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Abstract. Let (̂ , ̂ +, I I I I ) be an ordered Banach space and define the
canonical half-norm

We prove that N(a) = II all for a6^+ if, and only if, the norm is (1-)
monotonic on &, and

N(a) = i n f i l l 6 | | ; 6G^+, 6 - α6^+}

if, and only if, the dual norm is (l-)monotonic on &*. Subsequently we ex-
amine the canonical half-norm in the dual and prove that it coincides with
the dual of the canonical half -norm.

0. Introduction. Let (&, || ||) be a Banach space ordered by a
positive cone &+. The associated canonical half -norm N is defined
by

This half -norm has been useful in the analysis of positive semigroups
[1] [2] [3] and it appears useful for the characterization of geometric
properties of (£?, &+, || ||) [4] [5] [6]. If & is a Banach lattice, or the
real part of a <7*-algebra then N(a) = | |α+|| where α+ is the canonical
positive component of ae&. In particular the half -norm and the norm
coincide on &+. Moreover one has

N(a) = inf {|| δ ||; b e ̂ +, 6 - α 6 ̂ .} .

In this note we establish that these properties are general features of
a Banach space whose norm and dual-norm are monotonic. Subsequently
we examine the canonical half-norm in the dual ^* and prove that it
is the dual, in an appropriate sense, of the canonical half-norm in &.

Throughout this paper ^+ is a norm-closed convex cone in & with
the property

^+n-^+ = {o}
and one sets α ̂  6 if α — δe^+. Furthermore ̂  denotes the unit
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ball, ^* the dual, ^+* the dual cone, i.e.,

^+ ={/;/€ ̂ *,/(α)^0 for all αe^+},

and ί̂* the unit ball of ̂ *.

1. Monotonic norms. The norm of an ordered Banach space
^+, || ||) is defined to be a-monotonίc if

(*) O^a^b implies ||α|| ^ α||6|| .

This condition is closely related to the concept of normality of &+

introduced by Krein [7].
The cone ̂ + is defined to be β-normal if

(**) a^b^c implies || b \\ ̂  /3(|| a \\ V || c ||) .

Clearly (**) implies (*) with a = β but conversely (*) implies (**) with
β = 1 + 2a. Grosberg and Krein [8] established that normality of &+ is
equivalent to a generation property of the dual cone ^_*.

The dual cone ^+* is defined to be β-generating if each / e ̂ * has
a decomposition / = f+ — /_ with f± e &+ and

The Grosberg-Krein theorem states that ^_ is /3-normal if, and only if,

+̂* is /3-generating. A similar characterization of /3-normality of +̂*
in terms of /3'-generation of &+9 where β' > β, was subsequently obtained
by Ando [9] and Ellis [10]. (For further details see [11] [12].)

Our first result is a one-sided version of the foregoing theorems.

THEOREM 1.1. For each a ^ 1 the following conditions are equi-
valent:

( 1 ) The norm is a-monotonic on £%?,
( 2 ) Each f 6 ̂ * has a decomposition / = / + — / _ with /+ 6 α ί̂* Π

^+* and /_e^+*.
Moreover the following conditions are equivalent:

(1*) The norm is a-monotonic on &*,
(2*) For any a' > a each a 6 & has a decomposition a = a+ — α_

with a+ e a'^ Γ) ^+ α7^cί a_ e ̂ +.

PROOF. The proof is by polar calculus [11] [12]. We begin by
recalling the relevant results on polars.

If j^ is a subset of & the polar j^° of j^ is defined by

l for α

Hence if ĵ , j*J, are norm (weakly) closed convex sets containing {0} then
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ί n j^)° = co(j^° u j^°)
where cδ denotes the weak*-closed convex hull (see, for example, [11]
[12]). Moreover if j^ is a cone then

n
where the bar denotes weak*-closure. Finally if j^° is weak*-compact
then

and hence

(1) ==> (2). Condition (1) can be rephrased as

&+ Π C^L - »̂.) £ α ί̂ .

