Tôhoku Math. Journ. 35 (1983), 375-386.

THE CANONICAL HALF-NORM, DUAL HALF-NORMS, AND MONOTONIC NORMS

DEREK W. ROBINSON AND SADAYUKI YAMAMURO

(Received June 18, 1982)

Abstract. Let $(\mathscr{B}, \mathscr{B}_+, || \cdot ||)$ be an ordered Banach space and define the canonical half-norm

$$N(a) = \inf\{||a + b||; b \in \mathcal{B}_+\}.$$

We prove that N(a) = ||a|| for $a \in \mathscr{B}_+$ if, and only if, the norm is (1-) monotonic on \mathscr{B} , and

$$N(a) = \inf \{ ||b||; b \in \mathscr{B}_+, b - a \in \mathscr{B}_+ \}$$

if, and only if, the dual norm is (1-) monotonic on \mathscr{P}^* . Subsequently we examine the canonical half-norm in the dual and prove that it coincides with the dual of the canonical half-norm.

0. Introduction. Let $(\mathscr{B}, \|\cdot\|)$ be a Banach space ordered by a positive cone \mathscr{B}_+ . The associated canonical half-norm N is defined by

$$N(a) = \inf \{ \|a + b\|; b \in \mathcal{B}_{+} \}.$$

This half-norm has been useful in the analysis of positive semigroups [1] [2] [3] and it appears useful for the characterization of geometric properties of $(\mathscr{B}, \mathscr{B}_+, \|\cdot\|)$ [4] [5] [6]. If \mathscr{B} is a Banach lattice, or the real part of a C^* -algebra then $N(a) = \|a_+\|$ where a_+ is the canonical positive component of $a \in \mathscr{B}$. In particular the half-norm and the norm coincide on \mathscr{B}_+ . Moreover one has

$$N\!\left(a
ight)=\inf\left\{\left\Vert b\left\Vert
ight
angle ,b\in\mathscr{B}_{+},b-a\in\mathscr{B}_{+}
ight\}$$
 ,

In this note we establish that these properties are general features of a Banach space whose norm and dual-norm are monotonic. Subsequently we examine the canonical half-norm in the dual \mathscr{B}^* and prove that it is the dual, in an appropriate sense, of the canonical half-norm in \mathscr{B} .

Throughout this paper \mathscr{B}_+ is a norm-closed convex cone in \mathscr{B} with the property

$$\mathscr{B}_+ \cap - \mathscr{B}_+ = \{0\}$$

and one sets $a \ge b$ if $a - b \in \mathscr{B}_+$. Furthermore \mathscr{B}_1 denotes the unit

ball, \mathscr{B}^* the dual, \mathscr{B}^*_+ the dual cone, i.e.,

 $\mathscr{B}_{+}^{*} = \{f; f \in \mathscr{B}^{*}, f(a) \geq 0 \text{ for all } a \in \mathscr{B}_{+}\},\$

and \mathscr{B}_1^* the unit ball of \mathscr{B}^* .

1. Monotonic norms. The norm of an ordered Banach space (\mathscr{B} , \mathscr{B}_+ , $\|\cdot\|$) is defined to be α -monotonic if

(*)
$$0 \leq a \leq b$$
 implies $||a|| \leq \alpha ||b||$.

This condition is closely related to the concept of normality of \mathscr{B}_+ introduced by Krein [7].

The cone \mathscr{B}_+ is defined to be β -normal if

(**)
$$a \leq b \leq c \text{ implies } ||b|| \leq \beta(||a|| \vee ||c||).$$

Clearly (**) implies (*) with $\alpha = \beta$ but conversely (*) implies (**) with $\beta = 1 + 2\alpha$. Grosberg and Krein [8] established that normality of \mathscr{B}_+ is equivalent to a generation property of the dual cone \mathscr{B}_+^* .

The dual cone \mathscr{B}_{+}^{*} is defined to be β -generating if each $f \in \mathscr{B}^{*}$ has a decomposition $f = f_{+} - f_{-}$ with $f_{\pm} \in \mathscr{B}_{+}^{*}$ and

$$\beta \|f\| \ge \|f_+\| + \|f_-\|.$$

The Grosberg-Krein theorem states that \mathscr{B}_+ is β -normal if, and only if, \mathscr{B}_+^* is β -generating. A similar characterization of β -normality of \mathscr{B}_+^* in terms of β' -generation of \mathscr{B}_+ , where $\beta' > \beta$, was subsequently obtained by Ando [9] and Ellis [10]. (For further details see [11] [12].)

