FINITE GROUPS OF POLYNOMIAL AUTOMORPHISMS IN \boldsymbol{C}^{n}

Mikio Furushima

(Received August 9, 1982)

Introduction. Let \boldsymbol{C}^{n} be an n-dimensional complex Euclidean space. A biholomorphic transformation $g: \boldsymbol{C}^{n} \rightarrow \boldsymbol{C}^{n}$ of \boldsymbol{C}^{n} onto \boldsymbol{C}^{n} is called a polynomial automorphism if g and the inverse g^{-1} are given by n polynomials in n variables. We shall denote by Aut $\left(\boldsymbol{C}^{n}\right)$ the group of all polynomial automorphisms in \boldsymbol{C}^{n}. Let X be a projective algebraic compactification of \boldsymbol{C}^{n}, let $\iota: \boldsymbol{C}^{n} \rightarrow X$ be an inclusion and put $A=X-\iota\left(\boldsymbol{C}^{n}\right)$. Then A is a closed subvariety of X. For simplicity, we shall denote this compactification by $\left(\boldsymbol{C}^{n}, \iota, X ; A\right)$. Let us denote by Aut (X) the group of all birational and biregular automorphisms of X, and define a subgroup $\operatorname{Aut}(X ; A)$ of $\operatorname{Aut}(X)$ by $\operatorname{Aut}(X ; A)=\{\hat{g} \in \operatorname{Aut}(X) ; \hat{g}(A)=A\}$. Then we have the following theorem.

Theorem 1. Let G be a finite subgroup of Aut $\left(\boldsymbol{C}^{n}\right)$. Then there exist a non-singular projective algebraic compactification ($\boldsymbol{C}^{n}, \iota, X ; A$) and a finite subgroup \hat{G} of $\operatorname{Aut}(X ; A)$ such that $\iota^{-1} \circ \hat{G} \circ \varsigma=G$, namely $\left\{c^{-1} \circ \hat{g} \circ \iota ; \hat{g} \in \widehat{G}\right\}=G$ on C^{n}.

Applying Theorem 1 and Morrow's classification of the minimal normal compactifications of C^{2} [13], we shall give an elementary proof of the following theorem which was obtained by Gizatullin-Danilov [4], Miyanishi [12] and Kambayashi [10], independently (see also [3]).

Theorem 2 ([4], [12], [10]). Let G be a finite subgroup of Aut ($\left.\boldsymbol{C}^{2}\right)$. Then G is conjugate in Aut $\left(C^{2}\right)$ with a finite subgroup of $G L(2, C)$, namely, there exists a polynomial automorphism $\alpha \in \operatorname{Aut}\left(C^{2}\right)$ such that $\alpha \circ G \circ \alpha^{-1}$ is a finite subgroup of $G L(2, C)$.

Remark 1. For $n=2$, Theorem 1 is a special case of the theorem of Gizatullin-Danilov [4, §6]. For $n \geqq 3$, it seems to be effective in answering the following general question (see §3).

Question. Let G be a finite subgroup of $\operatorname{Aut}\left(\boldsymbol{C}^{n}\right)$. Then is G conjugate in $\operatorname{Aut}\left(\boldsymbol{C}^{n}\right)$ with a finite subgroup of $G L(n, \boldsymbol{C})$?

1. Proof of Theorem 1. Let G be a finite subgroup of $\operatorname{Aut}\left(\boldsymbol{C}^{n}\right)$ $(n \geqq 2)$. Let C^{n} / G be the quotient space of C^{n} by the group G, and
$\pi: \boldsymbol{C}^{n} \rightarrow \boldsymbol{C}^{n} / G$ the projection. Since G is a finite group of polynomial automorphisms in \boldsymbol{C}^{n}, by Cartan [2], \boldsymbol{C}^{n} / G is a normal affine algebraic variety of dimension n and the projection π is a proper finite regular mapping. Let Y be the normalization of the algebraic closure of C^{n} / G in some complex projective spece P^{N}, where $N>0$ is a sufficiently large integer. Then Y is a normal projective algebraic variety of dimension n. Let $\tau: \boldsymbol{C}^{n} / G \rightarrow Y$ be the natural inclusion and put $B_{0}=Y-\tau\left(\boldsymbol{C}^{n} / G\right)$. The triple $R=\left(\boldsymbol{C}^{n}, \pi, \boldsymbol{C}^{n} / G\right)$ is a branched algebraic covering over \boldsymbol{C}^{n} / G. Let B_{1} be the algebraic closure in Y of the branch locus in C^{n} / G and put $B=B_{0} \cup B_{1}$. Then B is a closed subvariety of Y. Then the triple $\Re^{\prime}=\left(C^{n}-\pi^{-1}(\boldsymbol{B}), \pi, C^{n} / G-B\right)$ is an unbranched covering over $Y-B$ $\left(=\boldsymbol{C}^{n} / G-B\right)$. By Stein [16, Satz 1], there exists a topologically branched finite covering $\Re_{0}=\left(X_{0}, \pi_{0}, Y\right)$ over Y with the following properties:
(i) the branch locus is contained in the set B,
(ii) X_{0} contains C^{n} as an open subset, and
(iii) $\pi_{0} \mid C^{n}=\pi$.

