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Introduction. In [1] it was shown that isoparametric hypersurfaces
in spheres with 4 distinct principal curvatures can be equivalently
described by isoparametric triple systems. These triple systems have a
"Peirce decomposition"

V = Vn®V10®Vΐ2®Vΰ®V22®V20

and every element in a Peirce space Vti is a scalar multiple of a tripotent.
Moreover, it was proved that this property essentially characterizes iso-
parametric triple systems.

In this paper we investigate the Peirce decomposition relative to a
tripotent from a Peirce space Vti. We also begin the study of the fine
structure of V12 by introducing the subspaces Q and JV12.

The results of this paper are used in [2] and [3] and lay the founda-
tions for subsequent publications.

The paper is organized as follows. In §1 we compute all the triple
products {uvw} where each element u, v, w lies in some Peirce space Vtj.
In §§2, 3 we compute the Peirce decompositions of V relative to tripotents
from V10, V20 and V12. Finally, in § 4 we introduce the space Q c V12 and
show how it is connected to elements of the dual triple satisfying Jordan
composition rules. This space is also important for the investigation of
isoparametric triple systems of FKM-type, [2], §8.

For definitions and notations we refer to [1],
The authors would like to thank the University of Virginia for its

hospitality during the preparation of this paper.

1. Various triple products. In this section we consider an isopara-
metric triple V. We fix orthogonal tripotents (eu e2) and denote by Vi3

the Peirce spaces relative to (eu e2). By [1, Remark 4.3. a] the elements
e = χ(e1 + e2) and e = \(eί — e2), λ = (l/ 2 )~1 are maximal tripotents of V.

1.1. In this subsection we compute the triple products where each
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factor lies in some Peirce space relative to (el9 e2).

We recall that, besides the algebras o and * given by χoy = {xexy} and

x*y — {xe2y}9 we have the algebras • and Π defined by x Π V = {%ey}

% D v = {xey}.

We will prove the following two theorems simultaneously step by
step.

THEOREM 1.1. Let V — @Vi5 be the Peirce decomposition of the iso-
parametric triple V relative to (eu e2). Then for all uijf vij9 wiά e Viά the
following identities hold:

(1.1) {uvw} = 2((u, v)w + (u, w)v + (v, w)u)

for all u,v, we Vn0V10 and for all u,v,we V22φV20.

(1.2) {u22 + u20, v22 + v20, wn} = 0 .

(1.3) {un + u10, vn + v10, w22) = 0 .

(1.4) {u22, v22, w10} = 0 .

(1.5) {un, vn, w20} = 0 .

(1.6) {u22, v2Q, w10} = u22o(v20°w10) e V12.

(1.7) {un, vm w20} = un*(v10*w20) e V21 .

(1.8) {u2Q, v2Q, wίQ} = u2Qo(v20°wί0) + v20°(u20ow10) 6 F 1 2 0 F 1 O .

(1.9) {u1Q, vm w20) = ulo*(vlo*Wn) + v1Q*(u10*w20) 6 7 1 2 φ 7 2 0 .

(1.10) {u20, v20, w12) = u2Qo(v20°w12) + v 2 o 0 (^o°w 1 2 ) e V12

(1.10a) {u20, v20, w12}12 = 2<u20, v2o>^i2 - ^20*^20*^12) - v

(1.11) {u10, vm w12} = ulo*(vlo*w12) + ^0*^10*^12) 6 y i 2 0 F 2 O .

(1.11a) {w10, v1 0, w 1 2} 1 2 = 2(ui0, vlo)w12 - u10o(v1Qow12) - v10o(u10ow12) .

(1.12) {w22, v2Q, w12} = b20o(^220(^220Wi2))]io e V10

(1.13) {ttn, v10, ̂ 1 2} = [v l o*(wπ*w1 2)]2o 6 F 2 0

(1.14) {^22, v2 2, w12} = 2(u22, v22}w12 e F 1 2 .

(1.15) {ullf vn, w12} = 2<wu, vu>Wi2 e F 1 2 .

(1.16) {unt v22, w12} G F 1 2 .

(1.16a) ({uΰ, v22, w[2})[2 = — -5-{un*(vK°w[2) + v22o(un*wε

12)) for e = ±
Δ



(1.17)

(1.17a)

(1.18)

(1.18a)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

(1.23a)

(1.23b)

(1.24)

(1.24a)

(1.24b)
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{u22, v109 w12} = v10o(u22ow12) + a12 6 F 2 0 φ F 1 2 .

227

({u22, v109 w12})[2 = - — (u22o(v10*wl2) + v10*(u22ow12))ε

12 for e = ± .
Δ

{un, v2Q, wl2] = v20*(un*w12) + b12 e F 1 O 0 7 1 2 .

({ull9 v20, w\2}){2 = -^-(un*(v20°wi2) + v2Q°(un*wi2)yi2 for ε = ± .
Δ

{u22, v12, w12} = 2(v12, w12)u22 + an + α 1 0 e F n φ F 2 2

{un, v12, w12} = 2(v12, w12)un + a22 + α 2 0 6 F n φ 7 2

{u209 v{2, w{2) = 2(v[2, wi2)u20 - vε

12*(wε

12*u2Q)

-wε

12*(vt2*u20) + απ + α 1 0 6 F 2 0 0 Vΰε 0 Vir 0 V10 .

K o , v 2, w\2) = 2(vε

12, w[2)u10 - vl2o(wε

12ou10) - wl 2°(^2 0^io)

+ α2i + α 2 0 e V 1 0 © V r 2

e 0 V 2 2 0 F 2 0 .

{u20, v£, wΰ} 6 Vn 0 V10 © F 1 2 © V20 .

{u20, v

(1.26a)

(1.26b)

(1.26c)

(1.27)

(1.27a)

(1.27b)

S, W5) 6 F 2 2 0 F 2 0 0 V12 © 7 1 0

{u1

(1.25) {u[2, v[29 w\2) =

(1.26) {%+, v&, 3<uί2, vί2>^Γ2 -

- vt2 D (wS D

!2 + {vεn9 wi2)u[2 .

e Fr 2 ©F 1 0 ©F 2 0

{ut2f

^+

2, vΐ2,

= 3 <

I ^ 1 2 / ̂  ' 1 2 V l 7 V10 v l / ' 2 0
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(1.27c) {uΰ, vΰ, wί2}12 = 3<ur2, vu)wt2 - —[un*(vΰ*w&) + uϊ2o(vϊ2owΐ2)] e Vΰ .
Δ

(1.28) ({u10, v20, wε

12})[2 = —^-[u10*(v20owε

12) + v20o(u1Q*wε

12)]i2.
Δ

F o r x12 e V12 w e p u t T(elf e2)x12 =: x12. We n o t e x12 = x12.

THEOREM 1.2. Lei 7 = 0 7 ^ 6e ί/ιβ Peirce decomposition of an
isoparametric triple relative to (eu e2). Then for all uiSt viif wijf xi3 6 Vi3

the following identities hold:

( 1 . 2 9 ) U22O(V2QOW12) = -b 2 0 O (^22 O Wl2)]l2

(1.30) ^ 0 * ^ 1 2 = v20ow12 + v2Qo~w^2.

(1.31) ^ii*(^io*^1 2) = -Ko*(Wii*W1 2)]1 2 .

(1.32) v1QoWl2 = vlo*w12 + vlo*w12 .

(1.33) T(un, v22)
2w12 = (un, un)(v22, v22)w12.

(1.33a) [T(wn, v22)T(ullf v22) + T(un, v22)T(wn, v22)]w12

= 2(un, wn}(v22, w22}w12 .

(1.33b) [T(wn, x22)T(un, v22) + T(wn, v22)T(uιu x22) + T(un, x22)T(wn, v22)

+ T(un, v22)T(wn, x22)]w12 = 4(un, wn)(v22, x22)wl2 .

(1.34) v{2o{w[2ou22) + w{2o{v\2ou22) = 2(v\2, w[2)u22 .

(1.35) v{2*(w[2*uΰ) + wl2*(vl2*uΰ) = 2(v[29 wε

12}uή .

(1.36) VU°(Wω°W2θ) + ^ 2 ° ( ^ 2

= 2(v{2, wε

12)u20.

(1.37) t;ί2*(wL>*w10) + wΰ*(vΪ2

= 2(v{2, w{2)u10.

(1.38)

(1.39)

(1.40)

(1.41) [ur2o(vr2°wΐ2) + vΓ2°(uΓ2°w£,)]10 = -%5*(i;ΰowS) - vu*(w5*wi) .

PROOF. (1.1): Follows from [1, (2.6) and Corollary 5.2] applied to
c — e2 a n d c — eλ.

(1.2) to (1.11) except (1.10a): From [1, (2.7)] we know {u0, vQ, w2} =
{no, c, {v0, c, w2}} + {v0, c, {u0, c, w2}} for each minimal tripotent c and all
uκ, vκ, wκ 6 Vκ(c). We put c = ex and c = e2, apply the multiplication rules
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of [1, Theorem 5.7] and easily get (1.2) to (1.11) except (1.10a). (1.10a)
and (1.11a) will be proved later.

