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1. Introduction. Let X be a compact Hausdorff space and let B(X)
denote the Banach lattice of all real-valued bounded functions on X with
the supremum norm || ||. C(X) denotes the closed sublattice of B(X)
consisting of all real-valued continuous functions on X. Let A be a linear
subspace of B(X) and let [Ta>f, aeD,\eΛ} be a family of bounded linear
operators of A into B(X), where D is a directed set and Λ is an arbitrary
index set. The family {Tajλ} is called an approximation process on A if
for every feA,

(1) lim || Tβf2(/) - /1| - 0 uniformly in λ e Λ
a

([23], cf. [21], [22]).
In this paper, we establish a theorem of Korovkin type with respect

to the convergence behavior (1) for positive linear operators of C(X)
into B(X} and give a quantitative version of this result under certain
requirements.

Such problems are now classical for the usual convergence in C[α, 6]
with [α, b] being a finite closed interval of the real line R; an excellent
source for references and a systematic treatment of quantitative Korovkin
theorems for positive linear operators in C[α, 6] can be found in the book
of DeVore [3]. Also, for the multi-dimensional case see Censor [2], and
for an infinite dimensional case see the author [20].

Concerning the almost convergence (F-summability) introduced by
Lorentz [12], in C[α, 6] they were studied by King and Swetits [11] and
by Mohapatra [17], whose results were recently extended by Swetits [27]
to a general summability method considered by Bell [1] (cf. [15]), which
includes F^-summability of Lorentz [12], A5-summability of Mazhar and
Siddiqi [16] and order summability of Jurkat and Peyerimhoff [9, 10].

* A preliminary version of this paper was communicated at the Second Edmonton Con-
ference on Approximation Theory, held at the University of Alberta, Edmonton, Alberta,
June 7-11, 1982.
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In [23] a quantitative problem is discussed in the setting of compact
convex subsets of a real locally convex Hausdorff vector space. Here
this will be done in the setting of arbitrary compact metric spaces. Also,
the direct theory of linear approximation processes of convolution opera-
tors and multiplier operators in an arbitrary Banach space setting is
treated by the author [21] (cf. [22]).

The results obtained in this paper give an estimation of the rate of
convergence of various summation processes of positive linear operators,
which can be induced by the method of .B-summability introduced by
the author [22], which recovers that of Bell [1] (cf. [15]). Consequently,
they extend results of the above authors and others to the setting of
arbitrary compact metric spaces and more general summability methods,
and yield a better estimation. Also, the most typical example of appli-
cations is given by the Bernstein-Lototsky-Schnabl functions on compact
convex subsets of a real pre-Hilbert space (cf. [6], [23], [24]).

2. A convergence theorem. Throughout this paper, let {Ta>λ αeD,
λ e A} be a family of positive linear operators of C(X) into B(X) and lx

the unit function on X defined by lx(x) = 1 for all x e X. Let Γ be a
positive linear operator of C(X) into B(X) and W a function in B(X2),
where X2 = X x X denotes the product space of X and X, such that the
function W( ,y) belongs to C(X) for each y e X . Then we define

μ(T, Γ) = sup{| 2W( , lOXiOl; yeX}

and μa,λ(Ψ) = μ(Ta,λ, W) for each aeD and \eΛ.
From now on let Φ be a non-negative function in B(XZ) which satisfies

the following properties:

(2) Φ( ,τ/)eCUO for each yeX;

(3 ) inf {Φ(x, y)\ (x, y) e F} > 0 for every compact subset F of the
complement of the diagonal set Δ = {(ί, ί); t e X} in X2.

REMARK 1. If there exists a non-negative function GeC(X2) such
that 0 < G(x, y) ^ Φ(x, y) for all (x, y) e X2 with x Φ y, then (3) always
holds. Hence, if Φ is a non-negative function in C(X2) satisfying Φ(x, y) > 0
for all (x, y) e X2 with xΦy, then (2) and (3) are fulfilled.

LEMMA 1. Let T be a positive linear operator of C(X) into B(X).
Then μ(T, Φ) = 0 implies T(f) = fT(lz) for all f e C(X). If, furthermore,
Φ(y, y} = 0 for all y eX, then the converse is also true.