Further, such a covering \Re_{0} is uniquely determined up to topological isomorphisms. Since π_{0} is a proper finite mapping and Y is compact, X_{0} is also compact. Since Y is a normal complex space, by the well-known theorem of Grauert-Remmert [6], we can introduce a normal complex structure on X_{0} and the projection π_{0} is holomorphic with respect to this complex structure. Since Y is projective algebraic and π_{0} is proper finite holomorphic, by Grauert-Remmert [5] (see also Remmert-Stein [15, Satz 8]), so is X_{0}. Thus, π_{0} is a proper finite regular mapping. Let $\iota_{0}: \boldsymbol{C}^{n} \rightarrow$ X_{0} be the natural inclusion and put $A_{0}=X_{0}-\iota_{0}\left(\boldsymbol{C}^{n}\right)$. Then A_{0} is a closed subvariety of X_{0}.

Let g be an arbitrary element of G. Since $\pi_{0} \circ g(=\pi \circ g=\pi): X_{0}-$ $A_{0} \rightarrow Y$ is continued to the regular mapping $\pi_{0}: X_{0} \rightarrow Y$ of X_{0} into Y, by Stein [16, Hilfssatz 2], g can be uniquely extended to a continuous mapping $g_{0}: X_{0} \rightarrow X_{0}$. By the Riemann extension theorem, g_{0} is a holomorphic (therefore regular) mapping of X_{0} onto X_{0}. Similarly, the inverse g^{-1} can be uniquely extended to a regular mapping $g_{0}^{-1}: X_{0} \rightarrow X_{0}$ of X_{0} onto X_{0}, and we have $g_{0} \circ g_{0}^{-1}=\mathrm{id}_{X_{0}}$. Since $g\left(\boldsymbol{C}^{n}\right)=\boldsymbol{C}^{n}$, we have $g_{0}\left(A_{0}\right)=A_{0}$, namely, $g_{0} \in \operatorname{Aut}\left(X_{0} ; A_{0}\right.$), and further we have $\iota_{0}^{-1} \circ g_{0} \circ \ell_{0}=g$ on C^{n}. Thus we have the following:

Proposition 1. Let G be a finite subgroup of Aut $\left(\boldsymbol{C}^{n}\right)$. Then there exist a (not necessarily non-singular) projective algebraic compactification $\left(C^{n}, \iota_{0}, X_{0} ; A_{0}\right)$ and a finite subgroup G_{0} of $\operatorname{Aut}\left(X_{0}: A_{0}\right)$ such that $\varepsilon_{0}^{-1} \circ G_{0}$ 。 $\iota_{0}=G$ on C^{n}.

By Hironaka's equivariant resolution theorem [8, §7], there exists a non-singular model $\phi: X \rightarrow X_{0}$ of X_{0} such that any automorphism $g_{0} \in \operatorname{Aut}\left(X_{0}\right)$ can be uniquely extended to an automorphism $\hat{g} \in \operatorname{Aut}(X)$ and satisfies $\phi \circ \widehat{g}=g_{0} \circ \phi$.

From this theorem and the facts that the singularities of X_{0} do not lie on \boldsymbol{C}^{n} and that $g_{0}\left(\boldsymbol{C}^{n}\right)=\boldsymbol{C}^{n}$ for every $g_{0} \in G_{0}$, there exists a finite subgroup \widehat{G} of $\operatorname{Aut}(X ; A)$, where $A=\phi^{-1}\left(A_{0}\right)$, such that $\phi \circ \widehat{G}=G_{0} \circ \phi$, that is, for any $g_{0} \in G_{0}$, there exists a unique element $\hat{g} \in \hat{G}$ such that $\phi \circ \hat{g}=g_{0} \circ \phi$. Putting $\iota=\phi^{-1} \circ \ell_{0}: C^{n} \rightarrow X$, the proof of Theorem 1 is completed.
2. Proof of Theorem 2. Let G be a finite subgroup of Aut $\left(\boldsymbol{C}^{2}\right)$. By Theorem 1, there exist a non-singular projective algebraic compactification ($C^{2}, \iota, X ; A$) and a subgroup \hat{G} of $\operatorname{Aut}(X ; A)$ such that $\iota^{-1} \circ \hat{G} \circ \iota=$ G. We put $A=\bigcup_{i=1}^{l} A_{i}$, where each A_{i} is an irreducible algebraic curve. We need the following two elementary lemmas.