(1.12), (1.29), (1.30): From [1, (2.7)] we get {u22, v20, w12} = u22o(v20ow12) +
%o°(u22ow12). We may assume (u22t u22) = 1. Then u22 is a minimal tripotent
and v20 e V20(eu u22), w12 e V12(el9 u22) by [1, Theorem 5.11]. Now [1] (5.7)
shows {u22, v20, w12} e V1Q(elf u22). Using once more [1, Theorem 5.11] we get
{u22, v2Q, w12} e V1Q. The multiplication rules for the algebra "°" show
u22o(v20ow12) e V12 and v20o(u22<>w12) e V12®V10. This implies (1.12) and (1.29).
Finally, (1.30) is the consequence of (1.12) for u22 = e2.

(1.12), (1.31), (1.32): Interchange " 1 " and "2" in (1.12), (1.29), and
(1.30).

(1.14), (1.15): Follow by linearization of [1, (5.1)].
(1.16), (1.16a), (1.33) to (1.33b): Here (1.16) follows from [1, (5.3)].

(1.33) is just [1, (5.2)] and (1.33a), (1.33b) are linearizations of (1.33).
To verify (1.16a) we put un — uΰ, v22 = v22, wn = el9 x22 = e2 in (1.33b)
and get 0 = {uή, v22, w12} + vr2o(un*w12) + uΰ*(v22ow12) + {uΰ, v22, wΰ). There-
fore 0 = ε({un, v22, w[2) + e{unf v22, w{2) + uu*(v22ow[2) + v22o(uΰ*wε

12); this is
equivalent to (1.16a).

(1.17): Since v10, w12e V2{e^), u22e VQ{e^) we may apply [1, (2.8)] with
c = e1 and get {u22, v10, w12} = (vlo<>u22, w^e, + [v10

o(^i2o^22) + ^i20(^io0^22)]o +
α2. By [1, (5.8)] we have vlo<>u22 = 0 and by [1, (5.12), (5.7)] we know
v10°(w12ou22) e V20d Fo(βi). Therefore {̂ 22, v10, w12} = v10o(u22<>w12) + a2 with
some a2 e F2(βx) = Vΰ 0 V10 0 F1 2. But <{^22, v10, w12), Vΰ © F10> = (w12, {u22,
Vio, Vΰ® F10}> = 0 by (1.3) whence (1.17), (1.17a) and (1.18a) are proved
later.

(1.18): Follows from (1.17) by interchanging " 1 " and "2".
(1.19), (1.34): We may assume <w22, u22) = 1. Then u22 is a minimal

tripotent of V with Viά= Vi5(eu e2)= Vi5{eu u22) by [1, Theorem 5.11]. There-
fore [1, (5.10), (5.11)] imply {v12u22w12} = 2(v12, w12)u22 + a0, aoe V0(u22). Since
V0(u22) = V0(e2), (1.19) follows. To verify (2.34) we note that by [1, (2.8)]
the Fo^-component of {u22, v

ε

12, w\2) is [v[2o(w{2ou22) + ^ί2°(^2^2l)]o Here
we may drop the subscript "0" since Vl2o(Vl2ou2~2) c VQ(e^). On the other
hand, (1.19) means that the FoίeJ-component of {u22, v12, w12} is 2</v12, wι2}u22.
This implies (1.34).

(1.20), (1.35): follow by symmetry from (1.19), (1.34).
(1.21), (1.36): We compute {u20, v[2y w[2] according to [1, (2.9)] for c =

e2 and get {u20, v{2, w[2) = 2(v[2, w
ε

12}u20 - u 2 0 * ( ^ 2 * ^ 2 ) 0 - vi2*(wi2*u20)0-
wi2*(vl2*u2Q)0+aQ, a0 e V0(e). Because (v12*w12)0 e Reλ we have tt2o*(ΐ/ί2*w!2)o = °
by [1, (5.3)]. Further, wi2*u20eV10 whence vi2*(wl2*u20)0 = v[2*(w[2*u2Q) e
Vϊ2

ε ® F2 0. Finally, ({u20, v\2, w\2), ex> = <u20, v[2ow[2) = 0 implies α0 = aΰ + a10.
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This proves (1.21). It follows that the FoCβJ-component of {u20, v{2, w{2}
equals 2(v[2, w[2)u20 — [^2*(^2*%) + wl2*(vl2*u20)]20; on the other hand this
component is [vε

12°(wi2ou20) + wε

12^(vε

12ou20)]o by [1, (2.8)]. Since vε

12o(wε

12ou20) e
V22®V20 we can drop the subscript "0" and get (1.36).

(1.22), (1.37): follow by interchanging "Γ and "2".
(1.23), (1.23a), (1.23b): By [1, (2.8)] the Fo^J-component of {u20, vf2f wΰ}

is [vΐ2o(wΓ2°u20) + wΰ°(vΐ2ou20)]Q. The multiplication rules for the algebra
"o" show vf2o(wΓ2°u20) + w'Γi°(viou20) e U ^ 0 Ue2 0 F2 0; but the e2-component
is zero here because (vt2

0(wuou2o), β2) + (wΰ°(vΐ2ou20), e2} = (v£>, wΰ°u20) —
(wΰ, vi°u20) = 0. By [1, (2.9)] the F2(e2)-component of {u20, v&, wΰ} is
—u*o*(v&*wύ) — v&*(wύ*u20) — wΰ*(v&*u2Q). The first summand lies in Vί29

the last two lie in V12 0 F2 0. This proves the assertions.
The corresponding equations (1.24), (1.24a), (1.24b) are shown by

interchanging " 1 " and "2".
(1.25): This follows from [1. Lemma 5.4 and (2.13)].
(1.26) to (1.26c), (1.38), (1.39): The first assertion follows from [1,

(2.14)]. Next we consider <{uί2, v&, wΰ}, u20) = ({u20, v&, wύ}9 uΐ2) =
-(u20*(vt2*wϊ2), ut2)-(vΐ2*(wΓ2*u20), u&) — (wΓ2*(v&*u20), wί> = < —wi*(vi*Wil)-
v^*(ui*Wn)f u20) where we have used (1.23a) and (u&*v&, wΰ*u20) = 0.
Because Fέ*F^ c F ΰ 0 F l o and Vu*Vt2aVu we only have to consider
[Viz*(v&*vΰ)10]2Q. But from (1.32) follows (vli*vlo)2O = v&<>v10. Moreover
Vn°v12 = 0, hence [wS*(v5*wϋ) + /y1

+

2*( ί̂2*/ îl)]2o = ^S°(vS*wΠ) + vέo(^έ*w«).
This proves (1.26a), (1.38) and, by interchanging " 1 " and "2", also (1.26b)
and (1.39). Finally, (1.26c) follows by expanding the right hand side of
(1.26) and comparing with (1.26a) and (1.26b).

The analogous equations (1.27) to (1.27c), (1.40), (1.41) are shown by
interchanging " 1 " and "2".

(1.28): In [1, (1.10)] we put w = w[2} u = u1Of v = v20, x = elf apply
to e2 and form the scalar product with x[2. We get 0 = (wε

12*v20, u1Q°xε

12) +
<Wie2*̂ io, v20oχε

12} + (εw{2i {u10, v20, xlz}} + (ulo*v2Of wε

12°x[2) + (ulo°w[2, v20*x[2) +
(u10ov20, wε

12*xl2) + <{u10, v20, w[2}y εxε

12) + (v20owε

12, ulo*xε

12)-6(wε

12, xii)(u10ov20f e2).
Here the last term vanishes because {eγe2v2^ — 0, and the fourth and sixth
term vanish because V10oV20c:V12, V10*V20c:V12 and V[2o Vl2 a Re1 + Re2,
Vl2^Vε

12dRe1 + Re2. Finally, the first and the fifth summand vanish since
V20*V12dV1Qf Vio°ViaCFao. The remaining summands give (1.28).

(1.10a): It is easy to see, using (1.10) and [1, Theorem 5.7], that
{u20f v2Q, w{2] is orthogonal to V12

ε. We therefore have ({u20, v20, w12}, x12) =
({w\2, x{2, u20}, v2Q} = 2<^ί2, x[2)(v20, u20) - (xl2*(w[2*u20) + wε

12*(xε

12*u2Q), v20) by
(1.21). From this the assertion easily follows.

(1.11a): Follows from (1.10a) by interchanging " 1 " and "2".
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(1.17a): With the aid of [1, (2.14), Lemma 5.4 and Theorem 5.7] we
compute ({u22, vlow&}, vί2> = ({w&v&v^, u22) = - (w& Π (v& Π vί0)+vi2 Π (w« D v^9

U22) = - λ ^ έ Π ^ i o , W&oUn)—χ(w&ΠViof V& ° U22} = -l/2<tfS * V10, w£ o U22> -

1/2(̂ 5*̂ 10, 0Sott22> Now the assertion follows for e = +. The case e =
— is treated analogously.

(1.18a): Follows from (1.17a) by interchanging " 1 " and "2".
This finishes the proof of the theorems.

