is
the so-called isoperimetric problem in some generalized sense.

THEOREM 2.3. Assume the following.
(1) *Stf is bounded from below on ^S and &\u) Φ 0 on ^f.
(2) ^f"\I) Π ̂  is bounded in H for a bounded set IdR.
(3) If a sequence uk converges to u weakly and <^(uk) converges

to v strongly in H, then ^(u) = v.
Then, the solution u(t) of (2.2) has a weak limit ΰ, which satisfies

^(u) = 0. Moreover, if ΰ belongs to ^> u is the desired critical point
of J^sf on ^

PROOF. By the preceding theorem, there exists an increasing
sequence tk such that <%?(u(tk)) converges strongly to 0. On the other
hand, the set {u(t)} is bounded since J^f(u(t)) c [μ, J^(u0)] where μ =
inf^ J*f(u). Therefore, {u(tk)} has a weakly convergent subsequence
with limit u. So by (3), we have <%f(u) = 0. The last statement is
obvious. q.e.d.
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3. Proof of Aubin's result. Let us define two functionals on

H\M) by

(3.1) j*(u) = ( (fc I Fu |2 + R(x)u2)dω-, &(u) = ( | u \Ndω

where it = A(n - l)/(n - 2) and JV = 2n/(n - 1) .

By theSobolev imbedding theorem, we have H\M)aLN{M). Therefore

&(u) is well-defined on H\M). We denote the scalar product and the

norm of H\M) by (u, v\ = (u, v) + {Fu, Vv) and |||w|||ϊ = (u, u\ where

(u,v) = \ uvώω. Moreover, we put | |%| | ; = \ H^U'dα), and | | ^ | | | will

be denoted simply by | |u | | 2 .

PROPOSITION 3.1. (1) J < &f e C2(H\M), R).

(2) sf is bounded from below on ^ = {ueH\M): &(u) = 1}.

(3) s/~\I) Π ̂ t is a bounded set in Hι(M) for any bounded set

I(zR.

PROOF. (1) is clear as N > 2. By Holder's inequality, we have

(3.2) J^(u) = κ\\Fu\\2 +\ Ru*dω *£ κ\\\u\\\l - ([ \R - κ\n/2

for u e

(2) and (3) follow at once from (3.2). q.e.d.

For u,veH\M), we define

(ι&"(u), v\ = (d/dε)j^(u + ev) | ε = 0 = 2 ( (/cFuFv + Ruv)dω ,
(3.3) i x

{έg'iu), v\ = (d/dε)^(u + εv)|ε=0 = N\ u\u\N~2vdω .

Or, using (u, v)ι = (u, (1 — Δ)v), we define more explicitly

(3.4) sf'itf) = 2(1 - ΔY\-κΔu + Ru) , &T(v) = N(l - Δ)-\u\u\N~2) .

Here, we consider the operator s*f\u) as an element of H\M).

PROPOSITION 3.2. (1) &\u) ^ 0 on

(2) sf\ &9 are weakly continuous on H\M).

PROOF. (1) is obvious from the second equality of (3.3). Let uk

converge weakly to u in H\M). From the first equality of (3.3), we
have

(3.5) lim (J*"(iθ - J*"(u), v\ = 0 for each v e H\M) .
fc-»oo

By Rellich's theorem, we may assume that uk converges to u a.e. Then,
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by the well-known procedure (see, for example, Lions [9, Lemma 1.3,
p. 12]), we have that uk\uk\

N~2 converges weakly to u\u\N~2 in LNnN~1)(M).
We thus have

(3.6) lim (&'(uh) - &\u), v\ = 0 for each v e H\M) . q.e.d.
Je—*co

As before, we define

(3.7) g?(u) = - J*"(u) +

The following estimates are due to Eliasson [6].

PROPOSITION 3.3. For u,ve

(3.8) {u\u\N~2 - v\v\N~\ u-v)

= (N - 1)( j* I v + s(u - v) \N-2ds, (u - v)2) ^ (N - 1) || u - v \\2

N

(3.9) (MT{u) - ^ 7 ( v ) , u - v\ ^ -2/c || F(w - v) ||2 - 2 ( i2(u - v)2dω

- \{v)\\\u - v | U

PROPOSITION 3.4 (Aubin [4, Theoreme 9]). For any compact Rieman-
nian manifold and for any 0 < ε <̂  1, there exists a constant CQ such
that

(3.10) I u \2

N ^ (ε + 4/(n(tt - 2)α>2

n

/71)) | Fu |2 + Co | u | 2 , ^Aβrβ ^ e H\M) .