Lemma 1. Let M be a two-dimensional complex manifold and $e=$ $\left\{x_{1}, \cdots, x_{k}\right\}$ a set of finitely many points in M. Let $f: M \rightarrow M$ be a biholomorphic transformation with $f(e)=e$. Let $Q_{e}(M)$ be the quadratic transformation of M at the set e, and $\phi: Q_{e}(M) \rightarrow M$ the projection. Put $\phi^{-1}(e)=E=\bigcup_{i=1}^{k} E_{i}$, where $E_{i}=\phi^{-1}\left(x_{i}\right)$ is an exceptional curve of the first kind. Then there exists a unique biholomorphic transformation $\hat{f}: Q_{e}(M) \rightarrow Q_{e}(M)$ with $\hat{f}(E)=E$ such that $\phi \circ \hat{f}=f \circ \phi$.

Lemma 2. Let \hat{M} be a two-dimensional complex manifold and $E=$ $\bigcup_{i=1}^{k} E_{i}$ a disjoint union of exceptional curves of the first kind. Let $\widehat{g}: \hat{M} \rightarrow \hat{M}$ be a biholomorphic transformation with $\hat{g}(E)=E$. Let $M=$ \hat{M} / E be the contraction of $E, \psi: \widehat{M} \rightarrow M$ the projection and put $\psi(E)=$ $e=\left\{x_{1}, \cdots, x_{k}\right\}$. Then there exists a unique biholomorphic transformation $g: M \rightarrow M$ with $g(e)=e$ such that $\psi \circ g=g \circ \psi$.

The proof of Lemma 1 is contained in that of the Lemma of Hopf [9] and Lemma 2 follows from the Riemann extension theorem.

Since the singularities of the (reducible) curve A is \hat{G}-invariant, blowing up such singularities and using Lemma 1 , we may assume that each A_{i} is non-singular and A_{i} 's cross each other normally if they intersect. Further, we may assume that $\left(C^{2}, \iota, X ; A\right)$ is a minimal normal compactification (see Morrow [13]). Indeed, taking account of Morrow's classification of the minimal normal compactifications of \boldsymbol{C}^{2} (see also Figure), we see that the irreducible components $A_{i}(1 \leqq i \leqq k)$ of A with the following properties (i) and (ii) are \widehat{G}-invariant.
(i) A_{i} is an exceptional curve of the first kind, and
(ii) the number of irreducible components of A, different from A_{i}, which intersect A_{i} is at most two.

Blowing down such irreducible components $A_{i}(1 \leqq i \leqq k)$ to points, and using Lemma 2 at each step, the above assertion is finally proved. Thus we have the following:

Proposition 2. Let G be a finite subgroup of Aut $\left(\boldsymbol{C}^{2}\right)$. Then there exist a minimal compactification ($\boldsymbol{C}^{2}, \iota, X ; A$) of \boldsymbol{C}^{2} and a finite subgroup \widehat{G} of $\operatorname{Aut}(X ; A)$ such that $\iota^{-1} \circ \hat{G} \circ \iota=G$ on C^{2}.

Remark 2. We can also prove Proposition 2 without using Hironaka's
(a) $\quad 1$
(b) $\stackrel{0}{\circ} \stackrel{n}{\square}(n \neq-1)$
$(\mathrm{c}) \stackrel{-n-1}{\circ} \stackrel{0}{\circ} \xrightarrow{n}(n>0)$

(e) $\begin{aligned} & n-0-n-1-2-2-2 \\ & \underbrace{0-\cdots \cdots} 0\end{aligned}$ arbitrary number
arbitrary number of vertices
of vertices
(f)
 of vertices

 vertices

Figure
equivariant resolution theorem. Indeed, by Proposition 1 and the uniqueness of the minimal resolution of singularities of a two-dimensional complex analytic space (cf. Laufer [11]), we can easily see that there exist a non-singular projective algebraic compactification ($\boldsymbol{C}^{2}, \iota_{0}, X_{0} ; A_{0}$) of \boldsymbol{C}^{2} and a finite subgroup \hat{G} of $\operatorname{Aut}\left(X_{0} ; A_{0}\right)$ such that $\iota_{0}^{-1} \circ \hat{G} \circ \varepsilon_{0}=G$ on \boldsymbol{C}^{2}. Using Lemmas 1 and 2 repeatedly, we have finally Proposition 2.