Our first result is a one-sided version of the foregoing theorems.

THEOREM 1.1. For each $\alpha \geq 1$ the following conditions are equivalent:

(1) The norm is α -monotonic on \mathcal{B} ,

(2) Each $f \in \mathscr{B}_1^*$ has a decomposition $f = f_+ - f_-$ with $f_+ \in \alpha \mathscr{B}_1^* \cap \mathscr{B}_+^*$ and $f_- \in \mathscr{B}_+^*$.

Moreover the following conditions are equivalent:

(1*) The norm is α -monotonic on \mathscr{B}^* ,

(2*) For any $\alpha' > \alpha$ each $a \in \mathscr{B}$ has a decomposition $a = a_+ - a_$ with $a_+ \in \alpha' \mathscr{B}_1 \cap \mathscr{B}_+$ and $a_- \in \mathscr{B}_+$.

PROOF. The proof is by polar calculus [11] [12]. We begin by recalling the relevant results on polars.

If \mathscr{A} is a subset of \mathscr{B} the polar \mathscr{A}° of \mathscr{A} is defined by

$$\mathscr{A}^{\circ} = \{f; f \in \mathscr{B}^{*}, f(a) \leq 1 \text{ for } a \in \mathscr{A}\}.$$

Hence if $\mathcal{A}_1, \mathcal{A}_2$, are norm (weakly) closed convex sets containing $\{0\}$ then

376

$$(\mathscr{A}_1 \cap \mathscr{A}_2)^{\circ} = \overline{co}(\mathscr{A}_1^{\circ} \cup \mathscr{A}_2^{\circ})$$

where \overline{co} denotes the weak*-closed convex hull (see, for example, [11] [12]). Moreover if \mathscr{H}_1 is a cone then

$$(\mathscr{A}_1 \cap \mathscr{A}_2)^{\circ} = \overline{co}(\mathscr{A}_1^{\circ} \cup \mathscr{A}_2^{\circ}) = (\overline{\mathscr{A}_1^{\circ} + \mathscr{A}_2^{\circ}})$$

where the bar denotes weak*-closure. Finally if \mathscr{M}_2° is weak*-compact then

$$(\overline{\mathscr{A}_1^{\circ} + \mathscr{A}_2^{\circ}}) = \mathscr{A}_1^{\circ} + \mathscr{A}_2^{\circ}$$

and hence

$$(\mathscr{A}_1 \cap \mathscr{A}_2)^\circ = \mathscr{A}_1^\circ + \mathscr{A}_2^\circ$$

 $(1) \Rightarrow (2)$. Condition (1) can be rephrased as

 $\mathscr{B}_{+} \cap (\mathscr{B}_{1} - \mathscr{B}_{+}) \subseteq \alpha \mathscr{B}_{1}$.

Therefore if $\lambda > 1$ then

$$\mathscr{B}_{+}\cap (\overline{\mathscr{B}_{1}}-\widetilde{\mathscr{B}_{+}})\subseteq \mathscr{B}_{+}\cap \{\lambda\mathscr{B}_{1}-\mathscr{B}_{+}\}\subseteq \alpha\lambda\mathscr{B}_{1}$$
,

by Corollary 3.3 of [12], Chapter 1. (Here the bar denotes norm closure.) Hence

$$\mathscr{B}_{+} \cap (\overline{\mathscr{B}_{1} - \mathscr{B}_{+}}) \subseteq \alpha \mathscr{B}_{1}$$
.

But \mathscr{B}_+ is a cone and $\mathscr{B}_+^\circ = -\mathscr{B}_+^*$. Moreover $(\mathscr{B}_1 - \mathscr{B}_+)^\circ = \mathscr{B}_+^* \cap \mathscr{B}_1^*$ is weak*-closed. Hence by the above observations, applied with $\mathscr{A}_1 = \mathscr{B}_+$ and $\mathscr{A}_2 = (\mathscr{B}_1 - \mathscr{B}_+)$, one obtains

$$\mathscr{B}_1^* = \mathscr{B}_1^\circ \subseteq \alpha(\mathscr{B}_+ \cap (\overline{\mathscr{B}_1 - \mathscr{B}_+}))^\circ = \alpha(\mathscr{B}_+^* \cap \mathscr{B}_1^* - \mathscr{B}_+^*).$$

This is, however, a set-theoretic reformulation of Condition (2).

