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Introduction. Let Cn be an ^-dimensional complex Euclidean space.
A biholomorphic transformation g: Cn -> Cn of Cn onto Cn is called a
polynomial automorphism if g and the inverse g~l are given by n poly-
nomials in n variables. We shall denote by Aut (C71) the group of all
polynomial automorphisms in Cn. Let X be a projective algebraic com-
pactification of Cn, let ε: Cn -» X be an inclusion and put A = X — c(Cn).
Then A is a closed subvariety of X. For simplicity, we shall denote
this compactification by (Cn, c, X\ A). Let us denote by Aut (X) the group
of all birational and biregular automorphisms of X, and define a subgroup
Aut (jf; A) of Aut (X) by Aut (X; A) = {g e Aut (J5Γ); £(A) = A}. Then we
have the following theorem.

THEOREM 1. Let G be a finite subgroup of Aut (Cn). Then there
exist a non-singular projective algebraic compactification (Cn, t, X\ A)
and a finite subgroup G of Aut (X-, A) such that r1 o G o c = G, namely
{r1 °goC;geG} = GonCn.

Applying Theorem 1 and Morrow's classification of the minimal nor-
mal compactifications of C2 [13], we shall give an elementary proof of
the following theorem which was obtained by Gizatullin-Danilov [4],
Miyanishi [12] and Kambayashi [10], independently (see also [3]).

THEOREM 2 ([4], [12], [10]). Let G be a finite subgroup of Aut (C2).
Then G is conjugate in Aut (C2) with a finite subgroup of GL(2, C),
namely, there exists a polynomial automorphism a 6 Aut (C2) such that
a°G° a'1 is a finite subgroup of GL(2, C).

REMARK 1. For n = 2, Theorem 1 is a special case of the theorem
of Gizatullin-Danilov [4, § 6]. For n ^ 3, it seems to be effective in
answering the following general question (see § 3).

QUESTION. Let G be a finite subgroup of Aut (C71). Then is G conju-
gate in Aut (C71) with a finite subgroup of GL (n, C)?

1. Proof of Theorem 1. Let G be a finite subgroup of Aut(Cn)
(n^2). Let Cn/G be the quotient space of Cn by the group G, and



416 M. FURUSHIMA

π: Cn —> Cn/G the projection. Since G is a finite group of polynomial
automorphisms in Cra, by Car tan [2], Cn/G is a normal affine algebraic
variety of dimension n and the projection π is a proper finite regular
mapping. Let Y be the normalization of the algebraic closure of Cn/G
in some complex projective spece PN, where N > 0 is a sufficiently large
integer. Then Y is a normal projective algebraic variety of dimension
n. Let τ: Cn/G -> Y be the natural inclusion and put BQ = Y - τ(Cn/G).
The triple S = (C71, π, Cn/G) is a branched algebraic covering over Cn/G.
Let 1?! be the algebraic closure in Y of the branch locus in Cn/G and
put B = .Bo U ft. Then B is a closed sub variety of Y. Then the triple
Sft' = (Cn - TΓ-^β), π, Cn/G - B) is an unbranched covering over Y - B
(= Cn/G — B). By Stein [16, Satz 1], there exists a topologically branched
finite covering 3̂  = (XQ, π0, Γ) over Y with the following properties:

( i ) the branch locus is contained in the set B,
( i i ) XQ contains Cn as an open subset, and
(iii) πQ\Cn = π.

Further, such a covering 310 is uniquely determined up to topological
isomorphisms. Since TTO is a proper finite mapping and Y is compact, X0

is also compact. Since Y is a normal complex space, by the well-known
theorem of Grauert-Remmert [6], we can introduce a normal complex
structure on X0 and the projection TTO is holomorphic with respect to this
complex structure. Since Y is projective algebraic and TTO is proper finite
holomorphic, by Grauert-Remmert [5] (see also Remmert-Stein [15, Satz
8]), so is X0. Thus, ττ0 is a proper finite regular mapping. Let £0: C

n —>
XQ be the natural inclusion and put AQ = XQ — ̂ (Cn). Then A0 is a closed
sub variety of XQ.