Now, by Morrow [13], the types of the graph $\Gamma(A)$ of $A\left(=\bigcup_{i=1}^{l} A_{i}\right)$ are the following, where each vertex of the graph represents a nonsingular rational curve A_{i}, adjacent to which we write the self-intersection number $\left(A_{i}^{2}\right)$ of A_{i}. Two vertices are joined by a segment if and only if the two corresponding rational curves intersect each other (see Figure).
(CaSE 1). The type of $\Gamma(A)$ is (a). In this case, X is a complex projective plane \boldsymbol{P}^{2} and $A=X-\iota\left(\boldsymbol{C}^{2}\right)$ is a line L in \boldsymbol{P}^{2}. More precisely, let $\left(X_{i}\right)_{0 \leq i \leq 2}$ be homogeneous coordinates in \boldsymbol{P}^{2}. Then $A=X-\iota\left(\boldsymbol{C}^{2}\right)=V\left(X_{0}\right)$.
(CASE 2). The type of $\Gamma(A)$ is (b). In this case, X is a rational ruled surface \boldsymbol{F}_{n} with the minimal section s_{0} whose self-intersection number is $\left(s_{0}^{2}\right)=-n(n \geqq 0)$. Let s_{∞} be a section with $\left(s_{\infty}^{2}\right)=n$ and l a fiber. Then we have $A=\boldsymbol{F}_{n}-\iota\left(\boldsymbol{C}^{2}\right)=s_{\infty} \cup l$.
(CASE 3). The type of $\Gamma(A)$ is one of $(c) \sim(g)$. Let $A_{0}\left(\right.$ resp. $\left.A_{1}, A_{2}\right)$ be the irreducible component of A with $\left(A_{0}^{2}\right)=0$ (resp. $\left(A_{1}^{2}\right)=n,\left(A_{2}^{2}\right)=$ $-n-1)$. Since the self-intersection number is invariant under an automorphism of X, we have $\hat{g}\left(A_{i}\right)=A_{i}(i=0,1)$ for every \hat{g} of $\operatorname{Aut}(X ; A)$. Since A_{0} and A_{1} are \hat{g}-invariant, so is A_{2}. Blowing up the intersection point of A_{0} and A_{1}, and blowing down the proper transform of A_{0} to a point, we have a new minimal normal compactification $\left(C^{2}, \iota_{1}, X_{1} ; B\right)$ of C^{2}. It is easily seen that the type of the graph $\Gamma(B)$ of B is the same as that of $\Gamma(A)$ with n replaced by $n-1$, provided $n \geqq 2$. If $n=1$, the type changes as follow:
$(c) \rightarrow(b)$,
$(d) \rightarrow(e)$,
$(e) \rightarrow(b) \quad$ and $\quad(f) \leftrightarrow(g)$.

Thus repeating this process finitely many times and using Lemmas 1 and 2 at each step, we see finally that every element of Aut ($X ; A$) induces a unique element of $\operatorname{Aut}\left(\boldsymbol{F}_{n}, s_{\infty} \cup l\right)$. More precisely, let $\psi: X \rightarrow \boldsymbol{F}_{n}$ be the birational mapping obtained by the above process. By the construction, the restriction $\psi \mid c\left(C^{2}\right)$ of ψ to $\iota\left(\boldsymbol{C}^{2}\right)=X-A$ is a one-to-one regular mapping and the mapping $\psi \circ c: \boldsymbol{C}^{2} \rightarrow \boldsymbol{F}_{n}$ gives an inclusion. We put $s_{\infty} \cup l=$ $\boldsymbol{F}_{n}-\psi \circ l\left(\boldsymbol{C}^{2}\right)$. Then there exists a finite subgroup \hat{G} of $\operatorname{Aut}\left(\boldsymbol{F}_{n}, s_{\infty} \cup l\right)$ such that $(\psi \circ \varrho)^{-1} \circ \hat{G} \circ(\psi \circ \ell)=G$. Thus we have the following:

Proposition 3. Let G be a finite subgroup of $\operatorname{Aut}\left(C^{2}\right)$. Then the
following two cases arise:
(1) There exists a finite subgroup \hat{G} of $\operatorname{Aut}\left(\boldsymbol{P}^{2}, L\right)$ such that $\boldsymbol{c}^{-1} 。$ $\hat{G} \circ \iota=G$, where $\iota: \boldsymbol{C}^{2} \rightarrow \boldsymbol{P}^{2}$ is an inclusion and $L=\boldsymbol{P}^{2}-\iota\left(\boldsymbol{C}^{2}\right)$ is a line.
(2) There exists a finite subgroup \widetilde{G} of $\operatorname{Aut}\left(\boldsymbol{F}_{n}, s_{\infty} \cup l\right)$ such that $\tau^{-1} \circ \widetilde{G} \circ \tau=G$, where $\tau: \boldsymbol{C}^{2} \rightarrow \boldsymbol{F}_{n}$ is an inclusion, s_{∞} is a section with the self-intersection number $\left(s_{\infty}^{2}\right)=n(n \geqq 0)$ and l is a fiber of \boldsymbol{F}_{n}.

