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1. Introduction. Let H be a Hilbert space and let C(H) be the set
of all closed linear subspaces in H. For a bounded linear operator A on
H, define a map ¢, on C(H), called the subspace map of 4, by

$4(M) = (AM)~ (MeC(H)) ,

where “—” denotes the uniform closure. Identifying every closed sub-
space M with the corresponding (orthogonal) projection P, or proj M,
we see that C(H) is a subset of B(H), the Banach space of all bounded
linear operators on H and hence has the uniform, strong and weak
(operator) topologies. It was shown in [8] (cf. [2]) that the subspace
map ¢, is uniformly (and strongly) continuous on C(H) if and only if
the operator A is left-invertible, and moreover, in this case ¢, behaves
well. For instance, ¢,(&) is uniformly (resp. strongly, weakly) closed
if & is a uniformly (resp. strongly, weakly) closed subset of C(H).

In this paper we shall show similar results on the subspace map ¢,
under the weaker condition that the operator A has closed range, or
equivalently, has the (Moore-Penrose) generalized inverse [1] [9]; using
operator theory of generalized inverses, we shall discuss the local con-
tinuity and some other topological properties of ¢, of A with closed
range, which will extend some results in [2] and [8].

Throughout this note we shall write A € (CR) when the operator A
has closed range. The generalized inverse A' of A € (CR) satisfies (and
is determined by) the following four Penrose identities [1]

AA'A = A, A'AAT = A", (AAN* = AA" and (ATA)* = A'A .
If we denote by AH and ker A the range and the kernel of A(e(CR))
respectively, then the products AA' and A'A represent the projections
onto AH and the orthogonal complement (ker A)* of ker A respectively
[1]. For two projections P and @, write P* and PV Q for the projection

onto (PH)* and for that onto the closed linear span of PH and QH,
respectively. Now, for our later discussion we state three lemmas on
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operators with closed range.

LemMMA 1.1 (e.g. [1, Section 8]). Let A(+0)e B(H). Then Aec(CR)
if and only if the lower bound Y(4A) of A, defined by

inf{|| Az ||; x € (ker A)*, ||| = 1}
18 positive. In this case A*e(CR), |A|: = (A*A)"* e (CR) and
(1.1) JAT] = 1| = [[1A[] = YA~ .

LeMMA 1.2 ([4, Proposition 2.2 and Corollary 3.8]). Let A, Be(CR).
Then ABe(CR) if and only if A'ABB'c(CR). In this case

(1.2) I(AB)|| = || A"|| [ B"]| |(A"ABB")'| .

LEMMA 1.3 ([4, Section 2]). Let P and Q be projections. Then the
Sollowing conditions are equivalent.

(1) PQe(CR).

(2) |IP:QPV QY)(=]PQ (P Vv Q) < 1.

(3) P+ Qe(CR).

(4) P'H + QH 1s closed.
If PQe (CR), i.e., if one of (1)-(4) holds, then

(P = [[(Pr+ Q' =1~ ||PQPVQ)IN*.
2. Convergence of generalized inverses. We begin by discussing

perturbations of generalized inverses. First we remark that if A, Be (CR)
then

(21) B'— A'= BY(BB'— AA") + (B'B— A'A)A" — B(B — A)A'.
Concerning the uniform perturbation, we know [10, Theorem 3.3] that
(2.2) ||B'— A'|| = 3max{||B'|I', || A"|'}||B— A|| for A, Be(CR).
However, for our discussions on the strong convergence we need:
LEMMA 2.1. Let A, B€(CR) and let x€¢ H. Then
(2.3) [[(BB'— AA|* < || B'|*|[(B* — A")(1 — AANx|* + |[(B — A)Ax|*.
ProoF. Put P, = AA' and Py = BB'(=B™B*). Then, we see
| Ps(1 — Px|| < || B'|| || B*(1 — Pox|| = || B'|| [|(B* — A*)1 — Poz||
and
1@ — Pe)P|® = [|(1 — Pp)P| + || B(B' — ANPz|* = ||(1 — BAYPz|
= [[(B— AA|".
Hence, using the identity Py — P, = P;(1 — P,) — (1 — P)P,, we have
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|(Py — Poz|* = || Ps(1 — Poz| + [|(1 — Ps)Px|
< [|B'P||(B* — A*)1 — Pz |* + [(B— A)A%|*. q.e.d.
COROLLARY 2.2 ([6, Theorem 1]). Let A, B€(CR). Then
| BB' — AA'|| = max{| B'||, ||A"[}||B — A]| -
ProoF. For xe H with ||z] =1, we have
|(B* — A*)1 — Pyz|| = [|B— A| |(1 — Pz
and
[(B— AA%| = ||(B— AAPx|| = ||B— Al || A" || P .

Hence, by (2.3) and the identity || P[>+ ||(1 — Poz||* = 1, we can easily
get the desired inequality. q.e.d.

