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1. Introduction. Let X be a compact Hausdorff space and let B(X)
denote the Banach lattice of all real-valued bounded functions on X with
the supremum norm ||-||. C(X) denotes the closed sublattice of B(X)
consisting of all real-valued continuous functions on X. Let A be a linear
subspace of B(X) and let {T, ; a€ D, \ e 4} be a family of bounded linear
operators of A into B(X), where D is a directed set and 4 is an arbitrary
index set. The family {7, ,} is called an approximation process on A if
for every feA,

(L) lim || T,:(f) — f|l =0 uniformly in \xe4

([23], cf. [21], [22]).

In this paper, we establish a theorem of Korovkin type with respect
to the convergence behavior (1) for positive linear operators of C(X)
into B(X) and give a quantitative version of this result under certain
requirements.

Such problems are now classical for the usual convergence in Cla, b]
with [a, b] being a finite closed interval of the real line R; an excellent
source for references and a systematic treatment of quantitative Korovkin
theorems for positive linear operators in C[a, b] can be found in the book
of DeVore [3]. Also, for the multi-dimensional case see Censor [2], and
for an infinite dimensional case see the author [20].

Concerning the almost convergence (F-summability) introduced by
Lorentz [12], in C[a, b] they were studied by King and Swetits [11] and
by Mohapatra [17], whose results were recently extended by Swetits [27]
to a general summability method considered by Bell [1] (cf. [15]), which
includes F',-summability of Lorentz [12], Az-summability of Mazhar and
Siddiqi [16] and order summability of Jurkat and Peyerimhoff [9, 10].

* A preliminary version of this paper was communicated at the Second Edmonton Con-
ference on Approximation Theory, held at the University of Alberta, Edmonton, Alberta,

June 7-11, 1982.
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In [23] a quantitative problem is discussed in the setting of compact
convex subsets of a real locally convex Hausdorff vector space. Here
this will be done in the setting of arbitrary compact metric spaces. Also,
the direct theory of linear approximation processes of convolution opera-
tors and multiplier operators in an arbitrary Banach space setting is
treated by the author [21] (cf. [22]).

The results obtained in this paper give an estimation of the rate of
convergence of various summation processes of positive linear operators,
which can be induced by the method of B-summability introduced by
the author [22], which recovers that of Bell [1] (ef. [15]). Consequently,
they extend results of the above authors and others to the setting of
arbitrary compact metric spaces and more general summability methods,
and yield a better estimation. Also, the most typical example of appli-
cations is given by the Bernstein-Lototsky-Schnabl functions on compact
convex subsets of a real pre-Hilbert space (ef. [6], [23], [24]).

2. A convergence theorem. Throughout this paper, let {T,;; a€ D,
N € A} be a family of positive linear operators of C(X) into B(X) and 1
the unit function on X defined by 1,(x) =1 for all xe€ X. Let T be a
positive linear operator of C(X) into B(X) and ¥ a function in B(X?),
where X? = X x X denotes the product space of X and X, such that the
function 7(-, y) belongs to C(X) for each yc X. Then we define

T, T) =sup{| TT(-, )W |; ¥y € X}

and g, (¥) = #(T,,, ¥) for each ae D and ne 4.
From now on let @ be a non-negative function in B(X?*) which satisfies
the following properties:

(2) (-, y)eC(X) for each yeX;

(3) inf{®d(x, y); (x, y) e F'} > 0 for every compact subset F' of the
complement of the diagonal set 4 = {(¢, t); t € X} in X*.

REMARK 1. If there exists a non-negative function G ¢ C(X? such
that 0 < G(z, y) < O(zx, y) for all (x, y) e X* with x # y, then (3) always
holds. Hence, if @ is a non-negative function in C(X?) satisfying &(x, y) > 0
for all (z, ¥) € X* with z # y, then (2) and (8) are fulfilled.

LEMMA 1. Let T be a positive linear operator of C(X) into B(X).
Then (T, @) = 0 implies T(f) = fT(1x) for all feC(X). If, furthermore,
Oy, y) =0 for all ye X, then the converse is also true.

