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Introduction. In this paper, we discuss generic properties of the
eigenvalues of the Laplacian for compact Riemannian manifolds without
boundary.

Throughout this paper, let M be an arbitrary fixed connected compact
C°° manifold of dimension n without boundary, and ^t the set of all C°°
Riemannian metrics on M. For g e^t, let Δg be the Laplacian (cf. (2.1))
of (M, g) acting on the space C°°(M) of all C°° real valued functions on
M and

0 = λo(flf) < λΛflO ^ x2(g) ^ T°°

the eigenvalues of the Laplacian Δg counted with their multiplicities. We
regard each eigenvalue Xk(g), k = 0,1, 2, , as a function of g in ^ .
Let us consider the following problem: "Does each eigenvalue Xk(g)
depend continuously on g in ^t with respect to the C°° topology*!"

The continuous dependence of the eigenvalues of the Dirichlet problem
upon variations of domains is well known (cf. [CH, p. 290]). Variations
of coefficients of elliptic differential operators were dealt with by Kodaira-
Spencer [KS] who gave a proof of the continuity of eigenvalues. In this
paper, we give a simple proof of the above problem.

To answer the above problem, in § 1, we introduce a complete distance
p on ^t which gives the C°° topology. Then, in § 2, we assert that each
χk(g)f k = 1, 2, , depends continuously on g e ^t with respect to the
topology on Λ? induced by the distance p. More precisely, we have

THEOREM 2.2. For each positive number d and each g,g'e^, the
inequality ρ(g, gr) < δ implies that

exp(-(n + l)δ) ^ Xk(g)/Xk(g') ^

for each k = 1, 2, (where n = dim M).

* Partly supported by the Grant-in-Aid for Encouragement of Young Scientists (No. 8015-
56740005), the Ministry of Education, Science and Culture, Japan.
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That is, if two Riemannian metrics g and gf are close to each other
with respect to the distance p, then the ratio Xk(g)/Xk(gr) is close to one
uniformly in k = 1, 2, . Thus we have immediately the following
corollary. A similar result was obtained by [KS].

COROLLARY 2.3. The multiplicity mk(g) of each eigenvalue Xk(g)f i.e.,
mk(g) = #{i; Xt(g) = λfc(βr)}, depends upper semi-continuously on ge^Ί
For each g e ^ and k = 0, 1, 2, , there exists a positive number δ
such that δ(g, g') < 8 implies mk(gr) ^ mk{g).

These results are useful in investigating generic properties of Rieman-
nian metrics. As one of these applications, we give a simple and con-
structive proof of the following theorem of Uhlenbeck (cf [U], [T]):

THEOREM 3.1. Let M be a compact connected C°° manifold of dimen-
sion not less than two. Then the set S^ = {g e ^ί\ all eigenvalues Xk(g),
k = 0, 1, 2, — , have multiplicity one} is a residual set in the complete
metric space (^l p), i.e., a countable intersection of open dense subsets.

Therefore S^ is a subset of the second category and dense in ^^,
i.e., for most Riemannian metrics, all the eigenvalues of the Laplacian
have multiplicity one. A similar result was obtained by Bleecker-Wilson
[BW]. They showed that, for each Riemannian metric g, there exists a
residual set of / in C°°(M) for which all the eigenvalues of the Rieman-
nian metric exp(/)βr have multiplicity one. Their result implies the
density of £f in ^, but it does not necessarily imply that £f is residual
in ^ .

Secondly, we show the following proposition.

PROPOSITION 3.4. Let M be a compact connected C°° manifold of
dimension not less than two. If a Riemannian metric g belongs to the
set S^i.e., if all the eigenvalues of the Laplacian Ag have multiplicity
one, then the group of all isometries of (M, g) is discrete.

Combining this with Theorem 3.1, we have:

COROLLARY 3.5. Let M be a compact connected G°° manifold of
dimension not less than two. Then the set of all elements g in ^^ with
discrete isometry group contains a residual subset of ^£.

That is, for most Riemannian metrics of a compact connected C°°
manifold of dimension not less than two, the isometry groups are trivial.
This corollary was obtained by Ebin (cf. [E^ Proposition 8.3]) in a
different manner.

We express our thanks to Professors P. Berard, T. Kotake, M. Tani-
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kawa and S. Tanno for their advice and criticism during the preparation
of this paper.

1. Complete distance on the set of Riemannian metrics. Let M
be a compact ^-dimensional C°° manifold without boundary. Let S(M)
be the space of all C°° symmetric covariant 2-tensors on M and ^t the
set of all C°° Riemannian metrics on M. In this section, we define a
complete distance on ^£,

1.1. Frechet space S(M). Following [E2] and [GG], we introduce a
Frechet norm | | on S(M). We fix a finite covering {Uλ}λeΛ of M such
that the closure of Uλ is contained in the open coordinate neighborhood
Vχ. For heS(M), we denote by hίό the components of h with respect
to coordinates (xlt ••-,»„) on Vλf\eΛ. For every non-negative integer
k and λeΛ, put

\h\hk = sup Σ Σ |3lα|(Λ*i)/3(flJi)αi 3 ( a ϋ - | ,

where a = (α l f , α J denotes an w-tuple of non-negative integers α<
and | α | = αx + + αn. Define a norm | \k on S(Λf) by |Λ|Λ = ΣiXeΛ\h\λιk,
h e S(M), and a Frechet norm | | on S(M) by

| Λ | = Σ 2 - * | Λ L ( 1 + |ΛUΓ 1, heS(M).
k=0

We can define a distance ^' on S(M) by ^ ' ( ^ Λ2)= 1^ — h2\, hl9 h2eS(M).
Then it is well-known that S(M) is a Frechet space, that is, the metric
space (S(ikf), p') is complete.

