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1. Introduction. Let X(t, ω), teR1, be a complex-valued stochastic
process on a given probability space (Ω, ̂  P). Suppose that X(t, ώ) is
measurable £f x ^~ on R1 x Ω, <£? being the class of Lebesgue mea-
surable sets on R1.

If

(1.1) E\X(t, α»r = \\X(t, a)\\rr < ~, «e(α, 6)

for some r ^ 1 and for some — °° < α < 6 < °°, and

(1.2) [\\X(t,ω)\\r

rdt<
Jα

then we write X(t, ω)eLr(a, 6) and call X(t, ω) an Lr process on (α, 6).
In this case, X(t, ώ) is of Lr(α, 6) as a function of t almost surely (a.s.)
We mention that if X(t, α>) 61/r(α, 6) for every — o o < α < 6 < o o , then
the subset with probability one of Ω on which (1.2) holds is taken in-
dependently of α and 6.

If (1.1) holds for r = 1 for every teR1 and if

(1.3) E\ X(t + 2π, ω) - X(t, α>) | = 0 , for ί e R1 ,

then we call X(t, ώ) 2ττ-periodic. The class of 2τr-periodic processes of
L r(—π, π) is simply denoted by Lr

P.
A stochastic process X(t, ω) is of LP, if and only if the correlation

function R(s, t) = EX(s, α>) X(t, α>) is 2ττ-periodic for each variable s and t.
For a stochastic process of Lr

P for some r ^ 1, we consider the
Fourier series

(1.4) X(t, α» ~ Σ
n=—oo

where

(1.5) Cn(ω) = ±-\* X(t,
2π J-«
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The main purpose of this paper is to study the almost sure conver-
gence of the series

(1.6) nΣJ^IΊCn(α>)|

for X(t, ώ) 6 LP, for some nonnegative integer k.
A known argument usually used in the theory of absolute conver-

gence of ordinary Fourier series (Bary [1, I. p. 153], Zygmund [16, I,
p. 240] is adapted to our problem and actually the results we are going
to give are mostly the analogues of what are well known in that field.
However the author believes that they are of particular interest, because
some of them are directly applied to get some theorems on sample con-
tinuity and differentiability of stochastic processes which seems to provide
the simplest way of deriving them at least for periodic case or possibly
some other results in the theory of sample properties of stochastic proc-
esses. As an example we give a result on quasianalytic class of processes.

2. Continuity modulus of stochastic processes. Let X(t, ω) e Lr

P,
for some r ^ 1. We define, for some integer p ^ 1 and δ > 0,

(2.1) M™(d) = MP(δ, X) = sup || A
\h\^δ,\t]^π

and

(2.2) Mr*^(δ) = Mr*
(p\d, X) = sup (-1- Γ || WX(t, ω) H cZί)1" ,

\h\£8 \2π J-ff

where Λ(

h

p)X(t, ώ) is the p-th difference with increment h of ί, namely

(2.3) WX(t, ω} = ± (-1)*-" (P W + vh, α>) .

M(

r

p)(δ) and Λf* ί p )(δ) are called respectively the continuity modulus and
integrated continuity modulus of p-th order of X(t, ώ) e LT

P.
For X(t, α>) e L£, r ^ 1, the Fourier coefficient of A(

h

p)X(t, ώ) is

(2.4) -L Γ ΔψX(t, ώ)e-ίntdt
2π J-*

p I p \ ]_ r«

P I p \ J_ r π

ί=° \ j" / 2?r J ~jr '
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Suppose now 1 < r <: 2 <: r', r"1 + r'"1 = 1. Then by the Hausdor if -Young
inequality we have

(2.5) Γ Σ I Cn(ω) \rf I eίnh - 1 |" 'T" ̂ ~{ \ 4p)X(ί, co) \*dt .
Ln=-oo J 27Γ J-K