Let g be an arbitrary element of G. Since π0 o g (= π o g = π): X0 —
A0 —> Y is continued to the regular mapping π0: X0 —> F of X0 into Y", by
Stein [16, Hilfssatz 2], # can be uniquely extended to a continuous map-
ping gQ: XQ -> X0 By the Riemann extension theorem, g0 is a holomorphic
(therefore regular) mapping of X0 onto X0. Similarly, the inverse g'1

can be uniquely extended to a regular mapping g^1: XQ -> XQ of JΓ0 onto
X0, and we have g0 o ^r-1 = idXo. Since g(Cn) = Cn, we have g,(AQ) = A0,
namely, gr0 e Aut (jζ,; A0), and further we have £0~

lo0o°'o = g on Cn. Thus
we have the following:

PROPOSITION 1. Let G be a finite subgroup of Aut(Cn). Then there
exist a (not necessarily non-singular) projective algebraic compactification
(Cn, c0, X0; AO) and a finite subgroup GQ of Aut (X0: AQ) such that fr1 °GQ°

CQ = G on Cn.
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By Hironaka's equivariant resolution theorem [8, §7], there exists a
non-singular model φ: X-+ X0 of X0 such that any automorphism g0 e Aut (Jζ)
can be uniquely extended to an automorphism g e Aut (X) and satisfies

Φ ° 9 = 9, ° Φ
From this theorem and the facts that the singularities of Xΰ do not

lie on Cn and that gϋ(Cn) = Cn for every gQ e G0, there exists a finite
subgroup G of Aut (X; A), where A = ^(Ao), such that φ o G = G0 ° 0,
that is, for any 00 e G0, there exists a unique element £ e G such that
φ o g = gr0 o φ. Putting c = ψ~l ° cϋ: C

n -> JXΓ, the proof of Theorem 1 is
completed.

2. Proof of Theorem 2. Let G be a finite subgroup of Aut(C2).
By Theorem 1, there exist a non-singular projective algebraic compacti-
fication (C2, c, X; A) and a subgroup G of Aut (X\ A) such that r1 o G o c =
G. We put A = U*=ι -A<> where each A, is an irreducible algebraic curve.
We need the following two elementary lemmas.

LEMMA 1. Let M be a two-dimensional complex manifold and e =
{&!, •••,%} α seί o/ finitely many points in M. Let f: M —> M be a
bίholomorphίc transformation with f(e) = e. Let Qe(M) be the quadratic
transformation of M at the set e, and φ\ Qβ(M) —> M the projection. Put
φ~\e) = E = \Ji=ί Ei9 where E^ = φ~l(x^) is an exceptional curve of the
βrst kind. Then there exists a unique biholomorphic transformation
f: Qe(M) -> Q.(AΓ) with f(E) = E such that φo?=foφ.

LEMMA 2. Let M be a two-dimensional complex manifold and E =
\Ji=ιEi a disjoint union of exceptional curves of the βrst kind. Let
g:M-+M be a biholomorphic transformation with g(E) = E. Let M —
M/E be the contraction of E, ψ: M —> M the projection and put ψ(E) =
e = {χlf - -, χk}. Then there exists a unique biholomorphic transformation
g: M —> M with g(e) = e such that ψ o g = g o ψ.

The proof of Lemma 1 is contained in that of the Lemma of Hopf
[9] and Lemma 2 follows from the Riemann extension theorem.

Since the singularities of the (reducible) curve A is G-invariant,
blowing up such singularities and using Lemma 1, we may assume that
each Ai is non-singular and A/s cross each other normally if they inter-
sect. Further, we may assume that (C2, c, X; A) is a minimal normal
compactification (see Morrow [13]). Indeed, taking account of Morrow's
classification of the minimal normal compactifications of C2 (see also
Figure), we see that the irreducible components At (1 ̂  i ^ fc) of A with
the following properties (i) and (ii) are G-invariant.
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( i) Ai is an exceptional curve of the first kind, and
(ii) the number of irreducible components of A, different from Ai9

which intersect At is at most two.
Blowing down such irreducible components At (1 <Z i <Ξ, k) to points,

and using Lemma 2 at each step, the above assertion is finally proved.
Thus we have the following:

PROPOSITION 2. Let G be a finite subgroup of Aut (C2). Then there
exist a minimal compactification (C2, c, X\ A) of C2 and a finite subgroup
G of Aut (X; A) such that Γ1 o G ° c = G on C2.

REMARK 2. We can also prove Proposition 2 without using Hironaka's
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equivariant resolution theorem. Indeed, by Proposition 1 and the unique-
ness of the minimal resolution of singularities of a two-dimensional com-
plex analytic space (cf. Laufer [11]), we can easily see that there exist
a non-singular protective algebraic compactification (C2, c0, X0; AQ) of C2

and a finite subgroup G of Aut (X0; A0) such that to1 ° G ° c0 = G on C2.
Using Lemmas 1 and 2 repeatedly, we have finally Proposition 2.

Now, by Morrow [13], the types of the graph Γ(A) of A (= U*=i^*)
are the following, where each vertex of the graph represents a non-
singular rational curve Ai9 adjacent to which we write the self-intersec-
tion number (A\) of At. Two vertices are joined by a segment if and
only if the two corresponding rational curves intersect each other (see
Figure).