To establish the converse implication we need to introduce polars of subsets of the dual. If $\mathscr{F} \subset \mathscr{B}^*$ then the polar \mathscr{F}° is defined by

 $\mathscr{F}^{\circ} = \{a; a \in \mathscr{B}, f(a) \leq 1 \text{ for } f \in \mathscr{F} \}.$

 $(2) \Rightarrow (1)$. Consider the above reformulation

$$\mathscr{B}_{\scriptscriptstyle 1}^{*} \subseteq lpha(\mathscr{B}_{\scriptscriptstyle +}^{*}\cap \mathscr{B}_{\scriptscriptstyle 1}^{*}-\mathscr{B}_{\scriptscriptstyle +}^{*})$$

of Condition (2). Since $(\mathscr{B}_1^*)^\circ = \mathscr{B}_1$ the polar of this relation gives

 $(\mathscr{B}_{+}^{*}\cap \mathscr{B}_{1}^{*}-\mathscr{B}_{+})^{\circ}\subseteq \alpha\mathscr{B}_{1}.$

But it is readily checked that

$$\mathscr{B}_{+}\cap(\mathscr{B}_{1}-\mathscr{B}_{+})\subseteq(\mathscr{B}_{+}^{*}\cap\mathscr{B}_{1}^{*}-\mathscr{B}_{+}^{*})^{\circ}$$

and hence

 $\mathscr{B}_+ \cap (\mathscr{B}_1 - \mathscr{B}_+) \subseteq \alpha \mathscr{B}_1$.

This is, however, a reformulation of Condition (1).

 $(1^*) \Leftrightarrow (2^*)$. Condition (1^*) can be rephrased as

 $\mathscr{B}_{+}^{*} \cap (\mathscr{B}_{1}^{*} - \mathscr{B}_{+}^{*}) \subseteq \alpha \mathscr{B}_{1}^{*}.$

But \mathscr{B}_{+}^{*} and $(\mathscr{B}_{1}^{*} - \mathscr{B}_{+}^{*})$ are both weak*-closed. Hence taking polars one finds that Condition (1^{*}) is equivalent to

$$\mathscr{B}_1 \subseteq \alpha \ \overline{co}((\mathscr{B}_+ \cap \mathscr{B}_1) \cup (-\mathscr{B}_+)) = \alpha((\overline{\mathscr{B}_+ \cap \mathscr{B}_1}) - \overline{\mathscr{B}_+})$$

where the bar denotes norm (or weak) closure. Now since \mathscr{B}_1 is not norm compact one cannot use the previous argument to remove the closure sign. Nevertheless it follows from Corollary 3.3 of [12], Chapter 1, that

$$\mathscr{B}_1 \subseteq \alpha'(\mathscr{B}_+ \cap \mathscr{B}_1 - \mathscr{B}_+)$$

for any $\alpha' > \alpha$. This is, however, a set-theoretic reformulation of Condition (2^{*}).

REMARK 1.2. Since Condition (1), for \mathscr{B} , is equivalent to Condition (2), for \mathscr{B}^* , which implies Condition (2^{*}), for \mathscr{B}^* , which in turn is equivalent to Condition (1^{*}), for the bidual \mathscr{B}^{**} , one concludes that α -monotonicity of the norm on \mathscr{B} implies α -monotonicity of the norm on \mathscr{B}^{**} . Of course the converse is also true.

Next we examine the case of $\alpha = 1$ in more detail.

THEOREM 1.3. The following conditions are equivalent:

(1) The norm is 1-monotonic on \mathcal{B} ,

(2) Each $f \in \mathscr{B}^*$ has a decomposition $f = f_+ - f_-$ with $f_{\pm} \in \mathscr{B}_+^*$ such that $||f_+|| \leq ||f||$,

(3) For each $a \in \mathscr{B}_+$ there is an $f \in \mathscr{B}_+^*$ with ||f|| = 1 and f(a) = ||a||.

PROOF. (1) \Rightarrow (2). This follows from Theorem 1.1 with $\alpha = 1$.

 $(2) \Rightarrow (3)$. Given $a \in \mathscr{B}_+$ the Hahn-Banach theorem establishes the existence of an $f \in \mathscr{B}_1^*$ with f(a) = ||a||. But if $f = f_+ - f_-$ is the decomposition of Condition (2) then

$$||a|| = f(a) \leq f_{+}(a) \leq ||f_{+}|| ||a|| \leq ||a||.$$

Therefore $||f_+|| = ||f|| = 1$ and $f_+(a) = ||a||$.