1.2. Complete distance of ^ C For each point x in M, let Pα (resp.
Sx) be the set of all symmetric positive definite (resp. merely symmetric)
bilinear forms on TXM x TXM, where TaM is the tangent space of M at
xeM. We define a distance p" on Px, xeM, by

^'(9>f ψ) = i n φ > 0;

where, for φ, ψ in Sx, φ < α/r means that ψ — <peSx is positive definite
on Γ^Mx TsM. In fact, p" defines clearly a distance on Px. Let G ,̂
05 6 Af, be the group of all non-singular linear mappings of TXM onto itself.
For AeGx and φ e Sx, p u t φA(u, v) = φ(A(u), A(v)) for u,ve TXM. We fix a

basis {ei}?=i of TXM and identify Ŝ  with the set S(n) of all real symmetric
matrices of degree n by Sx B ^ H ( ^ , e^^j^ e S(%). Denote by Φ this
identification of Ŝ  with S(n). Let P(n) be the set of all positive definite
matrices in S(n). Then we have the following lemma immediately.

LEMMA 1.1. (i) p"(φA, fA) = p"(φ, φ) for every AeGx and φ,φe Pa.
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(ii) Let φ0 6 Px be the element such that Φ(φ0) is the identity matrix.
Then we have

P'*(<P, <Po) = \\logΦ(φ)\\ , φePx.

Here we denote by log A, A e P(ri), the inverse image of the exponential
mapping of S(n) onto P(n) and by \\H\\, HeS(n), the operator norm of
H, that is, \\H\\ = sup{||H(x) ||; x eRn and \\x\\ = 1 } , where || || is the
Euclidean norm of Rn.

(iii) The metric space (Px, p") is complete.
(iv) Let {<pj}J=i be a sequence in Px which converges to an element

φ in Px with respect to the distrance p". Then limy-α, φ3 (u, v) — φ(u, v)
for every u, v e TXM.

DEFINITION. We define a distance p" on ^t by

P'\9» ft) = sup #((&)., (ft).) , ft, ft G
M

and a distance p on ^ ^ by

P(9» 92) = ^'(ft, ft) + ^'(ft, ft) , ft, g2

Then, by Lemma 1.1, we have:

PROPOSITION 1.2. The metric space (^fj /o) is complete.

PROOF. We prove this in the usual manner. Let {0y}~=1 be a Cauchy
sequence in (^ff p). Then it is also a Cauchy sequence in both metric
spaces (S(M), p') and (^£ |θ"). Since the metric space (S(ikf), ^') is com-
plete, there exists an element g in S(M) such that lim^oo p\gh g) = 0.
In particular, for each x e l and u, v e TXM we have

(1.1) lim {gό)x(u,v) = ft(w, v) .

On the other hand, because of limifi_oo p"{gif 9}) = 0, for every ε > 0,
there exists a positive number N such that

(1.2) #((ft),, (0y).) ^ iof'(ft, ffy) < ε

for every i, j ^ N and a? G Λί. Then the sequence {(flry)x}"=1 is a Cauchy
sequence in the complete metric space (Px, p"), hence it converges to an
element gx in Px with respect to p". By Lemma 1.1 (iv), we have
lim^oo {g3)x(u, v) = gx(uf v), u,ve TXM, so we obtain g = ge ^ . Therefore,

combining this with the inequalities (1.2), we have p"{(gt)x, gx) <; ε for
all xeM. Thus we obtain p"(gif g)^e for i^N, that is, lim^oo^"(ft, g) =
0. Therefore the sequence {grJΓ=i converges to ge^f with respect to
the distance p. q.e.d.
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2. Continuity of eigenvalues. 2.1. Preliminaries. For every g in
j let — Δg be the Laplace-Beltrami operator acting on the space C°°(M)

of all real valued C°° functions on M, that is,

(2.1) -Δ9 = Σ g'^ldxtdx, - Σ n 3/a^).

Here (#*') is the inverse matrix of the component matrix (gti) of the
Rimannian metric g with respect to a local coordinate (xlf , xn) on Λf,
and Γij is the Christoffel symbol:

(2.2) n = i - Σ Qkm{dgjdxά + Sβ^/Sa, - Sfl^/SaJ .
2 »=i

Let ( , )ff be the inner product on C°°(M) given by

(2.3) (/lf /,), = ί Λ(x)Mx)dvg(x) , / l f ft e C-(ΛΓ) ,

and put | | / | | , = ((/, f)g)
1/2 for feC°°(M). Here dvβ(a?) is the canonical

measure of (M, g) given locally by

(2.4) dvg(x) = (άetig^Y^dx, dxn (cf. [BGM, p. 10]) .