(CASE 1). The type of Γ(A) is (a). In this case, X is a complex
projective plane P2 and A = X — ε(C2) is a line L in P2. More precisely,
let (Xi\<iί2 be homogeneous coordinates in P2. Then A = X — c(C2) = V(X0).

(CASE 2). The type of Γ(A) is (6). In this case, X is a rational
ruled surface Fn with the minimal section SQ whose self-intersection
number is (si) = — n (n^O). Let s^ be a section with (sL) = n and I a
fiber. Then we have A = Fn - t(C2) = s^Ul

(CASE 3). The type of Γ(A) is one of (c) ~ (0). Let A0 (resp. A l f A2)
be the irreducible component of A with (Al) = 0 (resp. (A2) = w, (A2) =
— n — 1). Since the self-inter section number is invariant under an auto-
morphism of X, we have g(At) = At (i = 0, 1) for every g of Aut (X; A).
Since A0 and A^ are (/-invariant, so is A2. Blowing up the intersection
point of AQ and A19 and blowing down the proper transform of AQ to a
point, we have a new minimal normal compactification (C2, cί9 JEi; β) of
C2. It is easily seen that the type of the graph Γ(B) of B is the same
as that of Γ(A) with n replaced by n — 1, provided n ^ 2. If % — 1,
the type changes as follow:

(c)-+(&), (d)->(e), (e)->(&) and (f)<->(g).

Thus repeating this process finitely many times and using Lemmas 1 and
2 at each step, we see finally that every element of Aut (X] A) induces
a unique element of Aut (Fn, Soo U I). More precisely, let ψ:X-*Fn be
the birational mapping obtained by the above process. By the construc-
tion, the restriction ψ \ c(C2) of ψ» to t(C2) — X — A is a one-to-one regular
mapping and the mapping ψ°ι .C2-*Fn gives an inclusion. We put s^ U I =
Fn - f o c(C2). Then there exists a finite subgroup G of Aut (Fn, s^ U Z)
such that (ψ* o ί)-1 <>G o (ψo c) = G. Thus we have the following:

PROPOSITION 3. Lei G be a finite subgroup of Aut (C2). TΛew the
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following two cases arise:
(1) There exists a finite subgroup G of Aut (P2, L) such that c~l o

G o i = G, where c: C2 —» P2 is cm inclusion and L = P2 — ^(C2) is α Ziwe.
( 2 ) Tfeere exists α ./twite subgroup G of Aut (Fn, Soo U Z) sucfe ίfeαί

τ"1 o G o r = G, where τ: C2 —> Fn is cm inclusion^ s^ is a section with the
self-intersection number (sL) = M (n ^ 0) ami i is a fiber of Fn.

Now, since r1 ° G ° c = G (resp. τ-1 o G o r = G), we have * o G ° r"1 =
G I C2 (resp. τ o G o r'1 = G | C2), where G | C2 (resp. G | C2) means the restric-
tion of the group G (resp. G) to c(C2) (resp. τ(C2)). For simplicity, we
identify r(C2) and τ(C2) with C2. On the other hand, Aut (P2) and Aut (FJ
are well-known, and we can write down every element of Aut (P2, L)
or Aut (Fn, Soo U Z) (see [4]). In fact, choosing suitable coordinates x and
y in C2, we find that for every element g of Aut (P2, L) (resp. g of
Aut (Fn, Soo U Z)) the restriction g\C2 (resp. </|C2) has the following form:

(x' = ax + by + \

\y' — ex + dy + μ , where αcϊ — 6c ^ 0 and \, μeC

I (x' = ax + \
resp. j

\ (y' = dy + v(x) , where ad Φ 0 and v(a?) 6 C[α;]

Since r (resp. τ) is a regular mapping of C2 into P2 (resp. FJ, ε and
τ can be regarded as elements of Aut (C2). Consequently we have the
following:

PROPOSITION 4. Let G be a finite subgroup of Aut (C2). Then there
exists a polynomial automorphism β in C2 such that for every g of G,
we have

bgy + \g

*•"*-••-' d,y
or

_Jβ (X' = IgX + \g

' \y' = mgy + vg(x) ,

where ag, bg, cg, dg, lg, mg, \g, \'g, μg e C, agdg - bgcg Φ 0, lgmg Φ 0 and vg(x) e
CM.