PrROOF. Let ¥ be a funection in C(X? which vanishes in 4 and let
€ > 0 be given. Then for each point (¢, t) € 4, there exists a neighbor-
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hood V, of (¢,¢) in X* such that |¥(z, y)| < ¢ for all (x,y)c V,. Let F
denote the complement of |J{V,;tc X}. Then F is a compact subset of
the complement of 4. Let

m = inf {O(x, ¥); (x, ¥) e F'} and M = max{|¥(x, v)|; (x, y) e F}.
By condition (8), m > 0 and consequently, we obtain
[P, »)| < e+ (M/m)0(z, y)
for all (x, y) e X% Thus, since T is positive and linear, it follows that
(4) [T, )@)| = eT(1x)(y) + (M/m)T(@(-, ¥))(¥)
for all ye X. If (T, ®) =0, then (4) reduces to
[T, W) = eT1x)(Y) ,

which implies T(@(-, »))(y) = 0. Now let feC(X) and take ¥(zx, y) =
f@) — f(y). Then for all ye X, we have T(f — f(y)lx)(y) = 0, which
implies T(f) = fT(1x). Also, if &(y, y) = 0 for all y € X and T(f) = fT(1y)
for every feC(X), then T(o(-, »))y) = 0y, ¥y)T(1x)(y) =0, and so

w(T, @) =0. q.e.d.
LEMMA 2. If there exists an element a,€ D such that

(5) sup {|| To,(10) [ @ = a,, @€ D, ve 4} < oo

and if

(6) li:n Uar(@) =0 wuniformly in ned,

then for every ¥ e C(X?) satisfying ¥(y,y) = 0 for all ye X,
(1) lim g, ,(¥) =0 wuniformly in red.

PrOOF. Let ¢ > 0 be given. Let m and M be as in the proof of
Lemma 1. Putting T = T,; in (4), and taking the norm, we have

#a,l(w‘) é 8“ Ta,l(lX)” + (M/m)#a,i(@) ’
which together with (5) and (6) implies (7). q.e.d.
REMARK 2. If &(y,y) =0 for all ye X and
lim || T, 2(@(-, ¥)) — ®(+, )|l = 0 uniformly in Med and ye X,
then (6) holds.

THEOREM 1. If (6) holds and if there exists a strictly positive func-
tion g€ C(X) such that



444 T. NISHISHIRAHO
(8) lim || T, :(9) — 9|l =0 wuniformly in xe4d,

them {T,,} is an approximation process on C(X).

ProOF. There exists a constant C > 0 such that g(x) = C for all
e X. Thus for all e D and all xe 4, we have

| Taa0) || = A/O Tei(@)]]

which together with (8) gives (5). Now let f € C(X) and define the func-
tion ¥ on X* by

Ux, y) = f@) — (FW)/g)g(®) .

Then ¥ belongs to C(X?* and ¥(y,y) =0 for all ye X. Therefore by
Lemma 2, (7) implies

(9) lim || Te,i(f) — (f19)Te,(@) | =0 uniformly in red.

Also, for all ¢e D and all A e 4 we have
(10) || Tux() = SN = WS Tai(9) — gl + | Taya(f) — (fl@) Tui(@) |l »
which establishes the desired result by (8) and (9). q.e.d.

COROLLARY 1. Under the hypotheses of Remark 2, {T,;} is an ap-
proximation process on C(X).

Indeed, (8) is satisfied with g = &(-, y,) + (-, ¥,), Where y, and y,
are two distinet points of X.

COROLLARY 2. If (6) holds and if
1) lim || T, (1) — 14| =0 wunformly in \ed,

then {T,.} is an approximation process on C(X).

In view of these results and the classical Korovkin theory on the con-
vergence of positive linear operators, we make the following definitions:

DEFINITION 1. A subset S of C(X) is called a Korovkin test system
(or, briefly, KTS) in C(X) if for any family {L,; @€ D, € A} of positive
linear operators of C(X) into B(X), the relation

lim || L, ;(g) — ¢g|| = 0 uniformly in aed

for every ge S implies the relation

lim || L, ,(f) — f]l =0 uniformly in )e4
for every feC(X).
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DEFINITION 2. A finite subset {f, f, -, fu} of C(X) is called an
extended Korovkin test system (or, briefly, EKTS) in C(X) if there exists
a subset {a,, a,, - --, a,} of B(X) such that for all z, y e X,

0@, 9) = 3 a@f@ 20, 0@y =0

and (8) is satisfied.