Now, since $\iota^{-1} \circ \hat{G} \circ \iota=G$ (resp. $\tau^{-1} \circ \widetilde{G} \circ \tau=G$), we have $\iota \circ G \circ \iota^{-1}=$ $\hat{G} \mid C^{2}$ (resp. $\left.\tau \circ G \circ \tau^{-1}=\widetilde{G} \mid C^{2}\right)$, where $\widehat{G} \mid C^{2}$ (resp. $\left.\widetilde{G} \mid C^{2}\right)$ means the restriction of the group \widehat{G} (resp. $\widetilde{G})$ to $c\left(\boldsymbol{C}^{2}\right)$ (resp. $\tau\left(\boldsymbol{C}^{2}\right)$). For simplicity, we identify $\iota\left(\boldsymbol{C}^{2}\right)$ and $\tau\left(\boldsymbol{C}^{2}\right)$ with \boldsymbol{C}^{2}. On the other hand, Aut $\left(\boldsymbol{P}^{2}\right)$ and Aut $\left(\boldsymbol{F}_{n}\right)$ are well-known, and we can write down every element of $\operatorname{Aut}\left(\boldsymbol{P}^{2}, L\right)$ or $\operatorname{Aut}\left(\boldsymbol{F}_{n}, s_{\infty} \cup l\right)$ (see [4]). In fact, choosing suitable coordinates x and \boldsymbol{y} in \boldsymbol{C}^{2}, we find that for every element \hat{g} of $\operatorname{Aut}\left(\boldsymbol{P}^{2}, L\right)$ (resp. \widetilde{g} of Aut $\left(\boldsymbol{F}_{n}, s_{\infty} \cup l\right)$) the restriction $\widehat{g} \mid C^{2}\left(\right.$ resp, $\left.\widetilde{g} \mid C^{2}\right)$ has the following form:

$$
\begin{aligned}
&\left\{\begin{array}{l}
x^{\prime}=a x+b y+\lambda \\
y^{\prime}=c x+d y+\mu,
\end{array}\right. \\
&(\text { resp. where } a d-b c \neq 0 \text { and } \lambda, \mu \in \boldsymbol{C} \\
&\left\{\begin{array}{l}
x^{\prime}=a x+\lambda \\
y^{\prime}=d y+\nu(x), \text { where } a d \neq 0 \text { and } \nu(x) \in C[x]
\end{array}\right) .
\end{aligned}
$$

Since ι (resp. τ) is a regular mapping of \boldsymbol{C}^{2} into \boldsymbol{P}^{2} (resp. \boldsymbol{F}_{n}), ८ and τ can be regarded as elements of Aut $\left(\boldsymbol{C}^{2}\right)$. Consequently we have the following:

Proposition 4. Let G be a finite subgroup of $\operatorname{Aut}\left(\boldsymbol{C}^{2}\right)$. Then there exists a polynomial automorphism β in C^{2} such that for every g of G, we have

$$
\beta \circ g \circ \beta^{-1}:\left\{\begin{array}{l}
x^{\prime}=a_{g} x+b_{g} y+\lambda_{g} \\
y^{\prime}=c_{g} x+d_{g} y+\mu_{g}
\end{array}\right.
$$

or

$$
\beta \circ g \circ \beta^{-1}:\left\{\begin{array}{l}
x^{\prime}=l_{g} x+\lambda_{g}^{\prime} \\
y^{\prime}=m_{g} y+\nu_{g}(x)
\end{array}\right.
$$

where $a_{g}, b_{g}, c_{g}, d_{g}, l_{g}, m_{g}, \lambda_{g}, \lambda_{g}^{\prime}, \mu_{g} \in C, a_{g} d_{g}-b_{g} c_{g} \neq 0, l_{g} m_{g} \neq 0$ and $\nu_{g}(x) \in$ $C[x]$.