Finally, put

d..
or
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We can easily see that

IB' = x + 1/|G| Σ (\dg - bgμg)/(agdg - bgcg)

I geG 9 9 9

and

= If + 1/|G| Σ ».(*)/»».
0 e G

Thus T! and 72 are polynomial automorphisms in C2. For any element h
of G, we have

T! o (/3 o fe o /3'1)

- 1/IGI Σ α' *§V - (/3 o fl o /g-1) o (/g o h o /3-1)

aκ

,

"'β

Similarly, we have

78 o (/9 o fc o /g-1) = ( a ) o 7 2 .
\0 mj

Therefore, for every element g of G, we have

T! ° (/3 - g o /S-1) o τt - (α* M e GL(2, C)
\β, «,/

or

We have only to let a = 7X o /3 or α = 72 o /3. Thus the proof of Theorem
2 is completed.

3. Example. Let G be a finite subgroup of Aut (C3). By Theorem
1, there exists a non-singular protective algebraic compactification (C3, c,
X\ A) and a finite subgroup G of Aut (X; A) such that r1 o G o c = G.
Here, if we can choose the complex projective space P3 or a non-singular
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quadric hypersurface Q3 in P4 as such a compactification X, there exists
an element a of Aut (C3) such that a ° G ° α"1 is a finite subgroup of
GL(3, C). Indeed, if X = P3, then it is obvious. Suppose that X = Q3 <=•>
P4. Let (JQ0^4 (resp. (YA^^) be the homogeneous coordinates of P4

(resp. P3). We may assume that

X ^ V(XQX1 + XI + XI + XI) ,
A=V(X0)nX=V(Yϊ+ Γ3

2+ i7)->P3.

In fact, we shall first consider the following standard sequence:

-> Hί(C\ Z) -* ff'CΣ, Z) -> fΓ(A, Z) -> ifc

ί+1(<7, Z) -> .

Since H?(C\ Z) = 0 for 1 ̂  i <; 4, we have

iΓCr, Z) = H*(A, Z) for 1 ̂  i ^ 4 .

By the Lefschetz hyperplane section theorem, we have H2(X, Z) =
H\P\ Z} ^ Z. We can see that the line bundle [A] is ample on X, and
the first Chern class Ci([A]) of [A] generates the cohomology ring H\X, Z)
(= Z). By the adjunction formula, we have Kx = [A]~3 (cf. Brenton-
Morrow [1]). Since A is a hyperplane section and £Γ2(A, Z) = Z, A is
an irreducible quadric hypersurface in V(XQ) = P3 with an isolated singu-
larity. By elementary arguments, we see that the minimal resolution
of A is the rational ruled surface F2. Thus we may assume that A is
isomorphic to the variety V( Yl + Yj + Yl) »̂ P3, and that X is isomor-
phic to the variety V(XQXj, + XI + XI + Xΐ) (see Griffiths-Harris [7]). It
is easy to verify that such a (X, A) is a non-singular compactification
of C3.

Now, we put x = (1: 0 : 0 : 0) e X. Then x is a singular point of A.
Let Pi'. QX(X) —> X be the quadratic transformation of X at the point x
with p?(x) = E = P2. We define the projection p2: Qβ(JΓ) -> P3 of <
onto P3 by

/ 4

( i ) the point with XQ = — Σ l/</2/ι f Xt = V* (1 ̂  i ^ 4)
<=2

if l / i ^ O ,

( i i ) the point with X0 = 1 , JΓ, = 0 (1 ̂  ΐ <; 4)
4

if 2/i = 0 and Σ 2/t ^ 0 >
ϊ=2

(iii) any of the line of points with XQ = t , cc^ = si/,

(1 ̂  i ^ 4) if i/! = Σ i/ϊ = 0 .
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Thus we have the following diagram

Pi/ \Pz

/ \ '
X ......... P3

Let A be the proper transform of A in Q9(X). Then we have p2(pϊ1(A)) =
V(Y1) d> P3 and p8(A) is a conic 7: {Γx = Γ2

2 + Γ3

2 + Γ4

2 - 0} — V(YJ (see
Mumford [14]).

Let g be an arbitrary element of Aut (X\ A). Then g(x) = x, since
the point x is the only singular point of A. Therefore, for the same
reason as in Lemma 1, there exists a unique automorphism g of
Aut (Qβ(JC); PΓ^-A)) such that p^g = g°pι. Further by the Riemann
extension theorem, there exists a unique automorphism g of Aut (P3;
F( YΊ)) such that p2 o g = g o p2. We put α = p2 o pf1. Then α is a one-
to-one regular mapping of C3 into P3 with V(Y1) = P3 — α(C3) and α°0 =
£ o α, namely, α o ff o or1 = g \ C3. Since £ e Aut (P3; V( YL)), £ | C3 is a linear
transformation. Therefore G is conjugate in Aut (C3) with a finite sub-
group of GL(3, C).
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