PROOF. Let W be a function in C(X2) which vanishes in Δ and let
ε > 0 be given. Then for each point (t, t) e A, there exists a neighbor-
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hood Vt of (ί, t) in X* such that \W(x, y)\ < ε for all (x, y} e Vt. Let F
denote the complement of \J{Vt-yteX}. Then F is a compact subset of
the complement of Δ. Let

m = inf {Φ(χ, y); (x, y) e F} and M = max {| ?Γ(aj, #) |; (#, T/) 6 F} .

By condition (3), m > 0 and consequently, we obtain

\V(x9y)\ <ε + (M/m)Φ(x,y}

for all (x, i/) 6 Jf2. Thus, since T is positive and linear, it follows that

( 4 ) I 2W( , »))(»)! ^ eT(lx)(y) + (M/m)T(Φ( ,

for all yeX. If μ(T, Φ) = 0, then (4) reduces to

which implies Γ(?Γ( , #))(#) = 0. Now let feC(X) and take Ψ(χ9y) =
/(») - /(»)- Then for all » 6 -Γ, we have Γ(/ - / (y)lχ)(y) = 0, which
implies T(/) = /Γ(lx). Also, if Φ(yf y) = 0 for all y e X and Γ(/) = /Γ(lz)
for every /eC(JSΓ), then Γ(Φ( , »))(») = Φ(τ/, »)Γ(1Z)(») = 0, and so

, Φ) = 0. q.e.d.

LEMMA 2. I/ ίfee?*e exisίs α?ι element aQeD such that

( 5 ) sup {|| TΛtλ(lz) \\ 9a^a0,aeD,\eΛ}<oo

and if

( 6 ) lim μayλ(Φ) = 0 uniformly in \eΛ ,
a

then for every W 6 C(X2) satisfying Ψ(y, y) = 0 /or αZi y e JΓ,

( 7 ) lim μa,λ(Φ] — 0 uniformly in \eA.
a

PROOF. Let ε > 0 be given. Let m and M be as in the proof of
Lemma 1. Putting T = Ta>λ in (4), and taking the norm, we have

μatλ(W) ^ ε\\ Tatλ(lx)\\ + (M/m)μa,λ(Φ) ,

which together with (5) and (6) implies (7). q.e.d.

REMARK 2. If Φ(y, y) = 0 for all y 6 X and

lim || Tatλ(Φ( , y)) - Φ( , y) \\ = 0 uniformly in λ 6 A and y e X ,
a

then (6) holds.

THEOREM 1. // (6) holds and if there exists a strictly positive func-
tion geC(X) such that
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( 8 ) lim || Tayλ(g) — g \\ = 0 uniformly in λ 6 A ,
α

then {Ta^} is an approximation process on C(X).

PROOF. There exists a constant C> 0 such that g(x) ̂  C for all
x 6 X. Thus for all α e D and all λ e Λ, we have

which together with (8) gives (5). Now let / e C(X) and define the func-
tion ψ on X2 by

Then F belongs to C(Z2) and Ψ(y, y} = 0 for all y e X Therefore by
Lemma 2, (7) implies

( 9 ) lim || Γβf,(/) - (//flOTβ|2(flO || = 0 uniformly in λ e Λ .
α

Also, for all α e D and all \e A we have

(10) || Γβ,2(/) - / H ^ | |//ff || II Γβf2(flr) - 0|| + || Γα,,(/) - (//flr)Γβ ia(flr)| | ,

which establishes the desired result by (8) and (9). q.e.d.

COROLLARY 1. Under the hypotheses of Remark 2, {Ta)λ} is an ap-
proximation process on C(X).

Indeed, (8) is satisfied with g = Φ( , j/J + Φ( , τ/2), where τ/t and yz

are two distinct points of X.

COROLLARY 2. // (6) holds and if

(11) lim || Ta>λ(lx) — 1* II — 0 unformly in λ e Λ ,
a

then {Ta>λ} is an approximation process on C(X).

In view of these results and the classical Korovkin theory on the con-
vergence of positive linear operators, we make the following definitions:

DEFINITION 1. A subset S of C(X) is called a Korovkin test system
(or, briefly, KTS) in C(X) if for any family {Lβ§i; a e D, λ e A] of positive
linear operators of C(X) into B(X), the relation

lim || L«tλ(g) — g\\ = 0 uniformly in λ 6 A
a

for every geS implies the relation

lim || La>λ(f) - f || = 0 uniformly in λ e Λ
a

for every feC(X).
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DEFINITION 2. A finite subset { f l 9 f 2 9 ••-,/*} of C(X) is called an
extended Korovkin test system (or, briefly, EKTS) in C(X) if there exists
a subset [al9 α2, , αm} of B(X) such that for all x, y eX,

Φ(χ, v) = Σ ̂ (irt/iίaO ^ 0 , Φ(», i/) - 0
i=l

and (3) is satisfied.