Finally, put
or

$$
\gamma_{1}=1 /|G| \cdot \sum_{g \in G}\left(\begin{array}{cc}
a_{g} & b_{g} \\
c_{g} & d_{g}
\end{array}\right)^{-1} \circ\left(\beta \circ g \circ \beta^{-1}\right)
$$

$$
\gamma_{2}=1 /|G| \cdot \sum_{g \in G}\left(\begin{array}{cc}
l_{g} & 0 \\
0 & m_{g}
\end{array}\right)^{-1} \circ\left(\beta \circ g \circ \beta^{-1}\right)
$$

We can easily see that

$$
\gamma_{1}:\left\{\begin{array}{l}
x^{\prime}=x+1 /|G| \cdot \sum_{g \in G}\left(\lambda_{g} d_{g}-b_{g} \mu_{g}\right) /\left(a_{g} d_{g}-b_{g} c_{g}\right) \\
y^{\prime}=y+1 /|G| \cdot \sum_{g \in G}\left(a_{g} \mu_{g}-\lambda_{g} c_{g}\right) /\left(a_{g} d_{g}-b_{g} c_{g}\right)
\end{array}\right.
$$

and

$$
\gamma_{2}:\left\{\begin{array}{l}
x^{\prime}=x+1 /|G| \cdot \sum_{g \in G} \gamma_{g}^{\prime} / l_{g} \\
y^{\prime}=y+1 /|G| \cdot \sum_{g \in G} \nu_{g}(x) / m_{g} .
\end{array}\right.
$$

Thus γ_{1} and γ_{2} are polynomial automorphisms in \boldsymbol{C}^{2}. For any element h of G, we have

$$
\begin{aligned}
\gamma_{1} \circ & \left(\beta \circ h \circ \beta^{-1}\right) \\
& =1 /|G| \cdot \sum_{g \in G}\left(\begin{array}{ll}
a_{g} & b_{g} \\
c_{g} & d_{g}
\end{array}\right)^{-1} \circ\left(\beta \circ g \circ \beta^{-1}\right) \circ\left(\beta \circ h \circ \beta^{-1}\right) \\
& =1 /|G| \cdot \sum_{g \in G}\left(\begin{array}{ll}
a_{h} & b_{h} \\
c_{h} & d_{h}
\end{array}\right) \circ\left\{\left(\begin{array}{ll}
a_{g} & b_{g} \\
c_{g} & d_{g}
\end{array}\right) \circ\left(\begin{array}{cc}
a_{h} & b_{h} \\
c_{h} & d_{h}
\end{array}\right)\right\}^{-1} \circ\left(\beta \circ g \circ h \circ \beta^{-1}\right) \\
& =\left(\begin{array}{ll}
a_{h} & b_{h} \\
c_{h} & d_{h}
\end{array}\right) \circ 1 /|G| \cdot \sum_{g \circ h \in G}\left\{\left(\begin{array}{ll}
a_{g} & b_{g} \\
c_{g} & d_{g}
\end{array}\right) \circ\left(\begin{array}{cc}
a_{h} & b_{h} \\
c_{h} & d_{h}
\end{array}\right)\right\}^{-1} \circ \beta \circ(g \circ h) \circ \beta^{-1} \\
& =\left(\begin{array}{ll}
a_{h} & b_{h} \\
c_{h} & d_{h}
\end{array}\right) \circ \gamma_{1} .
\end{aligned}
$$

Similarly, we have

$$
\gamma_{2} \circ\left(\beta \circ h \circ \beta^{-1}\right)=\left(\begin{array}{cc}
l_{g} & 0 \\
0 & m_{g}
\end{array}\right) \circ \gamma_{2} .
$$

Therefore, for every element g of G, we have

$$
\gamma_{1} \circ\left(\beta \circ g \circ \beta^{-1}\right) \circ \gamma_{1}=\left(\begin{array}{cc}
a_{g} & b_{g} \\
c_{g} & d_{g}
\end{array}\right) \in G L(2, C)
$$

or

$$
\gamma_{2} \circ\left(\beta \circ g \circ \beta^{-1}\right) \circ \gamma_{2}=\left(\begin{array}{cc}
l_{g} & 0 \\
0 & m_{g}
\end{array}\right) \in G L(2, C) .
$$