1.2. In this subsection we derive more identities which will be useful
later.

LEMMA 1.3. For all vi3-e Vi3 we have
(a) 2(v10, v10)v10ov12 = v10oT(v1Q)v12 + T(v10)(v10ov12),
(b) 2<v2 0, v2Q)v20*v12 = v20*T(v20)v12 + T(v20)(v20*v12).

PROOF, (a) By (1.1) we know {v10v1Qv10} = 6<v10, Ό ΐ Ί o and from [1,
Theorem 5.7] we get vlo°vlo = 2(v10, v^e^ In [1, (1.8)] we put x — v10,
u = eλ and apply to v12. We then derive v10oT(v10)v12 + T(v10)(v10ov12) + 2<v10,
vw)v10ov12 + 2(v10, v10)v10°v12 — 6(v10, v10)v10ov12 = 0. Hence the assertion.

(b) follows by interchanging " 1 " and "2" in (a).

LEMMA 1.4. For all viS e Vi3 we have
(a) 2<v10, vlo)v12 = {v10, v1Of v12) + 2vιQo(v10*vli),

(b) 2</v10, vlo)v12 = {v10, v10, v12) + 2v10*(v10°v12),
(c) 2<t;20, v20)v12 = {v20, v20, v12} + 2t; 2 0*(v 2 0ot; 1 2),

(d) 2<v2 0, v20)v12 = {v20, v2Q, v12} + 2Vιo°(v2O*v12)f

(e) 2(v10, vlo)vί2 = {v10v10v12}12 + 2v1 0o(t;1 0oi;1 2),
( f ) 2<v2 0, v2 0>t;1 2 = {v20v20v12}12 + 2v20*(v20*v12).

PROOF, (a) and (b): In [1, (1.9)] we put x = v10, u = e19 v + e2 and
apply to v12. Then we get 2v1Qo(vί0*v12) + 2v10*(v,0°v]2) + {v10v10vί2} + {v10v10v12} +
2<v10, vί0)v12 - 6<v10, îo> î2 = 0 where we have used v10ov10 = 2<v10, vlo>e!
from [1, Theorem 5.7], v1Q = 0 from [1, Lemma 5.1], and vlo*vlo = 0 from
[1, Theorem 5.7]. This gives

vlo)v12 = 2v10o(vι0*v12) + 2i;20*(v10ov12) + {v1Qv10v12} + {v10v10v1Q} .

From (1.11a) we get {v10v10v12} = 2<v10v10>'yi2 — 2v10o(t;10oi;12). But v10
oVi2€ F20

by [1, Theorem 5.7] whence v10°(y10°v12) - vί0*(v10°v12) by [1, (5.16)]. This
implies (b) and (b) together with (*) gives (a). The assertions (c) and
(d) follow by interchanging 1 and 2 in (a) and (b), and (e) and (f) are
immediate consequences of (b) and (d).

1.3. In [1, 5.2] we introduced the notion of a triple of JC-type.
Yet in each isoparametric triple we consider the subspace of Vtj consisting
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of elements which satisfy the Jordan composition rules. To be more
precise, we define

JV10: = {x10 e V1 0; x10* V1 2 c V20} , JV2Q: = {x20 e V20; x20° V12 c V i0}

J V12 — {#12 £ V 12> # 1 2 ° *2Q C V10, # 1 2 * ' 10 C I K 2 o}

First, we note that some of the composition rules derived in Theorem
1.1 can obviously be improved if one or two of the factors has Jordan
composition. Such rules are (1.8)-(1.13).

LEMMA 1.5. (a) J V12 = JVi2 0 JVΰ where JVε

12 = JV12 Π VΓ2 = {xe Vί2;
χo Vϊ2

ε c V22, #* Vΰε c Vΰ}.
(b) (V')\{e) c JVΰ, ( r ) ϊ ( ί ) c JVt2.
(c) // Vΰ = 0 = Fii, then {Vf)l{e) = JFr2, ( O ^ ) = JFr2.

PROOF, (a) From [1, (5.13)] we know x\2o V20cz Fr 2

6 θ V10 and F/2* F 1 0 c
Fr 2

e θ 2̂o This implies JViΛ=(JViΛΠ Fί2)φ(JFi2 Π V5). Further, a i e JF 1 2Π
Vi2 iff 0 = ( 4 o F 2 0 , Fr2

ε> = <F20, ^oFr2

e> and 0 = <#I2*F10, Fr2

£> = <F10,
#ί2* Vΰ> which by [1, (5.11)], is equivalent to x\2o Vΰ c V22 and xε

12* Vϊ2 c Vΰ.
(b) follows immediately from [1, Lemma 5.5 and Lemma 5.6], which,

together with (a), also imply (c).

REMARK, (a) In general, (V')ί(β) 0 (V')J(e) £ JV12 as one can see by
looking at the isoparametric triple V= Mat(2, r; C), see [1,1.15] for details.

(b) We point out that, by definition, for elements of JVίό the mul-
tiplication rules [1, (5.11), (5.13)] are sharpened: xΐ2°y22e V22, xi*yr2e Vΰ,
&i2°VioG Vio, αϊ2*l/io€ V20, if one of the elements lies in JV^ .

Before proceeding we recall that a subspace U of the isoparametric
triple V is a subsystem if {u^Us} e U for all ut e U. Further, a formal
FKM-triple is a triple system whose triple product is as in [1, 1.5b], but
does not necessarily satisfy (ISO 4).

THEOREM 1.6. If V22oJV12cJVί2 and Vΰ*JV12c:JV12, then JV12 is a
subsystem of V and the restriction of the triple product of V to JV12 is
the dual of a formal FKM-triple, given by

where x2

0), , x{

2

m), m + dimV22, is an orthonormal basis of V22.

PROOF. First we prove that JV12 is a subsystem. From (1.25) follows
{JVί2, JVί2, JVί2} c JVie

2 and it is therefore enough to show: xeJVl2,
yeJVΰ* imply {xxy}e JVΰB- But this follows directly from (1.26), (1.27)
and the assumption.

Let veJV12. We compute {vvv} according to [1, (2.9)], c = eu and
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note {vvv}0 — 0. We get {vvv} = 6(v, v)v — 3v°(vov)0. But (vov)0 e V22 and
thus (vov)0 = Σ r (v°v, xir)}%ϊr) implies (vvv) = 9(v, v)v — 3[</v, v)v +
Σ?=o (^r^, /y)ί>r/y] which shows the second assertion.

2. Peirce decomposition relative to e20 and e10. In this section, we
investigate the Peirce decomposition relative to e20. Of course, all results
are also valid (with the obvious changes) for e10.

2.1. Recall, by (1.1) each element of V20 with length 1 is a minimal
tripotent. Throughout this section we fix e20 e V20 with (e2Of e2Q) = 1 and
investigate the Peirce spaces of e20. Note that (el9 e2Q) is a pair of
orthogonal tripotents. We point out that throughout this section we
may everywhere replace eι by uL1 e Vn = Reλ 0 V?(βi) and β2 by u22 6 F 2 2 =

LEMMA 2.1. The Peirce spaces ofe2Q have the following decomposition

(2.1) F2(e20) = ((Vn 0 V1Q) ΓΊ V2(eJ) 0 ( F 2 0 θ « O 0 ^ 2 2 ,

(2.2) F0(e£0) = ((V12 0 F10) n F0(β20)) 0 Vn .

Further,

(2.3) 72WcF

PROOF. By (1.8) and (1.10) we know Γ f e o ) ( 7 l o φ 7 1 2 ) c F 1 0 © F 1 2 , hence
V12 0 Vio = ((V12 0 VJ n VQ(e2Q)) 0 ( ( 7 l t © 710) Π F2(e20)). By (1.1) we have
(V20QRe20)φV22dV2(e2Q) and by (1.2) we get VnczV0(e20). Altogether,
this proves (2.1) and (2.2). Finally, we apply [1, Lemma 2.7] for c = e20

and y = e, and get V°2(e2Q) c Fo(ex) = F 2 2 φ F 2 0 . This proves (2.3).

Obviously, in Lemma 2.1 the unpleasant parts of the Peirce space
of e20 are (V12 0 V10) Π V2(e2Q) and (V12 0 F10) Π VQ(e20). We will have a closer
look at these spaces.

LEMMA 2.2. Assume z12 e V12. Then
(a) z12 6 F2(e20) <=> β20*^12 = 0 <=> e20°z12 e V12

(b) z 1 2 6 F 0 ( e 2 0 ) <=> e20oz12 = 0 <=> β2O*(e2o*Zi2) = «i ?

( c ) «12 6 V0(e20) => z12 e F 2 (β 2 0 ) .