Let A, (m=1,2, --+) and A be operators in B(H). If the sequence
{A,} converges to A uniformly (resp. strongly), then we write 4, — A
(un) (resp. A, — A (st)). On the uniform convergence of generalized
inverses, we see the following by (2.2):

LeMMA 2.8 ([5, Proposition 2.3]). Let {A4,} be a sequence with A, € (CR)
Jor n=1, and let A, — Ac(CR) (un). Then A, — A’ (un) if and only
of sup, || A7) < .

A similar fact holds for the strong convergence of generalized in-
verses:

LEMMA 2.4. Let {A,} be a sequence with A,c(CR) for n =1, and
let A,—Ac(CR) (*st), t.e., A,— A (st) and A} — A* (st). Then Al — A'
(*st) if and only if sup, | ALl < .

ProoOF. The “only if” part is obtained from the uniform boundedness
theorem. To see the “if” part, put first B=A, in (2.1) and (2.3). Then
we have (for x ¢ H)

(2.5) (AL — ANz || < || ALl [|(A,AL — AANz || + [|[(ALA, — ATA)A%||
+ | AL ]| (A, — A)A™ ||
and
(2.6) ||(A,AL—AANz|P< || AL || (Ax — A*)(1 — AAN2|* + ||(4, — A)AM|]* .

Next, replacing, in (2.6), A, and A by their adjoints A* and A* re-
spectively (cf. B*" = B™ for Be(CR)), we have

2.7 [[(A4, — A'Ag | = || AL [|(An — A)A — A'A)z[|* + [[(A7 — AN A" .

Hence, since {|| A}||} is bounded, we conclude Alx — A'x from the above
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inequalities (2.5)-(2.7). Taking the adjoints of A, and A, we can also
obtain Al*x — A™x. q.e.d.

REMARK. In Lemma 2.3 we can replace the sequence {4,} by a net
{A,} (directed by a set). Similarly, in Lemma 2.4 we can replace {4,}
by a net {4,} with sup, || A.| < .

PRrOPOSITION 2.5. Let Ac(CR) and let {P,} be a met of projections
such that P, — P (un) (resp. (st)). Suppose, furthermore, that AP,c (CR)
for all @ and APe(CR). Then (AP,)'— (AP)' (un) (resp. (st)) if and
only if sup, [[(AP)'|| < oo.

Proor. The equivalence on the uniform convergence is immediate
from (2.2) (or the above remark). For the strong convergence, by the
above remark, it suffices to note that AP,— AP (*st) and ||AP,|| =< || 4]
when P, — P (st). q.e.d.

COROLLARY 2.6 ([8, Corollary 1 to Proposition 1]). Let Ae B(H),
and let {M,} be a net in C(H) converging to M e C(H) uniformly (resp.
strongly). If A is bounded below on M,cC(H) (i.e., there exists € > 0
such that ||Az| =e¢| x| for every xeM,), and if M,CM, for all a, then
AM,, AM e (CH) and {AM,} converges to AM uniformly (resp. strongly).

ProoF. Write P, = projM,, P, = projM, and P = P, (=projM).
Then, by our assumption we have P, — P (un) (resp. (st)), P, < P, and
|APx|| = ¢|| Px|| for xe H. From the last inequality we see that
B: = AP,c(CR) and B'B= P,. Since AP,= AP,P,= BP, and B'BP,P} =
P,c(CR) (cf. P}=P,), we see, by Lemma 1.2, that BP,c(CR) or
AP,c(CR) and

|(AP)'|| = || B'|| ||(B'BP)'|| = || B'|| .
Hence, by Proposition 2.5 we have (AP, — (AP)" or (AP,)(AP,)' —
(AP)(AP)" (un) (resp. (st)), which is the desired. q.e.d.

3. Local continuity of subspace maps. Let Ac(CR) and @ = A'A.
Then, for a projection Pin B(H) we have A'A(Q*V P) = Q(Q* V P) e (CR),
so that A(Q*V P)e(CR) (say, by Lemma 1.2). Using this fact, we
have the following:

LEMmA 3.1. Let Ac(CR) and Q = A'A. Then for M c C(H) we have
(AM)~ = A(Q* Vv Py)H, or equivalently,

3.1)  projg (M) = {AQ* V PYHAQ" V Py))' = A{AQ" V Py} .
PROOF. Since (AM)~ = (AP, H) c{A(Q" V Py)H)™ = AQ* V P,)HC
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(AM)-, we have the first identity. The identities (8.1) is now clear.
qg.e.d.

To discuss the local continuity of a subspace map ¢, (4 € (CR)), it
is convenient to introduce the auxiliary functions 4, and 7, (@ = A'A)
from C(H) into B(H), defined by

YaM) ={A@Q" V P} and 7(M) =@V Py .

THEOREM 3.2. Let Ac(CR), @ = A'A and M,cC(H). Then the
Sollowing conditions are equivalent.

(1) ¢, 18 uniformly (resp. strongly) continuous at M,.

(2) ¢q t8 uniformly (resp. strongly) continuous at M,.

(3) a4y 18 uniformly (resp. strongly) continuous at M,.

(4) 7o 18 uniformly (resp. strongly) continuous at M,.

PrOOF. (Since the argument is quite parallel for the strong topology,
we only give the proof for the uniform topology.)