We shall now mention some examples of Φ(x9 y), (x9 y) e X2.
(1°) Let

(12) Φ(x, y) = Σ <*,(»)/<(&) ,
ΐ=l

where αέ is real-valued function on X and fteC(X)9 such that Φ is a
non-negative function in B(X2) satisfying (3). Note that (2) always holds.
If (6) holds, then the fact that for i = 1, 2, , m,

lim || Tα,;(/,) -/Jl = 0 uniformly in λ e Λ
α

implies that for every feC(X),

lim || T«,X/) - / 1| = 0 uniformly in λ e Λ .
a

In fact, (8) is satisfied with g = Φ( , j/J + Φ( , τ/2), where τ/x and τ/2 are
two distinct points of X, and so the statement follows from Theorem 1.
It may be remarked that this extends the result of Lorentz [14; Chap.
1, Theorem 1] on the usual convergence to the more general convergence
behavior (1) in a weaker condition (cf. [14; Footnote on p. 7]). Also,
by Corollary 1, if [fί9f29 ••-,/»} is an EKTS in C(X)9 then it becomes a
KTS in C(X). For example, if X = Xr is a compact subset of Rr, then
the set

Kr = [LZ9 el9 e29 , er, el + el + + el}

is an EKTS in C(Xr), where ei denotes the i-th coordinate function on
Xr9 i.e., et(xί9 xz, - , xr) — xt. Also, if X — Yr is the r-dimensional torus,
then the set

or = {Ijf, Cί9 C2, ' *, Cr, Sl9 S29 * * *, Sr;

is an EKTS in C(Yr)9 where d(xl9 x29 , xr) — cos xi and s^ ,̂ αj2, , xr) —
sin «<. Consequently, Kr and Sr are Korovkin test systems in C(Xr) and
in C(Yr), respectively. This is well-known for the usual convergence
and the almost convergence due to Lorentz [12]; see, for instance, [2],
[3], [11], [14], [17]. Furthermore, these results can be extended to the
following more general situation: Let {gl9 gz, •••,</,.} be a finite subset
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of C(X), which separates the points of X. Then the set

K = {!*, 0ι, 92, , gf9 9l + $ + + gl]
is an EKTS in C(X). Thus K is a KTS in C(X) (cf. [23]). Indeed, with
the help of the function

Φ(s, v) = Σ (»«(<*) - 9i(yW , 0*, ?/) e X 2 ,
i=l

we see that ίΓ is an EKTS in C(X).
(2°) Let (X, d) be a compact metric space. Let

Φ(x, y) = u(d(x, »)) ,

where % is a function of [0, oo) into itself such that Φ is a function in
B(X2) satisfying (2) and (3). It may be remarked that if u is a strictly
increasing continuous function on [0, oo) with u(Q) = 0, then (2) and (3)
are automatically satisfied. For example, the case where u is defined
by u(t) = tp, p > 0, may be important (cf. (3°), (4°)).

(3°) Let X be a compact subset of a normed linear space with norm

l l l l Let

Φ(x,y) = \\x - y\\p, p>0 .

(4°) Let (H, < , •» be a real pre-Hilbert space and X a compact
subset of H. Let

#(X y) = <> - y, x - y} .

We define the functions

e:X-*[Q, oo) and τafλ:X->R

by e(y) — (y,y} and τa>λ(y) = 2τ«,λ« , y}}(y}, respectively. Note that if
(11) holds and if

lim i| TUtλ(e) — e\\ — 0 uniformly in \eA,
a

and

(13) lim | |τ a ) λ — e\\ =0 uniformly in λ6 A ,
a

then (6) holds, and so by Corollary 2, {Ta>λ} is an approximation process
on C(X). For example, one takes H = Rr with the usual inner product

r

<B, 2/> = Σ »i2/i , X = (X19 $2, ' , »r) f I/ = (Vl, 1/2, ', 2/r) -
i=l

Then e = el + el + - + el, and if, for i = 1, 2, , r,

lim || jPβ,j(β<) — e< | | = 0 uniformly in \eΛ ,
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then (13) holds. Consequently, Kr becomes again a KTS in C(X).