By (2) of Proposition 3.1, there exists μ = inί^j^(u) > — <*>, and a

minimizing sequence ^ e ^ J , i.e.,

(3.11) Hi

Consider an auxiliary problem

(3.12) (d/dt)uk(t) = <%?(uk(t)) , uk(0) = uk .

By Theorem 2.2, there exists a solution uk(t) e C\[0, oo); H\M)) such
that

(3.13) J^(uk) ^ J^(uk(t)) ^ μ , Γ H^^jfcίs))!!!^ < oo .
Jo

Choosing an arbitrary positive sequence εk tending to 0 as k tends to oo 9

we may find tk for each k in such a way that

(3.14) ll l^(tt*(**))llli^e*.

PROPOSITION 3.5. l i m ^ x(uk(tk)) = (2/N)μ.
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PROOF. AS uk(tk) e ^ we have

(3.15) (<%?{uk(tk)), nk{tk)\ = -2s/(uk{tk)) + Nx(uk(tk)) .

As {uk(tk)} is bounded in H\M), combining (3.11), (3.13) and (3.14), we
have the desired result. q.e.d.

Taking a subsequence if necessary, we may assume that uk(tk)
converges weakly to u in H\M). By (2) of Proposition 3.2, and Proposi-
tion 3.5, we have

(3.16) (JT(u), v\ = -(J*"(w), v\ + (2/N)μ(έ&'(u), v\ = 0

for any v e H\M) .

Rewriting this, we have

(3.16)' tc(Fu, Vv) + (Ru, v) = μ \ u\u\N~2vdω for any v e H\M) .

This implies

(3.17) jf(u) = μ^iu) .

The last thing we must prove is:

PROPOSITION 3.6. ^(u) = 1 if μ < n(n - l)α>2

n

/n.

PROOF. AS M is compact, taking a subsequence if necessary, we
may suppose that vk converges strongly to u in L\M). Here we denote
f̂c(̂ fc) by vk for the sake of notational simplicity.

(I) The case where μ < (N - l)~ιn{n - l)ω2jn. From (3.8) and (3.9),
we have

(3.18) 2/cHI vk - vm HI? -N{N- l ) λ ( i θ ( £ I* . + β(v* - vj \N~2ds, (vk - vmγ)

^ 2 ( (Λ - A:)(VA - t;m)2dω + JSΓ|λ(^) - X(vm)\\\vk - vm\\N

(a) If μ < 0, taking m sufficiently large, we may suppose that
Mvm) < 0. In this case, it is clear that vk forms a Cauchy sequence in
H\M). So, vk e ^Jt converges strongly to u in LN(M). This means that
&(u) = 1.

(b) If 0 ^ μ < (N - l ) - 1 ^ ^ - l)ω2

n

/n, taking ε sufficiently small and
m sufficiently large, we may estimate the left hand side of (3.18) from
below by

(3.9) {2/c-2(i\Γ-l)[(iNΓ-l)^^

so, {vk} forms a Cauchy sequence in H\M), implying &(u) = 1 as above.
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(II) The case where 0 < μ < n{n - l)α>2

n

/n. Put p = \\ u \\N. If p Φ 0,
then

(3.20) J^(u/ρ) = μρN~2.

As u//O 6 ^ C by the definition of μ, we have p ;> 1. On the other hand,
|0 ^ 1 follows easily, therefore we have p = 1. So it suffices to prove
that u is not identically zero.

Putting u — vk in (3.10), we have

(3.21) l£(fi + 4/(n(Λ

By (3.15),

(3.22) κ | | F ^ | | 2 = (N/2)X(vk) -

Inserting (3.22) into (3.21) and applying the assumption μ < n(n — l)α>2

n

/Λ,
we find δ > 0 such that

(3.23) l i m i n f | | ^ ] | ^ <5 > 0 .

