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Introduction. In this paper, we discuss generic properties of the
eigenvalues of the Laplacian for compact Riemannian manifolds without
boundary.

Throughout this paper, let M be an arbitrary fixed connected compact
C~ manifold of dimension n without boundary, and _~ the set of all C~
Riemannian metrics on M. For ge_# let 4, be the Laplacian (cf. (2.1))
of (M, g) acting on the space C~(M) of all C~ real valued functions on
M and

0 =2(0) < M@ EN(G) £ -+ T o0

the eigenvalues of the Laplacian 4, counted with their multiplicities. We
regard each eigenvalue \(¢9), ¥ =0,1,2, ---, as a function of ¢ in _zZ
Let us consider the following problem: “Does each eigenvalue ), (g)
depend continuously on g im _#Z with respect to the C* topology?”

The continuous dependence of the eigenvalues of the Dirichlet problem
upon variations of domains is well known (cf. [CH, p. 290]). Variations
of coefficients of elliptic differential operators were dealt with by Kodaira-
Spencer [KS] who gave a proof of the continuity of eigenvalues. In this
paper, we give a simple proof of the above problem.

To answer the above problem, in §1, we introduce a complete distance
o on _# which gives the C* topology. Then, in §2, we assert that each
a(9), k=1,2, -+, depends continuously on ge_# with respect to the
topology on _# induced by the distance p. More precisely, we have

THEOREM 2.2. For each positive number o and each g, g’ € _#, the
inequality 0(g, 9') < 0 implies that

exp(—(n + 1)) = Mm(9)/\(g") = exp((n + 1)0) ,
for each k =1,2, -+ (where n = dim M).
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That is, if two Riemannian metrics g and ¢’ are close to each other
with respect to the distance o, then the ratio \,(g9)/\(¢") is close to one
uniformly in k=1,2, ---. Thus we have immediately the following
corollary. A similar result was obtained by [KS].

COROLLARY 2.8. The multiplicity m,(9) of each eigenvalue \(9), i.e.,
m(9) = £{1; M(9) = Ni(9)}, depends upper semi-continuously on ge =
For each ge _# and k=0,1,2, ---, there exists a positive number o
such that d(g, 9') < 0 implies m,(g") < m(g).

These results are useful in investigating generic properties of Rieman-
nian metrics. As one of these applications, we give a simple and con-
structive proof of the following theorem of Uhlenbeck (cf [U], [T)):

THEOREM 3.1. Let M be a compact connected C* manifold of dimen-
ston mot less than two. Then the set &~ = {g e _; all eigenvalues \,(g),
k=0,1,2, ---, have multiplicity one} is a residual set in the complete
metric space (_#, p), t.e., a countable intersection of open dense subsets.

Therefore & is a subset of the second category and dense in _#,
i.e., for most Riemannian metrics, all the eigenvalues of the Laplacian
have multiplicity one. A similar result was obtained by Bleecker-Wilson
[BW]. They showed that, for each Riemannian metric g, there exists a
residual set of f in C~*(M) for which all the eigenvalues of the Rieman-
nian metric exp(f)g have multiplicity one. Their result implies the
density of .&“ in _#, but it does not necessarily imply that . is residual
in #.

Secondly, we show the following proposition.

PROPOSITION 3.4. Let M be a compact connected C~ manifold of
dimension not less than two. If a Riemannian metric g belongs to the
set & i.e., if all the eigenvalues of the Laplacian 4, have multiplicity
one, then the group of all isometries of (M, g) is discrete.

Combining this with Theorem 3.1, we have:

COROLLARY 3.5. Let M be a compact connected C* manifold of
dimension not less than two. Then the set of all elements g in _# with
discrete isometry group contains a residual subset of _/Z.

That is, for most Riemannian metrics of a compact connected C*
manifold of dimension not less than two, the isometry groups are trivial.
This corollary was obtained by Ebin (cf. [E,, Proposition 8.8]) in a
different manner.

We express our thanks to Professors P. Bérard, T. Kotake, M. Tani-
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kawa and S. Tanno for their advice and criticism during the preparation
of this paper.

1. Complete distance on the set of Riemannian metrics. Let M
be a compact n-dimensional C* manifold without boundary. Let S(M)
be the space of all C~ symmetric covariant 2-tensors on M and _~# the
set of all C* Riemannian metrics on M. In this section, we define a
complete distance on _#.

1.1. Fréchet space S(M). Following [E,] and [GG], we introduce a
Fréchet norm |-| on S(M). We fix a finite covering {U;};c, of M such
that the closure of U, is contained in the open coordinate neighborhood
V,. For heS(M), we denote by h,; the components of » with respect
to coordinates (¢, ---, x,) on V;, ne 4. For every non-negative integer
k and )\ e 4, put

[hlae = sup 3> 35 [0"!(hi)/0(2) - - 0(,) |,
73 =

aj<k i,5=1

where a = (a,, - -+, @,) denotes an n-tuple of non-negative integers «,
and |a| = a, + -+ + a,. Define anorm |- |, on S(M) by |k, = Sacalb|is
heS(M), and a Fréchet norm |-| on S(M) by

bl = 52 H R+ k)™, heSD .