REMARK 3. The results obtained in this section can be reformulated
with respect to pointwise convergence and the following localization
principle holds: Let y e X. Suppose that

lim μa>λ(Φ\ y) = 0 uniformly in λ e A ,
α

where

If feC(X) vanishes in a neighborhood of y, then

lim TUtλ(f)(y) = 0 uniformly in λ e Λ .
a

3. A quantitative theorem. In this section, it will be assumed that
X is a compact metric space with metric d(x9 y). We give here a quan-
titative version of Theorem 1 with the rate of convergence, using the
modulus of continuity of approximating functions /, which can be defined
as the function

α>(/, δ) = sup {| /(a) - f(y) |; x, y e X, d(x, y) £ δ} .

For each feB(X)9 <o(f, •) is a non-decreasing function on [0, oo) with
α>(/, 0) = 0, and / e C(X) if and only if limβ_0+ α>(/, δ) = 0. Also, for each
δ 2> 0, α)( f δ) is a seminorm on BOX").

In order to achieve our purpose it is always supposed that the fol-
lowing condition holds:

(14) There exists a constant η > 0 such that α>(/, ξδ) <: (1 + ηξ)ω(f, δ)
for all / 6 B(X) and all ξ, δ > 0.

The following lemma gives sufficient conditions such that (14) holds
for η — 1, which can be more convenient for later applications.

LEMMA 3. The following statements hold:
(i) Suppose that d is convex, i.e., it has the property that if

d(xf y) = α + δ, where a, b > 0, £/&β% ίfeere exists a point zeX such that
d(x, z) = a and d(z, y) = 6. ΓΛe^ (14) ΛoWs for η = 1.

(ii) Lβί X be a compact convex subset of a metric linear space Y
with metric d(x, y). Suppose that d is invariant, i.e., d(x + z, z + y} =
d(x, y} for all x, y, z e Y, and that the function d( , 0) is starshaped, i.e.,
d(βx, 0) ̂  /3(Z(a?, 0) for all xeY and all β with 0^/3^1. Then (14)
holds for η = 1.

PROOF, (i) is proved dy Gonska [4; Satz 6.2] and the proof of (ii)
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is similar. Indeed, for every natural number n we have ω(f, nδ) <;
nω(f, δ), from which (ii) follows. q.e.d.

It may be remarked that if X is as in Part (ii) of Lemma 3 with d
being invariant and if d(βx, 0) = βd(x, 0) for all x e Y and all β with
0 < β < 1, then d is convex. Gonska [4] obtained a quantitative theorem
of Korovkin type in the setting of the metric convexity (cf. [19], [25;
Sec. 8.8]). Also, Jimenez Pozo [7] introduced the concept of a coefficient
of convex deformation in a metric space. This concept gives a charac-
terization of the metric convexity and yields the condition (14), and is
used to obtain a generalization of quantitative theorems of Korovkin
type (see also [8]).

From now on let Φ be a non-negative function in B(X2) which satisfies
(2) and the following condition:

(15) There exist constants q ̂  1 and K > 0 such that for all (x, y) e X2

with x Φ T/, dq(x, y) ̂  κΦ(x, y), where dq(x, y) - (d(x, y)}q on X\

Condition (15) already implies (3) (see, Remark 1), and so the results
obtained in Section 2 hold.

LEMMA 4. Let L be a positive linear functional on C(X). Let yeX
and feC(X). Then we have

(16) I L(f) - f(y)L(lx) \ ̂  ω(f, «){L(1X) + 8^(ηκ)L(Φ( - , »))}

for every δ > 0.

PROOF. Let x be an arbitrary point of X. If d(x9 y) > δ, then it
follows from (14) and (15) that

(17) I /(a?) - f(y)\ £ α>(/, δ){l + η(d(x, y)/δ)} ^ ω(f, S){1 + η(d*(x, y)/δ«)}

rg ω(/, δ){l + δ-*(ηκ)Φ(x, y)} .

Obviously, (17) holds whenever d(x, y) ^ δ, and consequently, we have

|/ - f(y)lz\ £ ω(f, δ){lx + *- )̂Φ( f »)} .

Applying L to both sides of this inequality and using the positivity and
the linearity of L, we obtain (16). q.e.d.

As an immediate consequence of Lemma 4, we have the following.

LEMMA 5. Let T be a positive linear operator of C(X) into B(X).
Let yeX and feC(X). Then we have

for every δ > 0.
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Prom now on we also suppose that for each a&D,

(18) βup{ | |Γ.. 2 (l*)l l ;λeΛ}<oo.