Define as usual the inner product ( , )g on the space A\M) of all real
valued C°° 1-forms on M by

(2.5) (ωu ω2)g = 1 (ωlf ω2)g(x)dvg(x) , ω19 ω2eA\M) ,
j M

and put ||α>||ff = ((α>, α>)&)1/2 for ωeA^JIf). The pointwise inner product
(ίϋi, ω2)g(x) of o>i e Λ^Λf), i = 1, 2, is given by

(2.6) (ft)!, ω2>ff(a0 = Σ Q'WaiM^iix) ι ^ I ,

where {αM(α5)}?=1, fc = 1, 2, are the components of the cotangent vectors
(ωk)x, k = 1, 2, with respect to the local coordinate (a?!, , xn).

2.2. Max-mini principle. Since Λf is compact, the spectrum of the
Laplacian Δg is a discrete set of non-negative eigenvalues with finite
multiplicities. We arrange the eigenvalues as

o = λo(ff) < \(g) ^ λ2(gf) ^ ^ λ*(flf) ^ T oo .

Here the eigenvalues are counted repeatedly as many times as their
multiplicities. For example if the multiplicity of x^g) is h and k <L h,
then the fc-th eigenvalue λfc(fl0 of (Λf, gf) is λ^βf), i.e., X2(g) = = λA(flf) =
λ f̂lf). Then we have the following useful Max-mini principle.

PROPOSITION 2.1. For g e ̂ , the k-th eigenvalue Xk(g) of the Laplacian
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Δg is given as follows: For every (fc + l)-dimensional subspace Lk+1 in

C°°(M), put

Λ9(Lk+1) = sup{||d/||ϊ/||/||ϊ; 0 ^ / G L J .

Then we have

\k(g) = inf Λs(Lk+ι) ,

where Lk+1 varies over all (k + lydimensional subspaces of C°°(M).

REMARK. The usual Mini-max principle is of the following type:
For fc-dimensional subspace Lk of C°°(M), put

Λg(Lk) = mί{\\df\\l/\\f\\l;O^feC~(M) and f ± Lh) ,

where f ± Lk means that / is orthogonal to each element in Lk with
respect to the inner product ( , ) g . Then Xk(g) is given by

Xk(g) = sup Λg(Lk) .

Here Lk runs over all Λ-dimensional subspaces of C^iM). Notice that
the orthogonality of / to Lk depends on the Riemannian metric g. So
we can not use this Mini-max principle to prove Theorem 2.2.

PROOP OF PROPOSITION 2.1. For completeness, we give here a proof
of Proposition 2.1. We take a complete orthonormal basis {uk}ΐ=0 of C°°(M)
with respect to ( , )g so that each uk is an eigenfunction of Δg with
the eigenvalue Xk(g), k = 0, 1, 2, . Each / e C°°(M) can be expanded as
/ = ΣΓ=o %i(f)ut, Xt(f) 6 R, in the sense of the uniform convergence or
the ZΛconvergence with respect to ( , ) g . In the following we omit the
subscript g and simply denote Λ(Lk+1) = Λg(Lk+1), || || = || \\g, etc.

Let LS+ι be the (fc + l)-dimensional subspace of C°°(M) generated by
{ut)ϊ=o. Then, since A(L£+1) = Xk, we have Xk ^ inίLk+ίΛ(Lk+ί). Suppose

that Xk > mίLk+1Λ(Lk+1). Then there exists a (&+l)-dimensional subspace
Lk+1 of C°°(M) such that xk > Λ(Lk+1). Then by definition each / e Lk+1

satisfies Λ(Lk+1)-Σΐ=oXi(f)2 ^ ΣΓ=oλ^(/) 2 . Thus we have

(2.7) Σ (Λ(Lk+1) - Xx)xMT ^ Σ (λ, - Λ(Lk+1)Wf
A(Lk )^X A(Lk+1)<Xi

Now let m = max{i; λ* ̂  Λ(Lk+1)}. Define a linear mapping Φ of
into C°°(M) by

= Σ »«(/)«, for / = Σ *i(/)tt« e Lk+1
i=0 i=Q

Then the dimension of the image of Lk+1 under Φ is smaller than k + 1.
Indeed, for each i = 0, , m, the fact that λ< ̂  ^(L*+i) < λΛ implies that
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dim Φ(Lk+1) ^ m + l < A + l. Therefore there exists a non-zero element
/o in Lk+1 such that Φ(/o) = 0, that is, α?4(/0) = 0 for i with λ, ^ Λ(Lfc+1).
We apply (2.7) to this /0 in Lk+1. If the left hand side of (2.7) is equal
to zero, then each term on the right hand side is zero. Thus Xi(f0) = 0
for i with λ< > Λ(Lk+ί). Therefore we obtain fQ = ΣΓ=o Xi(fo)^i = 0, which
is a contradiction. q.e.d.

2.3. Proo/ o/ Theorem 2.2. In this subsection, we show Theorem
2.2. For each positive number δ and # e ^ C we denote by Uδ{g) (resp.
Vδ(g)) the set to'e^; ρ(g',g)<δ] (resp. {</'e^; Λ ί / X Φ We
note Uδ(g)c.Vδ(g).

