FINITE GROUPS OF POLYNOMIAL AUTOMORPHISMS IN Cⁿ

MIKIO FURUSHIMA

(Received August 9, 1982)

Introduction. Let C^n be an *n*-dimensional complex Euclidean space. A biholomorphic transformation $g: C^n \to C^n$ of C^n onto C^n is called a polynomial automorphism if g and the inverse g^{-1} are given by n polynomials in n variables. We shall denote by $\operatorname{Aut}(C^n)$ the group of all polynomial automorphisms in C^n . Let X be a projective algebraic compactification of C^n , let $\iota: C^n \to X$ be an inclusion and put $A = X - \iota(C^n)$. Then A is a closed subvariety of X. For simplicity, we shall denote this compactification by $(C^n, \iota, X; A)$. Let us denote by $\operatorname{Aut}(X)$ the group of all birational and biregular automorphisms of X, and define a subgroup $\operatorname{Aut}(X; A)$ of $\operatorname{Aut}(X)$ by $\operatorname{Aut}(X; A) = \{\hat{g} \in \operatorname{Aut}(X); \hat{g}(A) = A\}$. Then we have the following theorem.

THEOREM 1. Let G be a finite subgroup of Aut (C^n) . Then there exist a non-singular projective algebraic compactification $(C^n, \iota, X; A)$ and a finite subgroup \hat{G} of Aut (X; A) such that $\iota^{-1} \circ \hat{G} \circ \iota = G$, namely $\{\iota^{-1} \circ \hat{g} \circ \iota; \hat{g} \in \hat{G}\} = G$ on C^n .

Applying Theorem 1 and Morrow's classification of the minimal normal compactifications of C^2 [13], we shall give an elementary proof of the following theorem which was obtained by Gizatullin-Danilov [4], Miyanishi [12] and Kambayashi [10], independently (see also [3]).

THEOREM 2 ([4], [12], [10]). Let G be a finite subgroup of Aut (C²). Then G is conjugate in Aut (C²) with a finite subgroup of GL(2, C), namely, there exists a polynomial automorphism $\alpha \in Aut$ (C²) such that $\alpha \circ G \circ \alpha^{-1}$ is a finite subgroup of GL(2, C).

REMARK 1. For n = 2, Theorem 1 is a special case of the theorem of Gizatullin-Danilov [4, § 6]. For $n \ge 3$, it seems to be effective in answering the following general question (see § 3).

QUESTION. Let G be a finite subgroup of Aut (C^n) . Then is G conjugate in Aut (C^n) with a finite subgroup of GL(n, C)?

1. Proof of Theorem 1. Let G be a finite subgroup of Aut (C^n) $(n \ge 2)$. Let C^n/G be the quotient space of C^n by the group G, and $\pi: \mathbb{C}^n \to \mathbb{C}^n/G$ the projection. Since G is a finite group of polynomial automorphisms in \mathbb{C}^n , by Cartan [2], \mathbb{C}^n/G is a normal affine algebraic variety of dimension n and the projection π is a proper finite regular mapping. Let Y be the normalization of the algebraic closure of \mathbb{C}^n/G in some complex projective spece \mathbb{P}^N , where N > 0 is a sufficiently large integer. Then Y is a normal projective algebraic variety of dimension n. Let $\tau: \mathbb{C}^n/G \to Y$ be the natural inclusion and put $B_0 = Y - \tau(\mathbb{C}^n/G)$. The triple $R = (\mathbb{C}^n, \pi, \mathbb{C}^n/G)$ is a branched algebraic covering over \mathbb{C}^n/G . Let B_1 be the algebraic closure in Y of the branch locus in \mathbb{C}^n/G and put $B = B_0 \cup B_1$. Then B is a closed subvariety of Y. Then the triple $\Re' = (\mathbb{C}^n - \pi^{-1}(B), \pi, \mathbb{C}^n/G - B)$ is an unbranched covering over Y - B $(= \mathbb{C}^n/G - B)$. By Stein [16, Satz 1], there exists a topologically branched finite covering $\Re_0 = (X_0, \pi_0, Y)$ over Y with the following properties:

- (i) the branch locus is contained in the set B,
- (ii) X_0 contains C^n as an open subset, and
- (iii) $\pi_0 | C^n = \pi$.