 $(3) \Rightarrow (1)$. Choose f to satisfy Condition (3) then $0 \leq a \leq b$ implies

$$||a|| = f(a) \leq f(b) \leq ||b||$$

THEOREM 1.4. The following conditions are equivalent:

(1) The norm is 1-monotonic on \mathscr{B}^* ,

(2) Given $\varepsilon > 0$ each $a \in \mathscr{B}$ has a decomposition $a = a_+ - a_-$ with $a_{\pm} \in \mathscr{B}_+$ and $||a_+|| \leq (1 + \varepsilon) ||a||$,

(3) Given $\varepsilon > 0$ and $f \in \mathscr{B}_+^*$ there is an $a \in \mathscr{B}_+$ with $||a|| \leq 1$ and $f(a) = (1 - \varepsilon) ||f||$.

PROOF. (1) \Leftrightarrow (2). This equivalence follows from Theorem 1.1 with $\alpha = 1$.

 $(2) \Rightarrow (3)$. This follows from the argument used to prove the similar implication in Theorem 1.3 together with the fact that \mathscr{B}_1 is weakly dense in the unit ball of the bidual \mathscr{B}^{**} .

 $(3) \Rightarrow (1)$. This follows by the argument used to prove the similar implication in Theorem 1.3.

Finally we remark that 1-monotonicity of the norm can be reexpressed as an hereditary property. Recall that a subset $\mathscr{A} \subseteq \mathscr{B}_+$ is defined to be hereditary if $0 \leq a \leq b$ and $b \in \mathscr{A}$ always implies $a \in \mathscr{A}$. Thus 1-monotonicity of $\|\cdot\|$ on \mathscr{B}_+ is equivalent to hereditarity of $\mathscr{B}_+ \cap \mathscr{B}_1$.

2. The Canonical half-norm. The canonical half-norm N was defined in the introduction and the principal aim of this section is to evaluate N when the norm and dual-norm are 1-monotonic. First, however, we demonstrate that N can be characterized in a variety of other fashions, by maximality, by duality, or order-theoretically.

Generally a half-norm on \mathscr{B} is a function N' with the properties

$$\begin{split} 0 &\leq N'(a) \leq k \|a\| & ext{for some } k > 0, \ N'(a+b) &\leq N'(a) + N'(b), \ N'(\lambda a) &= \lambda N'(a) & ext{for all } \lambda \geq 0, \ N'(a) &\lor N'(-a) &= 0 & ext{if, and only if, } a = 0. \end{split}$$

For each k > 0 we denote the corresponding set of half-norms by \mathcal{N}_k and let $\mathcal{N}_k(\mathscr{B}_+)$ denote the $N' \in \mathcal{N}_k$ which are associated with \mathscr{B}_+ , i.e., which satisfy

$$\mathscr{B}_{+} = \{a; N'(-a) = 0\}$$
.

THEOREM 2.1. The canonical half-norm N satisfies the following:

$$N(a) = \sup\{N'(a); N' \in \mathcal{N}_1(\mathcal{B}_+)\} = \sup\{f(a); f \in \mathcal{B}_+^* \cap \mathcal{B}_1^*\}$$
$$= \inf\{\lambda \ge 0; a \le \lambda u, u \in \mathcal{B}\}.$$

PROOF. The third characterization of N was given in [5] and is

included because it is useful for establishing the first characterization.

Clearly $N \in \mathcal{N}_1(\mathcal{B}_+)$ and hence for the first equality it suffices to prove that $N \ge N'$ for all $N' \in \mathcal{N}_1(\mathcal{B}_+)$. But given $\varepsilon > 0$ and $a \in \mathcal{B}$ there is a $u \in \mathcal{B}_1$ such that

$$a \leq N(a)(1+\varepsilon)u$$

because of the third characterization of N. Therefore

$$N'(a) \leq N(a)(1+\varepsilon)N'(u) \leq N(a)(1+\varepsilon)$$

because $N' \in \mathscr{N}_1(\mathscr{B}_+)$. Taking the limit $\varepsilon \to 0$ one obtains $N' \leq N$.

The second characterization of N follows directly from two lemmas established in [6] which can be rephrased as follows.