THEOREM 2.2. Let δ be a positive number and let g be in ^ . Then

(2.8) g' e Vδ(g) implies exp(-(n + 1)8) ̂  Xk(g)/Xk(g') ^ exp((w + l)δ), /or
each k = 1, 2, . ΪTms

(2.9) sr'e F3(gr) implies \Xk(g') - Xk(g)\ ^ (exp((n + l)δ) —l)λt(flr), /or

By Theorem 2.2, we have the following:

COROLLARY 2.3. The multiplicity mk(g) of each eigenvalue Xk(g),
that is, mk(g) — # {i; λ<(fif) = Xk(g)} depends upper semi-continuously on
g 6.//: For each g e ^ and k = 0,1, 2, , there exists a positive
number δ such that

g' 6 Vδ(g) implies mk(gf) ^ mk(g) .

PROOF OF THEOREM 2.2. Let {xu - , xn) be a local coordinate on an
open set U of M. For each δ > 0 and #' 6 F^gr), the component matrices
(&i), (flίy) of fir, #' satisfy

(exp(-S)sQ < (fty) < (exp(δ)sry

as symmetric matrices on U by the definition of the distance p". Then
we have

)1/2 < exp ((n/2)δ)(άe

and

(exp(-δ)flr'") < (flf'O <

Hence, for each / e C°°(ili) and α> 6 A\M) with support contained in U,
we obtain

(2.10) exp((-

and
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(2.11) exp ( - ( i t + l)δ)\\ω\\l, ^ \\ω\\\ <Z exp((^

by the definitions of the inner products on C°°(M) and A\M) and by the
above inequalities. Making use of the partition of unity, we have (2.10)
and (2.11) for every feC°°(M) and ωeA\M). Thus we have

exp(-(n + I)i) | | i/ | | i7 | |/ | |«, ^ \\df\\V\\f\\l ^ exp((n + l)d)\\df\M\f\\l,

for every non-zero element / in C°°(M). Therefore, by Proposition 2.1,
we obtain

(w + l)d)Xk(g') ^ Xk(g) ^ exp((w + l)δ)Xk(g') . q.e.d.

REMARK. From the above proof, for each g, gf e ^£, if gr is close to
g with respect to the C°-topology, then the ratio Xk(g)/Xk(gf) is close to
one for each k — 1, 2, . But notice that the coefficients of the first
order terms of the Laplacians Ag and Δg, are not in general close to each
other (cf. 2.1)).

3. Genericity of eigenvalues with multiplicity one. 3.1. Uhlenbeck's
theorem. A subset S of a topological space X is residual if S is a coun-
table intersection of open dense subsets of X. A topological space X is
called a Baire space if any residual subset of X is dense in X. It is
well known that a complete metric space (X, p) is a Baire space and a
residual set in the complete metric space is a subset of the second
category. Under these terminologies, we can state Uhlenbeck's theorem:

THEOREM 3.1 (cf. [U] and [T]). Let M be a compact connected C°°
manifold of dimension not less than two. Let ^f be the set of all C°°
Rίemannian metrics on M and p the complete distance on ^ί as in §1.
Let £f be the set of all elements g in ^t all of whose eigenvalues of Δg

have multiplicity one, that is,

Sf = {g e ^T; λo(fl0 < \.(g) < X2(g) < < λfc(ff) < • •}.

Then S^ is a residual set in {^, p).

The proof of Theorem 3.1 can be carried out as follows: Let S?k be
the set of all elements in ^ of which the first k eigenvalues have
multiplicity one, that is,

&k = {g e ^T; xo(g) < x,(g) < < \k-i(θ) < λfc(^)},

for each k = 1, 2, . Then we have
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Then it remains to prove the following two theorems.

THEOREM 3.2. Each &>kf k = 1, 2, , is open in (^f, p).

THEOREM 3.3. Let M be a compact connected C°° manifold of dimension
not less than two. Then each g%+19 k = 1, 2, , is dense in S^k with
respect to the topology induced by (^tf p).

3.2. The isometry group. Before going into the proof of Theorems
3.2 and 3.3, we discuss the genericity of Riemannian metrics with trivial
isometry group.

For g e ^ , we denote the eigenvalues of Δg by

0 < λxίflO = = λ̂ fiO < λil+1(ff) = = Xh(g) < , etc .

Put Xjo(g) = X0(g) = 0. Let Vk be the eigenspace of Δg with the eigenvalue
Xjk(g), k = 0,1, 2, . Notice that diml^ = j k — j ^ . Let {u^o be a
complete basis of C°°(M) such that Δgut — Xi(g)ut and (uiy u3)g — δijf i, j =
0,1, 2, . Take a large integer r so that the mapping c: M s x \-^ c(x) =
(uo(x\ ux{x), , uiN_ι{x)) e RN, N = 1 + j± + + j r , is an embedding of
M into RN. The Lie group G of all isometries of (M, g) acts on G°°(M)
by Φ*V,{X) = u(φ-\x)), xeM, ueC~{M) and ΦeG. Then Φ*, ΦeG, are
linear mappings of C°°(M) into itself and satisfy the conditions (Φ*u, Φ*v)g —
(u, v)g and Φ?oφ* = (Φλoφ2)* for u, ve C°°(M) and Φ, Φlt Φ2 e G. Moreover,
since Δg{Φ*u) = Φ*(Δgu), we see that Φ* maps each eigenspace Vk, k =
0,1, 2, , r, into itself. Then we obtain a Lie group homomorphism c*
of G into the orthogonal group O(V) of the Euclidean space (F, (, )g),
V— Σί=o Vk9 by (τH->Φ* eO(F). Note that the homomorphism c* is one
to one since so is c. Now, if g e S^ then each Vk9 k = 0,1, 2, , is one
dimensional. Thus the Lie subgroup c*(G) of O(F) is discrete. Since e*
is injective, G itself is discrete. Therefore we have:

PROPOSITION 3.4. If g eS^ that is, if all the eigenvalues of Δg have
multiplicity one, then the group of all isometries of (M, g) is discrete.