Further, such a covering \Re_0 is uniquely determined up to topological isomorphisms. Since π_0 is a proper finite mapping and Y is compact, X_0 is also compact. Since Y is a normal complex space, by the well-known theorem of Grauert-Remmert [6], we can introduce a normal complex structure on X_0 and the projection π_0 is holomorphic with respect to this complex structure. Since Y is projective algebraic and π_0 is proper finite holomorphic, by Grauert-Remmert [5] (see also Remmert-Stein [15, Satz 8]), so is X_0 . Thus, π_0 is a proper finite regular mapping. Let $\iota_0: \mathbb{C}^n \to X_0$ be the natural inclusion and put $A_0 = X_0 - \iota_0(\mathbb{C}^n)$. Then A_0 is a closed subvariety of X_0 .

Let g be an arbitrary element of G. Since $\pi_0 \circ g \ (= \pi \circ g = \pi)$: $X_0 - A_0 \to Y$ is continued to the regular mapping $\pi_0: X_0 \to Y$ of X_0 into Y, by Stein [16, Hilfssatz 2], g can be uniquely extended to a continuous mapping $g_0: X_0 \to X_0$. By the Riemann extension theorem, g_0 is a holomorphic (therefore regular) mapping of X_0 onto X_0 . Similarly, the inverse g^{-1} can be uniquely extended to a regular mapping $g_0^{-1}: X_0 \to X_0$ of X_0 onto X_0 , and we have $g_0 \circ g_0^{-1} = \operatorname{id}_{X_0}$. Since $g(C^n) = C^n$, we have $g_0(A_0) = A_0$, namely, $g_0 \in \operatorname{Aut}(X_0; A_0)$, and further we have $\varepsilon_0^{-1} \circ g_0 \circ \varepsilon_0 = g$ on C^n . Thus we have the following:

PROPOSITION 1. Let G be a finite subgroup of Aut (C^n) . Then there exist a (not necessarily non-singular) projective algebraic compactification $(C^n, \iota_0, X_0; A_0)$ and a finite subgroup G_0 of Aut $(X_0; A_0)$ such that $\iota_0^{-1} \circ G_0 \circ$ $\iota_0 = G$ on C^n .

By Hironaka's equivariant resolution theorem [8, §7], there exists a non-singular model $\phi: X \to X_0$ of X_0 such that any automorphism $g_0 \in \operatorname{Aut}(X_0)$ can be uniquely extended to an automorphism $\hat{g} \in \operatorname{Aut}(X)$ and satisfies $\phi \circ \hat{g} = g_0 \circ \phi$.

From this theorem and the facts that the singularities of X_0 do not lie on C^n and that $g_0(C^n) = C^n$ for every $g_0 \in G_0$, there exists a finite subgroup \hat{G} of Aut(X; A), where $A = \phi^{-1}(A_0)$, such that $\phi \circ \hat{G} = G_0 \circ \phi$, that is, for any $g_0 \in G_0$, there exists a unique element $\hat{g} \in \hat{G}$ such that $\phi \circ \hat{g} = g_0 \circ \phi$. Putting $\epsilon = \phi^{-1} \circ \epsilon_0$: $C^n \to X$, the proof of Theorem 1 is completed.

2. Proof of Theorem 2. Let G be a finite subgroup of Aut (C^2) . By Theorem 1, there exist a non-singular projective algebraic compactification $(C^2, \iota, X; A)$ and a subgroup \hat{G} of Aut (X; A) such that $\iota^{-1} \circ \hat{G} \circ \iota =$ G. We put $A = \bigcup_{i=1}^{l} A_i$, where each A_i is an irreducible algebraic curve. We need the following two elementary lemmas.

LEMMA 1. Let M be a two-dimensional complex manifold and $e = \{x_1, \dots, x_k\}$ a set of finitely many points in M. Let $f: M \to M$ be a biholomorphic transformation with f(e) = e. Let $Q_e(M)$ be the quadratic transformation of M at the set e, and $\phi: Q_e(M) \to M$ the projection. Put $\phi^{-1}(e) = E = \bigcup_{i=1}^{k} E_i$, where $E_i = \phi^{-1}(x_i)$ is an exceptional curve of the first kind. Then there exists a unique biholomorphic transformation $\hat{f}: Q_e(M) \to Q_e(M)$ with $\hat{f}(E) = E$ such that $\phi \circ \hat{f} = f \circ \phi$.