Therefore if λ > 1 then

^+ n c ί̂ - ^+) c ̂ + n {λ ί̂ - ̂ +}
by Corollary 3.3 of [12], Chapter 1. (Here the bar denotes norm closure.)
Hence

But ^+ is a cone and ^+° = —^+*. Moreover (̂  — ^+)° = ̂ +* Π
ί̂* is weak*-closed. Hence by the above observations, applied with

< = ̂ + and J^J = (̂  — ^+), one obtains

+ Π (^ - ^+))° = α(̂ +* Π &? ~ ̂ *) .

This is, however, a set-theoretic reformulation of Condition (2).
To establish the converse implication we need to introduce polars of

subsets of the dual. If ^"~c^* then the polar ^~° is defined by

ϋ^° = {α;αe^,/(α)^l for fe^~}.

(2) => (1). Consider the above reformulation

^* £ α(̂ +* Π ^i* - *̂)

of Condition (2). Since (^*)° = ̂  the polar of this relation gives

But it is readily checked that

^+ n (&FI - &fύ c (̂ +* n ̂  -
and hence
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&+ Π

This is, however, a reformulation of Condition (1).
(1*) <=> (2*). Condition (1*) can be rephrased as

&? n (&?s - ̂ +*) c α^* .
But ^+* and (̂ * — ̂ +*) are both weak*-closed. Hence taking polars
one finds that Condition (1*) is equivalent to

+ Π ̂ ) U (-^+)) = α((^+ Π

where the bar denotes norm (or weak) closure. Now since ^ is not
norm compact one cannot use the previous argument to remove the
closure sign. Nevertheless it follows from Corollary 3.3 of [12], Chapter
1, that

^ C α'(̂ + Π ̂  - ^+)

for any a' > a. This is, however, a set-theoretic reformulation of Con-
dition (2*).

REMARK 1.2. Since Condition (1), for ,̂ is equivalent to Condition
(2), for ^*, which implies Condition (2*), for ^*, which in turn is
equivalent to Condition (1*), for the bidual ^**, one concludes that
α-monotonicity of the norm on & implies α-monotonicity of the norm
on ^**. Of course the converse is also true.

Next we examine the case of a = 1 in more detail.

THEOREM 1.3. The following conditions are equivalent:
( 1 ) The norm is 1-monotonic on έif,
( 2 ) Each f e ̂ * has a decomposition / = / + — /_ with f± 6 ̂ +*

such that || /+ 1| £||/||,
( 3 ) For each a e ̂ + there is an f e &* with || / 1| = 1 and f(a) =

\\a\\.

PROOF. (1)=>(2). This follows from Theorem 1.1 with a = 1.
(2) => (3). Given a e &+ the Hahn-Banach theorem establishes the

existence of an /e^ί* with f (a) = \\a\\. But if / = /+ - /_ is the
decomposition of Condition (2) then

Therefore ||/+|| = ||/|| = 1 and /+(α) = ||α||.
(3) =» (1). Choose / to satisfy Condition (3) then 0 <; a ̂  b implies

THEOREM 1.4. The following conditions are equivalent:
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( 1 ) The norm is 1-monotonίc on &*,
( 2 ) Given ε > 0 each ae& has a decomposition a = a+ — α_ with
έ$>+ and ||α+|| ^ (1 + ε)||α||,

( 3 ) Given ε > 0 and f e &* there is an a 6 &+ with || α || <ί 1 and

PROOF. ( 1 ) <=> ( 2 ). This equivalence follows from Theorem 1.1 with
α = l.

(2) => (3). This follows from the argument used to prove the similar
implication in Theorem 1.3 together with the fact that ̂  is weakly
dense in the unit ball of the bidual ^**.

(3)=>(1). This follows by the argument used to prove the similar
implication in Theorem 1.3.

Finally we remark that 1-monotonicity of the norm can be re-
expressed as an hereditary property. Recall that a subset j^ £ &+ is
defined to be hereditary if 0 ̂  a ̂  b and b e J^ always implies a e J^
Thus 1-monotonicity of || || on ^+ is equivalent to hereditarity of
&+ n ̂ ί.