We shall now mention some examples of &(x, ), (x, ¥) € X°
(1°) Let

(12) 0z, 9) = 3, 0a)f(@) ,

where a, is real-valued function on X and f;e€C(X), such that @ is a
non-negative function in B(X?) satisfying (3). Note that (2) always holds.
If (6) holds, then the fact that for : =1, 2, ..., m,

lim || T, ,(f) — fi:|l =0 uniformly in Me4

implies that for every f e C(X),
lim || T, ,(f) — f|l =0 uniformly in xe4.

In fact, (8) is satisfied with g = @(-, y,) + @(-, ¥,), where y, and y, are
two distinet points of X, and so the statement follows from Theorem 1.
It may be remarked that this extends the result of Lorentz [14; Chap.
1, Theorem 1] on the usual convergence to the more general convergence
behavior (1) in a weaker condition (cf. [14; Footnote on p. 7]). Also,
by Corollary 1, if {f,, f., -+, fu} is an EKTS in C(X), then it becomes a
KTS in C(X). For example, if X = X, is a compact subset of R", then
the set

Kr:{lX,elyeh "';er;e%'—]—eg—}— A +e3‘}
is an EKTS in C(X,), where ¢, denotes the i-th coordinate function on
X,, i.e., e(x, x;, ---,2,) =2, Also, if X = Y, is the r-dimensional torus,
then the set

Sr = {1.1” Ciy Coy ** ¢y Cpy 815 8y ** 7y S,.}

is an EKTS in C(Y,), where ¢,(x,, 2, - -, #,) = cos x; and s,(x;, &,, - -+, X,) =
sinx,. Consequently, K, and S, are Korovkin test systems in C(X,) and
in C(Y,), respectively. This is well-known for the usual convergence
and the almost convergence due to Lorentz [12]; see, for instance, [2],
[3], [11], [14], [17]. Furthermore, these results can be extended to the
following more general situation: Let {g,, g., ---, 9.} be a finite subset
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of C(X), which separates the points of X. Then the set

K={1X9g1;gZy°“,gngi+g§+ ce +gi}

isan EKTS in C(X). Thus K is a KTS in C(X) (cf. [23]). Indeed, with
the help of the funection

0@, ) = X0 — 9@F, @ veX,

we see that K is an EKTS in C(X).
(2°) Let (X, d) be a compact metric space. Let

O(x, y) = u(d(x, ¥)) ,

where % is a function of [0, ) into itself such that @ is a function in
B(X?) satisfying (2) and (8). It may be remarked that if w is a strictly
inereasing continuous function on [0, ) with «(0) = 0, then (2) and (3)
are automatically satisfied. For example, the case where w is defined
by w(t) = t*, p > 0, may be important (cf. (3°), (4°)).

(83°) Let X be a compact subset of a normed linear space with norm
ll-1l. Let

o, y)=l|lz—yl*, p>0.

(4°) Let (H, (-, -)) be a real pre-Hilbert space and X a compact
subset of H. Let

O, y) =< — Y, x—Y).
We define the functions

e: X — [0, ) and Tt X > R

by e(y) = {y, v) and 7,,;(y) = T.:({-, ¥))(¥), respectively. Note that if
(11) holds and if

lim || T, ;(e) — e|| = 0 wuniformly in \e4,
and

(13) lim||z,; —e|]| =0 uniformly in \e4,

then (6) holds, and so by Corollary 2, {T,;} is an approximation process
on C(X). For example, one takes H = R" with the usual inner product

{2, ¥ =i2=‘ixiyi, T = (T, @y =, %,) s Y= Uy Ysy -, Yr) -

Thene=¢e + e+ -+ + ¢, and if, for 1 =1,2, .-, 7,

lim || T, ;(e;) — e;]] = 0 uniformly in xe4d,
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then (13) holds. Consequently, K, becomes again a KTS in C(X).

REMARK 3. The results obtained in this section can be reformulated
with respect to pointwise convergence and the following localization
principle holds: Let ye X. Suppose that

lim g, ;(®; y) = 0 uniformly in xe4,

where
Lax(P; Y) = Tox(P(-, 1)) -
If feC(X) vanishes in a neighborhood of y, then
lign T,..(f)y) =0 uniformly in ned.