Combining this with Theorem 3.1, we have:

COROLLARY 3.5. Let M be a compact connected C°° manifold of
dimension not less than two. Let ^t be the set of all C°° Riemannian
metrics on M and p the complete distance on ^ as in § 1. Then the
set of all elements g in ^Jt with discrete isometry group contains a
residual subset of

REMARK. The above corollary was obtained in [Elf Proposition 8.3,
p. 35] in a different manner.
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3.3. Proof of Theorem 3.2. Let g be an arbitrary element in S?h9

k=0,1, 2, . We prove that there exists a positive number δ such that
Vδ(g) is contained in £%. Let ε = min{λi+1(#) — X3 (g); j=Q, 1, , fc—1} > 0.
We choose δ > 0 so small that ε(2\k(g))-1 > exp((w + l)δ) - 1. Then, for
gf e Vδ(g) and j = 0,1, , A; — 1, we have

e ^ λ i+1(#) - Xjig)

(by Theorem 2.2)

Thus we obtain

0 < ε - 2

j = 0,1, , A? — 1, which implies #' e ^ . We have Vδ(g) c ^ . q.e.d.

4. Density of ^ in ^ . 4.1. Preparations. In this subsection,
we prove some lemmas concerning a deformation flr(t) of g in . ^ They
will be used in the proof of Theorem 3.3.

LEMMA 4.1 (cf. [B, Lemma 3.15]). For ge^t and heS(M), let
g(t) = g + the^> 111 < ε. Let λ be an eigenvalue of Ag with multiplicity
I. Then there exist Λt{t)eB and ut(t) e C°°(M), i = 1, , i, swcft that

( i ) Λi(£) and u^t) depend real analytically on t, \ t \ < ε, /or

(ii) ΔgWUi{t) = Λi(t)Ui(t), for each i = 1, ,
(iii) Λ4(0) = λ, i = 1, , Z, α^d
(iv) {̂ i(i)}i=i ^ orthonormal with respect to (, ) g W for each t.

For a proof, see [B, p. 137] and also Appendix.

REMARK. Lemma 4.1 does not necessarily imply Theorem 2.2, since
the positive number ε may depend on heS(M) in general.

LEMMA 4.2. Let ge^f and let aeC°°(M) be a positive real valued
function on M. Then the Laplacian Δag corresponding to the Riemannian
metric ag on M is given by

Aag = a"1//, + (1 - n/2)a~Ψg(a) ,

where n = dim M and Pg{a) is the gradient vector field of the function
aeC°°(M) with respect to the Riemannian metric g.

PROOF. Making use of (2.1) and (2.2), we may prove this by a
straightforward calculation.
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LEMMA 4.3. For every g e ^ C we have the following:
( i ) For σ, f and f2 e C°°(M), we have

where δ; A1(M) —> C°°(M) is the codίfferentίal operator with respect to g.
(ϋ) S(/«d/i) = - <dflf df2)g + f2Δgf, fl9 ft e C~(M), where < , ) g is the

pointwise inner product in A\M) relative to g.
(iii) Let Vλ be the eigenspace of Δg belonging to the eigenvalue λ.

For every u and v in Vλ, we have δ(udv) = δ(vdu).

PROOF, (i) Since V^σ)^ = (dσ, dfo,, we have (Fg(σ)flfft)§ = (dσ,
ftdft, = (σ, δ(fM)β. (ϋ) For ω = Σ*U ^dx, e A\M), δω = - Σ ? . ^ i g^to,,
where V^5 is the covariant derivative with respect to g of the 1-form
ω by the derivative 3/305, relative to the coordinate xif i = 1, , n.
Then we have

(iii) δ{udv) = —(du, dv)g + ^4/y = —(du, dv)g + v^w = δ(vdu), for u,
^ e F;. q.e.d.

4.2. Splitting the eigenvalues. In the following, we consider a
deformation #(£) of g e ^£ given by

(4.1) g{t) = g + tσg , for αeC°°(M) .

For small enough ε(σ) > 0, we have g(t) e ^f for all t with | ί | < e(σ).
Now let λ be a non-zero eigenvalue of Δg with multiplicity I and let

{%}i=i be an orthonormal system with respect to (, )g such that Δgu5 —
\ujf j = 1, •••, ϊ. Applying Lemma 4.1 to g(t), we obtain Λά(t)eR and
%(ί) 6 C°°(ikf), i = 1, •• , i , satisfying the conditions (i)~(iv) in Lemma
4.1. By (i) in Lemma 4.1 (see also Theorem A.3 in Appendix), we can
express Λs(t) and Uj(t), j = 1, , I, as follows:

(4.2) Aj(t) = X + toij + t2βj(t) for \t\ < e(σ) ,

where a5 is a real constant and βj(t) is a real analytic real valued function

in t.