For each α 6 D and / e C(X), let

III Ta(f) - /HI = sup {|| Γ..,(/) - f \\;\e Λ ] ,

which is finite by (18). Note that {Γα,j} is an approximation process on
C(X) if and only if

lim || I Γ.(/) - / 1 1| = 0 for all / e C(X) .
a

We are now in a position to recast Theorem 1 in a quantitative form
as follows.

THEOREM 2. Let g be a strictly positive function in C(X) and let
ε > 0. Then for all aeD and all f e C(X), we have

(19) | | |Γ.(/)-/lll

£ I I //fir | | III Ta(g) - fir III + ||//fir||Cβ(β, q)a)(g, (ηκΓεμa(Φ, q»

+ Ca(ε, q)ω(f, (ηκΓ*μa(Φ, g)) ,

where

' Ca(ε, q) = sup {|| Γβιi(lz) + 5~"lx \\;\&Λ}

and

μa(Φ, Q) = (sup {/!..,(«); λ e ̂ })1/? .

In particular, if Γα,j(lί) = 1̂  /or αϊί α e D and all \eΛ, then (19)
reduces to

III Γβ(/) - /HI <Ξ II //fir I I HI Ta(g) - g\\\ + \\f/g\\(l + e~^ω(g, (ηWeμAΦ, g))

+ (1 + s-')α)(/, (ηicr sμJίΦ, g)) .

PROOF. By (10), we have

(20) HI Γβ(/) - /HI ^ | | // f l f | | HI Ta(g) - g\\\ + Ka(f, g) ,

where

*.(/, fir) = sup {|| Γβlί(/) - (//fir)Γ.,2(fir) ||; λ e ̂ } .

Since

/(*) - (/(ι0/0(ιO)fir(aO = /(*) - /(y) + (f(y)la(y)Mv) - a(χ)}
for all x,yeX, we have

- f(y)Tttι,(lΣ)(y)
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Therefore, taking T = Ttttλ in Lemma 5, we obtain

\f(y)/g(y)\\Tatλ(g)(y) -

f2(Φ( ,

^ ω(f, δ){Γβ.2(lχ)(v) + (ηκ)(μa(Φ,

If μα(Φ, (?) > 0, then take δ = (ηκ)l/qεμa(Φ9 q) in this inequality. Then
we have

and so

II Γβi2(/) - (f/g)Tatλ(g)\\ ^ ω(/f (ηιtf»eμJίΦ, ϊ))ll Γβ§a(lχ) + β- lχ||

+ l l// f l f | |ω( f l r f Wεμ^Φ, q))\\ Γβ§a(lχ) + e- lχ|| .

Thus we conclude

#*(/, fir) ̂  Cβ(β, ϊ)ω(/f (ηκr eμΛ(Φ, q)) + \\f/g\\Ca(s, q)ω(g, (r}icΓgεμ«(Φ, ί)) ,

which together with (20) establishes (19). If μα(Φ, #) = 0, then taking
Γ = Γ«,A in Lemma 1, we have that Tβ,λ(Λ) = hTatλ(lz) whenever h belongs
to C(X). Hence (10) reduces to

and so

This also implies (19). q.e.d.

COROLLARY 3. Let ε > 0. Then for all aeD and all f e C(X), we
have

(21) HI T.(/) - /HI £ H / 1| HI Γ.(lχ) - lχ| H + Cβ(ef q)ω(f, Wqεμ«(Φ, ί))

In particular, if Γβ|ί(lχ) = lz for all aeD and all \eΛ, then (21) re-
duces to

III Γβ(/) - / H I ^ (1 + ε

REMARK 4. Theorem 2 and Corollary 3 are applicable to Φ considered
in Example (1°). In particular, for an EKTS {/, /2, - , /J in C(Σ) with
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Φ taking the form of (12) and satisfying (15), one can estimate the rate
of convergence of ||| Ta(f) - / I I I , / e C(X), in terms of those of ||| Γβ(/,) -
/ i l l ) , i = 1, 2, •••, m, since

In view of Examples (2°) and (3°), we have the following.

THEOREM 3. Let g be a strictly positive function in C(X). Let ε > 0
and p ^ 1. Then the conclusion of Theorem 2 holds for Φ — dp, q — p
and K = 1.

COROLLARY 4. Let ε > 0 and p^ί. Then the conclusion of Corol-
lary 3 holds for Φ = dp, q = p and Λ; = 1.