LEMMA 2. Let \hat{M} be a two-dimensional complex manifold and $E = \bigcup_{i=1}^{k} E_i$ a disjoint union of exceptional curves of the first kind. Let $\hat{g}: \hat{M} \to \hat{M}$ be a biholomorphic transformation with $\hat{g}(E) = E$. Let $M = \hat{M}/E$ be the contraction of $E, \psi: \hat{M} \to M$ the projection and put $\psi(E) = e = \{x_1, \dots, x_k\}$. Then there exists a unique biholomorphic transformation $g: M \to M$ with g(e) = e such that $\psi \circ g = g \circ \psi$.

The proof of Lemma 1 is contained in that of the Lemma of Hopf [9] and Lemma 2 follows from the Riemann extension theorem.

Since the singularities of the (reducible) curve A is \hat{G} -invariant, blowing up such singularities and using Lemma 1, we may assume that each A_i is non-singular and A_i 's cross each other normally if they intersect. Further, we may assume that $(C^2, \iota, X; A)$ is a minimal normal compactification (see Morrow [13]). Indeed, taking account of Morrow's classification of the minimal normal compactifications of C^2 (see also Figure), we see that the irreducible components A_i $(1 \le i \le k)$ of A with the following properties (i) and (ii) are \hat{G} -invariant.

M. FURUSHIMA

(i) A_i is an exceptional curve of the first kind, and

(ii) the number of irreducible components of A, different from A_i , which intersect A_i is at most two.

Blowing down such irreducible components A_i $(1 \le i \le k)$ to points, and using Lemma 2 at each step, the above assertion is finally proved. Thus we have the following:

PROPOSITION 2. Let G be a finite subgroup of Aut (C^2) . Then there exist a minimal compactification $(C^2, \iota, X; A)$ of C^2 and a finite subgroup \hat{G} of Aut (X; A) such that $\iota^{-1} \circ \hat{G} \circ \iota = G$ on C^2 .

REMARK 2. We can also prove Proposition 2 without using Hironaka's

(a)
$$\frac{1}{0}$$
 (b) $\frac{0}{0}$ $(n \neq -1)$ (c) $\frac{n-1}{0}$ $(n > 0)$
(d) $\frac{-2}{0}$ $\frac{-2}{0}$ $\frac{n}{0}$ $\frac{-n-1}{(n > 0)}$ (e) $\frac{n}{0}$ $\frac{0}{-n-1}$ $\frac{-2}{-2}$ $\frac{-2}{0}$
arbitrary number of vertices of vertices
(f) $\frac{-2}{-k_p-2}$ $\frac{-2}{-k_p-1}$ $\frac{-2}{-2}$ $\frac{-2}{-k_2-2}$ $\frac{-2}{-k_1-2}$ $\frac{-2}{-k_1-2}$ $\frac{-2}{-k_p-1}$ $\frac{-2}{-k_p-1}$ $\frac{-2}{-k_p-1}$ $\frac{-2}{-k_p-1}$ $\frac{-2}{-k_p-1}$ $\frac{-2}{-k_1-2}$ $\frac{-2}{-k_1-2}$ $\frac{-2}{-k_p-1}$ $\frac{-2}{-k_p-2}$ $\frac{-2}{$

418

FIGURE

equivariant resolution theorem. Indeed, by Proposition 1 and the uniqueness of the minimal resolution of singularities of a two-dimensional complex analytic space (cf. Laufer [11]), we can easily see that there exist a non-singular projective algebraic compactification $(C^2, \iota_0, X_0; A_0)$ of C^2 and a finite subgroup \hat{G} of Aut $(X_0; A_0)$ such that $\iota_0^{-1} \circ \hat{G} \circ \iota_0 = G$ on C^2 . Using Lemmas 1 and 2 repeatedly, we have finally Proposition 2.

Now, by Morrow [13], the types of the graph $\Gamma(A)$ of $A (= \bigcup_{i=1}^{l} A_i)$ are the following, where each vertex of the graph represents a nonsingular rational curve A_i , adjacent to which we write the self-intersection number (A_i^2) of A_i . Two vertices are joined by a segment if and only if the two corresponding rational curves intersect each other (see Figure).

(CASE 1). The type of $\Gamma(A)$ is (a). In this case, X is a complex projective plane P^2 and $A = X - \iota(C^2)$ is a line L in P^2 . More precisely, let $(X_i)_{0 \le i \le 2}$ be homogeneous coordinates in P^2 . Then $A = X - \iota(C^2) = V(X_0)$.