We can define a distance p’ on S(M) by 0'(hy, hy) = |h, — hy|, hy, h, € S(M).
Then it is well-known that S(M) is a Fréchet space, that is, the metric
space (S(M), p’) is complete.

1.2. Complete distance of _#. For each point x in M, let P, (resp.
S.) be the set of all symmetric positive definite (resp. merely symmetric)
bilinear forms on T, M x T,M, where T,M is the tangent space of M at
xe M. We define a distance p; on P,, x € M, by

0% (@, ¥) = inf{d > 0; exp(—d)p < ¢ < exp(0)p} ,

where, for @, in S,, ® < 4 means that 4 — @e S, is positive definite
on T.MxT,M. In fact, o, defines clearly a distance on P,. Let G,,
xe M, be the group of all non-singular linear mappings of 7,M onto itself.
For AcG, and p e S,, put p*(u, v)=p(A(w), AW)) for u, ve T.M. We fix a
basis {e;}i-, of T,M and identify S, with the set S(n) of all real symmetric
matrices of degree n by S, @ (®(e;, €;).<i,;<n € S(n). Denote by @ this
identification of S, with S(n). Let P(n) be the set of all positive definite
matrices in S(n). Then we have the following lemma immediately.

LEMMA 1.1. (i) (@4, v*) = 0. (, ¥) for every AcG, and @, € P,.
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(ii) Let @,€ P, be the element such that @(p,) is the identity matrix.
Then we have

0: (@, @) = ||log &(®)||, PecP,.

Here we denote by log A, Aec P(n), the inverse image of the exponential
mapping of S(n) onto P(n) and by || H|, HeS(n), the operator norm of
H, that is, ||H|| = sup{|H(z)||; x€ R" and ||| = 1}, where || is the
Euclidean norm of R™.

(iii) The metric space (P,, 0,) is complete.

(iv) Let {p;}3-, be a sequence in P, which converges to an element
@ in P, with respect to the distrance 0,. Then lim,. . @;(u, v) = @(u, v)
for every w,ve T,M.

DEFINITION. We define a distance 0 on _# by
0"(9, 9.) = sup 0((9.):, (92):) 9, 92 € A,

and a distance o on _# by

p(gu gz) = P'(gl, gz) + P"(gl, g2) y 91, 9:€ A
Then, by Lemma 1.1, we have:

PROPOSITION 1.2. The metric space (_#, 0) is complete.

Proor. We prove this in the usual manner. Let {g,}7, be a Cauchy
sequence in (_#, o). Then it is also a Cauchy sequence in both metric
spaces (S(M), o') and (_#, 0”). Since the metric space (S(M), o’) is com-
plete, there exists an element g in S(M) such that lim;.. 0'(g;, g) = 0.
In particular, for each xe¢ M and u, ve T, M we have

(1.1 lim (g,).(u, v) = g.(u, v) .

On the other hand, because of lim, ;.. 0"(g, 9, =0, for every ¢ >0,
there exists a positive number N such that

(1.2) 0. (92 (95).) = 0"(94 95) < €

for every 4,7 = N and xe M. Then the sequence {(g,),};>, is a Cauchy
sequence in the complete metric space (P,, 0,), hence it converges to an
element §, in P, with respect to p,. By Lemma 1.1 (iv), we have
lim;_. (97).(u, v) = §.(u, v), u, ve T, M, so we obtain g = §e _# Therefore,
combining this with the inequalities (1.2), we have p.((g,),, 9.) < ¢ for
allxe M. Thus we obtain p"(g,, 9) <¢ for ¢ = N, that is, lim,... 0"(g,, g9) =
0. Therefore the sequence {g,}, converges to ge._»~ with respect to
the distance p. q.e.d.
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2. Continuity of eigenvalues. 2.1. Preliminaries. For every g in
A, let —4, be the Laplace-Beltrami operator acting on the space C*(M)
of all real valued C~ functions on M, that is,

2.1) —d, = jz_‘, (3 w.d; — kz I%0/om,) .

Here (¢9*) is the inverse matrix of the component matrix (g,;) of the
Rimannian metric g with respect to a local coordinate (x,, ---, z,) on M,
and I'% is the Christoffel symbol:

m=1

(2.2) Tl = 3 3, "™ (00n05; + 0gasfow, — 09502, .

Let (,), be the inner product on C~(M) given by

2.3) (Fo £s = | @@, f, freCo0),

and put || f|, = (£, ))" for feC~(M). Here dv,(x) is the canonical
measure of (M, g) given locally by

(2.4) dv,(x) = (det(g,;)"*d=, - - - dz, (cf. [BGM, p. 10]).