Concerning an estimation of the rate of convergence of {Ta>λ} con-
sidered in Example (4°) one can assert:

THEOREM 4. Let X be a compact convex subset of a real preΉilbert
space with inner product < , •). Let ε > 0. Then for all asD and all
f 6 C(X), we have

(22) HI Ta(f) - /HI ^ || / 1| H I T.(l,) - 1,||| + Cβ(e)α>(/, εμ.) ,

where
Cβ(e) = sup{|| T.M + 6-Ίχ||; λe.Λ}

and

with metric d(x, y} = {x — y, x — #>1/2. In particular, if Γβfi(lz) =
for all aeD and all \eΛ, then (22) reduces to

PROOF. Taking p = 2, this follows from (ii) of Lemma 3 and Corol-
lary 4. q.e.d.

REMARK 5. Let e and τa>λ be as in Example (4°). Then we have an
estimation of μa:

(23) μl <, ||*|||||Tα(lx) - lx||| + |||Γβ(β) - e\\\ + 2τa(e) ,

where
τa(e) = sup{||τM -e\\-,\eA}.

In particular, if Ta>λ(lx] = lx and T«,;« , y}} = < , ι/> for all αe D,
and all yeXy then (23) reduces to
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4. ^-summation processes of positive linear operators. Let N
denote the set of all non-negative integers. Let J^ = {A(λ)-,\eΛ} be a
family of infinite matrices Aω = (a(

n^)ntmeN of real numbers. A sequence
{Lm}meN of bounded linear operators of C(X) into B(X) is called an j&-
summation process on C(X) if (Lm(f)} is j^-summable to / for every
feC(X}, i.e.,

(24) Hm Σαίi>L.(/)-/ = 0 uniformly in λ e Λ ,

where it is assumed that the series in (24) converges for each nf λ and
/ ([23], cf. [22]).

We shall now mention some examples of A(λ) = (αiΐ)ntWβtf
(5°) Given a matrix A, if A(λ} — A for all λ e Λ, then j^-summability

is just the usual matrix summability by A.
(6°) Let Q = {qω;\eΛ} be a family of sequences q(λ} = {g^Lβ^ of

non-negative real numbers such that

Q«> = g«> + g «> + . . + g<» > 0

for all w e AT and all λ 6 Λ. Let

α£ = ίi'-WQi2) for O^m^n
= 0 f or m > ^ .

Then j^-summability is called a (JV, Q)-summability. Clearly, if for a
sequence {qm}meN of non-negative real numbers with q0 > 0, one takes
Q(m = ίm for all meN and all λ 6 Λ, then (ΛΓ, Q)-summability reduces to
the Nδrlund summability. Also, a typical example of this type is the
following: Let Λ be a subset of [0, oo) and β > 0. Let q£ = A^-1',

where A^ - (m^ τ), τ > -1. In particular, if A = {0}, then this

method reduces to the Cesaro (C, /3)-summability of order β.
(7°) Let Λ be subset of (0, <χ>) and # > -1. Let

αS = A*i»A£lAy™ for 0 ̂  m ^ ̂

= 0 f or m > n .

(8°) Let Λ be a subset of [0, 1], and let

]λm(l - λ)n~m for 0 ̂  m ̂  n
\m/

= 0 f or m > n .

(9°) Let 4 be a subset of [0, oo), and let

αϋ = exp( —
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(10°) Let A be a subset of [0,1), and let

-xY^Λ, (1. — λ)
m

(11°) Let Λ be a subset of [0, oo), and let

in + m - 1\
α£ - λ*(l + λ)~— .

\ m /

(12°) If one takes Λ = N, then j^-summability reduces to that by
Bell [1] (cf. [15]). This method includes F-summability (almost conver-
gence method) and ίVsummability of Lorentz [12], Ajs-summability of
Mazhar and Siddiqi [16] and order summability of Jurkat and Peyerimhoff
[9, 10].

It may be remarked that all the matrices given in Examples (6°)-
(11°) satisfy that αS ̂  0 for all n, m, λ, and Σϊ=oα«i = 1 f°r eachί n

and λ. Also, concerning detailed statements for j^-summability methods
in arbitrary Banach spaces one may consult [22; Sec. 4].