(4.3) (%(ί), v)g are real analytic functions in t, \t\ < e(σ) ,

for every v e C°°(M). Then we have the following:

LEMMA 4.4. Let λ be a non-zero eigenvalue of Δg with multiplicity I
and let {u3))=1 be an orthonormal system with respect to (, )g such that
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Δguά — Xuj for each j = 1, , I. For a e C°°(M), let g(t) be a deformation
of ge^f given by (4.1). Let {a,})^ be the real constants given by (4.2).
Then we have

(((1 - n/2)Fg(σ) - Xσ)ujf ut)g = aβi5, l£i,j£l.

PROOF. We apply Lemma 4.2 to g(t) = a{t)g with a(t) = 1 + tσ > 0
for \t\ < ε(σ). Then we have, for every veC°°(M),

{a{t)Δguά{t) + (1 - nl2)tV,(σ)us{t) - A^aWufr), v)g = 0 ,

by ΛgU)Uj(t) = Λ5(t)u5{t), j = 1, , I, \t\ < ε(σ). Differentiating both sides
of the above equality at t = 0, we obtain by (4.2) and (4.3)

( U - λ)vy + ((1 - n/2)Fβ(σ) - Xσ - a§)uif v)g = 0 , i = 1, f I .

Thus, for an eigenfunction v of Jff belonging to the eigenvalue λ, we
have

(((1 - n/2)Fg(σ) - λσ - a5)uβy v)g = ~{{Δg - X)vj9 v)g

= -{vif{Δg-\)v)β = 0. q.e.d.

PROPOSITION 4.5. Assume dim Λf 2^2. In the situation of Lemma
4.4, there exists a function σ in C°°(M) such that, at least two of {αj =i
in (4.2) are distinct.

PROOF. Let P be the orthogonal projection of C°°(M) onto the
eigenspace Vλ belonging to the eigenvalue λ of Δg. For σ e C°°(M), define
an endomorphism Gσ of Vλ into itself by

GJ = Po((l - n/2)Fg(σ) - Xσ)f, feVλ.

Let {Ui}ι

i=1 be an arbitrary fixed orthonormal basis of Vλ with respect to
(, )g. Then we have

(Gaui9 ut)g = (((1 - n/2)Fg(σ) - Xσ)uj9 ut)g = aβtύ,

by Lemma 4.4. Thus the endomorphism Gσ can be expressed as a diagonal
matrix with respect to {u%)\=1 whose diagonal entries are ai9 i = 1, , I.

Assume that αx = = at. Then Ga can be expressed as a constant
multiple of the identity matrix with respect to this basis and hence with
respect to any basis of Vλ. Therefore, in order to prove Proposition 4.5,
we have only to find σ e C°°(M) so that (Gσulf u2)g Φ 0.

For σeC°°(M), we have

(Crσu19 u2)g - (((1 - n/2)Fg(σ) - Xσ)uu u2)g

= (σ, (1 — nfflδiUzdUi) — λu tu 2) f f .

Case 1. (1 — nl2)δ(u2dux) — Xu,u2 Φ 0. In this case, putting σ =
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(1 — nl2)δ(u2du^ — Xujiv we have (Gaul9 u2)g Φ 0.

Case 2. (1 — n/2)δ(u2duj) — Xuλu2 = 0. In this case, we have

(4.4) uλu2 = 0 .

In fact, we have

((1 - nl2)Δg - 2X)(u1u2) = (1 - n/2)δd(UjU2) - 2λu xu 2

= (1 — n\%)δ(uγdu2 + tt2dh0 — 2Xu1u2

= ((1 — /^/2)δ(u1du2) — λu^a) + ((1 — nl2)δ(u2du^) — λ u ^ )

- 0 ,

by Lemma 4.3 (iii) and the assumption. Since 2 — w < 0, if w ^ ^ 0,
then Ag would have a negative eigenvalue, which is a contradiction. (4.4)
is thus proved.

We take, as an orthonormal basis of Vλ with respect to (, ) g ,

fx = 2"1(w1 + u2) , /2 = 2~1(u1 - u2) , /3 = u3, , A = Uι .

Put σ = (1 - n/2)δ(ftdfi) - λΛΛ. Then we have

So we have only to prove σ ί 0. Otherwise, we have

0 = 2σ = (1 - n/2)δ((Wi ~ u 2)d(u 1 + u2)) - λ(%! + w2)(wχ - w2)

= (1 - n^Xδiu.du,) - δ(u2du2)) - X{n\ - wD (by Lemma 4.3)

= (4-χ(2 - n)δd - λ)(uϊ - ut) .

Thus, since 2 — w ^ 0, we have wf — u2 = 0. Therefore we obtain

0 = ί (uϊ - uD2ώv, = ( (wί - 2uxu2 + Mί)dt;β = ( (uί + uDώt;, ,

by (4.4), which is a contradiction. We thus obtain σ φ 0. q.e.d.