Define as usual the inner product (,), on the space A'(M) of all real
valued C~ 1-forms on M by

2.5) (@, 0, = | (0, 0),@d0,@) , ©,0ca00),

and put |||, = (@, ®),)"* for we A (M). The pointwise inner product
{w,, w,),(x) of w,e AM), 1 =1,2, is given by

(2.6) (@, @),() = 3} 09(@)au@as@), veM,

where {a,(®)}:-,, k = 1,2, are the components of the cotangent vectors
(04)., k=1, 2, with respect to the local coordinate (z,, ---, «,).

2.2. Max-mini principle. Since M is compact, the spectrum of the
Laplacian 4, is a discrete set of non-negative eigenvalues with finite
multiplicities. We arrange the eigenvalues as

0=2(9) < MO EMOQ S - - SMO S o+ Too

Here the eigenvalues are counted repeatedly as many times as their
multiplicities. For example if the multiplicity of A,(g) is h and k < h,
then the k-th eigenvalue ), (g) of (M, g)is M(9), i.e., N(g) = - -+ = \(9) =
M(g). Then we have the following useful Max-mini principle.

PROPOSITION 2.1. For g € _#, the k-th eigenvalue \,(g9) of the Laplacian
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4, i3 given as follows: For every (k + 1)-dimensional subspace Ly, in
C=(M), put

A, (L) = sup{|[df {3/l f1I5; 0+ f € Ly} -

Then we have

)\'k(g) = zl,nf Ag(Lk+1) ’

k+1

where L,., varies over all (k + 1)-dimensional subspaces of C~(M).

REMARK. The usual Mini-max principle is of the following type:
For k-dimensional subspace L, of C°(M), put

A(Ly) = inf{||df |}/ f112; 0 = feC(M) and f 1 L},

where f | L, means that f is orthogonal to each element in L, with
respect to the inner product (,),. Then ) (g) is given by

M(g) = sup A,(Ly) .
Ly

Here L, runs over all k-dimensional subspaces of C°(M). Notice that
the orthogonality of f to L, depends on the Riemannian metric g. So
we can not use this Mini-max principle to prove Theorem 2.2.

ProOOP OF PROPOSITION 2.1. For completeness, we give here a proof
of Proposition 2.1. We take a complete orthonormal basis {u,};-, of C=(M)
with respect to (,), so that each wu, is an eigenfunction of 4, with
the eigenvalue N, (9),k =0,1,2, --.. Each feC~(M) can be expanded as
f =zox(f)u;, x(f)e R, in the sense of the uniform convergence or
the L’-convergence with respect to (,),. In the following we omit the
subseript ¢ and simply denote A(L,,,) = 4,(Ly.), |- 1 = -1, ete.

Let Lg,, be the (k + 1)-dimensional subspace of C*(M) generated by
{us}izo. Then, since A(Lg.,) =\, We have ), = inf,,, A(L,,,). Suppose
that N, > inf; A(L,;,). Then there exists a (k+1)-dimensional subspace
L,,, of C°(M) such that N, > A(L,,,). Then by definition each feL,,,
satisfies A(Ly4,) Do () = 020 Mti(f)2. Thus we have
2.7 o2 M) =M@z B O — ALe))edf)

ALpyp)22; AL 1) <Ay

Now let m = max{i; N, £ 4(L,,,)}. Define a linear mapping @ of L,,,
into C*(M) by

o(f) = Swl i for f= 3ol ue Ly, .

Then the dimension of the image of L,,, under @ is smaller than % + 1.
Indeed, for each ¢ =0, .-, m, the fact that \, < A(L,,,) < \, implies that
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dim @(L,,,) S m + 1 < k + 1. Therefore there exists a non-zero element
fo in L,,, such that &(f)) = 0, that is, «,(f;) = 0 for 4 with A\, < A(L,,,).
We apply (2.7) to this f, in L,,,. If the left hand side of (2.7) is equal
to zero, then each term on the right hand side is zero. Thus 2,(f;) =0
for ¢ with n, > A(L;,,). Therefore we obtain f, = X2, 2.(f,)u; = 0, which
is a contradiction. q.e.d.

2.8. Proof of Theorem 2.2. In this subsection, we show Theorem
2.2. For each positive number 6 and ge_#, we denote by U,(g) (resp.
Vi(9)) the set {g'e #; o(¢', 9) <3} (resp. {g'e.#; p"(¢',9) <d}). We
note U,(g) < V,(9).

THEOREM 2.2. Let 6 be a positive number and let g be in _#. Then
(2.8) ¢’ € Vi9) implies exp(—(n + 1)d) = \(9)/\(9") = exp ((n + 1)), for

each k=1,2,---. Thus
(2.9) ¢’ e Vi(g) implies |\ (9") — M(9)| = (exp((m + 1)0) —1)\i(9), for each
k=012 ---.

By Theorem 2.2, we have the following:

COROLLARY 2.83. The multiplicity m,(g) of each eigenvalue n\,(g),
that is, m,(9) = £{7; M(9) = N (9)} depends upper semi-continuously on
ge _#: For each ge _# and k=0,1,2,---, there exists a positive
number 6 such that

g'c Vi(g) implies my(g") = my(g) .