Taking expectations of both sides, we have

E\ Σ \CΛ(ω)\r'\eM - ir'T"' ̂  ̂ - Γ ||JirtJr(if ω)||Wί .
Ln=-oo j 2ττ J-π

Using the Minkowski inequality, we see that the left hand side is not
less than

Let δ = 1/w in (2.3). We then see

Λf *(«(!/Λ) ̂  n Γ7T Σ (II Ck(ω) \\r 1 2 si
JO Lfcέ4n

which is, again because of the Minkowski inequality, not less than

nΓ Σ (Πl Ck(ω) \\r 1 2 sin(M/2) I'dfcYT' .
Lfcέ4n\Jθ / J

Since, for \h\ ^ 4 ,̂
l/n

2 sin
> /M f l * l / »

dh = -2— \ \ 2 sin(^6/2) \pdu ̂  2p-V
ft Jo2

the last expression is not less than

C,\ Σ l|
Llfcl^4n

where Cp — 2p'1/(p + 1) is a constant depending only on p. Thus we
have the following lemma.

LEMMA 2.1. If 1 < r ^ 2 cwd r"1 + r'"1 = 1, then

(2.6)

3. Absolute convergence of Fourier series of a periodic stochastic
process. Throughout what follows, φ(t) is supposed to be a nondecreasing
continuous nonrandom function on [0, 1] such that either

(3.1) 0(0) = 0 and φ(t)/t is nonincreasing over (0, 1]



462 T. KAWATA

or

(3.2) ψ(t) = 1 , for t e [0, 1] .

In this section, we consider the process X(t, α>) e Lr

P, where r is
restricted to 1 < r ^ 2.

THEOREM 3.1. Let X(t, ώ) e Lr

P, 1< r ^ 2, r'1 + r'-1 = 1. Let k be a
given nonnegatίve integer. If there exists a positive integer p such that

(3.3) Σ nk-1

(3.4) Σ \n\k[φ(llri)Yl\Cn(ώ)\ < oo , α.β .
n = — oo

PROOF. It is sufficient to prove that

(3.5) Σ nW/Λ)]-1^! Cn(α>) |< oo .

The same thing is true for the series for negative n, with \n\ in place
of n except in the subscripts of Cn(ώ). A standard argument gives us
that for the left hand side S of (3.5), we have

2

71=1 j =2

^Σ2<"+3)*[ί5(l/2«+3)]-1 Σ3 ||Cχα))||r
n=l j=2»+2+l

^ Σ 2(n+3)*[95(l/2"+8)]-12<n+2)/'(
n=l \ί =

^ 2* Σ 2(n+2) (*+ι/r> wi^ +'ji-f Σ i i Ci(<ΰ) ιιrT/r'
n=l Lj=2w+2+l J

(3.6) ^ 2**+8^ Σ m - '̂̂ αΛiβw))]' Σ II ct(ώ) | | ; ' ' .
m=l Lί=4m J

Prom ^(l/m)/16 ̂  ̂ (l/(16m)) and Lemma 2.1, we have

S^ 24fc+7C-1Σmfc-1/r/[^(l/m)]-1Mr*
(ί))(l/m) < oo .

m=ι

This proves (3.5) and the proof of the theorem is complete.

The following corollary is a special case of Theorem 3.1, which gives
the analogues of well known theorems of Bernstein and Szasz (See Bary
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[1, Chapter IX], Zygmund [16, 1, p. 240]) when φ(t) = 1, k = 0, r = r' = 2.

COROLLARY 3.1.

( i ) //

(3.7) Σnk-

or

(ii) if

(3.8) MiM\lln) = 0(n~(M) , for 1 ̂  a > l/r ,

then

(3.9) Σ |n|*|C.(α))|< <» , O.s.
τι=— oo

It is noted that if p ^ k in the condition (3.3), it turns out to be
meaningless and hence the case p = k + 1 will be critical in the sense
that the condition for a larger p(^k + 1) will be weaker.