(CASE 2). The type of $\Gamma(A)$ is (b). In this case, X is a rational ruled surface F_n with the minimal section s_0 whose self-intersection number is $(s_0^2) = -n$ $(n \ge 0)$. Let s_{∞} be a section with $(s_{\infty}^2) = n$ and l a fiber. Then we have $A = F_n - \iota(C^2) = s_{\infty} \cup l$.

(CASE 3). The type of $\Gamma(A)$ is one of $(c) \sim (g)$. Let A_0 (resp. A_1, A_2) be the irreducible component of A with $(A_0^2) = 0$ (resp. $(A_1^2) = n$, $(A_2^2) = -n - 1$). Since the self-intersection number is invariant under an automorphism of X, we have $\hat{g}(A_i) = A_i$ (i = 0, 1) for every \hat{g} of Aut (X; A). Since A_0 and A_1 are \hat{g} -invariant, so is A_2 . Blowing up the intersection point of A_0 and A_1 , and blowing down the proper transform of A_0 to a point, we have a new minimal normal compactification $(C^2, c_1, X_1; B)$ of C^2 . It is easily seen that the type of the graph $\Gamma(B)$ of B is the same as that of $\Gamma(A)$ with n replaced by n - 1, provided $n \ge 2$. If n = 1, the type changes as follow:

$$(c) \rightarrow (b)$$
, $(d) \rightarrow (e)$, $(e) \rightarrow (b)$ and $(f) \leftrightarrow (g)$.

Thus repeating this process finitely many times and using Lemmas 1 and 2 at each step, we see finally that every element of Aut (X; A) induces a unique element of Aut $(F_n, s_{\infty} \cup l)$. More precisely, let $\psi: X \to F_n$ be the birational mapping obtained by the above process. By the construction, the restriction $\psi | \iota(C^2)$ of ψ to $\iota(C^2) = X - A$ is a one-to-one regular mapping and the mapping $\psi \circ \iota: C^2 \to F_n$ gives an inclusion. We put $s_{\infty} \cup l = F_n - \psi \circ \iota(C^2)$. Then there exists a finite subgroup \hat{G} of Aut $(F_n, s_{\infty} \cup l)$ such that $(\psi \circ \iota)^{-1} \circ \hat{G} \circ (\psi \circ \iota) = G$. Thus we have the following:

PROPOSITION 3. Let G be a finite subgroup of $Aut(C^2)$. Then the

following two cases arise:

(1) There exists a finite subgroup \widehat{G} of $\operatorname{Aut}(P^2, L)$ such that $\iota^{-1} \circ \widehat{G} \circ \iota = G$, where $\iota: \mathbb{C}^2 \to \mathbb{P}^2$ is an inclusion and $L = \mathbb{P}^2 - \iota(\mathbb{C}^2)$ is a line. (2) There exists a finite subgroup \widetilde{G} of $\operatorname{Aut}(\mathbb{F}_n, \mathfrak{s}_\infty \cup l)$ such that $\tau^{-1} \circ \widetilde{G} \circ \tau = G$, where $\tau: \mathbb{C}^2 \to \mathbb{F}_n$ is an inclusion, \mathfrak{s}_∞ is a section with the self-intersection number $(\mathfrak{s}^2_\infty) = n$ $(n \geq 0)$ and l is a fiber of \mathbb{F}_n .

Now, since $\iota^{-1} \circ \widehat{G} \circ \iota = G$ (resp. $\tau^{-1} \circ \widetilde{G} \circ \tau = G$), we have $\iota \circ G \circ \iota^{-1} = \widehat{G} | C^2$ (resp. $\tau \circ G \circ \tau^{-1} = \widetilde{G} | C^2$), where $\widehat{G} | C^2$ (resp. $\widetilde{G} | C^2$) means the restriction of the group \widehat{G} (resp. \widetilde{G}) to $\iota(C^2)$ (resp. $\tau(C^2)$). For simplicity, we identify $\iota(C^2)$ and $\tau(C^2)$ with C^2 . On the other hand, Aut (P^2) and Aut (F_n) are well-known, and we can write down every element of Aut (P^2 , L) or Aut ($F_n, s_\infty \cup l$) (see [4]). In fact, choosing suitable coordinates x and y in C^2 , we find that for every element \widehat{g} of Aut (P^2 , L) (resp. \widetilde{g} of Aut ($F_n, s_\infty \cup l$)) the restriction $\widehat{g} | C^2$ (resp. $\widetilde{g} | C^2$) has the following form:

$$\begin{cases} x' = ax + by + \lambda \\ y' = cx + dy + \mu \text{, where } ad - bc \neq 0 \text{ and } \lambda, \mu \in C \\ \end{cases}$$
$$\begin{pmatrix} \operatorname{resp.} & \begin{cases} x' = ax + \lambda \\ y' = dy + \nu(x) \text{, where } ad \neq 0 \text{ and } \nu(x) \in C[x] \end{cases} \end{pmatrix}.$$