LEMMA 2.2. The following conditions are equivalent:

(1) $f \in \mathscr{B}_+^* \cap \mathscr{B}_1^*$,

(2) f is a linear functional over \mathscr{B} satisfying

$$f(a) \leq N(a)$$
, $a \in \mathscr{B}$.

Moreover for each $a \in \mathscr{B}$ there is an $f \in \mathscr{B}_{+}^{*} \cap \mathscr{B}_{1}^{*}$ such that

f(a) = N(a) .

Next we examine the evaluation of N on positive elements.

THEOREM 2.3. The following conditions are equivalent:

(1) The norm is 1-monotonic on \mathcal{B} ,

 $(2) \quad N(a) = \|a\| \quad for \ all \quad a \in \mathscr{B}_+ \ .$

PROOF. (1) \Rightarrow (2). If $a, b \ge 0$ then $||a + b|| \ge ||a||$. Hence

$$||a|| \leq \inf\{||a + b||; b \in \mathcal{B}_{+}\} = N(a) \leq ||a||.$$

 $(2) \Rightarrow (1)$. Given $a \in \mathscr{B}_+$ it follows from Lemma 2.2 that there exists an $f \in \mathscr{B}_+^* \cap \mathscr{B}_1^*$ such that

$$f(a) = N(a) = ||a||.$$

But this is equivalent to Condition (1) by Theorem 1.3.

If the dual norm is 1-monotonic one has a further partial evaluation of N.

THEOREM 2.4. The following conditions are equivalent: (1) The norm is 1-monotonic on \mathscr{B}^* , (2) $N(a) = \inf\{||b||; b \ge 0, b \ge a\}.$

PROOF. Define N_+ by

$$N_{+}(a) = \inf\{\|b\|; b \ge 0, b \ge a\}$$
.

It follows straightforwardly that

$$N_+(a) = \inf\{\lambda \ge 0; a \le \lambda u, u \in \mathscr{B}_+ \cap \mathscr{B}_1\}$$
.

Therefore it follows from Theorem 8 of [4] that Condition (2) is equivalent to Condition (2) of Theorem 1.4. Consequently the theorem is a corollary of Theorem 1.4.

REMARK 2.5. The property $N = N_+$ can be characterized in several other ways. In fact the conditions of Theorem 2.4 are also equivalent to the following:

 $(3) \quad N_+(a) \leq \|a\|, \quad a \in \mathscr{B},$

(4)(4₊) For each $a \in \mathscr{B}$ there is an $f \in \mathscr{B}^*(f \in \mathscr{B}^*_+)$ with $||f|| \leq 1$ and $f(a) = N_+(a)$.

To prove this we first remark that by Lemma 2.2 one can choose an $f \in \mathscr{B}_{+}^{*} \cap \mathscr{B}_{1}^{*}$ with f(a) = N(a). Thus if $N = N_{+}$ then f satisfies Condition (4_{+}) and one concludes that $(2) \Rightarrow (4_{+})$. But $(4_{+}) \Rightarrow (4)$ and if f satisfies Condition (4) then

$$N_+(a) = f(a) \leq ||f|| ||a|| \leq ||a||$$
,

i.e., $(4) \Rightarrow (3)$. Finally $a \leq a + b$ for $b \geq 0$ and hence Condition (3) implies that

$$N_{+}(a) \leq N_{+}(a+b) \leq ||a+b||$$
.

Therefore $N_+ \leq N$. But in general $N \leq N_+$ and hence $(3) \Rightarrow (2)$.

3. Dual half-norms. Next we consider the canonical half-norm N in the dual \mathscr{M}^* and identify it as the dual of the canonical half-norm in \mathscr{B} . There are, however, two natural definitions of the dual half-norm which coincide if, and only if, the norm is 1-monotonic on \mathscr{B} . Before demonstrating this we examine the implications of Section 2 for N.

First remark that if $\mathscr{B} = \overline{\mathscr{B}_+ - \mathscr{B}_+}$, where the bar denotes norm closure, then the dual cone \mathscr{B}_+^* is proper, i.e.,

$$\mathscr{B}^*_+\cap-\mathscr{B}^*_+=\{0\}.$$

Hence the results of Section 2 can be applied to \mathscr{B}_+^* and the associated canonical half-norm N.