As % converges s trongly to u in L2(M), we t h u s obtain | | M | | = £ 0 . q.e.d.

Summing up t h e above arguments , we have:

THEOREM 3.7. If μ < n(n — l)α)2

n

/n, ί/tere exists a function ueH\M)
satisfying

(3.16) κ(Fu9 Vv) + [ Ruvdω = μ \ u\u\N~2vdω for veH\M) .

(3.17)

As u e iΓ(M), it follows that |u | e JΪ^Λf), j^( |u\) = μ and ^ ( | w | ) = 1.
So \u\ is also a critical point of s/ on ^ C By Theorem 2.1,

(3.24) - j * " ( | u I) + λ(| u | ) ^ ' ( | u I) = 0 .

Taking the inner product in H\M) with |u | , we get easily λ(|u|) =
(2/N)μ. We may assume therefore that |u | itself is a weak solution of

(1.1).
The regularity of the weak solution follows from:

LEMMA 3.8 (Trudinger [11, Theorem 3]). Let ueH\M) be a weak
solution of (1.1). Then u e C°°(M).

Further, strict positivity follows from the maximum principle.

LEMMA 3.9 (See, for example, Aubin [2, Lemma 6]). If a non-
negative function v of class C2 satisfies a differential equation Av =
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vf(x, v), where f(x, v) e C\M x R, R), then either v is strictly positive or
v is identically zero.

Combining the above, we now obtain the result (a) of Aubin. q.e.d.

4. Non-compact case. Let M be a non-compact manifold with a
Riemannian metric g. We seek sufficient conditions for the existence of
a strictly positive smooth function u and a real number λ satisfying
(1.1).

We assume the following.
( i ) The injective radius δ0 of M is bounded away from zero.
(ii) The sectional curvature is C°°-bounded on TM.
(iii) For any 0 < δ < δ0, there exists a locally finite uniform covering

by BP.(δ), iel. BP.{δ) is a geodesic ball of radius δ with center Pit

That is, there exists a constant k = k(δ) such that each point QeM has
a neighborhood which intersects at most k balls of BP.(δ).

We define two functionals s^, & on H\M) and the set ^ as
before. Then we have:

PROPOSITION 4.1. In addition to (i), (ii) and (iii) above, we assume
that there exists a constant tz', 0 < κf < K such that R — ιtf e Ln/2(M).

Then we have the following:
(1) ^ ^ 6 C ! ( f f ( I ) , R).
(2) sf{u) is bounded from below on ^ . So we define μ =

inf ̂  s/{u) > — oo.
(3) J^~\ϊ) Π ~4? is bounded in H\M) for any bounded set IdR.
(4 ) &\u) ΦQ on ^
(5) sf* and &' are weakly continuous on Hι{M).

PROOF. Since M is not compact, we cannot use Rellich's theorem
directly. So we must check the weak continuity of &'. Apart from
it, the other statements can be proved similarly.

Let uk converge to u weakly in H\M). We want to show that
uk\uk\

N'2' converges to u\u\N~2 weakly in LNnN~ι)(M). Let Mά be an
increasing family of bounded sets in M tending to M. If we restrict
uk to M5, there exists a subsequence {uk'tj} such that it converges to u
a.e. in Mά. By the diagonal argument, for any subsequence {uk>} of {uk}9

there exists a subsequence {uk") such that uk"\uk"\N~2 converges to
u I u Γ~2 weakly in LNnN'ι)(M). This implies that uk \ uk \

N~2 itself converges
to u\u\N~2 weakly in LNnN~ι){M). q.e.d.

THEOREM 4.2. In addition to the above assumptions, we assume that
μ < (N — Vj^tc'tc^nin — ΐ)(02Jn. Then, there exists a strictly positive
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function ueC°°(M) Π Hι(M)f satisfying (1.1) with λ = μ.

PROOF. The existence of solution of (1.1) follows similarly as in
the previous arguments. Lemmas 3.8 and 3.9 need no change under the
assumptions in (i), (ii) and (iii). Moreover, Proposition 3.4 holds without
any change. (See, Aubin [4, Corollaire 5, p. 595].)
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