3. A quantitative theorem. In this section, it will be assumed that
X is a compact metric space with metric d(x, y). We give here a quan-
titative version of Theorem 1 with the rate of convergence, using the
modulus of continuity of approximating functions f, which can be defined
as the function

o(f, 8) = sup{| f(x) — fW)|; », ye X, d(x, y) < 0} .

For each fe B(X), w(f, ) is a non-decreasing function on [0, ) with
o(f,0) =0, and feC(X) if and only if lim,.,, @(f, §) = 0. Also, for each
0=0, w(-,d) is a seminorm on B(X).

In order to achieve our purpose it is always supposed that the fol-
lowing condition holds:

(14)  There exists a constant » > 0 such that o(f, £0) < (1 + &)w(f, 9)
for all fe B(X) and all & 6 > 0.

The following lemma gives sufficient conditions such that (14) holds
for » =1, which can be more convenient for later applications.

LeEMMA 3. The following statements hold:

(i) Suppose that d 1is comvex, i.e., it has the property that if
d(xz,¥) = a + b, where a,b > 0, then there exists a point z<€ X such that
dx,2) =a and d(z,y) =b. Then (14) holds for n = 1.

(ii) Let X be a compact convexr subset of a metric linear space Y
with metric d(x, y). Suppose that d is invariant, i.e., dx + 2,z + y) =
d(x, y) for all x, y, z€ Y, and that the function d(-,0) is starshaped, i.e.,
d(Bx, 0) < Bd(x, 0) for all xcY and all B with 0 <8< 1. Then (14)
holds for n = 1.

Proor. (i) is proved dy Gonska [4; Satz 6.2] and the proof of (ii)
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is similar. Indeed, for every natural number » we have w(f, nd) <
nw(f, 6), from which (ii) follows. q.e.d.

It may be remarked that if X is as in Part (ii) of Lemma 8 with d
being invariant and if d(gBz, 0) = Bd(x, 0) for all x€ Y and all 8 with
0 < B< 1, then d is convex. Gonska [4] obtained a quantitative theorem
of Korovkin type in the setting of the metric convexity (cf. [19], [25;
Sec. 8.8]). Also, Jiménez Pozo [7] introduced the concept of a coefficient
of convex deformation in a metric space. This concept gives a charac-
terization of the metric convexity and yields the condition (14), and is
used to obtain a generalization of quantitative theorems of Korovkin
type (see also [8]).

From now on let @ be a non-negative function in B(X?) which satisfies
(2) and the following condition:

(16)  There exist constants ¢ = 1 and £ > 0 such that for all (z, y) € X*
with © # ¥, d'(x, y) < k®(z, y), where d%z, ¥) = (d(x, ¥))? on X2

Condition (15) already implies (3) (see, Remark 1), and so the results
obtained in Section 2 hold.

LEMMA 4. Let L be a positive linear functional on C(X). Let ye X
and feC(X). Then we have

(16) IL(f) — fWL(x)| = o(f, L1y + 67 (Mr)L(O(-, ¥))}
for every 6 > 0.

PrROOF. Let z be an arbitrary point of X. If d(x,y) > d, then it
follows from (14) and (15) that

A7) | f@) — fW)] = o(f, {1 + nd(x, )/0)} = w(f, 6){1 + n(d*(z, ¥)/69)}
=< o(f, {1 + 07(nK)9(x, ¥)} -
Obviously, (17) holds whenever d(z, y) < 0, and consequently, we have
I f — F1lx| £ o(f, {1z + 67(E)D(-, ¥)} -

Applying L to both sides of this inequality and using the positivity and
the linearity of L, we obtain (16). g.e.d.

As an immediate consequence of Lemma 4, we have the following.

LEMMA 5. Let T be a positive linear operator of C(X) into B(X).
Let ye X and feC(X). Then we have

[T () — fFOTADW)| = o(f, I TA(Y) + 67(e) T(P(-, )W)} »
for every 6 > 0.
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From now on we also suppose that for each ae D,
(18) sup {|| To,;(10) [} v e 4} < oo .
For each ae D and feC(X), let
I To(f) — fIUIl = sup{[| Te:i(f) — fll; ne 4},

which is finite by (18). Note that {T,;} is an approximation process on
C(X) if and only if

lim ||| T(f) — Fl =0 for all feC(X).

We are now in a position to recast Theorem 1 in a quantitative form
as follows.