THEOREM 3.1. The following conditions are equivalent:

- (1) The norm is 1-monotonic on \mathscr{B}^* ,
- (2) N(f) = ||f|| for all $f \in \mathscr{B}_+^*$.

Moreover the following are equivalent:

- (1_*) The norm is 1-monotonic on \mathscr{B} ,
- $(2_*) \quad N(f) = \inf\{ \|g\|; g \ge 0, g \ge f \}.$

PROOF. (1) \Leftrightarrow (2). This follows from Theorem 2.3 applied to $(\mathscr{B}^*, \mathscr{B}^*_+, \|\cdot\|)$.

 $(1_*) \Leftrightarrow (2_*)$. Condition (2_*) is equivalent to 1-monotonicity of the norm on the bidual \mathscr{B}^{**} , by Theorem 2.4, but this is equivalent to 1-monotonicity of the norm on \mathscr{B} , by Remark 1.2.

Next we consider dual, or conjugate, half-norms. In analogy with the dual norm there are two natural definitions. These are given by N° and N^* where

$$N^{\circ}(f) = \sup\{f(a); a \ge 0, N(a) \le 1\}$$

 $N^{*}(f) = \sup\{f(a); a \ge 0, ||a|| \le 1\}.$

Note that since $N(a) \leq ||a||$ one has $N^* \leq N^{\circ}$.

THEOREM 3.2. The following conditions are equivalent:

(1) The norm is 1-monotonic on \mathcal{B} ,

(2) $N^* = N^{\circ}$.

PROOF. (1) \Rightarrow (2). It follows from Theorem 2.3 that Condition (1) is equivalent to N(a) = ||a|| for $a \ge 0$. Therefore Condition (1) implies that $N^* = N^\circ$ by definition.

 $(2) \Rightarrow (1)$. Given $a \ge 0$ choose f such that f(a) = ||f|| ||a||. Therefore

$$N^*(f) = ||f|| = f(a)/||a|| = N^{\circ}(f)$$

by Condition (2). But this implies that

$$f(a)/||a|| \ge f(b)/N(b)$$

for all $b \ge 0$. Setting b = a one then deduces that $N(a) \ge ||a||$. But one also has $N(a) \le ||a||$. Hence N(a) = ||a|| for $a \ge 0$ and Condition (1) follows from Theorem 2.3.

REMARK 3.3. If $N' \in \mathcal{N}_1(\mathcal{B}_+)$ then $N \ge N'$ by Theorem 2.1. Hence defining N'° by

$$N^{\prime \circ}(f) = \sup\{f(a); a \ge 0, N^{\prime}(a) \le 1\}$$

one deduces that $N^{\circ} \leq N'^{\circ}$, i.e., N° is the minimal half-norm conjugate to a half-norm in $\mathcal{N}_1(\mathcal{B}_+)$.

Next we prove that $N^* = N$, the canonical half-norm associated with \mathscr{B}_+^* . The proof again uses polar calculus.

We are indebted to Professor T. Ando for pointing out the following identities and their significance for the proof of Theorem 3.5.

THEOREM 3.4. The following identities

 $(\mathscr{B}_1 \cap \mathscr{B}_+)^{\circ} = \mathscr{B}_1^* - \mathscr{B}_+^*$, $(\mathscr{B}_1 \cap \mathscr{B}_+)^{\circ \circ} = \mathscr{B}_1^{**} \cap \mathscr{B}_+^{**}$,

are valid, where the bipolar is now taken in the bidual \mathscr{B}^{**} .

PROOF. In Section 1 we used the identity

$$(\mathscr{B}_1 \cap \mathscr{B}_+)^{\circ} = \overline{co}(\mathscr{B}_1^* \cup (-\mathscr{B}_+^*))$$

where \overline{co} denotes the weak*-closed convex hull. Now consider $\mathscr{B}_1^* - \mathscr{B}_+^*$. This set is convex and weak*-closed, because \mathscr{B}_1^* is weak*-compact and \mathscr{B}_+^* is weak*-closed. Furthermore

$$\mathit{co}(\mathscr{B}_1 \cup (-\mathscr{B}_+^*)) \subseteq \mathscr{B}_1^* - \mathscr{B}_+^* \subseteq (\mathscr{B}_1 \cap \mathscr{B}_+)^\circ.$$

Hence we have the identity

$$(\mathscr{B}_1\cap \mathscr{B}_+)^\circ = \mathscr{B}_1^* - \mathscr{B}_+^*$$
 .