4. Bounded variation of a periodic stochastic process.

DEFINITION 4.1. Let X(t, ω), t e R1, be of Lr

P(r ^ 1). //

(4.1) sup Σ II X(ti9 α>) - X(ti-l9 ω) \\r = Vr<oo ,
D j=l

where sup is taken for all divisions

D: -π ^t,< t,< ••• <tn^π 9

then we say that X(t, ώ) is of bounded variation in Lr(Ω) and write
X(t,ω)eBVr.

The following propositions are easy to show by ordinary arguments.

PROPOSITION 4.1. If X(t, ω) e BVr(r ^ 1), then

(4.2) Γ || X(t + h, ω) - X(t, ft)) \\rdt ^2hVr.J-π

PROPOSITION 4.2. If X(t, ω) e BVr, (r ^ 1), then

(4.3) Γ \\WX(t,ω}\\rdt^2*hVr.J-x

PROPOSITION 4.3. For X(t,a)) e BVr (r ̂  1),

(4.4) l|C.(ω)ll, ̂  (2nΓVr .

THEOREM 4.1. If X(t, co) e BV, (r > 1) and
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(4.5) 0 < v < 1 - 1/r ,

then

(4.6) Cn(a>) = o( |w|-O, a.s .

PROOF. For any A > 0,

P(|Cn(ω)| > A n -") ̂  (A|w|-r rl |

which is, from (4.4), not greater than (2A)~r|^|(l/~1)r. Since

from which, by the Borel-Cantelli lemma, (4.6) follows.
Now suppose 1 < r, r"1 + r'"1 = 1.

= sup Γ-L Γ || 4W, ω) ||r || 4«ϊ(ίf α>) Hr
w^L27r J-π

sup II J?>jr(tf αι) rr' sup Γ-i- Γ II WX(t, ώ) \\rdt\'r
\k\zδ L2π J-ff J

which is, by (4.3), not greater than

(4.7) [MWδW' C

where C9tf = 2p/r(2π)~1/r.

From Theorem 3.1, we now have using (4.7) the following theorem.

THEOREM 4.2. If X(t, ώ) e BVr, 1< r ^ 2, 1/r + 1/r' = 1 α^d there is
a positive integer p such that

for a given nonnegatiυe integer k, then (3.4) holds.

COROLLARY 4.1. If X(t, α>) e BVr, (1 < r <; 2) αίtd /or some positive
integer p,

(4.9) M '̂(δ) = 0(δ") /or some β > 0 ,

< oo , α.s.
n=— oo

This immediately follows from Theorem 4.2 with k = 0, 0(t) = 1, and
is the analogue of the Zygmund theorem on absolute convergence of
Fourier series.
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5. Trigonometric approximations. First we suppose X(t, ώ) 6 UP.
Then we can easily show that for every positive integer JV,

(5.1) inf-^ Γ || X(t, ft>) - Σ an(ω)e™ \\*dt
2π J-* n=-χ

is attained by αn(ω) = Cn(α>), a.s., where Cn(ω) is the Fourier coefficient
of X(t, α>) as before and the inf is taken over all random variables
αn(ω) 6 U(Ω). Writing the quantity (5.1) by [e$(X)]2 = [e$]z, we have

[ ~|l/2
Σ HC.(α>)ir .

\n\ZN J

Writing the series in (3.5) by S as in the proof of Theorem 3.1, with
r = 2 we see from (3.3) that

S ^ CktP Σ
1-1^(2)

where Ck>p is a constant depending only on k and p. From this we have
the following theorem which is seemingly more general than Theorem
3.1 with r = 2.