THEOREM 2. Let g be a strictly positive function in C(X) and let
€>0. Then for all acD and all feC(X), we have

19) T — £l
< A T(g) — glll + || f191ICale, Q)(g, (9K)etta(D, @)

+ Cole, Qo (f, (k) et (9, q)) ,
where

Cule, @) = sup {|| Tox(1x) + e7Ue[l; e 4)
and
£a(D, @) = (Sup {tte,:(D); N € A}V .
In particular, if T.;(1x) =1y for all acD and all n€ A, then (19)
reduces to
T — FIll s 1 A9l Telg) — glll + /191X + ey, (7&)*ett(@, @)
+ (L + e o(f, (K)"etta(D, q)) .
Proor. By (10), we have

(20) I T(f) = £l = 1 A9 11 Te(9) — glll + Ku(S, 9)

where
K (f, 9) = sup{|| Tai(f) — (F19) Tai(@) |; M€ 4} .
Since
f@) — (FWg)g@) = f(@) — f@) + (F@)/9w))H9y) — 9(x)}
for all z, ye X, we have

Tea(N)W) — (FW)/9W)) Ta,x(9)(y)
= T (W) — fW) Tas(10)®W) + (FW/9WN9W) Tas(12)¥) — Te2(9)®)} -
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Therefore, taking T'= T,,; in Lemma 5, we obtain

| Te ()W) — (FW/9¥)) T, 2(9)(W) |
S [TeaNW) = FW T (L)W + | F@DIIW) | Tayi(9)¥) — 9¥) T i(12)(W) |
=< o(f, )T x(1x)(Y) + 670K) To o(P(+, ¥))(¥)}
+ [ FW)/9W) (g, N Tes(1x)(¥) + 07 (k) T (D(-, ¥)) (W)}
< o(f, O Te,:(1x)(Y) + (9£)(1£a(@, 9)/0)%}
+ || f1gllo(g, 01 Ta,i(Le)() + (r) (1D, €)/0)} -
If p(0,q) >0, then take 0 = (k)% (®, q) in this inequality. Then
we have
| Tu ()W) = (f @)W Tar(0)) |
= o(f, )" ettl @, N Ta,i(1x)(y) + €77
+ || flg llw(g, (7£)" et @, N Te,x(12)(¥) + 7%,
and so

“ Ta,l(f) - (f/g)Ta,Z(g) ” g w(f) (7]’5)1/‘18#11(¢, q))“ Ta,l(lx) + E_qlx “
+ || flgllw(g, )6t @, )| Tapx(1x) + 1] -
Thus we conclude
K.(f, 9) £ Cule, Qo(f, M) et (D, @) + || f191|Cule, Q) (g, (ME) et (D, Q) ,

which together with (20) establishes (19). If (@, q) = 0, then taking
T = T,,in Lemma 1, we have that T, ;(h) = kT, ;(1x) whenever h belongs
to C(X). Hence (10) reduces to

| Tea(f) = Il = [ A9 Tei(g) — 9l

and so
WTLf) = FUl = [ A9 Telg) — glll -
This also implies (19). q.e.d.

COROLLARY 3. Let € > 0. Then for all a€D and all feC(X), we
have

@) T = Fl = 1A Te(le) — 12l + Cule, DS, (9£)e2(@, @) -

In particular, if T.;(1x) = 1y for all a €D and all N € 4, then (21) re-
duces to

NT) = Flll = A + e (S, (r)"et(D, @) .

REMARK 4. Theorem 2 and Corollary 3 are applicable to @ considered
in Example (1°). In particular, for an EKTS {(f, f,, - -, fa} in C(X) with
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® taking the form of (12) and satisfying (15), one can estimate the rate
of convergence of ||| T.(f) — fl|l, f € C(X), in terms of those of ||| T.(f) —
fillly 1=1,2, -+, m, since

(@, ) = 3, el Tulf) — £l -

In view of Examples (2°) and (8°), we have the following.

THEOREM 3. Let g be a strictly positive function in C(X). Lete >0
and p = 1. Then the conclusion of Theorem 2 holds for ® =d*, g =p
and £ = 1.

COROLLARY 4. Let ¢ >0 and p=1. Then the conclusion of Corol-
lary 8 holds for @ =d*, ¢q = p and k£ = 1.