Since ι (resp. τ) is a regular mapping of C^2 into P^2 (resp. F_n), ι and τ can be regarded as elements of Aut (C^2). Consequently we have the following:

PROPOSITION 4. Let G be a finite subgroup of $Aut(C^2)$. Then there exists a polynomial automorphism β in C^2 such that for every g of G, we have

$$eta\circ g\circeta^{-1} \colon egin{cases} x'=a_{g}x+b_{g}y+\lambda_{g}\ y'=c_{g}x+d_{g}y+\mu_{g} \end{cases}$$

or

$$eta \circ g \circ eta^{-1}$$
: $egin{pmatrix} x' = l_g x + \lambda'_g \ y' = m_g y +
u_g(x) \ , \end{cases}$

where a_g , b_g , c_g , d_g , l_g , m_g , λ_g , λ'_g , $\mu_g \in C$, $a_g d_g - b_g c_g \neq 0$, $l_g m_g \neq 0$ and $\nu_g(x) \in C[x]$.

Finally, put

$$egin{aligned} & \gamma_{_1}=1/|\,G\,|\cdot\sum\limits_{g\,\in\,G}\,inom{a_g}{c_g}\,\,b_ginom{-1}{c_g}^{-1}\circ(eta\circ g\circeta^{-1})\ & \gamma_{_2}=1/|\,G\,|\cdot\sum\limits_{g\,\in\,G}\,inom{l_g}{c_g}\,\,0\ & m_ginom{-1}{c_g}^{-1}\circ(eta\circ g\circeta^{-1}) \end{aligned}$$

or

We can easily see that

$$\gamma_1: \begin{cases} x' = x + 1/|G| \cdot \sum_{g \in G} (\lambda_g d_g - b_g \mu_g)/(a_g d_g - b_g c_g) \\ y' = y + 1/|G| \cdot \sum_{g \in G} (a_g \mu_g - \lambda_g c_g)/(a_g d_g - b_g c_g) \end{cases}$$

and

$$\gamma_2$$
: $\begin{cases} x' = x + 1/|G| \cdot \sum_{g \in G} \gamma'_g/l_g \\ y' = y + 1/|G| \cdot \sum_{g \in G} \nu_g(x)/m_g \end{cases}$.

Thus γ_1 and γ_2 are polynomial automorphisms in C^2 . For any element h of G, we have

$$\begin{split} \gamma_{1} \circ (\beta \circ h \circ \beta^{-1}) \\ &= 1/|G| \cdot \sum_{g \in G} \begin{pmatrix} a_{g} & b_{g} \\ c_{g} & d_{g} \end{pmatrix}^{-1} \circ (\beta \circ g \circ \beta^{-1}) \circ (\beta \circ h \circ \beta^{-1}) \\ &= 1/|G| \cdot \sum_{g \in G} \begin{pmatrix} a_{h} & b_{h} \\ c_{h} & d_{h} \end{pmatrix} \circ \left\{ \begin{pmatrix} a_{g} & b_{g} \\ c_{g} & d_{g} \end{pmatrix} \circ \begin{pmatrix} a_{h} & b_{h} \\ c_{h} & d_{h} \end{pmatrix} \right\}^{-1} \circ (\beta \circ g \circ h \circ \beta^{-1}) \\ &= \begin{pmatrix} a_{h} & b_{h} \\ c_{h} & d_{h} \end{pmatrix} \circ 1/|G| \cdot \sum_{g \circ h \in G} \left\{ \begin{pmatrix} a_{g} & b_{g} \\ c_{g} & d_{g} \end{pmatrix} \circ \begin{pmatrix} a_{h} & b_{h} \\ c_{h} & d_{h} \end{pmatrix} \right\}^{-1} \circ \beta \circ (g \circ h) \circ \beta^{-1} \\ &= \begin{pmatrix} a_{h} & b_{h} \\ c_{h} & d_{h} \end{pmatrix} \circ \gamma_{1} . \end{split}$$