THEOREM 5.1. // JC(ί, α>) 6 I/

(5.3) ±nk-^[φ(l/n)]-^ <

Σ iΛl^^lMJΓM^ωJK - , α.β .
7l= — oo

More generally write, for X(t, ω) e IfP, (r ;> 1),

(5.4) βlr" - βJ?'(X) = inf Γ^- t* ||Z(ί, ft)) - Σ αm(α))e*"'||;
L2^ J-π n=-N

Write τ^(t, α>) = 2NσZN__l(t, ώ) — σ^^^t, ω), where σn(t, α>) is the (C, 1)
mean of the Fourier series of X(t, ώ). A slight modification of arguments
in Zygmund [16, I, p. 115] gives us

(5.5) P- Γ || X(t, (0} - τN(t, ft>) ||;ιiίTr ^ 2"+14r) .
L2ττ J-« J

Using this, by arguments similar to those used there, we also have

LEMMA 5.1. Let r ^ 1.

(5.6) eJSU ^ CrMr*
(2\2π/N) .

We also note that if X(t, ft))eBF1,
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(5.7) <#> = 0(1/N) .

This follows from Proposition 4.1 and Lemma 5.1.
We also note that if X(t, ώ) e L*P, 1 <I r ^ a, then

(5.8) Σ n-u 'e? ^ Cr>8 Σ ^~1/r^r) ,
71 = 1 71 = 1

where 1/r + 1/r' = 1, 1/β + 1/β' = 1 and Cr,8 is a constant depending only
on r and s.

This was shown for the nonrandom case in a more general frame-
work by Watari-Okuyama [15]. Passage to our case is immediate. We
also mention that the analogue of Theorem 6.35 of Zygmund [16, I,
p. 154] to our case holds.

Using (5.8) with s = 2, we have, from Theorem 5.1 the following

THEOREM 5.2. If 1 ̂  r ^ 2, 1/r + 1/r' = 1 and

(5.9) Σ n-""e? < ~ >
71 = 1

then

< °° * α-β

Looking at Theorem 3.1 and Lemma 5.1, the above theorem is
apparently a sharpening of Theorem 3.1 with k = 0. However it is, in
view of (5.8), a consequence of Theorem 5.1 with k = 0 and φ = 1 and
the proof of it is contained in the proof of Theorem 3.1 so that we may
say that Theorems 3.1, 5.1 and 5.2 are equivalent in substance. A similar
remark was made by Watari-Okuyama [15] for the case of ordinary
Fourier series.

6. Sample continuity and differentiability of stochastic processes
of Lp. Let X(t, a)) 6 LP (r > 1) and let σn(t, ω) be the n-th (C, 1) mean
of the Fourier series of X(t, ώ). We begin with following lemma.

LEMMA 6.1. // X(t, ώ) is stochastically continuous, then <j(ί, α>)
converges in probability for every t.

PROOF. We take any positive number ε < 1/4. We see that

σn(ί, α>) - Σ(t, α>) - \" A«X(t, ω)Kn(u)du ,
J-π

where Kn(u) is the Fejer kernel [2π(n + I)]"1 sin2 [(n + l)u/2]/sin2 (u/2).
Choose δ so that
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(6.1) P(\^X(t, ft)) !>£')< ε*η,

for \u\ 5Ξ δ, where y > 0 is arbitrary. We then have

P(\σn(t, (ύ)-X(t,

(̂L
+KIS

, ω)Kn(u)du >ε/2)

ι«ι>3
, ώ)Kn(u)du 5/2)

say. By the Chebyshev-Markov inequality ,

^ (2/e) ί ^X(i
J|tt |>3

Q \\4uX(t, ω)\\rKn(u)du\ .
\u\>δ J

Since \\Δ*X(t, ώ)\\r is bounded and Kn(u) ^ [2π(n + 1) sin2 δ/2]'1, the last
member converges to zero as n — > oo .

Define ^(u, α>) by

G4(u, α>) = 1 , for | AuX(t, ώ) \ > εr ,

= 0, for \ΔuX(t, α))| ^εr .

Write

f(w, ώ)ΔuX(t, ω)Kn(u)du ε/4

ε/4) .