Let J^ = {(a(n^)ntmeN]\eA} be a family of infinite matrices of non-
negative real numbers and {Lm}meN a sequence of positive linear operators
of C(X) into B(X) such that for each n e N and each λ e Λ,

m=0

Furthermore, for each neN, \eΛ and f e C ( X ) 9 let
00

/O£\ /TT / j?\ ^SΓ"1 (λ) T / Λ\

n, ^=o nm m,

which is well-defined by (25), and belongs to B(X).
Consequently, under the above setting all the results obtained in the

preceding sections are applicable to the family {Tn)λ\, with D = N. Thus
our results extend the results of Censor [2], King and Swetits [11],
Mohapatra [17], Mond [18] and Swetits [27] to the setting of arbitrary
compact metric spaces and more general j^-summability methods. More-
over, the following example will show that our estimations can be sharper
than theirs:

(13°) Let X = [α, 6] be a finite closed interval in R with the usual
metric d(x, y} = \x — y\, and let p ^ 1. Let {Z/J^i be a sequence of
positive linear operators of C(X) into B(X) such that Ln(lz) = lx for all
n > 1 and

(27) Ap = sup {npμ(Ln, d?*}\ n ̂  1} <
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Then it follows from Lemma 3 and Corollary 4 that for all n ̂  1, and
all / 6 C(X\

\\Ln(f) - /|| ^ inf {(1 + ε-2<>(/, e(μ(Ln, ώ2*))1/2*); ε > 0}

^ inf {(1 + ε-2*)α)(/, e(A,/w')l/ϊ*); ε > 0}

For example, take X = [0, 1], and let Ln, n ^ 1, be the Bernstein opera-
tors on C(X), i.e.,

- Σ /(i/
<=o

Then Ln(lz) = 1̂  for all n ^ 1, and (27) is satisfied (see [13; p. 14 ff]).
We have Al = 1/4, and so

(28) ||Ln(/)~/||^(5/4X/,^-1/2)

for all n ^ 1 and all / 6 C(X). This is the well-known result of Lorentz
[13; Theorem 1.6.1], which can also be an immediate consequence of Mond
[18]. Also, we have A2 = 3/16, and so (28) can be sharpened further as

It may be remarked that, by the result of Sikkema [26],

inf {Ap\ p ̂  1} ̂  0.0898873

The following result can be an immediate consequence of Theorem
4, and is more convenient for later applications.

COROLLARY 5. Let X and ε be as in Theorem 4. Let j^ = {(αίi)n,we^;
λ e A} be a family of infinite matrices of non-negative real numbers such
that Σm=0»nm = 1 for all neN and all λ e Λ . Let {Lm}meN be a sequence
of positive linear operators such that Ln(lx) = lz for all neN. Then
the conclusion of Theorem 4 holds for D = N, TΛ}λ = Tntλ, which is defined
by (26).

5. Bernstein-Lototsky-Schnabl operators. Let S be a linear subspace
of C(X) containing lz and T a Markov operator on C(X)9 i.e., a positive
linear operator of C(X) into itself with T(1Σ) = 1Σ. Given a point x e X,
a Radon probability measure vm on X is called a Γ(S)-representing mea-
sure for x if

T(f)(x) = \ fdvx
JX

for all / 6 S (cf . [5]).
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From now on let X be a compact convex subset of a real pre-Hilbert
space with inner product < , •>, and let A(X) denote the space of all
real- valued continuous affine functions on X. Let V = { Vn}n^ be a
sequence of Markov operators on C(X), %S(V} = {vXtn; n^l, x 6 X] a family of
Radon probability measures on X such that vXtn is a Fn(AC3Γ ))-representing
measure for x, P = (pnj)n,i*ι an infinite lower triangular stochastic matrix,
^ = {#*; 8 € -X"} a family of points of X, and p = {/on}n^l a sequence of
functions mapping X into [0, 1]. Then we define

where et denotes the Dirac measure at t, and

πn,P: Z
n -» X by (a?lf a?2, , & „ - »

Given a function / 6 C(JC ), the n-ih Bernstein-Lototsky-Schnabl func-
tion / on X with respect to ^(F), P, f and p is defined by

([23], cf. [6], [24]).