We have only to let $\alpha=\gamma_{1} \circ \beta$ or $\alpha=\gamma_{2} \circ \beta$. Thus the proof of Theorem 2 is completed.
3. Example. Let G be a finite subgroup of $\operatorname{Aut}\left(C^{3}\right)$. By Theorem 1, there exists a non-singular projective algebraic compactification ($\boldsymbol{C}^{3}, \iota$, $X ; A)$ and a finite subgroup \hat{G} of $\operatorname{Aut}(X ; A)$ such that $\iota^{-1} \circ \hat{G} \circ \iota=G$. Here, if we can choose the complex projective space \boldsymbol{P}^{3} or a non-singular
quadric hypersurface \boldsymbol{Q}^{3} in \boldsymbol{P}^{4} as such a compactification X, there exists an element α of $\operatorname{Aut}\left(C^{3}\right)$ such that $\alpha \circ G \circ \alpha^{-1}$ is a finite subgroup of $G L(3, \boldsymbol{C})$. Indeed, if $X=\boldsymbol{P}^{3}$, then it is obvious. Suppose that $X=\boldsymbol{Q}^{3} \hookrightarrow$ \boldsymbol{P}^{4}. Let $\left(X_{i}\right)_{0 \leq i \leq 4}\left(\operatorname{resp} .\left(Y_{i}\right)_{1 \leq i \leq 4}\right)$ be the homogeneous coordinates of \boldsymbol{P}^{4} (resp. P^{3}). We may assume that

$$
\begin{aligned}
& X \cong V\left(X_{0} X_{1}+X_{2}^{2}+X_{3}^{2}+X_{1}^{2}\right) \\
& A \cong V\left(X_{0}\right) \cap X \cong V\left(Y_{2}^{2}+Y_{3}^{2}+Y_{4}^{2}\right) \hookrightarrow \boldsymbol{P}^{3}
\end{aligned}
$$

In fact, we shall first consider the following standard sequence:

$$
\rightarrow H_{c}^{i}\left(\boldsymbol{C}^{3}, \boldsymbol{Z}\right) \rightarrow H^{i}(X, \boldsymbol{Z}) \rightarrow H^{i}(A, \boldsymbol{Z}) \rightarrow H_{c}^{i+1}\left(\boldsymbol{C}^{3}, \boldsymbol{Z}\right) \rightarrow .
$$

Since $H_{i}^{c}\left(\boldsymbol{C}^{3}, \boldsymbol{Z}\right)=0$ for $1 \leqq i \leqq 4$, we have

$$
H^{i}(X, Z) \cong H^{i}(A, \boldsymbol{Z}) \quad \text { for } \quad 1 \leqq i \leqq 4
$$

By the Lefschetz hyperplane section theorem, we have $H^{2}(X, \boldsymbol{Z}) \cong$ $\boldsymbol{H}^{2}\left(\boldsymbol{P}^{4}, \boldsymbol{Z}\right) \cong \boldsymbol{Z}$. We can see that the line bundle $[A]$ is ample on X, and the first Chern class $\boldsymbol{C}_{1}([A])$ of $[A]$ generates the cohomology ring $H^{2}(X, Z)$ $(\cong \boldsymbol{Z})$. By the adjunction formula, we have $K_{X} \cong[A]^{-3}$ (cf. BrentonMorrow [1]). Since A is a hyperplane section and $H^{2}(A, \boldsymbol{Z}) \cong \boldsymbol{Z}, A$ is an irreducible quadric hypersurface in $V\left(X_{0}\right) \cong \boldsymbol{P}^{3}$ with an isolated singularity. By elementary arguments, we see that the minimal resolution of A is the rational ruled surface \boldsymbol{F}_{2}. Thus we may assume that A is isomorphic to the variety $V\left(Y_{2}^{2}+Y_{3}^{2}+Y_{4}^{2}\right) \hookrightarrow \boldsymbol{P}^{3}$, and that X is isomorphic to the variety $V\left(X_{0} X_{1}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2}\right)$ (see Griffiths-Harris [7]). It is easy to verify that such a (X, A) is a non-singular compactification of C^{3}.

Now, we put $x=(1: 0: 0: 0) \in X$. Then x is a singular point of A. Let $p_{1}: Q_{x}(X) \rightarrow X$ be the quadratic transformation of X at the point x with $p_{1}^{-1}(x)=E \cong P^{2}$. We define the projection $p_{2}: Q_{x}(X) \rightarrow P^{3}$ of $Q_{x}(X)$ onto \boldsymbol{P}^{3} by

$$
p_{2}^{-1}(y)= \begin{cases}(\mathrm{i}) & \text { the point with } X_{0}=-\sum_{i=2}^{4} y_{i}^{2} / y_{1}, \quad X_{i}=y_{i} \quad(1 \leqq i \leqq 4) \\ & \text { if } y_{1} \neq 0, \\ \text { (ii }) & \text { the point with } X_{0}=1, \quad X_{i}=0 \quad(1 \leqq i \leqq 4) \\ & \text { if } y_{1}=0 \text { and } \sum_{i=2}^{4} y_{i}^{2} \neq 0, \\ \text { (iii) } & \text { any of the line of points with } X_{0}=t, \quad x_{i}=s y_{i} \\ & (1 \leqq i \leqq 4) \text { if } y_{1}=\sum_{i=2}^{4} y_{i}^{2}=0 .\end{cases}
$$

Thus we have the following diagram

Let \bar{A} be the proper transform of A in $Q_{x}(X)$. Then we have $p_{2}\left(p_{1}^{-1}(A)\right)=$ $V\left(Y_{1}\right) \hookrightarrow \boldsymbol{P}^{3}$ and $p_{2}(\bar{A})$ is a conic $\gamma:\left\{Y_{1}=Y_{2}^{2}+Y_{3}^{2}+Y_{4}^{2}=0\right\} \hookrightarrow V\left(Y_{1}\right)$ (see Mumford [14]).