2. The Canonical half-norm. The canonical half-norm N was de-
fined in the introduction and the principal aim of this section is to evaluate
N when the norm and dual-norm are 1-monotonic. First, however, we
demonstrate that N can be characterized in a variety of other fashions,
by maximality, by duality, or order-theoretically.

Generally a half -norm on & is a function N' with the properties

0 ̂  N'(a) ^ A? || α || for some k > 0 ,

N'(a + b)^ N'(a) + N'(b} ,

JV'(λα) - λJV'(α) for all λ ̂  0 ,

N'(a) V ΛΓ'(-α) - 0 if, and only if, a = 0 .

For each k > 0 we denote the corresponding set of half -norms by Λϊ
and let ̂ ;(̂ .) denote the N' e^ which are associated with &+9 i.e.,
which satisfy

^+ = {α; ΛΓ'(-α) = 0} .

THEOREM 2.1. The canonical half -norm N satisfies the following:

N(a) = sup{A/»; N' 6 ̂ ί(̂ +)} = sup{/(α); / 6 ̂ +* Π ̂ *}

= inf {λ Ξ> 0; α ̂  λu, u e ̂ } .

PROOF. The third characterization of 'N was given in [5] and is
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included because it is useful for establishing the first characterization.
Clearly JVe^*(^+) and hence for the first equality it suffices to

prove that N^N' for all N'eΛΐ(&+). But given ε>0 and ae&
there is a ue^ such that

a ^ N(ά)(l + ε)u

because of the third characterization of N. Therefore

N'(ά) ^ N(a)(l + e)N'(u) ^ N(a)(l + ε)

because N'e_x^(^+). Taking the limit ε—>0 one obtains Nf ^ N.
The second characterization of N follows directly from two lemmas

established in [6] which can be rephrased as follows.

LEMMA 2.2. The following conditions are equivalent:
( 1 ) f G. < ,̂* Π <^*\ •*• J J *~ ι^&+ I I «-̂ l 9

(2) f is a linear functional over & satisfying

/(α) ̂  N(a) , α 6 &?.

Moreover for each a e & there is an f e έ%* Π &* such that

/(α) - N(a) .

Next we examine the evaluation of N on positive elements.

THEOREM 2.3. The following conditions are equivalent:
(1) The norm is 1-monotonic on &,
(2) N(ά) = | |α|| for all ae&+.

PROOF. (1) ==> (2). If α, 6 ̂  0 then || a + b || ^ || a ||. Hence

||α|| ^ inf{||α + 6||; 6 e&+} = N(ά) ^ ||α|| .

(2) => (1). Given a e &+ it follows from Lemma 2.2 that there exists
an / e ̂ +* Π ̂ * such that

/(α) = tf(α)= |α | | .

But this is equivalent to Condition (1) by Theorem 1.3.
If the dual norm is 1-monotonic one has a further partial evaluation

of N.

THEOREM 2.4. The following conditions are equivalent:
(1) The norm is 1-monotonic on &*9

(2) N(a) = inf{||51|; b ̂  0, 6 :> α}.

PROOF. Define N+ by

N+(a) = π

It follows straightforwardly that
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N+(ά) = inf {λ ^> 0; a ̂  \u, u e &+ Π

Therefore it follows from Theorem 8 of [4] that Condition (2) is equivalent
to Condition (2) of Theorem 1.4. Consequently the theorem is a corollary
of Theorem 1.4.

REMARK 2.5. The property N = N+ can be characterized in several
other ways. In fact the conditions of Theorem 2.4 are also equivalent
to the following:

(3) N+(a) £ \\a\\ , aeέl?,
(4)(4+) For each ae^ there is an / e^*(/ e^+*) with \\f\\ ̂  1

and f ( a ) = N+(a).

To prove this we first remark that by Lemma 2.2 one can choose an
/ 6 ̂ +* n ̂ i* with / (α) = N(a). Thus if N = N+ then / satisfies Con-
dition (4+) and one concludes that (2) => (4+). But (4+) => (4) and if /
satisfies Condition (4) then

N+(a) = f(a)£ \\f\\ \\a\\ £ \\a\\,

i.e., (4) ==> (3). Finally α ^ α + δ f o r δ ^ O and hence Condition (3) implies
that

N+(a) ^ N+(a + b) ̂  \\a + b\\ .