PROOF, (a) We compute T(e20)z12 according to [1, (2.9)] for c = e2

and get

( * ) T(ejz12 = ao + 2z12 - 2em*(em*z^)

since e20*z12 = (e20*z12)Q and (e20*e20)0 = (e2)0 = 0. Here e2O*(e2o*^i2) e F 1 2 and
α 0 e F 1 0 because Γ W 2 1 2 e 7 1 2 + F 1 0 by (1.10). Therefore t h e condition
z12e V2(e20) is equivalent to [T(e20)z12]10 = 0 and e2o*(e2O*312) = 0. But since
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m e2) is symmetric, T(e20, e2fz12 = 0 if and only if T(e20, e2)z12 = 0. Hence
z12 e V2(e20)» e20*z12 = 0 and [T(e20)z12]ι0 = 0. For the first equivalence it
therefore remains to show that e2Q*zί2 = 0 implies [T(e20)z12]10 = a0. = 0. To
do this we apply Lemma 1.3.(b) and get 0 = e20* T(e20)z12. Using the ex-
pression (*) for T(e20)z12 we see 0 = e20*α0. By [1, (5.16)] this implies 0 =
e20

oaQ, and from (1.8) we derive T(e20)a0 — 0. But now we get <α0, αo> =
<α0 + 2z12, αo> = (T(e20)z12, αo> = <z12, T(e20)a0) = 0, hence α0 = 0. The second
equivalence follows from (1.30).

(b) By (1.10) the condition z12 e V0(e20) is equivalent to T(e20, e^fzl2 —
0; hence equivalent to T(e20f e±)zi2 = 0. The last assertion follows from (*).

(c) Since e,e V0(e20)9 e2e V2(e20) we have z12 = {e^z^e V2(e20) by [1,
(2.7)].

LEMMA 2.3. Assume z12 e V12. Then
(a) z12 G V2(e20) <=> e20*z12 = 0 <=> {e20V22z12} = 0.
(b) «1 2e V0(e20) <=> e20oz12 = 0^ {e20Vnz12} = 0.
(c) z12 6 F0(e20) =- {Vn, V22, z12} c 72(β20).

P R O O F . By Lemma 2.2.(a) we know z12e V2(e20) *=* {e20e2zί2} = 0. Since
Viz = Vwίβi, ίc22) for every x22 6 F 2 2 w i th | x221 = 1 and since t h e condition
z12 e F2(e20) does not depend on e2, t h e first equivalence implies z12 e V2(e20) <=>
{e20V22z12} = 0. The remaining assertions are proven analogously.

COROLLARY 2.4. e2o*Fio — {̂ 0^22^10} (as vector spaces).

P R O O F . Of course, e20 * Vί0 c {e20 V22 V10} c V12. Now assume z12 e F 1 2

such t h a t <z12, e20* F10> = 0. Then 0 = <e2 0*^2, V10) implies e20*^12 = 0. Hence
{^oVz^J = 0 by Lemma 2.3 which again implies (zί2, {e20V22V1Q}) = 0 and
so proves t h e corollary.

LEMMA 2.5. (a) e2AV12®VJ c ( F 1 2 0 F 1 0 ) Π V2(e20).
(b) 0 Φ e20o Vlo c V12 Π F2(e20).
(c) For #20 6 F 2 0 and wm y10 e Vlo we have 0 = x20*(x2o

oyio)
= 0.

PROOF, (a) Set I = F 1 2 φ F 1 0 . By (1.8) and (1.10) we know T{e209ed
( i n V0(e20)) = 0. Since XQ(ΣΠ V0(e20)) = I n F2(e20), this implies T(e2Q, e,)
( i n F 2 fe o ))cln F2fe0), hence (a).

By [1, Theorem 5.9 and (5.3)] we already know 0 Φ e20° Vlo c F1 2. Now
(b) follows from (a).

(c) We may assume x20 = e20. Then e20°y10e V12Γ\ V2(e2Q) by (b) and
0 = β20*teo°2/10) by Lemma 2.2.(a). The remaining assertion is now obvious.

LEMMA 2.6. Assume z10e V10. Then
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(a) zί0 6 Vo(e2o) <=> e20ozί0 = 0<=* e20*zί0 = 0.

(b) zi0 e V2(e20) <=> e20°(e20°z10) = z10 => e2O*(e2o*2io) = Sio

P R O O F , (a) s10 e F0(e20) <=> 0 = e20 ° (e20oz10) <=> e20o£10 = 0 by (1.8), since

T(e20, e j is symmetric. By [1, (5.16)] t h e last condition is equivalent to

e2o*Zio = 0 .

(b) The first equivalence follows from (1.8). By (1.30) and (1, (5.16)]

we have e20o(e20°z10) = — e20°(e20*z1Q) + e20*(e20*z10). Therefore e20o(e20oz10) = z10

implies e20*(e20*z10) = zί0.

LEMMA 2.7. If y e V12 Π V0(e20) with (y, y) = 1, then y is a minimal

tripotent such that Vn@V22(zV2(y).

PROOF. By [1, (2.6)] we know that y is a minimal tripotent. Let

xe viif i = 1, 2, with (x, x) = 1. Then a?' is a minimal tripotent with

2/ 6 V2{x) by (1.14), (1.15). Thus [1, Lemma 4.5.(a)] implies x e V2(y), hence

the lemma.

COROLLARY 2.8. If V12 Π V0(e20) Φ 0, then V2\e2Q) c F 2 0 .

PROOF. By assumption there is a 2/ e V12 Π V0(e20) with <yf y) = 1.

Now [1, Lemma 2.7.(b)] implies F2°(β20)c V0(y) Π Vofo). B u t by Lemma 2.7

we have V0(y) Π 70(βi) c F2 0.

2.2. In §2.1 we investigated those parts of the Peirce spaces of e20

which lie in a Peirce space Vί5. We now look at those parts which do

not split.

L E M M A 2 . 9 . For xeV we have

e^χ = 0 <=> x 6 Vu 0 F2l © ( 7 1 2 Π y 2 ω ) Θ y i 0 n V0(e20) φ ( F 2 0 θ Rem) .

P R O O F . The multiplication rules for t h e algebra " * " show e20*(Vn@

V22 0 (V20 θ Re20)) = 0. Also, β20* ( F 1 2 n F2(β20)) = 0 = e2A V1Q Π F0(β20)) by

Lemma 2.2.(a) and Lemma 2.6.(a).

Assume now e20*x = 0. Since e2 0*β2 = 2e20, e2 0*e2 0 = 2e2, we know

<Qjy e2) = 0 = <a?, e20>. By t h e conclusions above we may therefore assume

# e ^120^10- Then we have O = e2o*aj12=elo*ccio, since e2 0*e1 2e F 1 0 , e20*a;10e F 1 2

and Q=e20*x. Hence x12eV2(e2Q) and x10eV0(e2Q) by Lemma 2.2. (a) and

Lemma 2.6.(a).

LEMMA 2.10. Set

A(ej = ((7 1 2 ey 1 0 ) n F2fe0))θ(F12 n v&j),

β(β2o) = ((v12 0 F 1 0) n F o ω ) θ ( F 1 0 n Fofeo)).

Then
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(a) e.20*A(e2Q) = B(em), e20*B(e2Q) = A(e20),

(b) e 2 0 * ( F 1 0 Π V2(e2Q)) = F 1 2 Π F 0 (e 2 0 ) , e 2 0 * ( ^ i 2 Π F 0(e 2 0)) = F l o Π F 2 (e 2 0 ) ,
(c) Γ ( e 2 O , e 2 ) | A W Θ % o ) is & vector space automorphism,
(d) (̂ 10 Π F 2(e 2 O))0 (F 1 2 Π F0(e20)) iβ contained in the eigenspace of

T(e20, e2f for the eigenvalue 1.

PROOF. Since e2 e F2(e20) we have e20*A(e20) c V0(e20). Further, <e20*α,
#io> = <α, e2O*̂ io> = 0 for α e 4 f e 0 ) , a?loe F10Π F0(e20). Therefore β20*A(e20)c
J5(βjjo). Similarly one proves e2Q*B(e20) c A(e20). Hence T(e2Q, e2) leaves in-
variant 4(e2 0)φΰ(e2 0) Moreover, the restriction of T(e20, e2) to A(e20)@B(e2Q)
is injective by Lemma 2.9. This proves (a) and (c). To prove (b) we
first note e20*(F10 Π V2(eJ) c V12 Π V0(e20) and e20*(F12 ΓΊ F0(e20)) c F l o Π V2(e20);
this follows from e 2 0 *(F 2 (e 2 0 )θ^ 2 ) c V0(e20), F1 0* F2 0 c F12, e20* F0(e20) c F2(e20)
and F 2 0 * F 1 2 c F 1 0 . The assertion is now a consequence of (c). Finally,
(d) is just a restatement of parts of Lemma 2.2.(b) and Lemma 2.6.(b).

2.3. The Peirce spaces relative to β20 are much easier to handle if
e20 lies in JV2Q = {x20 e V20; x0 e V12 c F10}.

LEMMA 2.11. Assume e20eJV20, then (a)

(2.4) V12 = [ V12 n F 0 (e 2 0 )] 0 [ F 1 2 n F 2 (e 2 0 )] ,

(2.5) F l o - [ F 1 0 Π F o f e o ) ] 0 [ F 1 0 Π F 2 (e 2 0 )] ,

(b) z12 e F 0 (e) <=> z12 = e 2 0 *(e 2 0 *^ 2 ) <=> z12 e F 2 (e 2 0 ) ,
(c) e20o F l o = F 1 2 n F 2(e 2 0) Φ 0, e2 0* F 1 0 = F 1 2 Π F 0 (e 2 0 ) Φ 0,
(d) z10 e F 2 (e 2 0 ) <=> e2O*(β2O*^io) = Zio>

(e) d i m F 1 0 Π F2(e20) = d i m F 1 2 Π F0(e20) = d i m F 1 2 Π F2(e2 0),
(f) F l o n F2(β20) Φ 0,
(g) F2°(e20) c F 2 0 ,
(h) m2 ^ d i m F 1 0 2̂  d i m F 1 2 ^ m ^ i n particular, d i m F > kmx.