Similarly, we have

$$arphi_{_2}\circ (eta\circ h\circeta^{_1})=egin{pmatrix} l_g&0\0&m_g\end{pmatrix}\circ arphi_{_2}\,.$$

Therefore, for every element g of G, we have

$$\gamma_1 \circ (\beta \circ g \circ \beta^{-1}) \circ \gamma_1 = egin{pmatrix} a_g & b_g \ c_g & d_g \end{pmatrix} \in GL(2, C)$$

or

$${\gamma}_{_2}\circ ({eta}\circ g\circ {eta}^{_{-1}})\circ {\gamma}_{_2}=egin{pmatrix} l_g&0\0&m_g\end{pmatrix}\in GL(2,\,C)\;.$$

We have only to let $\alpha = \gamma_1 \circ \beta$ or $\alpha = \gamma_2 \circ \beta$. Thus the proof of Theorem 2 is completed.

3. Example. Let G be a finite subgroup of Aut (C^3) . By Theorem 1, there exists a non-singular projective algebraic compactification $(C^3, \iota, X; A)$ and a finite subgroup \hat{G} of Aut (X; A) such that $\iota^{-1} \circ \hat{G} \circ \iota = G$. Here, if we can choose the complex projective space P^3 or a non-singular

M. FURUSHIMA

quadric hypersurface Q^3 in P^4 as such a compactification X, there exists an element α of Aut (C^3) such that $\alpha \circ G \circ \alpha^{-1}$ is a finite subgroup of GL(3, C). Indeed, if $X = P^3$, then it is obvious. Suppose that $X = Q^3 \hookrightarrow$ P^4 . Let $(X_i)_{0 \le i \le 4}$ (resp. $(Y_i)_{1 \le i \le 4}$) be the homogeneous coordinates of P^4 (resp. P^3). We may assume that

$$egin{array}{lll} X &\cong V(X_0X_1 + X_2^2 + X_3^2 + X_1^2) ext{ ,} \ A &\cong V(X_0) \cap X \cong V(Y_2^2 + Y_3^2 + Y_4^2) \hookrightarrow oldsymbol{P}^3 \ . \end{array}$$

In fact, we shall first consider the following standard sequence:

$$ightarrow H^i_c(C^3, \mathbb{Z})
ightarrow H^i(X, \mathbb{Z})
ightarrow H^i(A, \mathbb{Z})
ightarrow H^{i+1}_c(C^3, \mathbb{Z})
ightarrow .$$

Since $H_i^{\circ}(C^3, \mathbb{Z}) = 0$ for $1 \leq i \leq 4$, we have

$$H^{i}(X, \mathbb{Z}) \cong H^{i}(A, \mathbb{Z})$$
 for $1 \leq i \leq 4$.

By the Lefschetz hyperplane section theorem, we have $H^2(X, \mathbb{Z}) \cong H^2(\mathbb{P}^4, \mathbb{Z}) \cong \mathbb{Z}$. We can see that the line bundle [A] is ample on X, and the first Chern class $C_1([A])$ of [A] generates the cohomology ring $H^2(X, \mathbb{Z})$ $(\cong \mathbb{Z})$. By the adjunction formula, we have $K_X \cong [A]^{-3}$ (cf. Brenton-Morrow [1]). Since A is a hyperplane section and $H^2(A, \mathbb{Z}) \cong \mathbb{Z}$, A is an irreducible quadric hypersurface in $V(X_0) \cong \mathbb{P}^3$ with an isolated singularity. By elementary arguments, we see that the minimal resolution of A is the rational ruled surface \mathbb{F}_2 . Thus we may assume that A is isomorphic to the variety $V(Y_2^2 + Y_3^2 + Y_4^2) \hookrightarrow \mathbb{P}^3$, and that X is isomorphic to the variety $V(X_0X_1 + X_2^2 + X_3^2 + X_4^2)$ (see Griffiths-Harris [7]). It is easy to verify that such a (X, A) is a non-singular compactification of \mathbb{C}^3 .