Concerning an estimation of the rate of convergence of {T,,;} con-
gidered in Example (4°) one can assert:

THEOREM 4. Let X be a compact convex subset of a real pre-Hilbert
space with inner product (-, ->. Let ¢ > 0. Then for all a€ D and all
feC(X), we have

(22) T = £l S NS Ta(lx) — 12l + Cal)o(f, ett)

where
C.(e) = sup {|| Ta,x(1x) + 6714 ||; N € 4}

and
Ve = (SUD {s,2(d"); N € A})'?

with metric d(x,y) = {x — y,x — Y'* In particular, if T.,1z) = 14
for all a€ D and all ned, then (22) reduces to

NTa(f) = Fll = A + (S, etta) -

PrROOF. Taking p = 2, this follows from (ii) of Lemma 3 and Corol-
lary 4. q.e.d.

REMARK 5. Let ¢ and 7,; be as in Example (4°). Then we have an
estimation of p,:

(23) L < llell Il Ta(lx) — Lelll + ||| Tule) — ell] + 27.(e) ,

where
Ta(e) = Sup {”Ta,l - e”; \E A} o

In particular, if T, ,(1x) = 1; and T, ({:, ¥)) =<, y) for all ae D, ne4
and all y e X, then (23) reduces to

te = ||l Tu(e) — ell .
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4. -summation processes of positive linear operators. Let N
denote the set of all non-negative integers. Let &% = {AW;\e 4} be a
family of infinite matrices A® = (a{%)), mex Of real numbers. A sequence
{L,}mery of bounded linear operators of C(X) into B(X) is called an .~
summation process on C(X) if {L,(f)} is ~-summable to f for every
feCX), ie.,

(24) lim

n—ro0

S aB L. (f) — f“ —0 uniformly in red,

m=0

where it is assumed that the series in (24) converges for each 7, A and
S ([28], ef. [22]).
We shall now mention some examples of A = (a{d), mex-
(5°) Given a matrix A, if A® = A for all \ € 4, then 7~summability
is just the usual matrix summability by A.
(6°) Let @ = {g'¥; ne 4} be a family of sequences ¢* = {g¥}nex Of
non-negative real numbers such that
;.1)=Q(§2)+q{2)+ e +q7(;1)>0
for all ne N and all Axe 4. Let
avn = q2./QF for 0Em<Zn
=0 for m>mn.
Then . -summability is called a (N, Q)-summability. Clearly, if for a
sequence {@n}mcy Of non-negative real numbers with g, > 0, one takes
qP = q, for all me N and all A e 4, then (N, Q)-summability reduces to

the Norlund summability. Also, a typical example of this type is the
following: Let 4 be a subset of [0, <) and 8 > 0. Let g = A¢#?,

where A% = (m ,,;: T), > —1. In particular, if 4 = {0}, then this

method reduces to the Cesaro (C, B)-summability of order g.
(7°) Let A be subset of (0, ) and 8 > —1. Let

ald, = AZDALAPY for 0Sm<En
=0 for m >n.

(8°) Let 4 be a subset of [0, 1], and let

ah = <::>7\."‘(1 —A)™ for 0SEm<n

=0 for m >n.
(9°) Let 4 be a subset of [0, ), and let

ad = exp (—n\)(nA)™/m! .
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(10°) Let 4 be a subset of [0,1), and let
a‘g"z‘ = <n + m>)\'m(1 — x)n-{-l .
m
(11°) Let 4 be a subset of [0, «), and let
-1
o = <'” o )ma + )
m

(12°) If one takes 4 = N, then .o/-summability reduces to that by
Bell [1] (ef. [15]). This method includes F-summability (almost conver-
gence method) and F,-summability of Lorentz [12], Az-summability of
Mazhar and Siddiqi [16] and order summability of Jurkat and Peyerimhoff
[9, 10].

It may be remarked that all the matrices given in Examples (6°)-
(11°) satisfy that a@ = 0 for all m, m, N\, and >5_,a'® =1 for each n
and A. Also, concerning detailed statements for .&/~summability methods
in arbitrary Banach spaces one may consult [22; Sec. 4].

