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Introduction. Let C* be an n-dimensional complex Euclidean space.
A biholomorphic transformation g:C* —C" of C* onto C" is called a
polynomial automorphism if g and the inverse g=* are given by » poly-
nomials in % variables. We shall denote by Aut(C") the group of all
polynomial automorphisms in C". Let X be a projective algebraic com-
pactification of C*, let ¢: C* — X be an inclusion and put A = X — ¢(C").
Then A is a closed subvariety of X. For simplicity, we shall denote
this compactification by (C*, ¢, X; A). Let us denote by Aut (X) the group
of all birational and biregular automorphisms of X, and define a subgroup
Aut (X; A) of Aut (X) by Aut (X; A) = {§ e Aut (X); §(A) = A}. Then we
have the following theorem.

THEOREM 1. Let G be a finite subgroup of Aut (C"). Then there
exist a mon-singular projective algebraic compactification (C*,¢, X; A)
and a finite subgroup G of Aut (X; A) such that ¢ o Goc = G, namely
{trogo;GeG) =G on C.

Applying Theorem 1 and Morrow’s classification of the minimal nor-
mal compactifications of C* [13], we shall give an elementary proof of
the following theorem which was obtained by Gizatullin-Danilov [4],
Miyanishi [12] and Kambayashi [10], independently (see also [3]).

THEOREM 2 ([4], [12], [10]). Let G be a finite subgroup of Aut (C?.
Then G 1is conjugate im Aut (C*) with a finite subgroup of GL(2, C),
namely, there exists a polynomial automorphism o« € Aut (C*) such that
aoGoa™ is a finite subgroup of GL(2, C).

REMARK 1. For n = 2, Theorem 1 is a special case of the theorem
of Gizatullin-Danilov [4, §6]. For n =3, it seems to be effective in
answering the following general question (see § 3).

QUESTION. Let G be a finite subgroup of Aut (C*). Then is G conju-
gate in Aut (C") with a finite subgroup of GL (n, C)?

1. Proof of Theorem 1. Let G be a finite subgroup of Aut(C")
(n = 2). Let C"/G be the quotient space of C* by the group G, and
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w: C" — C"/G the projection. Since G is a finite group of polynomial
automorphisms in C*, by Cartan [2], C"/G is a normal affine algebraic
variety of dimension % and the projection 7 is a proper finite regular
mapping. Let Y be the normalization of the algebraic closure of C"/G
in some complex projective spece P¥, where N > 0 is a sufficiently large
integer. Then Y is a normal projective algebraic variety of dimension
n. Let 7:C"/G —Y be the natural inclusion and put B, =Y — 7(C*/G).
The triple R = (C*, &, C"/G) is a branched algebraic covering over C"/G.
Let B, be the algebraic closure in Y of the branch locus in C"/G and
put B= B,U B,. Then B is a closed subvariety of Y. Then the triple
R = (C" — n7'(B), &, C"/G — B) is an unbranched covering over Y — B
(= C*/G — B). By Stein [16, Satz 1], there exists a topologically branched
finite covering R, = (X,, 7, Y) over Y with the following properties:

(i) the branch locus is contained in the set B,

(ii) X, contains C" as an open subset, and

(iii) =w,|C" =m.

Further, such a covering R, is uniquely determined up to topological
isomorphisms. Since 7, is a proper finite mapping and Y is compact, X,
is also compact. Since Y is a normal complex space, by the well-known
theorem of Grauert-Remmert [6], we can introduce a normal complex
structure on X, and the projection =, is holomorphic with respect to this
complex structure. Since Y is projective algebraic and =, is proper finite
holomorphic, by Grauert-Remmert [5] (see also Remmert-Stein [15, Satz
8]), so is X,. Thus, 7, is a proper finite regular mapping. Let ¢:C" —
X, be the natural inclusion and put 4, = X, — ¢,(C"). Then A4, is a closed
subvariety of X,.