The second term on the right hand side is zero, since the integral is
seen to be less than εr+1 <i ε/4.

We now apply the Chebyshev-Markov inequality to have

/i ^ (4/6)" Γ Gt(u,
j-δ uX(t, ω}Kn(u)du

| //

Since there is a constant C=C(ί) such that ||Λ X(ίι «>)llr < C, the second
factor is not greater than C. Note that \\Gt(u, α))||r = E\Gt(u, ω)| =

ί, α>)| > εr) which is less than er?? by (6.1). We thus have



468 T. KAWATA

Altogether we finally have

lim sup P( I σn(t, ft)) - X(t, ft)) | > e)< 4rCty .
π-»oo

This proves the lemma.

LEMMA 6.2. Let φ(t) be a function in 3. Then

(6.2) I sin cc/z, I ̂  φ(h)/φ(l/x) , g ̂  1 .

The proof is simple. (Kawata-Kubo [11])
Denote by ΛΦ, the Lipschitz class of functions / such that

sup,Λ,^|/(ί + K) - f(t)\ = 0(φ(δ)) for small δ, when φ(f) satisfies (3.1).
When φ(t) = 1, let us denote by Λφ the class of continuous functions.

Now we shall prove

THEOREM 6.1. (i) Let X(t, α>) e Lr

P, (1 < r ^ 2). Let k be a given
nonnegative integer. Suppose there exists a positive integer p such that
(3.3) holds. If X(t, ώ) is stochastically continuous, then there is a
modification XQ(t, α>) of X(t, ft)) with the property that X0(t, ft)) has almost
surely the k-th derivative belonging to Λφ. (ii) If r = 2, the condition
(3.3) can be replaced by (5.3).

PROOF. From Theorem 3Λ, (3.4) holds. The subset of Ω on which
the series in (3.4) converges is denoted by Ωlt P(Ω1} = 1. Now define,
for ωeΩ19

(6.3) -Σoftαtf^Σ

Then, for ωeΩ19

(6.4) Xo(k}(t, ω) = I

and

7i=—oo n=—oo

which is by Lemma 6.2 not greater than

Σ \n\k\C^ω}\[φ(ll\n\)]-^\φ(hl2) = C(ω)φ(h/2) ^ C(ω)φ(K) ,

where C(α>) is independent of fe. Hence for ω e ,2̂  XQ(t, ft)) has the
derivative which belongs to A+.
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Now since X(t, α>) is stochastically continuous for all t, the (C, 1)
mean σn(t, ω) of the Fourier series of X(t, α>), the right hand side of (6.3),
converges in probability to X(t, α>). Therefore there is, for each t, a
subsequence {nk} of subscripts (nk = nk(t)) and a set Ω2(t) depending on
each t with P(Ω2(t)) = 1, such that σnk(t, ώ) -> X(t, ώ), k -> <*>, for ω e U2(ί)

On the other hand, for ω e Ωlf (6*3) holds. Accordingly σnk(t, α>) ->
>) f or β> e ̂ i Hence we should have

t, ω) = -Xo(ί, ω) for ω e Ω, n Λ2(ί) .

This means that JΓ0(ί, ώ) is a modification of X(t, ώ) and completes the
proof of (i). The proof of (ii) is carried out just in the same way.

COROLLARY. 6.1. If X(t, ώ) is of Lr

P(l < r <| 2) and stochastically
continuous, and (3.7) or (3.8) holds, then there is a modification XQ(t, ώ)
of X(t9 ω) which has almost surely the continuous k-th derivative.

THEOREM 6.2. // X(t, ω)eBVr(l < r ^ 2) and is stochastically con-
tinuous and (4.8) holds, then there is a modification XQ(t, ώ) of X(t, ω)
which has almost surely the k-th derivative belonging to Λ+.