Let o7 = {(@}),men; M€ A} be a family of infinite matrices of non-
negative real numbers and {L,}..~ a sequence of positive linear operators
of C(X) into B(X) such that for each n e N and each \ e 4,

(25) 3 0 Lu(to)l| < o .
Furthermore, for each ne N, ne 4 and feC(X), let
(26) T.a(f) = 3 aBLu(f) ,

which is well-defined by (25), and belongs to B(X).

Consequently, under the above setting all the results obtained in the
preceding sections are applicable to the family {T,;}, with D = N. Thus
our results extend the results of Censor [2], King and Swetits [11],
Mohapatra [17], Mond [18] and Swetits [27] to the setting of arbitrary
compact metric spaces and more general . -summability methods. More-
over, the following example will show that our estimations can be sharper
than theirs:

(13°) Let X = [a, b] be a finite closed interval in R with the usual
metric d(x,y) = | — y|, and let p =1. Let {L,},-, be a sequence of
positive linear operators of C(X) into B(X) such that L,(1;) = 1 for all

n=1 and
€19 A, = sup {n*u(L,, d*);n = 1} < o .



454 T. NISHISHIRAHO

Then it follows from Lemma 8 and Corollary 4 that for all » > 1, and
all fe(C(X),
| Lo(f) = fII < inf {(1 + e (S, e(eL,, d**))"); & > 0}
= inf {(1 + e7)w(f, e(4,/n?)"**); € > 0}
< (L+ 4)0(f, n7) |

For example, take X = [0, 1], and let L,, » = 1, be the Bernstein opera-
tors on C(X), i.e.,

L(H@) = 3} £i/m) (?)xf(l — oy

Then L,(1z) =1; for all » = 1, and (27) is satisfied (see [13; p. 14 ff]).
We have A, = 1/4, and so

(28) IL.(f) = fII S (B4l f, n~")
forallm = 1and all feC(X). This is the well-known result of Lorentz

[13; Theorem 1.6.1], which can also be an immediate consequence of Mond
[18]. Also, we have A, = 3/16, and so (28) can be sharpened further as

1L.(f) — £l = 19/16)w(f, n™*7) .
It may be remarked that, by the result of Sikkema [26],
inf {4,; p = 1} = 0.0898873 - - - .

The following result can be an immediate consequence of Theorem
4, and is more convenient for later applications.

COROLLARY 5. Let X and ¢ be as in Theorem 4. Let 7 = {(@%), men;
N € 4} be a family of infinite matrices of mon-negative real numbers such
that Sye_,a® =1 for all ne N and all ne A. Let {L,}..x be a sequence
of positive limear operators such that L,(ly) = 1y for all ne N. Then
the conclusion of Theorem 4 holds for D = N, T,; = T, ; which is defined
by (26).

5. Bernstein-Lototsky-Schnabl operators. Let S be a linear subspace
of C(X) containing 1, and T a Markov operator on C(X), i.e., a positive
linear operator of C(X) into itself with T(1;) = 1;. Given a point z € X,
a Radon probability measure v, on X is called a T(S)-representing mea-
sure for z if

T(5)e) = | _fiv,
for all feS (cf. [5]).



POSITIVE LINEAR APPROXIMATION PROCESSES 455

From now on let X be a compact convex subset of a real pre-Hilbert
space with inner produect (-, -)>, and let A(X) denote the space of all
real-valued continuous affine functions on X. Let V={V,},» be a
sequence of Markov operators on C(X), "' ={v, ,; #=1, x € X} a family of
Radon probability measures on X such that v, , is a V,(A(X))-representing
measure for x, P = (p,;). j=: an infinite lower triangular stochastic matrix,
2 ={y,;x€ X} a family of points of X, and o = {0,},>: a sequence of
functions mapping X into [0, 1]. Then we define

Ve = 0n(@)Vs, + (1 — 0.(®))ey, 0 Vo,
where ¢, denotes the Dirac measure at ¢, and
Tn,pt X"—X by (xly Loy =y xn) - z{ Dni; -
=2

Given a function fe C(X), the n-th Bernstein-Lototsky-Schnabl fune-
tion f on X with respect to ", P, 27 and p is defined by

BP®) = BEDV (@) = | fomad @ i

((23], cf. [6], [24]).