LEMMA 6. Suppose that Vn(( 9 y}} = < , y} /or αϊϊ ^^1 and all
y sX. Then the following statements hold:

( i ) // / belongs to A(X\ then for all n ^ 1 and all x e X, we have

Bn(f)(x) = Σ P.,Λ(aO W)(aO + Σ 3>.X1 -

particular, for all n ^ 1 αm£ αίί x, y e X, we have

= > + Σ p»χι - Λ(

( ii ) If yβ = x for all xeX, then for all n ;> 1 cmd αϊϊ xeX, we have

(29) βn(β)(a?) = Σ pSy{ft(α?)^iy(β) + (1 - ρfc))Vj(e)(x)} + (1 - Σ riX*) ,

where e(x) = <ίc, x> /or αϊϊ x e JC.
(iii) I/ pn = lx /or αίϊ w ^ 1, ίfce^ (29) reduces to

Bn(e)(x) = Σ J*Λ» + (1 - Σ PiyX»)
ίέl J^l

This follows by immediate computations.
Let J^ = {(αiίi)ntme^;λ6^} be a family of infinite matrices of non-

negative real numbers such that Σm=0 αiϊ < °° for each n and λ. For
each weN, λ e Λ and feC(X), let

(30) Un.λ(f) = αS/ + Σ α£B.(/) ,
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which belongs to B(X) since each Bm is a positive linear operator of C(X)
into B(X) with Bm(lz) = lr.

It follows that in view of Corollary 2 and Example (4°) if

lim || J7nt;(lz) — Ijr || = 0 uniformly in \eA
Λ-*00

and

lim μ( UΛfi9 <f) = 0 uniformly in λ 6 Λ ,
7l->00

where d(a?, y) = (x — y,x — y}1/2, then

lim || C7n,;(/) - / 1| = 0 uniformly in λ e Λ
71— »00

for every feC(X) (cf. [23; Theorem 3]). In particular, if lim^ μ(JBn,
(ί2) = 0, then we have lim^ \\Bn(f) - /|| = 0 for all feC(X).

Concerning the rate of convergence we have the following.

THEOREM 5. Let jy = ί(αiϊ)»fme^; λe^ί} &e α family of infinite ma-
trices of non-negative real numbers such that Σm=o αi» = 1 /ί>^* βαcfe ^
α^cZ λ. I/eί Z7nιί δe as in (30), awώ /or βac/z, n e N and f e C(X) let

\\\Un(f) - /HI = supίH Z7n,,(/) - f\\;\eΛ} .

Let En(x) = vXyn(e} for every n^l and xeX. Suppose that Fn« , ι/» =
< , 2/) />^* aiϊ w ^ 1> yeX Let e > 0. Tλew ίAβ following statements
hold:

( i ) If yx = x for all xeX, then for all neN and all f e C(X) we
have

(31) HI Un(f) - /HI ^ (1 + ε->(/, eδj ,

( f oo
sup |Σi aϋif .; λ e

l/2

(32) f. - || Σ plάpjEj + (lx - ft) 7/β) - β) II .

(ii) If pn = Ijr /or aϊϊ ^ ̂  1, ί/^e^ for all neN and all f e C(X)
(31) also holds with

(33) f. = IIΣΛX^-β)l|.
ίέl

PROOF. Suppose that 2/3 = 0; for all x e X. Then, by (i) and (ii) of
Lemma 6, we conclude that
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for all neN and all λ e Λ . Thus (31) follows from Corollary 5. The
proof of Part (ii) is similar. q.e.d.

COROLLARY 6. Let En and V be as in Theorem 5, and let ε > 0.
Then the following statements hold:

( i ) If yx = x for all xeX, then for all n ^ 1 and all f e C(X] we
have

(34) || Bn(f) - / 1| ^ (1 + ε

where ξn is defined by (32).
(ii) If pn — lz for all n ̂  1, then for all n^l and all f e C(X)

(34) holds with ξn being given by (33).

REMARK 6. Let the hypotheses of Theorem 5 be fulfilled. Then for
every n^l, we have a simple estimation for δn and ξ^2:

δn^ IM|lrt(sup{J£a<» Σj fc
l/2

ι/2

Hence, if {Σ^iPmjLe^ where poi = 0 for all j ^ 1, is j^-summable to
zero, then lim^oo dn = 0, and so { Unj} is an approximation process on
C(X) by Theorem 5. Note that if j^ is regular (see, [22; Definition 5])
and limra_oo Σ/*ι 3>Sy = 0, then {Σ^ιί>iy}»βjv is J^-summable to zero by
[22; Proposition 5]. Also, if lim^ Σ^i pis = °> tl:ιen linin-oo ξn = 0, and
so for every feC(X}> we have lim^ ||J5n(/) - /|| = 0 by Corollary 6.
This implies that the result of Grossman [6] can be sharpened with the
rate of convergence (cf. [23; Theorem 4]).
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