Therefore N+ <: N. But in general N <* N+ and hence (3) => (2).

3. Dual half-norms. Next we consider the canonical half-norm N
in the dual ^* and identify it as the dual of the canonical half-norm
in ggf. There are, however, two natural definitions of the dual half-
norm which coincide if, and only if, the norm is 1-monotonic on &.
Before demonstrating this we examine the implications of Section 2 for
N.

First remark that if & = &+ — &+9 where the bar denotes norm
closure, then the dual cone ^+* is proper, i.e.,

&* n — &+ = {0}.
Hence the results of Section 2 can be applied to &+ and the associated
canonical half-norm N.

THEOREM 3.1. The following conditions are equivalent:
(1) The norm is I-monotonic on &*,
(2) N(f) = 11/11 for all /e^+*.

Moreover the following are equivalent:
(1J The norm is 1-monotonic on &,

(2*)



382 D. W. ROBINSON AND S. YAMAMURO

PROOF. (1) <=> (2). This follows from Theorem 2.3 applied to

+̂*, ii ID.
(1J <=> (2*). Condition (2*) is equivalent to 1-monotonicity of the

norm on the bidual «^**, by Theorem 2.4, but this is equivalent to 1-
monotonicity of the norm on ̂ , by Remark 1.2.

Next we consider dual, or conjugate, half-norms. In analogy with
the dual norm there are two natural definitions. These are given by Nc

and N* where

Nc(f) = sup{/(α); a ̂  0, N(a) ^ 1}

Note that since N(a) £ \\a\\ one has N* ^ Ne.

THEOREM 3.2. The following conditions are equivalent:
( 1 ) The norm is 1-monotonic on &,
(2) N*=N°.

PROOF. (1)=>(2). It follows from Theorem 2.3 that Condition (1) is
equivalent to N(d) = ||α|| for a ΐ> 0. Therefore Condition (1) implies that
N* = Nc by definition.

(2) =>(!). Given α ̂  0 choose / such that f(a) = \\f\\ \\a\\. There-
fore

by Condition (2). But this implies that

f(a)/\\a\\^f(b)/N(b)

for all 6^0. Setting 6 = a one then deduces that N(a) ^ ||α||. But one
also has N(a) ^ '| |α| |. Hence N(a) = \\a\\ for α ^ O and Condition (1)
follows from Theorem 2.3.

REMARK 3.3. If N' e t^r1(&+) then N^ N' by Theorem 2.1. Hence
defining N'° by

N'c(f) = sup{/(α); a ̂  0, N'(a) ^ 1}

one deduces that Nc ^ N'c, i.e., Ne is the minimal half-norm conjugate
to a half -norm in Λ/ϊ(^f+).

Next we prove that N* — N, the canonical half -norm associated
with +̂*. The proof again uses polar calculus.

We are indebted to Professor T. Ando for pointing out the following
identities and their significance for the proof of Theorem 3.5.

THEOREM 3.4. The following identities

Π <Z& \° — <^* _ £^** ( έZ? Π έZ$ ^°° _ £%>"** Γi έZ&**\ I I <r^+y — ώ^i ώ^+ , Vtr^i I I £0+) — ώ î I I «^+ ,
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are valid, where the bipolar is now taken in the bidual &**.

PROOF. In Section 1 we used the identity

(&?ι n ̂ +)° - βo( ί̂* u (-^+*))
where co denotes the weak*-closed convex hull. Now consider ί̂* —

+̂*. This set is convex and weak*-closed, because ̂ * is weak*-compact
and +̂* is weak*-closed. Furthermore

co(^ U (-^+*)) £ ί̂* - +̂* £ OSU Π ^+)° .

Hence we have the identity

( szΰ c\ s5& ^0 _ ^r* /^*\ώ^l I I c&+) — ώ^i — «b0+ .

Now it can be easily verified that

The converse inclusion (̂  Π ^+)°° £ ^i** Π ^+** is, however, obvious.