ProoOF OF THEOREM 2.2. Let (x, ---, 2, be a local coordinate on an
open set U of M. For each 6 > 0 and ¢’ e V,(g), the component matrices

(9:5), (9i;) of g, 9" satisfy
(exp (—0)gi;) < (9:;) < (exp (9)gis)

as symmetric matrices on U by the definition of the distance o”. Then
we have

exp ((—n/2)0)(det (g7,))"* < (det(g,;))"* < exp ((n/2)d)(det (¢:7)"*
and
(exp(—0)g"") < (9%) < (exp(d)g"*) .

Hence, for each feC~(M) and we A'(M) with support contained in U,
we obtain

(2.10) exp((—n/2)0)|| f It = | F1I7 = exp((n/2)0)]] £ |5
and
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@1 exp(—(% +1)o)lol = ol < exp((% + 1)s)l@l

by the definitions of the inner products on C*(M) and AYM) and by the
above inequalities. Making use of the partition of unity, we have (2.10)
and (2.11) for every feC~(M) and wec A(M). Thus we have

exp(—(n + D) af 5/ £ = A6/ £1I; = exp(n + Do) df 15/ f 15

for every non-zero element f in C*(M). Therefore, by Proposition 2.1,
we obtain

exp(—(n + 1)0)(9") = M(9) = exp((n + 1)o)n(9) - q.e.d.

REMARK. From the above proof, for each g, g'e_«; if ¢’ is close to
g with respect to the C°-topology, then the ratio \.(g)/n.(¢9") is close to
one for each k¥ =1,2, ---. But notice that the coefficients of the first
order terms of the Laplacians 4, and 4, are not in general close to each
other (cf. 2.1)).

3. Genericity of eigenvalues with multiplicity one. 3.1. Uhlenbeck’s
theorem. A subset S of a topological space X is residual if S is a coun-
table intersection of open dense subsets of X. A topological space X is
called a Baire space if any residual subset of X is dense in X. It is
well known that a complete metric space (X, o) is a Baire space and a
residual set in the complete metric space is a subset of the second
category. Under these terminologies, we can state Uhlenbeck’s theorem:

THEOREM 3.1 (cf. [U] and [T]). Let M be a compact connected C~
manifold of dimension not less than two. Let _# be the set of all C*
Riemannian metrics on M and 0 the complete distance on _# as in §1.
Let & be the set of all elements g in _# all of whose eigenvalues of 4,
have multiplicity one, that is,

& ={ge A M9) < MO < M9) < -0 < Nlg) < --0}
Then & 18 a residual set in (_#, P).

The proof of Theorem 3.1 can be carried out as follows: Let &4 be
the set of all elements in _# of which the first & eigenvalues have
multiplicity one, that is,

F={ge A5 M0 <M(9) < o0 < Meca(9) < MDD}

for each k. =1,2, ---. Then we have

M = FDHAD - DHAD DY and y:ﬁ%.
k=1



EIGENVALUE OF THE LAPLACIAN 163

Then it remains to prove the following two theorems.
THEOREM 3.2. FEach &,k =1,2, ---, is open in (_#, p).

THEOREM 3.3. Let M be a compact connected C* manifold of dimension
not less than two. Then each Sy, k=1,2, +--, is dense in &4 with
respect to the topology induced by (_#, p).

3.2. The isometry group. Before going into the proof of Theorems
3.2 and 3.3, we discuss the genericity of Riemannian metriecs with trivial
isometry group.

For ge _«, we denote the eigenvalues of 4, by

0< 7\'1(9) = = 7\'.1‘1(9) < 7\'j1+1(g) = = 7\'1'2(9) < ---, ete.

Put r;,(9) = M(g) = 0. Let V, be the eigenspace of 4, with the eigenvalue
Ni(9), £=0,1,2, ..., Notice that dimV, = j, — j,_,. Let {uJ}2, be a
complete basis of C~(M) such that 4,u, = n(9)u, and (u,, u;), = 0.5, 1, J =
0,1,2, ---. Take a large integer r so that the mapping ¢: M3z +— ¢(x) =
(uo(w), u,(®), - -+, s, (@) eRY, N=1+ 34, + -+ + j,, is an embedding of
M into R”. The Lie group G of all isometries of (M, g) acts on C*(M)
by o*u(x) = w(@ (), xe M, ueC~(M) and @eG. Then 0* 0c@G, are
linear mappings of C=(M) into itself and satisfy the conditions (¢*u, 0*v), =
(u, v), and @Fo@F = (§,00,)* for u,ve C(M) and @, ,, &, G. Moreover,
since 4,(9*u) = 0*(4,u), we see that @* maps each eigenspace V,, k =
0,1,2 -, r, into itself. Then we obtain a Lie group homomorphism ¢*
of G into the orthogonal group O(V) of the Euclidean space (V,(,),),
V=3¢,V by G—®*cO(V). Note that the homomorphism ¢* is one
to one since so is ¢. Now, if ge.& then each V,, k=0,1,2, ---, is one
dimensional. Thus the Lie subgroup *(@) of O(V) is discrete. Since ¢*
is injective, G itself is diserete. Therefore we have:

PROPOSITION 3.4. If ge.& that is, if all the eigenvalues of 4, have
multiplicity one, then the group of all isometries of (M, g) is discrete.