Now it can be easily verified that

$$\mathscr{B}_{1}^{**} \cap \mathscr{B}_{+}^{**} \subseteq (\mathscr{B}_{1}^{*} - \mathscr{B}_{+}^{*})^{\circ} = (\mathscr{B}_{1} \cap \mathscr{B}_{+})^{\circ \circ}$$

The converse inclusion $(\mathscr{B}_1 \cap \mathscr{B}_+)^{\circ \circ} \subseteq \mathscr{B}_1^{**} \cap \mathscr{B}_+^{**}$ is, however, obvious.

THEOREM 3.5. The dual half-norm N^* and the canonical half-norm N on the dual coincide, i.e.,

$$N^*(f) = N(f)$$
 , $f \in \mathscr{B}^*$.

PROOF. From Theorem 2.1 one has

$$N(f) = \sup\{f(a); a \in \mathscr{B}_1^{**} \cap \mathscr{B}_+^{**}\} \ge \sup\{f(a); a \in \mathscr{B}_1 \cap \mathscr{B}_+\} = N^*(f) .$$

But equality occurs because $\mathscr{B}_1 \cap \mathscr{B}_+$ is weakly dense in $\mathscr{B}_1^{**} \cap \mathscr{B}_+^{**}$ by Theorem 3.4, and the bipolar theorem.

Finally we give another version of Theorem 1.3 which uses the canonical half-norm N on \mathscr{B}^* . For this purpose, we need two lemmas; one is a double Hahn-Banach theorem and the other an inequality for N.

LEMMA 3.6. Let \mathscr{B} be a vector space and q, r subadditive, positively homogeneous on \mathscr{B} . Then, if

$$q(x) + r(-x) \geq 0$$
 for all $x \in \mathscr{B}$,

there is a linear functional g on \mathcal{B} such that

 $g(x) \leq q(x)$ and $g(x) \leq r(x)$ for all $x \in \mathscr{B}$.

PROOF. In the product $\mathscr{B} \times \mathscr{B}$, we consider the subset

$$M = \{(x, -x); x \in \mathscr{B}\}$$

and let G be a linear functional on M which is identically zero. Then,

p(x, y) = q(x) + r(y) for $(x, y) \in \mathscr{B} \times \mathscr{B}$

defines a subadditive and positively homogeneous function p which satisfies $G \leq p$ on M. We denote by the same G an extension of G to $\mathscr{B} \times \mathscr{B}$ retaining the relation $G \leq p$ and set

$$g_1(x) = G(x, 0)$$
 and $g_2(x) = G(0, x)$.

Then

$$g_1(x) - g_2(x) = G(x, -x) = 0$$
 for all $x \in \mathscr{B}$

and $g = g_1 = g_2$ is the required functional.

LEMMA 3.7. For any $f \in \mathscr{B}^*$ there exists a $\gamma > 0$ such that

$$f(a) \leq N(f) \|a\| + \gamma N(-a) \quad for \ all \quad a \in \mathscr{B}.$$

PROOF. We first note that

$$N(f) = \inf\{\|f + g\|; g \in \mathscr{B}_{+}^{*}, \|g\| \leq 3\|f\|\}.$$

In fact if $N_1(f)$ denotes the right hand side and we choose $\varepsilon > 0$ such that $N(f) + \varepsilon \leq ||f||$ if N(f) < ||f|| and $\varepsilon < ||f||$ if N(f) = ||f|| then we can choose $g \in \mathscr{B}_+^*$ such that

$$\|f + g\| - N(f) < \varepsilon$$

and hence

$$||g|| \le ||f + g|| + ||f|| \le ||f|| + N(f) + \varepsilon \le 3||f||$$

It follows that $N(f) \leq N_1(f) \leq N(f) + \varepsilon$ and therefore $N(f) = N_1(f)$.

Now to prove our inequality, we take $g \in \mathscr{B}_+^*$ such that $||g|| \leq 3 ||f||$. Then it follows that

$$f(a) \leq ||f + g|| ||a|| + g(-a) \leq ||f + g|| ||a|| + ||g|| N(-a)$$

$$\leq ||f + g|| ||a|| + 3 ||f|| N(-a)$$

where the second inequality follows from Lemma 2.2 and the fact that $g \in \mathscr{B}_{+}^{*}$. Therefore, we have the inequality with $\gamma = 3 ||f||$.