THEOREM 3.5. The dual half-norm N* and the canonical half-norm
N on the dual coincide , i.e.,

PROOF. From Theorem 2.1 one has

N(f) = sup{/(α); a e ̂ ** n ̂ +**} ̂  sup{/(α); α 6 ̂  Π ̂ +} = #*(/) .

But equality occurs because ^ Π ^+ is weakly dense in ί̂** n ̂ +**
by Theorem 3.4, and the bipolar theorem.

Finally we give another version of Theorem 1.3 which uses the
canonical half -norm N on £&*. For this purpose, we need two lemmas;
one is a double Hahn-Banach theorem and the other an inequality for N.

LEMMA 3.6. Let & be a vector space and q, r subadditive, positively
homogeneous on έϋ. Then, if

q(x) + r(— a;) ̂  0 for all x e &,

there is a linear functional g on & such that

g(x) ^ q(χ) and g(x) ^ r(x) for all x e &.

PROOF. In the product & x &, we consider the subset

M = {(χ9 -a ); cce^}

and let G be a linear functional on M which is identically zero. Then,

(a?, I/) 6 ̂  x ̂
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defines a subadditive and positively homogeneous function p which
satisfies G ^ p on M. We denote by the same G an extension of G to
& x & retaining the relation G <; p and set

g,(x) = G(x, 0) and &(&) = G(0, x) .

Then

ffιG*0 ~ ft(fc) = GO*?, — a;) = 0 for all α? 6 &

and # = #! = 02 is the required functional.

LEMMA 3.7. For any /e^* there exists a 7 > 0 such that

/(α) ̂  N(f) || α || + τtf(-α) /or αZZ α

PROOF. We first note that

N(f) = i

In fact if JVΊ(/) denotes the right hand side and we choose ε > 0 such
that N(f) + ε ̂  11/11 if N(f) < \\f\\ and ε < ||/|| if N(f) = ||/|| then
we can choose ge&+ such that

\\f + g\\-N(f)<*
and hence

II0II ̂  II / + 011 + 11/11 ̂  11/11 + JV(/) + ε ̂  3II/H .

It follows that N(f) ^ N,(f) ^ M/) .+ ε and therefore JV(/) = N,(f).
Now to prove our inequality, we take ge&+ such that ||#|| ^ 3||/||.

Then it follows that

/(α) ̂  ||/ + 0|| ||α|| + g(-a) £ \\f + g\\ \\a\\

where the second inequality follows from Lemma 2.2 and the fact that
0e^+*. Therefore, we have the inequality with 7 = 3||/||.

In the following theorem, we denote by N both the canonical half-
norm associated with ^+ and that associated with ^+*.

THEOREM 3.8. The following conditions are equivalent:
( 1 ) The norm is 1-monotonic on &,
(2) ||α|| £N(a) + 2N(-a) for all ae^9

( 3 ) Each f 6 «^* has a decomposition f = /+ - /_ with f± e &?
such that I I/+H = N(f).

PROOF. (1) => (2). By the definition of canonical half -norms, there
exist bn ̂  0 and cn ̂  0 such that
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|| o + 6, ||< N(a) + l/n and || -α + cn \\ < N(-a) + 1/w .

Therefore,

|| 6. + c.||< N(a) + N(-a) + 2/n

and

||α|| ^ I) α - cj| + ||cn|| <Ξ ||α - cj| + ||6n + c,|l ^ tf(α) + 2N(-a) + 8/» .

Hence we obtain the required inequality.

(2) => (3). It follows from Lemma 3.7 that

/(α) ̂  N(f)(N(a) + 2N(-afi + ΎN(-a) £ N(f)N(a) + Ί'N(-a) ,

where 7' = 2N(f) + 7. We now apply Lemma 3.6 with

q(a) = N(f)N(a) and r(α) = /(α) +

Then we obtain a linear functional # on & such that

flf(α) ^ N(f)N(a) and ff(α) - /(α) ̂

for all ae&. The first relation implies that | | f lf | |^.Nί/) and ^ ̂  0,
and the second relation shows that g ^ /. Then, since

we have | | f l r | | = N(f) and f+ = g and f_ = g — f satisfy the required
property.

(3) => (1). Condition (3) implies Condition (2) in Theorem 3.1.
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