Let g be an arbitrary element of G. Since w,09 (=7wog = 7): X, —
A,— Y is continued to the regular mapping 7, X, — Y of X, into Y, by
Stein [16, Hilfssatz 2], g can be uniquely extended to a continuous map-
ping g,: X, — X,. By the Riemann extension theorem, g, is a holomorphiec
(therefore regular) mapping of X, onto X,. Similarly, the inverse g
can be uniquely extended to a regular mapping g;': X, — X, of X, onto
X;, and we have g,og;* =idy,. Since g(C") = C", we have g4, = A4,
namely, g, € Aut (X;; A4,), and further we have ¢tog,0¢, = g on C*. Thus
we have the following:

PROPOSITION 1. Let G be a finite subgroup of Aut(C"). Then there
exist a (not necessarily non-singular) projective algebraic compactification
(C" b, Xo3 Ay) and a finite subgroup G, of Aut (X,: A,) such that ¢*o G, o
=G on C".
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By Hironaka’s equivariant resolution theorem [8, §7], there exists a
non-singular model ¢: X — X, of X, such that any automorphism g, € Aut (X,)
can be uniquely extended to an automorphism §e Aut (X) and satisfies
$od = go°9.

From this theorem and the facts that the singularities of X, do not
lie on €C* and that g¢,(C") = C" for every g,c(G, there exists a finite
subgroup G of Aut(X; A), where A = ¢7'(4,), such that ¢oG = G,- 4,
that is, for any g, G, there exists a unique element § e G such that
pod = g,°0¢. Putting ¢=¢"0¢:C*— X, the proof of Theorem 1 is
completed.

2. Proof of Theorem 2. Let G be a finite subgroup of Aut (C?).
By Theorem 1, there exist a non-singular projective algebraic compacti-
fication (C?% ¢, X; A) and a subgroup G of Aut (X; A) such that ;o Goc¢ =
G. Weput A = .-, A,, where each 4, is an irreducible algebraic curve.
We need the following two elementary lemmas.

LEMMA 1. Let M be a two-dimensional complex manifold and e =
{2, -+, 2,} a set of finitely many points in M. Let f:M—M be a
biholomorphic transformation with fle) = e. Let Q,(M) be the quadratic
transformation of M at the set e, and ¢: Q,(M) — M the projection. Put
¢7(e) = B = Uk, E,, where E, = ¢ (x;) is an exceptional curve of the
Jirst kind. Then there exists a unique biholomorphic transformation
£ QM) - QM) with f(E) = E such that gof= fog.

LEMMA 2. Let M be a two-dimensional complex manifold and E =

L E, a disjoint union of exceptional curves of the first kind. Let

g: M—M be a biholomorphic transformation with §G(E) = E. Let M =

M/E be the contraction of E, M — M the projection and put Y(H) =

e={x, +-, x,}. Then there exists a unique biholomorphic transformation
g: M — M with gle) = e such that og = g o .

The proof of Lemma 1 is contained in that of the Lemma of Hopf
[9] and Lemma 2 follows from the Riemann extension theorem.

Since the singularities of the (reducible) curve A is G-invariant,
blowing up such singularities and using Lemma 1, we may assume that
each A, is non-singular and A,’s cross each other normally if they inter-
sect. Further, we may assume that (C?% ¢ X; A) is a minimal normal
compactification (see Morrow [13]). Indeed, taking account of Morrow’s
classification of the minimal normal compactifications of C* (see also
Figure), we see that the irreducible components A4, (1 £ 1 < k) of A with
the following properties (i) and (ii) are G-invariant.
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(i) A, is an exceptional curve of the first kind, and

(i) the number of irreducible components of A, different from A4,,
which intersect A; is at most two.

Blowing down such irreducible components A4; (1 < 1 < k) to points,
and using Lemma 2 at each step, the above assertion is finally proved.
Thus we have the following:

PROPOSITION 2. Let G be a finite subgroup of Aut (C?). Then there
eAxist a minimal compactification (C?, ¢, X; A) of C* and a finite subgroup
G of Aut (X; A) such that t™oGot =G on C-

REMARK 2. We can also prove Proposition 2 without using Hironaka’s
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equivariant resolution theorem. Indeed, by Proposition 1 and the unique-
ness of the minimal resolution of singularities of a two-dimensional com-
plex analytic space (cf. Laufer [11]), we can easily see that there exist
a non-singular prOJectwe algebraic compactification (C2 Loy X,; A4, of C?
and a finite subgroup G of Aut (X,; A,) such that *oGo¢, = G on C-
Using Lemmas 1 and 2 repeatedly, we have finally Proposition 2.

Now, by Morrow [138], the types of the graph I'(4) of A (= Ui-, 4,
are the following, where each vertex of the graph represents a non-
singular rational curve A,, adjacent to which we write the self-interseec-
tion number (42 of A,. Two vertices are joined by a segment if and
only if the two corresponding rational curves intersect each other (see
Figure).