Combining this with Theorem 3.1, we have:

COROLLARY 3.5. Let M be a compact connected C~ manifold of
dimension not less than two. Let _# be the set of all C° Riemannian
metrics on M and p the complete distance on _# as in §1. Then the
set of all elements g in _# with discrete isometry group contains a
residual subset of _A.

REMARK. The above corollary was obtained in [E,, Proposition 8.3,
p. 385] in a different manner.
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3.3. Proof of Theorem 3.2. Let g be an arbitrary element in &,
k=0,1,2, ---. We prove that there exists a positive number § such that
Vi(9) is contained in &4. Let & =min{\;.,(9) — N, (9); =0, 1, ---, k—1}>0.
We choose 6 > 0 so small that e(2\.(g9))™ > exp((n + 1)6) — 1. Then, for
9geVyg) and =0,1, ---,k — 1, we have

€ = Nja(9) — Ni(9)
= INira(9) = N9+ I8 — M (@) ] + [N(9") — Ni(9)]
= (exp((n + 1)9) — 1)(Mj1a(9) + Ni(9) + [Ni4a(9") — Ni(g) |
(by Theorem 2.2)

=< 2n(9)(exp((n + 1)0) — 1) + [ (g — (gD -

Thus we obtain
0 < e — 2n(9)(exp((n + 1)8) — 1) = [Nj1(9") — Ni(9N] s

j=0,1, .-+, k — 1, which implies ¢’ &%,. We have V,(g)c &. q.e.d.

4. Density of & in _#. 4.1. Preparations. In this subsection,
we prove some lemmas concerning a deformation g(¢) of g in _#Z They
will be used in the proof of Theorem 3.3.

LEMMA 4.1 (cf. [B, Lemma 3.15]). For ge _# and heS(M), let
git) =g +the A, |t| <e. Let \ be an eigenvalue of 4, with multiplicity
l. Then there exist A(t)€ R and wu,(t)e C*(M), 1 =1, ---, 1, such that

(i) A4,t) and u(t) depend real analytically on t, |t| <e, for each
i=1, -1,

(ii) 4, ut) = A4,()u,t), for each » =1, ---, 1 and t,

(i) 40)=n i=1,---,1, and

(iv) {u(t)}iz, s orthonormal with respect to (,),q Sfor each t.

For a proof, see [B, p. 1387] and also Appendix.

REMARK. Lemma 4.1 does not necessarily imply Theorem 2.2, since
the positive number ¢ may depend on h e S(M) in general.

LEMMA 4.2. Let ge _# and let a € C°(M) be a positive real valued
Sunction on M. Then the Laplacian 4,, corresponding to the Riemannian
metric ag on M i3 given by

doyy =074, + 1 — n/2)a"V (a) ,
where n = dim M and V,(a) is the gradient vector field of the function
acC”(M) with respect to the Riemannian metric g.

Proor. Making use of (2.1) and (2.2), we may prove this by a
straightforward calculation.
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LEMMA 4.3. For every g e _#«, we have the following:
(i) For o, f. and f,e C>(M), we have

7 o(0)fs, Fo)o = (0, 8(fedf))s »

where 0; A(M) — C=(M) 1is the codifferential operator with respect to g.
(ii) o(fidf) = —<af,, dfy, + fidofiy fi, o€ C(M), where (-, -), is the
pointwise inner product in A M) relative to g.
(iii) Let V, be the eigenspace of 4, belonging to the eigemvalue .
For every u and v in V,, we have é(udv) = o(vdu).

Proor. (i) Since F,(0)f, = {do, df,),, we have (V,(0)f, f.), = (do,
Fdf), = (0, 5(£.df)), () Forw = Si, w,de; € AM), b0 = — 37, 6w,
where V,w; is the covariant derivative with respect to g of the 1-form
® by the derivative 0/ox, relative to the coordinate x,, 1 =1, -+, n.
Then we have

Mfdf) = =3 gV f:df); = =3 0 /om)of [om;) — 30417 df));

= ‘(dfly df2>y + f‘2An.f1 .
(iii) o(udv) = —{du, dv), + ud,w = —{du, dv), + vd,u = é(vdu), for wu,
veV, q.e.d.
4.2. Splitting the eigenvalues. In the following, we consider a
deformation g(t) of ge_~ given by
(4.1) g@t) =g + tog, for oeC>(M).

For small enough ¢(g) > 0, we have g(t)e .2 for all ¢ with |t| < (o).