In the following theorem, we denote by N both the canonical halfnorm associated with \mathscr{B}_+ and that associated with \mathscr{B}_+^* .

THEOREM 3.8. The following conditions are equivalent:

(1) The norm is 1-monotonic on \mathcal{B} ,

(2) $||a|| \leq N(a) + 2N(-a)$ for all $a \in \mathscr{B}$,

(3) Each $f \in \mathscr{B}^*$ has a decomposition $f = f_+ - f_-$ with $f_{\pm} \in \mathscr{B}_+^*$ such that $||f_+|| = N(f)$.

PROOF. $(1) \Rightarrow (2)$. By the definition of canonical half-norms, there exist $b_n \ge 0$ and $c_n \ge 0$ such that

CANONICAL HALF-NORM

 $||a + b_n|| < N(a) + 1/n$ and $||-a + c_n|| < N(-a) + 1/n$.

Therefore,

$$\|b_n + c_n\| < N(a) + N(-a) + 2/n$$

and

 $\|a\| \le \|a - c_n\| + \|c_n\| \le \|a - c_n\| + \|b_n + c_n\| \le N(a) + 2N(-a) + 3/n$. Hence we obtain the required inequality.

 $(2) \Rightarrow (3)$. It follows from Lemma 3.7 that

$$f(a) \leq N(f)(N(a) + 2N(-a)) + \gamma N(-a) \leq N(f)N(a) + \gamma' N(-a)$$
 ,

where $\gamma' = 2N(f) + \gamma$. We now apply Lemma 3.6 with

$$q(a) = N(f)N(a)$$
 and $r(a) = f(a) + \gamma' N(a)$.

Then we obtain a linear functional g on \mathcal{B} such that

$$g(a) \leq N(f)N(a)$$
 and $g(a) - f(a) \leq \gamma' N(a)$

for all $a \in \mathscr{B}$. The first relation implies that $||g|| \leq N(f)$ and $g \geq 0$, and the second relation shows that $g \geq f$. Then, since

$$N(f) \leq N(g) \leq \|g\| \leq N(f)$$
 ,

we have ||g|| = N(f) and $f_+ = g$ and $f_- = g - f$ satisfy the required property.

 $(3) \Rightarrow (1)$. Condition (3) implies Condition (2) in Theorem 3.1.

References

- W. ARENDT, P. R. Chernoff AND T. KATO, A generalization of dissipativity and positive semigroups, J. Operator Theory, 8 (1982), 167-180.
- [2] O. BRATTELI, T. DIGERNES AND D. W. ROBINSON, Positive semigroups on ordered Banach spaces, J. Operator Theory, 9 (1983), 371-400.
- [3] D. W. ROBINSON, Continuous semigroups on ordered Banach spaces, J. Funct. Anal. (to appear).
- [4] D. W. ROBINSON AND S. YAMAMURO, The Jordan decomposition and half-norms, Pacific J. Math. (to appear).
- [5] D. W. ROBINSON AND S. YAMAMURO, Addition of an identity to an ordered Banach space, J. Austral. M. S. (to appear).
- [6] D. W. ROBINSON AND S. YAMAMURO, Hereditary cones, order ideals and half-norms, Pacific J. Math. (to appear).
- [7] M. KREIN, Propriétés fondementales des ensembles coniques normaux dans l'espace de Banach, C. R. (Doklady) Acad. Sci. URSS (N. S.), 28 (1940) 13-17.
- [8] J. GROSBERG AND M. KREIN, Sur la décomposition des fonctionelles en composantes positives, C. R. (Doklady) Acad. Sci. URSS (N. S.), 25 (1939) 723-726.
- [9] T. ANDO, On fundamental properties of a Banach space with a cone, Pacific J. Math., 12 (1962) 1163-1169.

- [10] A. J. ELLIS, The duality of partially ordered normed linear spaces, J. Lond. Math. Soc., 39 (1904) 730-744.
- [11] Y.-C. WONG AND K.-F. NG, Partially ordered topological vector spaces, Clarendon Press, Oxford (1973).
- [12] L. ASIMOV AND A. J. ELLIS, Convexity theory and its applications in functional analysis, Academic Press, London-New York-San Francisco (1980).

DEPARTMENT OF MATHEMATICS

386

INSTITUTE OF ADVANCED STUDIES AUSTRALIAN NATIONAL UNIVERSITY POST OFFICE BOX 4 CANBERRA, ACT 2601 AUSTRALIA