(CASE 1). The type of I'(A) is (a). In this case, X is a complex
projective plane P? and A = X — ¢(C? is a line L in P?. More precisely,
let (X))o, be homogeneous coordinates in P>. Then A = X — ¢(C*) = V(X,).

(CASE 2). The type of I'(A) is (b). In this case, X is a rational
ruled surface F, with the minimal section s, whose self-intersection
number is (s)) = —n (n = 0). Let s, be a section with (s3) =% and [ a
fiber. Then we have A = F, — ¢(C*) = s, Ul.

(CASE 3). The type of I'(A) is one of (¢) ~ (g9). Let A, (resp. 4,, A,)
be the irreducible component of A with (4% = 0 (resp. (4} = n, (42 =
—mn — 1). Since the self-intersection number is invariant under an auto-
morphism of X, we have §(4,) = A, (1 =0, 1) for every § of Aut (X; A).
Since A4, and A, are §-invariant, so is A,. Blowing up the intersection
point of A, and A,, and blowing down the proper transform of A4, to a
point, we have a new minimal normal compactification (C? ¢, X;; B) of
C®. It is easily seen that the type of the graph I'(B) of B is the same
as that of I'(4) with n replaced by n — 1, provided n = 2. If n=1,
the type changes as follow:

()= @®), (@—(@, (—(® and (f)<I(9).

Thus repeating this process finitely many times and using Lemmas 1 and
2 at each step, we see finally that every element of Aut (X; A) induces
a unique element of Aut (F,, s. Ul). More precisely, let 4: X — F, be
the birational mapping obtained by the above process. By the construc-
tion, the restriction «+|¢(C?) of 4 to ¢(C*) = X — A is a one-to-one regular
mapping and the mapping ro¢: C*— F, gives an inclusion. We put s, Ul =
F, — 4 0¢(C?%. Then there exists a finite subgroup G of Aut(F,, s.Ul)
such that (4poe)™o Go (po¢) = G. Thus we have the following:

PROPOSITION 3. Let G be a finite subgroup of Aut (C?). Then the
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Jollowing two cases arise:
(1) There exists a finite subgroup G of Aut (P% L) such that ¢™o
G ot = G, where ¢: C* — P* is an inclusion and L = P* — (C?) is a line.
(2) There exists a finite subgroup G of Aut (F,, 8. Ul) such that
ttoGor = G, where v: C* — F, is an inclusion, s. 18 a section with the
self-intersection number (s3) =n (n = 0) and 1 is a fiber of F,.

Now, since toGoc=G (resp. t'oGor = @), we have toGoc' =
G102 (resp. 70 G ozt = G|C?, where G| C* (resp. G| C?) means the restric-
tion of the group G (resp. G) to ¢«(C? (resp. z(C?)). For simplicity, we
identify ¢(C? and z(C? with C?.. On the other hand, Aut (P?) and Aut (F,)
are well-known, and we can write down every element of Aut (P% L)
or Aut (F,, s, Ul) (see [4]). In fact, choosing suitable coordinates x and
y in C?, we find that for every element § of Aut (P* L) (resp. § of

Aut (F,, s, U1)) the restriction §|C* (resp. §|C*) has the following form:
j{x' =ax + by + N
Y =cx+dy+p, where ad —bc+ 0 and , eC
( {x' =ax + ) )
resp. .
Y =dy + v(x), where ad # 0 and v(x) e C[x]

Since ¢ (resp. 7) is a regular mapping of C* into P? (resp. F,), ¢ and
7 can be regarded as elements of Aut(C?. Consequently we have the
following:

PROPOSITION 4. Let G be a finite subgroup of Aut (C?. Then there

exists a polynomial automorphism B in C* such that for every g of G,
we have

BogeB™ {x'=agx+b,y+7\,y
W =+ dy + g,
or
=12+ N
Bogoﬁ‘lt{ .
Y = myy + (),

where a,, b,, ¢,, d,y 1, My, Ny, Ny, 2, €C, a,d, — b,e, =0, I;m, # 0 and v, () e
Clx].

Finally, put

g bﬂ !
7, =163 (“ ) c(8ego a7
9¢G \Cy da
or

I, 0\
=16l (g ) eeaee.
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We can easily see that
(' =+ 1/]G|-g§a (N, — bot,)/(a,d, — b,e,)
7‘: iﬂ =9+ UIG|- 3 (atty — M@y, — byey)
and
=+ 1/]G|-ﬂ§e;; Yo/,
- {y =y + 1|6 5, »,@)m, .