LEMMA 6. Suppose that V.({-,y)) =<, y) for all n=1 and all
yeX. Then the following statements hold:
(i) If f belongs to A(X), then for all » =1 and all x € X, we have

B.(f)=) = 155.‘1 D.;05(2) Vi(f) &) + ,Eél D51 — (X)) Vi(f)¥.) -
In particular, for all n =1 and all x, y€ X, we have
By 0)@) = 23 2ai05(@)<2, ) + 3 Dol — 05(@))<Yer ¥ -
(ii) If y, =« for all xe€ X, then for all n = 1 and all x € X, we have
(29)  B.(e)@) = ’Zzl Da3{05(@)v,,1(e) + (1 — 0i(x)) Vile)w)} + (1 — ,E;ll Dri)e()
where e(x) = {x, x) for all xe X.
(iii) If p, = 1y for all m = 1, then (29) reduces to
B,(e)(x) = ?2:1 DiiVa,i(e) + (1 — ’2;;1 D;)e(@) .

This follows by immediate computations.
Let &% = {(@%)nmex; M€ A} be a family of infinite matrices of non-

negative real numbers such that ., af) < « for each » and \. For
each ne N, ned and feC(X), let

(30) U i(f) = albf + 3 ahBu(f) »
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which belongs to B(X) since each B,, is a positive linear operator of C(X)
into B(X) with B,(1z) = 1;.
It follows that in view of Corollary 2 and Example (4°) if
lim || U, (1) — 14| = 0 uniformly in \e4
and
lim (U, ;, d*) = 0 uniformly in \e4,

where d(x, y) = {x — y, € — y)?, then
lim || U, (f) — f|l =0 uniformly in xe4
for every feC(X) (cf. [23; Theorem 3]). In particular, if lim,.. p(B,,

d’) = 0, then we have lim,_.. || B,(f) — f]| =0 for all fe(C(X).
Concerning the rate of convergence we have the following.

THEOREM 5. Let &7 = {(ad)nmen; ME 4} be a family of infinite ma-
trices of nom-negative real numbers such that Se—,ad =1 for each n
and . Let U,, be as in (30), and for each ne N and feC(X) let

UL — flll = sup {| Uoi(f) — Flls ned}.

Let E () = v, ,(e) for every m =1 and xe€ X. Suppose that V,({-,y)) =

oy for all mn=1, yeX. Let € > 0. Then the following statements
hold:

(i) If y, =z for all x e X, then for all ne N and all feC(X) we
have

(31) NU.() = Flll = QA + eDw(/f, €0,)
where
0, = (sup {21 ale s nE A})m

and
(32) n = | 122; Dni(0;E; + (1x — 0;)Vile) — )] -

(i) If p, =1z for all n =1, then for all ne N and all feC(X)
(31) also holds with

(33) bm = Hg} Pui(E; — e)]| .

PROOF. Suppose that y, = « for all x€ X. Then, by (i) and (ii) of
Lemma 6, we conclude that

#(Un,h dZ) _S.. i; ar(uzle m
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for all e N and all xed. Thus (31) follows from Corollary 5. The
proof of Part (ii) is similar. q.e.d.

COROLLARY 6. Let E, and V be as in Theorem 5, and let ¢ > 0.
Then the following statements hold:

(i) If y, == for all xe X, then for all n =1 and all feCX) we
have

(34) | B.(f) — fll = 1 + e™a(f, e&") »

where &, 18 defined by (32).
(i) If o, =1y for all n =1, then for all n =1 and all feC(X)
(34) holds with &, being given by (33).

REMARK 6. Let the hypotheses of Theorem 5 be fulfilled. Then for
every n = 1, we have a simple estimation for 4, and &v%

el 1/2
0, = |le ||1/2<Sup {MZ:,I ad % Phi N E AD ;
& = el (S, pi
i<l

Hence, if {32 Philmeys Where p,; =0 for all j =1, is ~summable to
zero, then lim, .0, =0, and so {U,;} is an approximation process on
C(X) by Theorem 5. Note that if .o~ is regular (see, [22; Definition 5])
and lim, .. >}, p2; =0, then {3}z Dhajlney I8 7~Summable to zero by
[22; Proposition 5]. Also, if lim, .. >} p2; = 0, then lim,_..¢&, = 0, and
so for every feC(X), we have lim, . ||B,(f) — f|]| =0 by Corollary 6.
This implies that the result of Grossman [6] can be sharpened with the
rate of convergence (cf. [23; Theorem 4]).
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