P R O O F , (a) follows from (1.8) and (1.10).
(b) From Corollary 1.4.(f) we conclude z12e V0(e20) <=> z12 = e2O*(e2o*212).

We already know z12 e VQ(e20) => z12 e F2(e20). Assume therefore z12 e F2(e20)
Then 0 = e20*z12 — (β20°^i2)~ + e20<>z12 = e20<>zί2 by Lemma 2.2.(a), (1.30) and
β 2 0 oF 1 2 c F 1 0 which holds by assumption. Hence T(e20)z12 = 2e2Q°(e20oz12) = 0.

(c) By (2.5), Lemma 2.6 and Lemma 2.10 we have β 2 0 *F 1 0 = e 2 0*((F 1 0 Π
F2(β20)) 0 ( F 1 0 n V0(e20))) = β 2 0*(F 1 0 Π F2(e20)) - F 1 2 n F0(e20). Using (b) and

[1, (5.16)] we see e 2 0°F 1 0 = F 1 2 Π F2(e20). By [1, Theorem 5.9] both spaces
are nonzero.

(d) Let zloe F2(β20). Then e20*(e20*z1Q) = z10 b y Lemma 2.6. Assume
now z10 = e2O*(e2o*Zio). We know F 1 0 = (V10Π V2(e20)) 0 ( F 1 0 Π F0(e20)) by (2.5)
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and we have A(e20) = F l o Π V2(e20). We decompose z10 = a2 + α0, a2 e A(e20),

α o 6 F 1 0 Π Vofeo) and get z10 = e2Q*(e20*zi0) = e20*(e2Q*a2) e A(e20) by Lemma 2.6

and Lemma 2.10.(a). Hence the assertion.
(e) The first equality is a consequence of Lemma 2.10.(a), the second

follows from (b).
(f) follows from (e) and (g) follows from (f) and Corollary 3.10.
(h) By (e) and [1, Corollary 5.5] we have mι = dimF£> = (1/2)dimV^ =

dimF1 2 Π V2(e20) <; dimF1 0 ^ dim (F l o + Fΰ) = m2. The remaining statement
just means 2(m1 + ra2 + 1) > Am^

COROLLARY 2.12. If e20eJV20, then

V12 = e20

o Vί0 φ β20* V10 (orthogonal sum) .

2.4. In this section we compute the Peirce spaces relative to the
pair (eu e20) of orthogonal tripotents. As above we denote by Vts the
Peirce spaces relative to (eu e2).

LEMMA 2.13. The Peirce spaces of (elf e20) have the following descrip-
tion:

(a) Vn(elf em) = Vn,
(b) Vιt(elf e20) + V2Q(elf e20) = V22 + V20,
(c) V10(elf e20) = ( F 1 2 0 F 1 0 ) Π F0(β20),
(d) V12(elf e20) = ( F 1 2 0 F l o) Π F2(e20).

PROOF, (a) By definition Vn(el9 e20) = Re.φV^e,) = F n .
(b) By [1, Corollary 5.2] we have V22{eu ej + V20(elf e2Q) = Vo(βl).
(c), (d) By [1, Corollary 5.2] we know F10(β2, e20) = [VM Π F0(e20)] θ

F u . The assertions now follow from (2.1) and (2.2).

LEMMA 2.14. Assume e20 e JV20. Then the Peirce space of (elf e2Q) have
the following decomposition

(a) Vn(elf e20) = F n ,

( D ) r 22W1> ^20/ ^ »̂  20> ^2OW1> ^20/ : = : : : V *^ 22 Vl/ »^2θ) t l 7 ^22W1> ^20/>

(c) Fofe, β20) - [F l o Π Fofeo)] 0 [F 1 2 n F0(β20)],
(d) V12(elf ew) = [ F1 0 Π F2(e20)] 0 [ F1 2 Π F2(β20)].

PROOF, (a) is Lemma 2.13. (a) and (b) follows from Lemma 2.11.(g).
Finally (c) and (d) are easy consequences of (2.4) and (2.5).

3. Peirce decomposition relative to e12 e F 1 2 . In this section we
consider Peirce decompositions relative to maximal and minimal tripotents
contained in F1 2.

3.1. In this subsection we consider the Peirce decomposition relative
to a tripotent e& e F£. Of course, the analogous results are valid for
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tripotents 05 e Vύ
Recall, by (1.25) every element of V& with length 1 is a maximal

tripotent. Throughout this subsection, we fix an element e& e V& with
<eΪ2, βί> = l We also recall that e = λ(ex + e2) and e = x(ex — β2), λ =
(1/ 2 )~S are maximal tripotents of F.

LEMMA 3.1. Ϊ7&e Peirce spaces of eti have the following decomposition

VM) = [VήφV22 Φ F 1 0 © F2 0 © (V'Ue, e)} Π V&S) 0 (F+2 θ ΛβJ) 0 Λe ,

78(e+) = [Vΰ® V22 © F 1 0 0 F 2 0 0 (F')20(e, e)] Π V.teϊ) © ( F ' ) ^ ) 0 Re .

PROOF. We have (Fί2 θ -Re£) 0 Re c V^eS) by (1.25) and [1, Lemma
5.4]. Now, T(e£)u = %u for u e Re 0 (F')ϊ(β) by [1, (2.10), Lemma 5.15]
and (1.26). Hence Γ(βέ) leaves invariant Vΰ 0 F^ φ F2 0 © (V%(e, e). This
proves the lemma.

In general, we cannot say more. However, as in §2, the situation
is much nicer, if e£ fulfills the Jordan composition rules. From 1.3 we
recall JV12 = JVt, © JVΰ where JVl2 = {y[2 e Vl2; y[2o V20 c V109 2/ί2* V1Q c F20}.

THEOREM 3.2. Assume ei2zJVi2. Then (a)

(3.1) VM) = [ VΊ(βS) Π ( 7 U 0 722)] φ [(F')20(β, e)" Π VMύ]

(3.2) y.(βί) = [ VM) n ( v n © 7a)] © [(F')20(e,«) n v.(βi)] φ ( n ! W

(b) Γfcβ map Vi(βS) Π ( F u φ F22) -> VM) Π (Vu φ F22), a?u 0 z22 -> ̂ u φ
— #22 is a vector space isomorphism.

(c) dim Vn = dimF2 2 - dim VM) Π (Vπ Φ F22) = dim F3(e i2) ΓΊ (Vn φ F22),
dimF^ Π Vi(eS) = dimFΰ, dimF^ Π F3(β!+2) = mx — dimFΰ.

(d) The map JVt2 —> End (F 1 0 φ F 2 0 ) : &£ -> Γ(e, a?5) induces a represen-
tation of the Clifford algebra over the Euclidean space (JV£>, {- , •».

PROOF. For u e VΊ(β) we compute T(ei)u according to [1, (2.14)] and get

( * ) T{et2)u = 2>u - 2βί2 Π (ei D u) .

We always have e?2 D (^ϊϊ + u22) c V^. Also, the assumption about et2

implies βS Π F r 2 c Vπ φ F2l. Therefore Γ(eί 2)(Fΰφ Fr2) c F r 2 φ F2'2. Fur-
thermore, 2eί2 Π (eέ • fail + 2̂~2)) = eί*(eί*wΰ) + βί2°(eί2*uΓi) + ei^{et^u22) +
eS°(β£°teϋ) = wΠ + W22 + βέo(βS*t6Π) + βS*(ei°W22)> where we have used u^* F1 2 =
0, uΰo F1 2 = 0, (1.34) and (1.35). We know e^ie^uΰ) e V22, eΐ2*(eΐ2ou22) e Vΰ.
Hence (*) implies

uΓι + u22 e F2(eί2) <=> etΛeί°n22) = - ^ ΰ , eί2o(eί2*uΰ) = -u2"2



ISOPARAMETRIC HYPERSURFACES II 239

This shows (b) for x e Vΰ® V22. Now T(ei)e = Se and Γ(e£)e = e implies
(b) in general.

By (*) we also have T(e&) Vΰ c VT2 and again (*) implies (F')°(e)c
V.(βS) since β£Π(V")!(β) = 0 by [1, Lemma 5.15].

For w e F 1 0 φ V20 we have e&w = βS*.w e F l o φ 7 2 O by (1.30), (1.32) and
βS 6 e/F12. Hence ei°(e+on;) = e+o(e+*!i;) = eS*(βS*w) = eS*(eSow) and T{ei^)w —
Sw - 2eέo(e+oW) - 2ί2*(eί2*w) = w by (*), (1.36) and (1.37). Altogether,
we have proven (a).