4.3. Proo/ o/ Theorem 3.3. Let dimikf ^ 2. We show S^ is dense
in ^ t+i To prove this, we construct, for each g e Sfhi an element gf in
&%+! which is arbitrarily close to g.

Let g 6 ,PJ, that is, λo(ff) < λ f̂f) < < λ*(flf). Assume that the &-th
eigenvalue Xk(g) has multiplicity i, i.e.,

λfc(sr) = = Xk+i-M = λ and

< λxte) < < Λ.*_i(flr) < λ < xk+ι(g) ^ .

Consider a deformation g(t) — g + tσge^f of gr, \t\ < ε(σ), of t h e
type (4.1). Let Λ3 (t), j = 1, •••, ϊ, be such eigenvalues of J , ( ί ) as (4.2).
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We apply Proposition 4.5 to the eigenvalue λ = λ ^ ) . Noting that

9' e V1/2(g) implies exp(-(tι + l)/2)λm(s0 ^ Xm(g') , m = 0,1, 2, ,

by (2.8), we may assume

exp((w + l)/2) (2λ) ̂  Xm(g) implies 2λ ^ Xm(g(t)) ,

for each m = 0,1, 2, •••, and | t | < ε(α ). We apply Theorem 2.2 to a
finite number of eigenvalues of Δg which are smaller than exp((w + l)/2)
(2λ). Then there exists a positive number ε'(σ) ̂  ε(σ) such that

λo(flr(«)) < λi(ff(*)) < < Xk-Mt)) < Λβ) < λ*+,(flr(t)) ^ ,

for each \t\ < ε'(σ) and j" = 1, , I.
Now, by Proposition 4.5, we can choose σeC°°(M) in such a way

that, at least two of {a3))=1 in (4.2) are distinct. Let at Φ ad, 1 ̂  i,
j <; ϊ. For this σ e C°°(Jkί), we may choose a positive number s"(σ) ̂  ε'(σ)
in such a way that Λt(t) ̂  Λά(t) for all 0 < |ί | < ε"(σ). Therefore all the
first k eigenvalues of ΔgWf \t\ < ε"(α"), have multiplicity one and the fc-th
eigenvalue Xk(g(t)) has multiplicity at most I — 1. Repeating this process,
we can choose g'e&ί+i as close to g as one wants. q.e.d.

Appendix. In this appendix, we give a proof of Lemma 4.1. The
proof given in [B] was based on Kato's perturbation theory [K, p. 375]
(See also [RN, p. 373]). In its proof, it was claimed (cf. [B, p. 138])
that the family of the operators AQ{K) is of type (A) in the sense of Kato
(cf. [K, p. 375]) and JG{K) are self-ad joint. But if we choose the domain
of Δaw as the Sobolev space H2(M) for a fixed Riemannian metric 7 on
Mj then Δβw are not self-ad joint with respect to the inner product (, )γ

in H2(M). If we require the self-adjointness of ΔG(K), then we have to
choose the inner product (, ) σ M on H2(M). Since the domains of ΔG{K)

vary as Hubert spaces, the family of ΔaM is not of type (A). Its proof
should be modified accordingly.

First we list some notations. Throughout this appendix, let M be
an ^-dimensional compact connected C°° manifold without boundary. Let
Cc{M) be the space of all complex valued C°° functions on M. For a
fixed Riemannian metric 7 on M, let Ar be its Laplacian and (, )r be
the inner product on Cc(M) defined by

(Φ, Ψ)r = 1 φixjψffidVr , Φ, ψ 6 Cc(M) ,
Jilf

where dvr is the canonical measure of (Λf, 7) (cf. [BGM, p. 10]). For
every non-negative integer s, let H8(M) be the Sobolev space on M (cf.
[G, p. 35]) which is the completion of C£(M) with respect to the following
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inner product [, ]8:

(A. 1) [φ, ψ]9 = ((/ + Λ)V, Ψ)r, Φ, ψ e C?(M).

Here I is the identity operator and (/ + Δr)* is the s-ple iteration of the
operator 1+ Δr. Put | |0 | | . = [φ, φ\T, φeH8(M).

We define the notions of the real analytic families of vectors or
bounded operators (cf. [K, p. 365]).

DEFINITION A. 1. Let X, Y be complex Banach spaces. Let D be a
domain in R. A family of vectors xt, teD, in X is said to be real
analytic if it can be expanded as a convergent power series, i.e., for
an arbitrary fixed t0 e D, there exist elements xa, a = 0,1, 2, , in X
such that

%t = Σ &«(* - £o)α , for every t e D, 11 - £01 < ε ,
α = 0

where the series converges in the sense of the strong topology of X
(cf. [Y, p. 30]). A family of bounded operators At9 teD, of X into Y
is said to be real analytic if it can be expanded as a convergent power
series of bounded operators, i.e., for an arbitrary fixed toeD, there
exist bounded operators Caf a = 0,1, 2, , of X into Y such that

At = Σ Ca(t - tQ)a , for every t eD, \t - to\ < ε ,
α=0

where the series converges in the uniform topology (cf. [Y, pp. 111-112]).