THEOREM 6.3. If X(t, ώ) e Lr

P(l ^ r ^ 2), is stochastically continuous
and (5.9) holds, then there is a modification X0(t, ω) of X(t, ω) which is
continuous almost surely.

We remark that the conditions (3.3) and (4.8) are respectively equiv-
alent to

(6.5)

and

(6.6) y-'-WvϊFM^Mdy <

These conditions are of the forms mostly used in rather recent works
on sample properties. The classical results on sample continuity are
included in Cramer-Leadbetter [3]. Further results are found in
Delporte [4], Garsia [5], Garsia-Romig-Rumsey, Jr. [6], Hahn [7], Hahn-
Klass [8], Kδno [12], [13], [14]. Furthermore, Ciesielski [2] gave a
result which is substantially similar to Theorem 6.1 and Kδno [14] has
shown Theorem 6.1 as a generalization of Ciesielski's result and the
author's previous result [10], even for more general nonperiodic case.
Their argument basically depends on the approximation of the process
by splines. On the other hand the proof of this paper is thought of as
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a simple application of the absolute convergence of Fourier series. We
also note that the genralization of Theorem 6.1 to nonperiodic case by
periodic continuation is possible although it is not quite obvious. See
Kawata [10].

7. Quasianalytic class. Let f(x) be a complex valued function on
[ —π, π] which is indefinitely differentiate. The class of those functions
satisfying

(7.1) sup \f«}(x)\£AK*mn,
—π^x^π

for some sequence (ran, n=Q, 1,2, } of positive numbers, °o being allowed,
where A and K are constants depending only on /, is denoted by C(mJ.
C(wJ is called a quasianalytic class, if f(x) e C(wn) and /(n)(cc0) = 0, n =
0,1, for some xQe( —π, π) implies that f(x) ~ 0 throughout [—π, π].
We consider also the class C2(ln) of indefinitely differentiate functions
f(x) such that

(7.2) sup I /<*">(*) I ̂  AK*ln , n = 0,1, 2,
-π^x^π

for some sequence {ln, n = 0,1, } of positive numbers. Writing w2n =
ln, ™2*+i = °°, n = 0,1, 2, , C2(ln) = C(mn). When this class C(wJ is
quasianalytic, C2(U is called quasianalytic.

Let X(t, ft>) be a periodic weakly stationary process, that is, X(t, ft)) 6
UP, EX(t, ft)) = m, a constant independent of £ and the covariance function

(7.3) E[X(s, ft)) - m][X(t, ft)) - m] - /o(β - ί)

is a function of s — £ alone. Ivanova [9] gave a result to the effect
that if, for a weakly stationary process not necessarily periodic, p(u)
belongs to a quasianalytic class C2(Zn) on every finite interval, then X(t, ft))
belongs to a quasianalytic class C(ϊi/2) almost surely. The author, however,
thinks that the proof of it was incomplete. We, in this section, formulate
the result in a more exact form and give a complete proof for a periodic
weakly stationary process.

THEOREM 7.1. If X(t, ft)) is a 2π-perίodic weakly stationary process
and its covariance function p(u) belongs to a quasianalytic class C2(Zn),
then there is a modification XQ(t, ft)) of X(t, ft)) with the property that
XQ(t, ft)) belongs to a quasianalytic class C(in+ι).

Before proving the theorem, we give some remarks. Suppose
EX(t, ft)) = 0, throughout from now on. A 2ττ-periodic weakly stationary
process can be represented by
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(7.4) X(t, ω) = Σ ξn(θ))eίnt,
7l = —00

where {£n(α>), n = 0, ±1, ±2, •} is an orthogonal sequence in L\Ω) with
Σll£»(β>)||2 < °°> and the series on the right hand side of (7.4) is LZ(Ω)
convergent for each t.