(c) The projection maps Vx(et2) Π ( F n 0 F22) —> V«, i = l , 2, are injective
by (b). Hence dim (Vi(βS) Π (Vn © F22)) ^ dim 7«. But dim (Vn φ V22) =
2dim(F1(e1

+

2) Π ( F n 0 7 2 2 ) ) by (b) whence d i m F n = d imF^S) n (Vn®V22) =
dimF2 2. Finally, mί + 1 = dimF3(eί2) = dimFu + dim(Fr2 Π V9(e&)) =

u + m, = dim(Fr2 Π VΊ(βS)).
(d) Assume y+e JF+2 with | y + | = 1. Then F l o 0 7 2 O c W 2 ) by (a),

S, e)( ̂ o 0 F20) c V10 0 F2 0 as shown above, and (*) prove y& • (y& Πw) =
^ for F 1 O 0 F 2 O .

3.2. In this subsection we consider the Peirce decomposition relative
to a minimal tripotent c e V12. By applying [1, Lemma 4.5] we get

LEMMA 3.3. 7 n 0 7 2 2 c 7 2 ( c ) for every minimal tripotent ce V12.

We use this lemma to prove the following characterization of minimal
tripotents in V12.

LEMMA 3.4. An element c = c + φ c " e V12 is a minimal tripotent if
and only if <c+, c+> = 1/2 = <c~, c~> and c+°c~ = 0.

PROOF. Assume c e V12 is a minimal tripotent. Then c°c = T(e)eί =
2et by Lemma 3.3. We compute c<>c according to [1, (5.10)] and get
coc = 2c+oc~ + 2<c, c)e, + <c, c)e2. Since c+oc~ e Fo"2φF2 2 by [1, (5.11)] we
have c+o<r = 0 and 0 = <c, c> = <c+, c+> - <c", c~>. Since 1 = <c+, c+> +
<c~, c"> this implies <cδ, cε> = 1/2.

Assume now c+oc~ = 0 and <cε, cε> = 1/2. Then also c+*c" = 0 by [1,
(5.20)]. Hence c+ • c~ = 0 = c+ Π c~. Now we compute {ccc} according
to (1.26), (1.27) and get {ccc} = {c+c+c+} + 3{c+c+c"} + 3{Vc"c+} + {c-c~c-} =
3<c+, c+>c+ + 9<c+, c+>c~ + 9<c", c~)c+ + 3<c", c">c~ = 6c.

COROLLARY 3.5. For ce V12 the following are equivalent:
(a) c is a minimal tripotent,
(b) c is a minimal tripotent,
(c) IXcCi, x2)c is a minimal tripotent for every pair xte Vl9x2e V2

with \Xi\ = 1.
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PROOF. The equivalence of (a) and (b) follows from Lemma 3.4, and
this equivalence implies the equivalence of (a) and (c) since Vί2 = Vl2(xlf x2)
by [1, Theorem 5.11].

COROLLARY 3.6. Let et2 e V12, \et2\ = 1 and eΰ e VB(et2), |e«| = 1. Then
c : = λe(i + eΰ) is a minimal tripotent.

PROOF. By Lemma 3.4 we only have to check et2°eΰ = 0. But eΰ e
V8(βS) implies 3β£ = {eί2, ef2, eΰ) = 8ef2 - 2β£Π(eSD«ϊ) by (1.26). Therefore
eΐ2 D (e« • eΰ) = 0 and, consequently, also e£ Π eϋ = 0. From [1, (5.11)]
it follows ejoe« = 0 and the corollary is proven.

LEMMA 3.7. Let ce V12 be a minimal tripotent. Then ce V0(c) and
(c, c) is a pair of orthogonal tripotents.

PROOF. We have el9 e2 e V2(c) by Lemma 3.3. But then c = {e&c} e
V0(c) follows from [1, (2.5)].

THEOREM 3.8. Let c be a minimal tripotent of JV12. Then c is a
tripotent orthogonal to c and we have

(a) v2(c) = vnθv22e[v12n v2(c)]e[(v10eF20)n v2(c)i vo(c) = [vun

(b) V12 n Vμ(c) = F 1 2 n F,(c) for μ = 0, 2.

(c) F 1 2 n F12(c, c) = {z 6 F 1 2 ; <^+, c+) = 0 = <ar, c">, c+o^- = 0 =

= [ V5 Π F12(c, c)] 0 [Fr2 Π F12(c, c)]

V[2 Π F12(c, c) = Vΰε(c, c).

(d) F 1 2 - [ V12 n F12(c, c)] © [ F 1 2 n Vo(c)] 0 [ F 1 2 n 70(c)].

(e) F 1 2 n vo(c) = [v12n v2(c)] Θ [v12 n F12(c, c)].
(f) Lei ^ 6 F l o φ 7 2 O , then

u e V2(c) <=> u 6 V0(c) <=> {c+c"^}

PROOF. The first statement is clear by Lemma 3.7. Assume now
z e V12 with <z+, c+> = 0 = <2;~, <r>. We compute Γ(c)2 by using c+[Jc~ =
0 = c+ Π c", the formulas (1.26) and (1.27): T(c)z = T(c+)z+ + T(c+)z~ +
2 {c+c"2;+}+2 {<Λrz-} + Γ(c")^+ + T{c~)z~ - (l/2)a;+ + (3/2)ar - 2c+ Π (c+ Π »") -
2c+ Π (z+ Π c-) - 2c- Π (z- Π c+) + (3/2)z+ - 2c~ Π (C D z+) + (l/2)«-.
Because c+, c" 6 J F 1 2 this formula implies T(c)z e V12. We already know
F n φ F 2 2 c F 2 ( c ) . Therefore we get (a).

(b) The expression above for T(c)z shows T(c)z = T(c)z which implies
(b).

(c) For z 6 V12 with (z% cε) = 0 we have T(c)z = 2z = T{c)z « c+ Π

(c+ • 2r) + c- Π (c" D ^+) ± [c+ D (*+ D O + c- Π (2- D c+)] = 0 — c + Π
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(c+ • ar) + c- Π (<r Π ^ ) = 0 = c + D (*+ D c") + c- Π (ar Π c+). Since
c+ Π «" e Vπ 0 V2~2 we get c+ Π (c+ D z~) e V5, similarly <r Π (<r Π s+) e
VS. Therefore the last equation implies c+ Π (c+ D z") = 0=c~ Π (c~ Π z+),
which is equivalent to c+ Π «" = 0 = c~ Π 2+. Because c+oz~ e Viϊ, c+*z~ e Vΰ
we have c+oz~ = 0, and in the same way c~oz+ — 0. On the other hand,
the conditions c+°2~ = 0 = c~°2+ imply c+[3z~~ = 0=c+\Zϊz~ = c~[Jz+ = c~[Zlz+,
which shows z e V12(c, c). Obviously, V12 Π V12(c, c) is invariant under
Γ(βi, e2), which implies the second equation of (c). Finally, for zε e Vί2 Π
V12(c, c) we have Γ(c, c)« = T(c+, c+)2;e — Γ(c", c~)z% which for ε = + equals
(l/2)z+ - (3/2)z+ = ~a;+ and for ε = - equals (3/2)aτ - (l/2)«" = «-.

(d) and (e) are obvious.
(f) Since v / 2c e eJV 1

s

2 is a maximal tripotent we have V 1 0 φ V 2 0 c
Vid/Tc ) by (3.1). Therefore ΓCc6)^ = (1/2)%. Because T(c)u = T(c+)% +
Γ(c")% + 2{c+c"%} this shows T(e)u = 2u<=> 2{c+c~u} = u<=> T(c)u = 0.

We finish this section by establishing the Peirce decomposition relative
to (c, c).

THEOREM 3.9. Let c be a minimal tripotent ofJV12. Then the Peirce
spaces relative to (c, c) have the following description:

(a) F n ( c , c ) c 7 1 2 n 7 0 ( c ) , V22(c, c) c V12 n V0(e).

(b) vlo(c, c) = [(v10 e v 2 0 ) n vo(c)] 0 [v1 2 n vo(c) Θ v n ( c , c)],
v20(c, c) = [(v10 0 v20) n vQ(c)] 0 [ v12 n TO θ V22(C, <Γ)].

(c) V12(c, c) = Vu 0 F2 2 0 [F 1 2 n V12(c, c)].

PROOF. We start with (c). By applying Theorem 3.8.(a) for c and
c we get V12(c, c) = V2(β) Π V2(c) = F n φ F 2 2 0 X where

x = [ v12 n v2(c) 0 (v1 0 0 v20) n vm n [ v12 n v2(c) 0 (v1 0 0 v20) n v2(<τ)].

Let a = α12 + α10 + α20 6 X Then α10 + α20 6 V2(c), whence α10 + α20 6 V0(c)
by Theorem 3.8.(f). Therefore 0 = <α, α10 + α20> = <α10 + α20, α10 + α20>, i.e.,
α10 + α20 = 0 and X = V12 ίl V^c) f] V2(c) = V12 n V12(c, c).