Now let A be a non-zero eigenvalue of 4, with multiplicity 7 and let
{u;};—; be an orthonormal system with respect to (,), such that 4,u; =
My, 5 =1,---,1. Applying Lemma 4.1 to g(t), we obtain A;(¢)e R and
w;(t)e C=>(M), j =1, ---,1, satisfying the conditions (i)~(iv) in Lemma
4.1. By (i) in Lemma 4.1 (see also Theorem A.3 in Appendix), we can
express A t) and u,t), 5 =1, ---,1, as follows:

(4.2) A;(t) =\ + ta; + ©°B;(t) for |t| < e(o),

where a; is a real constant and B;(¢) is a real analytic real valued function
in ¢.

(4.3) (u;(t), v), are real analytic functions in ¢, |t| < (o),

for every ve C*(M). Then we have the following:

LEMMA 4.4. Let ) be a non-zero eigenvalue of 4, with multiplicity 1
and let {u;};., be an orthonormal system with respect to (,), such that
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du;=Nu; for each j=1, ---, 1. For e C(M), let g(t) be a deformation
of ge _# given by (4.1). Let {a;}i, be the real constants given by (4.2).
Then we have

(@ = n/2)7 (0) — NoYus, u), = @b, 1<4,j<1.

Proor. We apply Lemma 4.2 to ¢(¢t) = a(t)g with a(t) =1+ te > 0

for |t| < e(g). Then we have, for every ve C*(M),

(a(®)d,u;@) + (1 — n/2)tV (o)u;(t) — A;(O)at)ust), v), =0,
by 4,,u;(t) = A;G)u;&), 5 =1, ---, 1, |t| < e(o). Differentiating both sides
of the above equality at ¢ = 0, we obtain by (4.2) and (4.8)

((4y — Mv; + (A — »/2)V (0) — N0 — @j)u;,v), =0, j=1,---,1.
Thus, for an eigenfunction v of 4, belonging to the eigenvalue A, we
have

(X — n/2)7 (o) — N0 — aju;, v), = —((4;, — N)v;, v),
= —(v;, (4, — N)), = 0. q.e.d.

PROPOSITION 4.5. Assume dim M > 2. In the situation of Lemma

4.4, there exists a function o in C*(M) such that, at least two of {a}i-,
in (4.2) are distinct.

Proor. Let P be the orthogonal projection of C=(M) onto the
eigenspace V, belonging to the eigenvalue ) of 4,. For oe C>(M), define
an endomorphism G, of V, into itself by

G.f = Po(L — n/2)7 (0) — A0)f, feVi.
Let {u;}i-, be an arbitrary fixed orthonormal basis of V, with respect to
(,);- Then we have
(Gouj, wi)g = (1 — /20 (@) — NO)U;j, )y = Q3045 5

by Lemma 4.4. Thus the endomorphism G, can be expressed as a diagonal
matrix with respect to {u,}i—, whose diagonal entries are at;, 2 =1, -+, .
Assume that @, = -+ = ;. Then G, can be expressed as a constant
multiple of the identity matrix with respect to this basis and hence with
respect to any basis of V,. Therefore, in order to prove Proposition 4.5,
we have only to find ¢ € C*(M) so that (G,u,, u,), # 0.
For o€ C~(M), we have

(Gouh uz)y = (((1 - In/2)7g(0) - N0.)’“’17 u2)g
= (g, A — n/2)6(u.du,) — NUMU,), -
Case 1. (1 — n/2)0(u.du,) — AMuu, = 0. In this case, putting o =
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(1 — n/2)0(u,du,) — Nu,u,, we have (G,u,, u,), # 0.
Case 2. (1 — n/2)0(uw,du,) — zMuu, = 0. In this case, we have
(4.4) wu, = 0.
In fact, we have
(A — n/2)4, — 2\)(wu,) = 1 — n/2)0d(u,u,) — 22u,u,

=1 — n/2)0(u,du, + u.du,) — 2nu,u,
= (1 — n/2)0(u,du,) — Muyuy) + (1 — 2/2)0(udu,) — Nu,uy)
=0,

by Lemma 4.8 (iii) and the assumption. Since 2 — n < 0, if w,u, # 0,

then 4, would have a negative eigenvalue, which is a contradiction. (4.4)

is thus proved.
We take, as an orthonormal basis of V, with respect to (,),,

H=27u + %), =27 — %)y fs=Usy -y Si=u.
Put ¢ = A — n/2)6(f.df) — Mfif;e Then we have

Gofis £y = gMa?dv, .

So we have only to prove ¢ = 0. Otherwise, we have

0=20 =1 — n/2)0((u; — u)d(;, + uy)) — N u; + wu,)(uU, — u,)
= (1 — »/2)(6(u,du,) — 6(u.du,)) — Mui — u2) (by Lemma 4.3)
= (472 — n)od — N)(u: — ul) .

Thus, since 2 — n» < 0, we have ! — u: = 0. Therefore we obtain
0= S (¢t — udrdv, = SM(ui — 2uu, + ub)dv, = S (wt + wdv, ,
M M
by (4.4), which is a contradiction. We thus obtain ¢ % 0. g.e.d.