Thus 7, and 7, are polynomial automorphisms in C®.. For any element %
of G, we have

Yio(BohoB™)

b\ ™"
:1/]Gl.062&<za d> o(BogoB—l)o(BohOB—l)
ap by a, b, a, b\ .
:1/[G|.g§l¥<ch dh) ’ {<cg dg) ’ <C),, dh>} O(Bcgohoﬁ )
(% b, a, b, a,  b,\) ™ .
= (ch dh) °1/|G| g,%g {(C, d,) <0h d,,)} oBo(goh)e

(o 2o
B ¢ dy t
Similarly, we have

I, 0
72°(B°h°6_1)= (0 m)"’yz-

Therefore, for every element g of G, we have

b
Yo(BogoR )oY, = (a, d") eGL(2, C)
or

l, O
’Yz°(B°g°B")°72=<’ )eGL(2,C).
0 m,
We have only to let @« =7, o8 or @ = 7,0 83. Thus the proof of Theorem
2 is completed.

3. Example. Let G be a finite subgroup of Aut (C®. By Theorem
1, there exists a non-singular projective algebraic compactification (C? ¢,
X; A) and a finite subgroup G of Aut(X; A) such that (oGor=G.
Here, if we can choose the complex projective space P® or a non-singular
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quadric hypersurface @ in P* as such a compactification X, there exists
an element a of Aut (C®) such that ¢ oGoa™ is a finite subgroup of
GL(3, C). Indeed, if X = P? then it is obvious. Suppose that X = @ =
Pt Let (X)o<is: (resp. (Y.<) be the homogeneous coordinates of P*
(resp. P?). We may assume that

X=V(XX + X+ X2+ XD,
A=VX)NX=V(Y2+ Y2+ Y= P*.

In fact, we shall first consider the following standard sequence:
— H(C’, Z)—> H X, Z)—>H"A,Z)—> H'(C, Z)— .
Since H(C? Z) =0 for 1 <7 < 4, we have
HYX,Z)= H'A,Z) for 1<i1<4.

By the Lefschetz hyperplane section theorem, we have H*X, Z) =
H¥P',Z)=Z. We can see that the line bundle [4] is ample on X, and
the first Chern class C([A]) of [A] generates the cohomology ring H* X, Z)
(= Z). By the adjunction formula, we have K, = [A]™® (cf. Brenton-
Morrow [1]). Since A is a hyperplane section and H*(A4,Z)=Z, A is
an irreducible quadric hypersurface in V(X,) = P® with an isolated singu-
larity. By elementary arguments, we see that the minimal resolution
of A is the rational ruled surface F,. Thus we may assume that A is
isomorphic to the variety V(Y; + Y; + Y;) <> P’ and that X is isomor-
phic to the variety V(X X, + X7 + X? + X}) (see Griffiths-Harris [7]). It
is easy to verify that such a (X, A) is a non-singular compactification
of C°.

Now, we put £ =(1:0:0:0)e X. Then z is a singular point of A.
Let p,: Q,(X)— X be the quadratic transformation of X at the point
with pi(x) = E = P®. We define the projection ,: Q,(X) — P* of Q,(X)
onto P® by

(i) the point with X,= -9}y, Xi=v (1=Si<4
=2

if y,#0,
(ii) the point with X, =1, X,=0 (1<i<4)

PPO=¢ i 4 =0 and S48 %0,
i=2

(iii) any of the line of points with X, =1¢, «, = sy,

1<i<d) if g,=3y8=0.
=2
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Thus we have the following diagram

Q.(X)
pl/ \pz
N

Let A be the proper transform of A in @,(X). Then we have p,(p;i(4)) =
V(Y) <> P* and p,(A) is a conic v:{Y, = Y? + Y+ Y} = 0} = V(Y,) (see
Mumford [14]).

Let g be an arbitrary element of Aut(X;A). Then g(x) = 2, since
the point x is the only singular point of A. Therefore, for the same
reason as in Lemma 1, there exists a unique automorphism § of
Aut (Q,(X); pi*(A)) such that p,og = gop,. Further by the Riemann
extension theorem, there exists a unique automorphism § of Aut (P%
V(Y,)) such that p,o§ = gop,. We put @ = p,op*. Then a is a one-
to-one regular mapping of C* into P° with V(Y,) = P* — a(C®) and qog=
goa, namely, acgoa™ = §|C® Since §e Aut (P?% V(Y,)), §|C®is a linear
transformation. Therefore G is conjugate in Aut (C®) with a finite sub-
group of GL(3, C).
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