(a) We know β 6 VZ(V 2c+) = VS(c, c) 0 iίc", whence {ec+aj} e V12(c, c)
for aj6Vu(c,c) by [1, (5.5), (5.12)]. We also know Vn(c, c) c V2(c) θ
V12(c, c). Therefore α? = ^ i 2 + a510 + x20 and {ec+ίc} = c+ Π »S + ^+ D #il +
c+ D (ffio + ««,). By [1, (2.10)] we get c+ Π α£ = 3<c+, ^+

2>e. Further, by
Lemma 1.5, c+ Π xJk e Vπ 0 Vr2 and c+ Π feo + #20) e V10 0 V20. Therefore
{ec+x} 6 V12(c, c) implies c+ Π feo + #20) = 0 by (c), which in turn forces
&10 + #20 to vanish by Theorem 3.2.(d).

(b) follows from (a) and (c).

4. The fine structure of V12. In this section we introduce a certain
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subspace of V i φ F i . This subspace measures how far F12 differs from
JV12. For triples of FKM-type (which are considered in [2]) this subspace
is an "obstruction" to the uniqueness of the Clifford sphere ([2, §8]).

4.1. One of the methods in [4] for showing that a given isoparametric
triple system of FKM-type is not homogeneous is to show that the
dimension of F2°(c) = ΓKker [T(c, y) | V2(c)]; y e V0(c)} varies with the minimal
tripotent c, i.e., is not constant. We also saw that V2\c) has nice pro-
perties in general. Hence it is reasonable to study the similarly defined
space Σyer0(o ker [T(c, y) | V2(c)].

Since we are dealing with an Euclidean space it is equivalent to
consider

(4.1) Q(β):=( Σ ker [T(c, y)|V2(c)]Y

where c is a minimal tripotent and J_ is the orthogonal complement in
V2(c).

LEMMA 4.1. (a) Q(c) = V2{c) n Π{V2(y); y e V0(c), \y\=l},
(b) Q(c) = Q(d) for de V2°(c) with \d\ = 1.

P R O O F , (a) We have Q(c) = Π {(ker [T(c, y) | V2(c)])λ; y e V0(c)}. Since
ker T(c, y) = ker T(c, sy) for any s e R-{0} we may assume that the inter-
section is taken over ye VQ(c) with \y\ = 1. Then (c, y) are orthogonal
tripotents and [1, (5.2), (5.3)] for (c, y) = (elf e2) show (ker [Γ(c, y) \ V2(c)]y =
V2(c) n V2(y). Hence (a).

(b) We know V0(c) = V0(d) and V2(c) Π V0(y) = V2(d) n V0(y) for y β
F0(c) by [1, Corollary 2.18.(b)].

We specialize c to ex and get the following description of Q(βJ rela-
tive to our standard Peirce decomposition:

THEOREM 4.2. The following conditions are equivalent:
(a) x e Q(e,)
(b) xe V12 and x*V20 = 0.

PROOF. Assume x e Q{eλ). Then x e V12= V2{eλ) Π V2(e2) and x* V20=0 by
Lemma 2.3. On t h e other hand, if x e V12 and x* V20 = 0 then x e V2{e^ ΓΊ
F2(β20) for every e2Qe V20 w i th |e 2 0 | = 1 by Lemma 3.3. Also, xe V2(y22)
for y22 e V22, y22 — 1 by [1, (5.1)]. Assume now y e V0(c) and \y\ = 1. Then
y = 8Z2Z + tz20 w i th s2 + t2 = 1 and |^22 | = 1 = |«2 0 | . F u r t h e r , we have
T(y)x = s2T(z22)x + t2T(z20)x + 2sίΓfe 2 , zjx = 2x + 2sί{2;222;20ίc} since # e
^2fe2)nF2(2;2o). Because fe2^20ίc} = 0 by Lemma 2.3 it follows t h a t xe
V2(y), whence xeQ(e,).
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We have the following equivalent description for xeQfa):

LEMMA 4.3. For x e F1 2 the following are equivalent:
( 1 ) z* F2 0 = 0, (2) x*( F2 2 + F20) = 0, (3) {xV22V2Q} = 0, (4) x* F l o c

V12, (5) {xV22V1Q}czV12, (6) (x, V10*V20) = 0, (7) <s, {F10F22F20}> = 0, (8)
<*, ^io° F20> - 0, (9) (x, {V10VnV20}) = 0, (10) χo V20 c V12, (11) {x F n F 2 0 }c F12,
(12) &o F1 0 = 0, (13) χo(Vn + F20) - 0, (14) {xVnV10} = 0, (15) a; 6 Q(βl).

PROOF. (1)<=>(3): Lemma 2.3. (1)<=>(2): [1, (5.5)]. (1) — (4): [1,
(5.13), (5.7)]. (S)~(5): (1.12) and (1.17). (1) ~ (6): [1, (5.7)]. (3) - (7):
(1.12). (6) « (8): [1, (5.16)]. The equivalence of (8)-(14) follows from the
equivalence of (l)-(7) by interchanging 1 and 2. Finally, (15) <=̂  (2) by
Theorem 4.2 and [1, (5.5)].

COROLLARY 4.4. (a) Q(ex) = Q(e2),
(b) Q(a?i) = Q(βχ) for all xλe Vn with I&J = 1,
(c) aJn+QCeJ = Q(e2) /or αίί a?u e F n , aju ^ 0.

PROOF, (a) By Theorem 4.2 and Lemma 4.3 we know Q(ex) c F1 2,
Q(e2) c F1 2 and, for x e F12, x e Q(e^ =̂> a?* F2 0 = 0 <=> χo F1 0 = 0 <=>» e Q(e2).

(b) This is an immediate consequence of Lemma 4.3.
(c) We may assume |a?u| = 1 and have x^Qie^ = xn*Q(xn) = Q(e2)

by (b) and (a).

4.2. We now define

(4.2) Q:=Q(el9e2):=Q(ei)nQ(e2).

REMARK. It is important to notice that for xeQ all properties of
Lemma 4.3 hold. In particular, we know by Theorem 4.2 and Lemma
4.3 that

(4.3) Q = {g 6 F1 2: fir* F2 0 = 0 = go F10}

= {ge F1 2; 0 - <</, F1 0* F 2 0 + F10o V20)} = {g e F1 2; g Π(V10+ F 2 0 )c F12} .

Moreover, Corollary 4.4 implies

(4.4) Q = Q+ φ Q- where Q* = Q n Fί2 .

LEMMA 4.5. (a) #Γi*Q£ = Q~e /or αίϊ xΰe Fΰ, a?n ^ 0.
(b) // Fΰ ^ 0 or F2"2 Φ 0 ίfeew dim Q+ = dim Q".

PROOF, (a) From Corollary 4.4 we know xTi*Q(fiύ = Q(e2) and #π*Q(e2) =
Q(ex), whence ccΰ*Q = Q- But α;Γi*Fί2 = Vϊ2% and the assertion follows.

(b) follows immediately from (a).

Note that we may define Qr = Q\e, e) for the dual triple F ' . The
following result interrelates Qf and JVί5 from §1.3.
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THEOREM 4.6. Q' = JV10 0 J F 2 0 and Q' n (7')5 = JV20, Q' n (V% =
JV10.

PROOF. We use [1, Lemma 5.14 and Corollary 5.18]. Since Q+ =

{g 6 75; g*( Vr2 +JJ = 0 = g o (Fΰ + F10)} we have [Q']+ = Q' Π (F') 1 2 =
{g e 7ϋ 0 F 2 O ; g Π 7 5 = 0 = gΠVϊ2}. For g 6 Q' Π (7')5 and all xΰ e Vΰ
this implies 0 = 2x~[2 Π (a?Π D g) = ^i2°te°g22) + ^ί2*fe°g22) + ^ϊ2*fe*g2o) +
^il*fe0g2o)+^il0fe*g2o) + ̂ i"20(̂ i"2°g2o) The multiplication rules for algebras
"o" and "*" ([1, Theorem 5.7]) imply a?ΰ*(»ΰ°g2i) e F ΰ + F l o, a;1l*(ίc1i*g20) 6 F 5 +

r 2Q, •^'12^VI^/12 4/20/ ^- ' 11 1̂  ' 10 I ' 2Q ι * 12> "Ί2 K^Vλ*t720/ ^ " 20 Λ l o υ *"\2 V.̂ 12 \J22)— X ^ ^ J

^Γ2>g2l by (1.34) and ^Γ2°te
0g2o) e F2 0 by (1.36). Hence 0 = [2^1 Π (»5 D g)]2l =

< îl, ^ϊ2)g22 Since this is valid for every xΰ e Fϋ, and since Vn Φ 0 by [1,

Corollary 5.5], we have proved Q'n(7 ')S = {ge F2 0; g D F ί 2 = 0 = g Π 7 ^ } .