4.8. Proof of Theorem 3.3. Let dimM = 2. We show & is dense
in %4,,. To prove this, we construct, for each g €.54, an element ¢’ in
4+, Which is arbitrarily close to g.

Let ge .54, that is, M(g) < M(g) < +++ < M(9). Assume that the k-th
eigenvalue )\,(¢9) has multiplicity I, i.e.,

M(9) = o+ = Nppa(g) =N and
Mol9) < M(g) < v o0 < Net(@) <N < Np(@) = -0

Consider a deformation g(t) = g + toge .# of g, |t| < (o), of the
type (4.1). Let A;%), =1, ---,1, be such eigenvalues of 4,, as (4.2).
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We apply Proposition 4.5 to the eigenvalue » = )\ (g9). Noting that
9'e Viy(9) implies exp(—(n + 1)/2)An(9) = Ma(g), m=0,1,2,---,
by (2.8), we may assume
exp((n + 1)/2)-(2\) = N,(g) implies 20 = Na(9(8)

for each m =0,1,2, ---, and |t| < &(c). We apply Theorem 2.2 to a
finite number of eigenvalues of 4, which are smaller than exp((n + 1)/2)-
(27). Then there exists a positive number ¢'(¢) < ¢(¢) such that

Mo(9(8) < M(9(@) < -+ 0 < Meca(9(D)) < 44(0) < Mara(9@)) = -+

for each |t| < é'(c) and j =1, ---, 1. .

Now, by Proposition 4.5, we can choose o e C*(M) in such a way
that, at least two of {a;}i_, in (4.2) are distinct. Let a;,# a; 1=+,
j<1. For this 0 € C°(M), we may choose a positive number &' (o) < €'(g)
in such a way that 4,(¢) # 4,(t) for all 0 < |t| < €"”(c). Therefore all the
first k& eigenvalues of 4,, |t| < ¢"(¢), have multiplicity one and the %-th
eigenvalue )\,(g(t)) has multiplicity at most I — 1. Repeating this process,
we can choose ¢’ €.%,, as close to g as one wants. q.e.d.

Appendix. In this appendix, we give a proof of Lemma 4.1. The
proof given in [B] was based on Kato’s perturbation theory [K, p. 375]
(See also [RN, p. 373]). In its proof, it was claimed (cf. [B, p. 138])
that the family of the operators 4;, is of type (A) in the sense of Kato
(cf. [K, p. 875]) and 4;, are self-adjoint. But if we choose the domain
of 4g., as the Sobolev space H,(M) for a fixed Riemannian metric v on
M, then 4;,, are not self-adjoint with respect to the inner product (, ),
in H(M). If we require the self-adjointness of -4;.,, then we have to
choose the inner product (,)s. on H,M). Since the domains of 44,
vary as Hilbert spaces, the family of 4;, is not of type (A). Its proof
should be modified accordingly.

First we list some notations. Throughout this appendix, let M be
an n-dimensional compact connected C~ manifold without boundary. Let
Ce(M) be the space of all complex valued C~ functions on M. For a
fixed Riemannian metric ¥ on M, let 4, be its Laplacian and (,),; be
the inner product on Cg(M) defined by

6, ¥ = | s@F@do., 4, veczan,

where dv; is the canonical measure of (M, ) (cf. [BGM, p. 10]). For
every non-negative integer s, let H,(M) be the Sobolev space on M (cf.
[G, p. 35]) which is the completion of C&(M) with respect to the following
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inner product [, ],:

(A' 1) [¢’ "ﬁ‘]a = ((I + AT)8¢7 "F)T ’ ¢, "P‘ € CEO(M) .

Here I is the identity operator and (I + 4,)* is the s-ple iteration of the
operator I + 4,. Put ||¢]|l, = [4, 6]1% ¢ € H,(M).

We define the notions of the real analytic families of vectors or
bounded operators (cf. [K, p. 365]).

DEFINITION A.1. Let X, Y be complex Banach spaces. Let D be a
domain in R. A family of vectors x,, teD, in X is said to be real
analytic if it can be expanded as a convergent power series, i.e., for
an arbitrary fixed ¢,€ D, there exist elements #z,,  =0,1,2, ---, in X
such that

x,=ixa(t—to)“, for every teD, |t —t|<e,
a=0 .

where the series converges in the sense of the strong topology of X
(cf. [Y, p. 30]). A family of bounded operators A,, t€D, of X into Y
is said to be real analytic if it can be expanded as a convergent power
series of bounded operators, i.e., for an arbitrary fixed ¢,e D, there
exist bounded operators C,, « =0,1,2, ---, of X into Y such that

A, = 3, Cut — t)*, for every teD,|t—t]<e,
a=0

where the series converges in the uniform topology (cf. [Y, pp. 111-112]).
Then we have:

THEOREM A.2. Let D be a small bounded domain in R containing
the origin 0. Let s, > s, be non-negative integers. Let A,, teD, be a
real analytic family of bounded operators of H,(M) into H,(M). As-
sume that

(1) each operator A, teD, is self-adjoint with the domain H, (M)
contained in H,(M) with respect to the inner product [,],, (cf. [Y, p.
197)), and

(2) A, is bounded below, i.e., there exists a positive constant C
such that [A\(®), z],, = Cl=, «],, for all xe H,(M).
Let ) be an eigenvalue of the operator A, Then

(I) the kernel of A, — N\ is finite dimensional.