Then we have:

THEOREM A. 2. Let D be a small bounded domain in R containing
the origin 0. Let s± > s0 be non-negative integers. Let At, teD, be a
real analytic family of bounded operators of HSl(M) into H8Q(M). As-
sume that

(1) each operator At, teD, is self-adjoint with the domain HH(M)
contained in H8Q(M) with respect to the inner product [ , ]8o (cf. [Y, p.
197]), and

(2) Ao is bounded below, i.e., there exists a positive constant C
such that [A0(x), x]8Q ̂  C[x, x]8Q for all x e HH(M).
Let X be an eigenvalue of the operator Ao. Then

( I ) the kernel of AQ — λ l is finite dimensional.
(II) Put I — dim ker(A0 — λ/). Then there exists a subdomain Dr in

D containing the origin and I real analytic families of vectors φ\, i =
1, , I, in Hβl(M) and I real analytic real valued functions λ{, i — 1,
"-,1, in teDf such that
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( 3 ) Atφί = Xίφi, i = 1, ••-, I, ί e D ' ,
( 4 ) [#, # l 0 - δtJ, i,j = lf -,l,teD' and
( 5 ) λS = λ, i = 1, ••-,«.

The assertion (I) is well known since the bounded self-adjoint operator
AQ is bounded below. The similar assertion as (II) was stated in [RN,
p. 376, Theorem], [K, p. 392, Theorem 3.9] and [R, p. 57, Theorem 1,
p. 74, Theorem 3]. It can be proved by the similar way, so we omit
its proof.

We apply Theorem A. 2 to prove Lemma 4.1. Let gtf \t\ < ε, be a
one-parameter family of Riemannian metrics on M depending real analy-
tically on the parameter t. In the following, we denote merely by Δt

(resp. ( , )t) the Laplacian ΔH (resp. the inner product ( , ) g t on CciM)) of
(Λf, gt). Then we have:

THEOREM A. 3. Let gt, \t\ < ε, be the one-parameter family of Rie-
mannian metrics on M depending real analycally on the parameter t.
For any eigenvalue λ of ΔQ with multiplicity ϊ, there exist I families of
φteCc(M), i = 1, ••-,£, which are real analytic in H0(M), and I real
analytic real valued functions λ{, i = 1, , I, in t such that

( 6 ) Δtφ\ = χ\φ*tt i = 1, - ,l, and t,

( 7 ) (φί, φi)t = δtj, i, j = 1, , Z, and t, and
( 8 ) λ{ = λ, i = 1, « ,Z.

For the proof of Theorem A. 3, we need the following:

LEMMA A. 4. Let Lu \t\ < ε, be differential operators of order m
which can be expressed locally as

Lt = Σ aa(t, x)Da

x .

Here Ώ« = a | α |/3(^)α i 3(αOα» and \a\ = αx + + an for an n-tuple
a = {au - - -, an) of non-negative integers, and aa(t, x) is real analytic in
t, 111 < ε, where x belongs to the local coordinate open subset. Then the
family of bounded operators Lt of Hm{M) into H0(M) is real analytic.

PROOF. By assumption, αβ(ί, x) can be expressed as aa(t, x) =
ΣΓ=o aa>h{x)th

9 where aatk(x) satisfy the following inequalities:

I aatk(x) \<LCrk for all a , | a \ ̂  m , k = 0, 1, 2, , and α? .

Here the positive constants C and r do not depend on a, k and x. Using
the partition of unity, define differential operators Lk, k = 0, 1, 2, , of
order m which can be expressed locally as Lk = Σ\a\ίmaatk(x)D?. Since
Lk satisfy the inequalities
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\\Lkf\\0^mnC'rk\\f\\m, feHm(M),

for a certain constant C", they are bounded operators of Hm(M) into
HQ{M) and the series ΣΓ=o Lkt

k converges to Lt in the uniform topology.
q.e.d.

PROOF OF THEOREM A. 3. For a function f on M and for t with
\t\ < ε, put

(Utf)(x) = (det(gtij(x))lάet(goίj(x))r*f(x) , xeM,

where gtij, | ί |<ε , are the components of gt with respect to the local co-
ordinate (xlf ••-,&„) around x. Then the operators Uu | ί | < s , define a real
analytic family of bounded operators of H8(M) into itself for every non-
negative integer s. By definition they are isometries of the Hubert space
(HQ(M), (, )t) into the Hubert space (H0(M), ( , )0). Since the Laplacian Δtf

\t\ < s, are self-ad joint operators of H0(M) with respect to the inner
product (, )t, the operators Δt defined by the composition UtoΔtoUiι are
self-adjoint with respect to the inner product ( , )0. Moreover by Lemma
A. 4 the family of At = Δt + I, | t | < e , is a real analytic family of
bounded operators of H2(M) into H0(M) and satisfies (1), (2) of Theorem
A. 2. Therefore by Theorem A. 2 there exist I real analytic families of
vectors φ], i = 1, , I, in H2(M) and I real analytic real valued functions
1 + λί, i = 1, f Z, in t satisfying (3), (4) and (5). Then the vectors
ΦU i = 1, , I, in HIM) defined by φ\ = Uiψt satisfy Δtφ\ = \\φ\ in the
sense of distribution and the condition (7) in Theorem A. 3. By hy-
poellipticitiy of Δt (cf. [G, p. 30]), φ\ belong to C?{M) and satisfy (6).
Theorem A. 3 is proved.
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