Writing ||£n(α>)||! = αn, the covariance function p(u) is given by

(7.5) p(u) = Σ <Wiw .
7l = —00

αn Ξ> 0. p(u) is indefinitely diίferentiable if and only if

(7.6) Σ \n\"an< °° , for all k = 0,1, 2, .
7l = —00

We can show that if Cn(α>) is the Fourier coefficient of X(t, ω), then

(7.7) ζn(ω) = Cn(ω), a.s. ,

for all n. This is easily shown from

E\Cn(a>) - ίn(
N

2π J-"x 7 ~'~ "' 2π J-*5r

for JY^> \n\, which is seen to converge to zero as N—> oo.
We also mention the well known theorem of Carleman that the class

C(mJ is quasianalytic if and only if

(7.8)

where

(7.9) Γ(aO = sup(&Vm4), s^ l

We need two lemmas.

LEMMA 7.1. C2(U ^8 quasianalytic if and only if

S °°1n<r Π^ ( Ύ\ίyJG •*• 1 V*Λ/'/ 3ΛΛ(fa = 00

i X2

where

(7.11) Z\(aO = sup(a?fc/ίn2) , » ̂  1

This was given in Ivanova [9],

LEMMA 7.2. C2(ZJ is quasianalytic if and only if C(ϊi'+ι) is
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analytic.

PROOF. We note that (7.10) is equivalent to

(7.12)

for some c ̂  1, since 2\(#) is a nondecreasing function. Now choose c
to be greater than max(l, (IJ10)

1/2). Then for x ̂  c,

- supteVZt'2) = *T(x) ,

where

T(aO = supίaVZl'ii)

from which we readily see that (7.12) is equivalent to

(7.13)

This shows Lemma 7.2 in view of Carleman's theorem.
We now turn to the proof of Theorem 7.1. Prom the assumption

that p(u) 6 C2(ίn),

(7.14) I^(O)I -^Σ^' α* ^ AK*ln , n = 0,1, 2, - .

We may obviously suppose K>ί.

for large m, for all n (o depends on n) and hence from (3.6) with φ = ίf

r — r' = 2, we have that there is a set Ω^c.Ω with P(Ω1) = 1, such that

(7.15) Σ | fc | " l&(ω) |< - ,
n=—oo

for each n = 0,1, 2, for ω e Ωt.
Define

) = Σ
fc = -00

Then we see that JC0(t, α>) is a modification of Z(ί, ω), because the right
hand side series converges in L\Ω) to X(t9 ώ) for each t. X0(t, ω) is,
for a)eΩ19 infinitely many times differentiate and
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χM(t, ft)) = Σ (iΛ)"

Hence, for (oeΩlf

sup \Xj»\t,α>)|2g Σ I*I" !&(<»)I-
fe [—τr, j r ] fc =—<χ>

We, therefore, see

P( sup |iί«>(ί, <0)| ^ AJΓ ZSΛ ^ P( Σ \k\n\
\ίe[— ;r,?r] / \fc=-oo

which is, because of the Chebyshev inequality, not greater than

—l &Σ I*!'2 Σ | fc
fc*0 fc^O

Z - Z-ii Σ I fc|2(n+l)αft ̂&=o

by (7.14), where C is an absolute constant. We therefore have

Σ P( sup |J3">(ί, α>)| ^ ΛίΓ ZiΐΛ < - .
n=0 \ie[-jr,JT] /

Hence by the Borel-Cantelli lemma, the event inside the brace takes place
only finite times for ω of some Ω2( e ΛJ with P(Λ2) = 1. Hence for α> e
β2 there is an nQ(ω) such that

(7.16) sup \Σ!T}(t, ωϊl^
t e [ — f f , f f ]

for 7i ̂  n0(ω). Writing

π^7i0(α>

we have that (7.16) with K = K(ώ) holds for ωeΩ2 and for all n. This
together with Lemma 7.2 completes the proof of Theorem 7.1.

ίΓ(α)) - max \K, sup Γ sup | JΏ">(ί,
V π^7i0(α>)Lίe[-jr,;r]
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