Now, we put $x = (1:0:0:0) \in X$. Then x is a singular point of A. Let $p_1: Q_x(X) \to X$ be the quadratic transformation of X at the point x with $p_1^{-1}(x) = E \cong \mathbf{P}^2$. We define the projection $p_2: Q_x(X) \to \mathbf{P}^3$ of $Q_x(X)$ onto \mathbf{P}^3 by

Thus we have the following diagram

Let \overline{A} be the proper transform of A in $Q_x(X)$. Then we have $p_2(p_1^{-1}(A)) = V(Y_1) \hookrightarrow P^3$ and $p_2(\overline{A})$ is a conic $\gamma: \{Y_1 = Y_2^2 + Y_3^2 + Y_4^2 = 0\} \hookrightarrow V(Y_1)$ (see Mumford [14]).

Let g be an arbitrary element of Aut (X; A). Then g(x) = x, since the point x is the only singular point of A. Therefore, for the same reason as in Lemma 1, there exists a unique automorphism \hat{g} of Aut $(Q_x(X); p_1^{-1}(A))$ such that $p_1 \circ \hat{g} = g \circ p_1$. Further by the Riemann extension theorem, there exists a unique automorphism \tilde{g} of Aut $(P^3;$ $V(Y_1))$ such that $p_2 \circ \tilde{g} = \hat{g} \circ p_2$. We put $\alpha = p_2 \circ p_1^{-1}$. Then α is a oneto-one regular mapping of C^3 into P^3 with $V(Y_1) = P^3 - \alpha(C^3)$ and $\alpha \circ g =$ $\tilde{g} \circ \alpha$, namely, $\alpha \circ g \circ \alpha^{-1} = \tilde{g} | C^3$. Since $\tilde{g} \in \text{Aut}(P^3; V(Y_1))$, $\tilde{g} | C^3$ is a linear transformation. Therefore G is conjugate in Aut (C^3) with a finite subgroup of GL(3, C).

References

- L. BRENTON AND J. MORROW, Compactifications of Cⁿ, Trans. Amer. Math. Soc., 246 (1978), 139-153.
- [2] H. CARTAN, Quotient d'un espace analytique par un groupe d'automorphismes, Algebraic Geometry and Topology, A symposium in honor of S. Lefschetz, Princeton Univ. Press (1957), 90-102.
- [3] M. FURUSHIMA, Finite groups of polynomial automorphisms in the complex affine plane (I), Mem. Fac. Sci. Kyushu Univ., 36 (1982), 85-105.
- [4] M. H. GIZATULLIN AND V. I. DANILOV, Automorphisms of affine surfaces I, Math. USSR. Izv., 9 (1975), 493-534.
- [5] H. GRAUERT AND R. REMMERT, Bilder und Urbilder analytischer Garben, Ann. Math., 68 (1958), 393-443.
- [6] H. GRAUERT AND R. REMMERT, Komplexe Räume, Math. Ann., 136 (1958), 245-318.
- [7] P. GRIFFITHS AND J. HARRIS, Principles of Algebraic Geometry, John Willey & Sons, 1978.
- [8] H. HIRONAKA, Bimeromorphic smoothing of a complex analytic space, Math. Inst. Warwick Univ., England (1971).
- [9] H. HOFF, Schlichte Abbildungen und lokale Modifikationen komplexer Mannigfaltigkeiten, Comm. Math. Helv., 29 (1955), 132-156.
- [10] T. KAMBAYASHI, Automorphism group of a polynomial ring and algoratic group action on an affine space, J. of Algebra, 60 (1979), 439-451.
- [11] H. B. LAUFER, Normal two-dimensional singularities, Ann. Math. Studies, 59 (1973).
- [12] M. MIYANISHI, Lectures on curves on rational and unirational surface, Tata Inst. Fundamental Research, Bombay, Springer-Verlag, Berlin-Heidelberg-New York, 1978.
- [13] J. MORROW, Minimal normal compactification of C^a, Proceedings of the Conference of Complex Analysis, Rice Univ. Studies 59 (1973), 97-112.

M. FURUSHIMA

- [14] D. MUMFORD, Algebraic Geometry I: Complex Projective varieties, Grundlehren Math. Wissenschaften 221, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
- [15] R. REMMERT AND K. STEIN, Eigentliche holomorphe Abbildungen, Math. Z., 73 (1960), 159-189.
- [16] K. STEIN, Analytische Zerlegungen komplexer Räume, Math. Ann., 132 (1956), 63-93.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE KYUSHU UNIVERSITY FUKUOKA, 812 JAPAN Current Address: KUMAMOTO RADIO TECHNICAL COLLEGE NISHI-GÔSHI-MACHI KUMAMOTO, 861-11 JAPAN