From (1.30) it follows that v20 Πϊ^ίz = λ(v20

o^S — v2o*^S) = — λ(v20°ίc5) =

)»5)i2 a n ( i ^ 2 0 D ^il = λ(v 2 0o«i; + ^0*^1) = Vaooίcϋ = λ(i;2 0

oxΓ2)1 2 f o r e v e r y

v20 e V20. Therefore g20 e Q' Π ( F ' ) ί 2 « 2̂0° V12 c F l o <=> flr20 6 J F 2 0 . In the same
way one proves Qf Π (F')il = e/F10.

COROLLARY 4.7. Q+ = J V i = {g£ e F2Ό; ^ 2o F2 0 c F/o, srί* F 1 0 c F/o}

Q- = JF/o - {ffϋ 6 F/o; flfΠ* Vio c F/o, firSo ̂ 2o c F2Ό}.

PROOF. Obviously, F " = F and Q" = Q. Hence Q+ = Q" n ( O 5 =
e7F2Ό and similarly, Q- = J F ; By definition, JV2Ό = {gΐ2e F2Ό; J S D K C

F/o}. Hence, because F/2 = Fΰ φ V5 0 F l o 0 F2 0, the relation g£ Q (Vίl 0
Vΰ)(zVlo is trivial and with (1.30), (1.32) we get ff5Dv20 =

°v20) = λ(g5 ° t;20)π + 2λ(ff5 ° Oio and

+ gί2*̂ io) = λ(2gί2*v10) + X(gi>*v10) = λ(g5*vlo)il + 2λ(#ί2*i>io)2o. Hence
JF2Ό = {# e FJ; go F2 0 c F/o, g*V10(Z F/o}. The second assertion is shown
similarly.

COROLLARY 4.8. Q = 0 or Q' = 0.

PROOF. If Q' Φ 0 we may assume Q' n (F')ί2 = e7F20 Φ 0. Then
Corollary 2.12 and (4.3) imply Q = 0.

COROLLARY 4.9. (a) Q+ and F22 are orthogonal sub spaces of Fί>,
(b) Q~ a^d FA are orthogonal subspaces of Vΰ

4.3. In addition to our considerations in §3.1 we consider here the
Peirce decomposition of a maximal tripotent geQ+.

THEOREM 4.10. Assume geQ+ with (g, g) = 1. Then
(a) VM = Λβ0[( F ΰ 0 F 1 O 0 V22® F20) Π F t(g)]0[ F^ Π

n F3(g)]0[Ff2Π F3(g)].
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(b) Denote by V, = Re, 0 Vή 0 V10 = V0(e2) and V2 = Re, φ V22 0 V20 =

(Vi θ vt) n VM - (V, φ72) n vi^): ^ φ ^ -> ̂  - *2

is a vector space isomorphism.
(c) 2%β following inequality holds: m2 ^ mλ.

PROOF. Because of (4.3) and Lemma 4.3 we have go V2Q c Vΰ, g* V2Q =
0, 9*V10aVn and goV10 = 0. Using this and [1, (5.5)] we compute for

Xi € Vn$V10: 2g Π (Q D &I) = 9°(9*%i) + 0*(0*&i) = 9°(g*Xi) + Xΰ in the last
step we have used (1.35) and (1.37). Note that the first summand lies in
V22 φ F2 0. Analogously, for cc2 6 V220 F2 0 it follows 2g Q (ί/D^2) = g*(g°x2) +
9°(g°^2) — g*(g°x2) + »2 Here the first summand lies in F ΰ 0 F l o . Since

, + a?2) = 3fe + aj2) - 2βr • (g Π (a?i + *2)) by [1, (2.14)]. We see that
φ^2o i s Γ(flf)-invariant; therefore Vϊ2 is also T(0)-invariant and

(a) follows from Lemma 3.1.
To prove (b) we first remark that we need only consider xi e V« 0

Vi0 since e e Vs(g) and e e VΊ(g). In this case the formulas above show
x, + x2e VM <=>g Π (flr D («i + «2)) = 0 « a ; 2 = -go(g*x1) and ^ = -sr*(^oα;2).
And similarly ^ + »2 e Fχ(flr) ^ ^ 0 ( ^ 0 ( ^ 1 + »2)) = Xi + %2 *=* x2 — g°(g*Xi)
and x1 = g*(g°x2).

Now (b) easily follows. Finally, by [1, Corollary 5.5 and Theorem
2.2.(c)] we get m2 + 1 = dim(Fΰ + VJ + 1 = dimF3(</) ΓΊ ( F X 0 F 2 ) ^

We have the obvious but important

COROLLARY 4.11. mι < m2 => Q = 0.

REMARK. There are examples of isoparametric triple systems with
m, = m2 and Q ^ 0 (see [3, Theorem 5.17]). But Qf = 0 by Corollary 4.8.

The last step in the proof of Theorem 4.10 shows

COROLLARY 4.12. Let g e Q+, {g, g) = 1. Tftew mi = m2 ijjf F3(sr) c
F n 0F l o 0F 2 2 0F 2 O .

4.4. In this subsection we consider the relations between Qε and
JV?2. For the following theorem we recall that we are still working
with a fixed pair of orthogonal tripotents (el9 e2). Actually Q = Q(elf e2),
Vij = Vtj(el9 e2). We also recall from [3] that V is called of algebra type
relative to (el9 e2) if V10 = 0 = F2 0.

THEOREM 4.13. Assume Qε Φ 0 cmώ JFί 2 ^ 0. Then either V is of
algebra type relative to (elf e2) or Qε and JV{2 are orthogonal subspaces
ofVl2.
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PROOF. Let v e JV1t = {v e V£; v\JV1icz Vΰ + V22} and q eQ+ = {qe V&,
qΠ(V10 + V20)czVn}. Wemayassume|v | = |gΊ = l . We know V+ c Vz(e) =
Re © Fί2 and F1 0 c Fx(e). We put A : = T(q, e) \ Fx(e) and B: = Γ(v, e) | Vi(β).
Then T( Vz(e), e) \ VΊ(e) is a cubic space, whence by [1, Lemma 3.7] we
have B2A + AB2 + BAB = 2(q, v)B + A. If V is not of algebra type
then F l o Φ 0 by [1, Corollary 5.10], and we have B2Av10 = ̂ D ( ^ D ( ? D v10)) e
Vΰ, AB%0 = q\3(vΠ(vΠ vj) e Fχi, BAB = vΠ(q\J(v\J v10)) e Vπ + Vΰ,
Bv10 = v\Z\v10e V20 and Av1Q = g Π'^w e ^Π f ° r a ^ ^io€ V10. Therefore 0 =
2(q, v)Bv10. If 0 = Sv10 = v{Jv10 then {wv10} = 3v10 - 2^Π(^D^io) = 2v10;
but {vWio} = v10 by (3.1). Therefore Bv10 Φ 0 and (q, v) = 0 follows.

COROLLARY 4.14. Qe n JVί2 Φ 0 « Qe = JF/ 2 ^ 0 « F is o/ algebra
type.

By the above results we know that JV12 and Q are either equal or
orthogonal. In the second case we know nothing about F 1 2 9 ( ^ ^ i 2 0 Q ) -
What we may say if F 1 2 = J F 1 2 φ Q is contained in the next theorem.
It uses the notation of an FKM-triple. For a definition see [2].

THEOREM 4.15. Assume F1 2 = Q(F) φ JV12.
(a) W: = F1 0 0 F2 0 is a subsystem of F.
(b) If y l f — ,ym is an orthonormal basis of JVΐ2, then for weW

we have (with y o : = e)

{www} = 3 (w, w)w + Σ (Vi D wf w)Vj D w
L ί=o J

(c) W is a formal FKNί-triple with mλ(W) = dim

PROOF, (a) Since {uίoviowio} e W for i = 1, 2 by (1.1) we only have
to consider a triple product of type {u10v10w20\ (the case {u20v20wίQ} follows
by symmetry). The formula (1.9) says K0

/yio/^2o}:::=^io*(^io*^2o)+^io*(^io*^2o)

By (4.3) we have Q(V)1 = (V10*V20 + V10oV2oy = JV12. Hence vlo*w2O and
^10*^20 l i e in Fχ2 and therefore ^lo*(/yiO*^2o) + ^io*(^10*^20) ϋ e s i n V20.

(b) Since WaV^e) we may apply [1, (2.16)] and get {www} =
3 ^ • (w • w); here the element α3 disappears since we already know
{www} e VJβ). By [1, (2.12)] we have w[^\w = <w, w)e + (w • w)8. We
will show (w Π w)8 6 i2e © JFxt. We have (w Π w)β = 2(w10 Π 2̂0)3 +
(w10 D wlo)8 + (̂ 2o D ̂ 20)3- The first summand lies in VΊi and is orthogonal
to Q, hence it is in FJ. The second and third summands lie in Re^Re2.
Hence their 3-component relative to e is «w l oDwio, e) + <w2 0D w20, e))e=
(l/2)((w10, wlo)-(w2O, w20))e, because wlo\Z\e = (l/2)w1Q and w20Πe= -(l/2)w20.
This shows (wUw)3eReφ JV12 whence w Π w = <w, w)e + Σ?=o <^ D

Therefore {^^^} = 3[(w, w)w + ΣΓ=o <2/y D w
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(c) follows from (b) and Theorem 3.2.(d).
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