Let g be an arbitrary element of $\operatorname{Aut}(X ; A)$. Then $g(x)=x$, since the point x is the only singular point of A. Therefore, for the same reason as in Lemma 1, there exists a unique automorphism \hat{g} of Aut $\left(Q_{x}(X) ; p_{1}^{-1}(A)\right)$ such that $p_{1} \circ \hat{g}=g \circ p_{1}$. Further by the Riemann extension theorem, there exists a unique automorphism \widetilde{g} of $\operatorname{Aut}\left(\boldsymbol{P}^{3}\right.$; $\left.V\left(Y_{1}\right)\right)$ such that $p_{2} \circ \widetilde{g}=\hat{g} \circ p_{2}$. We put $\alpha=p_{2} \circ p_{1}^{-1}$. Then α is a one-to-one regular mapping of C^{3} into P^{3} with $V\left(Y_{1}\right)=P^{3}-\alpha\left(C^{3}\right)$ and $\alpha \circ g=$ $\widetilde{g} \circ \alpha$, namely, $\alpha \circ g \circ \alpha^{-1}=\widetilde{g} \mid C^{3}$. Since $\widetilde{g} \in \operatorname{Aut}\left(\boldsymbol{P}^{3} ; V\left(Y_{1}\right)\right), \widetilde{g} \mid C^{3}$ is a linear transformation. Therefore G is conjugate in $\operatorname{Aut}\left(\boldsymbol{C}^{3}\right)$ with a finite subgroup of $G L(3, C)$.

References

[1] L. Brenton and J. Morrow, Compactifications of C^{n}, Trans. Amer. Math. Soc., 246 (1978), 139-153.
[2] H. Cartan, Quotient d'un espace analytique par un groupe d'automorphismes, Algebraic Geometry and Topology, A symposium in honor of S. Lefschetz, Princeton Univ. Press (1957), 90-102.
[3] M. Furushima, Finite groups of polynomial automorphisms in the complex affine plane (I), Mem. Fac. Sci. Kyushu Univ., 36 (1982), 85-105.
[4] M. H. Gizatullin and V.I. Danilov, Automorphisms of affine surfaces I, Math. USSR. Izv., 9 (1975), 493-534.
[5] H. Grauert and R. Remmert, Bilder und Urbilder analytischer Garben, Ann. Math., 68 (1958), 393-443.
[6] H. Grauert and R. Remmert, Komplexe Räume, Math. Ann., 136 (1958), 245-318.
[7] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Willey \& Sons, 1978.
[8] H. Hironaka, Bimeromorphic smoothing of a complex analytic space, Math. Inst. Warwick Univ., England (1971).
[9] H. Hopf, Schlichte Abbildungen und lokale Modifikationen komplexer Mannigfaltigkeiten, Comm. Math. Helv., 29 (1955), 132-156.
[10] T. Kambayashi, Automorphism group of a polynomial ring and algbraic group action on an affine space, J. of Algebra, 60 (1979), 439-451.
[11] H. B. Laufer, Normal two-dimensional singularities, Ann. Math. Studies, 59 (1973).
[12] M. Miyanishi, Lectures on curves on rational and unirational surface, Tata Inst. Fundamental Research, Bombay, Springer-Verlag, Berlin-Heidelberg-New York, 1978.
[13] J. Morrow, Minimal normal compactification of C^{2}, Proceedings of the Conference of Complex Analysis, Rice Univ. Studies 59 (1973), 97-112.
[14] D. Mumford, Algebraic Geometry I: Complex Projective varieties, Grundlehren Math. Wissenschaften 221, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
[15] R. Remmert and K. Stein, Eigentliche holomorphe Abbildungen, Math. Z., 73 (1960), 159-189.
[16] K. Stein, Analytische Zerlegungen komplexer Räume, Math. Ann., 132 (1956), 63-93.
Department of Mathematics
Faculty of Science
Kyushu University
Fukuoka, 812
Japan
Current Address:
Kumamoto Radio Technical College
Nishi-Gôshi-Machi
Кимамото, 861-11
Japan