(II) Put | = dimker(4, — NI). Then there exists a subdomain D' in
D containing the origin and 1 real analytic families of vectors ¢;, i =
1, .-, 1, in H, (M) and | real analytic real valued fumctions \i, i =1,
--+, 1, in te D’ such that
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(8) Agi=\gl, i=1,---,1, teD,
(4) [¢, ¢il,, =0y 4,5 =1,---,1, teD" and
(5) M=n,i=1, -, 1L

The assertion (I) is well known since the bounded self-adjoint operator
A, is bounded below. The similar assertion as (II) was stated in [RN,
p. 876, Theorem], [K, p. 892, Theorem 3.9] and [R, p. 57, Theorem 1,
p. 74, Theorem 3]. It can be proved by the similar way, so we omit
its proof.

We apply Theorem A.2 to prove Lemma 4.1. Let g, |t| <e, be a
one-parameter family of Riemannian metrics on M depending real analy-
tically on the parameter ¢£. In the following, we denote merely by 4,
(resp. (,),) the Laplacian 4,, (resp. the inner product (,),, on CZ(M)) of
(M, g,). Then we have:

THEOREM A.3. Let g,, |t| <e¢, be the one-parameter family of Rie-
mannian metrics on M depending real analycally on the parameter t.
For any eigenvalue ) of 4, with multiplicity I, there exist | families of
pieCe(M), i1 =1, ---,1, which are real analytic in H(M), and 1l real
analytic real valued functions N\, 1 =1, ---,1, in t such that

(6) 4t =nigl, 1=1,---,1, and t,

(7) (¢, ¢1) = 0i5y 3,5 =1,-++,1, and t, and

(8) M=xn,10=1,---, 1L

For the proof of Theorem A. 3, we need the following:

LEMMA A.4. Let L,, |t| <eg, be differential operators of order m
which can be expressed locally as
L, = 3 a.t, 2)D; .

laj=m

Here Df = 0"/o(x)™ -+ 0(x,)* and |a| =a, + -+ + a, for an n-tuple
a=(a, -, a,) of non-negative integers, and a.(t, x) is real analytic in
t, |t] < e, where x belongs to the local coordinate open subset. Then the
family of bounded operators L, of H,(M) into H(M) is real analytic.

Proor. By assumption, a,(t, ) can be expressed as a,(t, x) =
S @,k (X)tk, Where a,,(x) satisfy the following inequalities:

|, (@) = Cr* for all a, |a|=<m, £=0,1,2, ---, and z.

Here the positive constants C and » do not depend on a, k and 2. Using
the partition of unity, define differential operators L,, k =0,1,2, ---, of
order m which can be expressed locally as L, = 3 .i<m @ur(®)D2  Since
L, satisfy the inequalities
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[ Lif llo = m"Cr* | f llm» f € Ha(M),

for a certain constant C’, they are bounded operators of H,(M) into
H(M) and the series >, L,t* converges to L, in the uniform topology.
q.e.d.

PrOOF OF THEOREM A.3. For a function f on M and for ¢ with
[t] < e, put

(U.f)(x) = (det(g.:5(x))/det(gy;(x)" f(x) , zeM,

where g,;;, |t|<e, are the components of g, with respect to the local co-
ordinate (x,, ---, x,) around «. Then the operators U,, |t|<e, define a real
analytic family of bounded operators of H,(M) into itself for every non-
negative integer s. By definition they are isometries of the Hilbert space
(H(M), (,),) into the Hilbert space (H,(M), (,),). Since the Laplacian 4,,
|t] < e, are self-adjoint operators of H,(M) with respect to the inner
product (,),, the operators 4, defined by the composition U,o4,oU;* are
self-adjoint with respect to the inner product (,),. Moreover by Lemma
A.4 the family of A, =4,+ I, |t| <e, is a real analytic family of
bounded operators of H,(M) into H, (M) and satisfies (1), (2) of Theorem
A.2. Therefore by Theorem A.2 there exist [ real analytic families of
vectors ¢, i =1, ---, 1, in H,(M) and [ real analytic real valued functions
1+, 4=1,---,1, in ¢t satisfying (3),(4) and (5). Then the vectors
¢t, =1, -+, 1, in H(M) defined by ¢! = U; ¢! satisfy 4,6; = \¢i in the
sense of distribution and the condition (7) in Theorem A.3. By hy-
poellipticitiy of 4, (ef. [G, p. 30]), ¢! belong to C&(M) and satisfy (6).
Theorem A. 3 is proved.
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