(1) = (3) By Lemma 3.1 we see proj ¢,(M) = Ay, (M) and (M) =
Qv (M) = A'-projs.(M). Those identities show the desired equivalence.

(2) = (4) It suffices to note that Q+V P= Q@+ V P) + @+ =
proj ¢o(PH) + @+ for every projection P.

(2)=(8) Let {M,} be a net in C(H) converging to M,cC(H) uni-
formly. Write R, = Q(@*V P,) and R, = Q(Q*V P), where P, = projM,
and P, = proj M,. Then, since ||(AR,)'|| < || A'|| (say, by (1.2)), we have
(AR,))' — (AR,)' (un) if R,— R, (un) by Proposition 2.5. Hence the as-
sumption (2) implies (3).

(83)=1(2) Note ||AR,|| < ||A|l. Hence we have, by Remark after
Lemma 2.4, that AR, = (AR,)" — (AR,)" = AR, (un) if (AR,)'— (AR,
(un). Hence, if we assume (3) we have R, = A"AR,— A" AR, = R,
(un), which implies (2). q.e.d.

REMARK. Define lim inf, M, = {x; dist(z, M,) — 0} for a net {M,} in
C(H). Suppose M,— M e C(H) strongly. Then we can prove

lim inf ¢ ,(M,) D ¢,(M)

(without the restriction A e(CR)). This relation says that ¢, is lower
semicontinuous at M with respect to the strong topology.

To seek more precise conditions for the local continuity of subspace
maps, we provide the following result.

LEMMA 38.3. Let P and Q be projections satisfying the three con-
ditions;
(1) || PR =1,
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(2) P‘H+ QH + H,
(83) PPANQ=#0, t.e., PP HNQH =+ {0}.
Then, ¢4 is not uniformly (strongly) continuous at PH.

PrOOF. By (1) there exists a sequence {x,} in H such that ||z,|| =1
and ||PQ'z,|| —1. We easily see that Pz, — «,— 0 and Q'x, — «,— 0.
Since P‘H + QH is nowhere dense in H by (2), we may assume that
for all n, z,¢ P*H + QH, or equivalently, Pr,¢ PQH. Put

Yo = Pr,/|| Pz, , 2, = Q%,/|Q.|

and choose we P*HN QH with ||w]| = 1. By using those elements we
define

Un = yn ® yn ’ Rn = (anzn + bnw) ® (anzn + bnw) ’

where a, = cos(1/n), b, = sin(1/n) and y ® ¥ (y € H) is an operator such
that (y ® y)x = (x, y)y for x e H. Clearly, they are projections and
U,— R,—0 (un). For each =, the operator V,: = P— U, (=P(1 —U,))
is also a projection and |V,R,||=|PQ—-U,R,||<||R,—U,||—0. Hence,
we may assume ||V,R.(V:iV R!)|| <1 for all n. By Lemma 1.3 we then
have S,: =V, + R,e(CR) and

[Sil=Q = [|[V.B(Vi VRN = — [[V.R, DT (=1).

This says that {||S}||} is bounded. Hence, since S, — P (un), we see
S.St— P (un) by Lemma 2.3. Put P, = S,S!. Now, what we want to
show is thst ¢o(P,H) does not converge to ¢,(PH) uniformly. Since w
is orthogonal to ¢o(PH), it suffices to show

(3.2) (P, H) = ¢o(PH) + [w] ,
where [w] is the linear space generated by w. To this end, let weker S,Q
or S,Qu = 0. Then we have

PQu — (Qu, ¥.)¥. + (Qu, a,z, + b,w)a,2, + b,w) = 0.

Since z,,y,€ PH and we P‘H, we see (Qu,a,?,+ b,w)=0, so that
PQu = (Qu, ¥.)Y,.. Recall y,¢ PQH. Hence PQu =0, i.e., ueker PQ.
This implies

(3.3) (QPH) c(QS,H)- (=(QPH)).
Moreover, we see, by a simple computation, @S,w = b2w or
(3.4) we QS H.

Hence we have
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(@S, H)~c{Q(V, + R)H} c{QP(1 — U,)H}” + (QR,H)~
C(QPH)™ + [w]C(QS,H)™,
which implies (3.2). For the strong continuity, note that the convergence

of {S,} (and hence {P,}) is strong by the construction of S,, so that the
identity (3.2) also shows the discontinuity of ¢, at PH. qg.e.d.

COROLLARY 3.4. Let P and Q be projections with P A Q* %= 0 and
P-ANQ+#0. Then ¢o is mot uniformly (strongly) continuous at PH.

Proor. We have || PQ'xz|| = ||z]| for xe(PAQY)H, i.e., | PQ*| = 1.
We also have P*H + QHC (P A Q')*H + H. q.e.d.

COROLLARY 3.5. Let P and Q be projections with PQ ¢ (CR) and
P-ANQ+#0. Then ¢, is not uniformly (strongly) continuous at PH.

Proor. By Lemma 1.8 we see that P*H + QH is not closed, so that
we have (2) of Lemma 3.3. Again, by Lemma 1.3 we have 1= || PQ*| =
| PQ*(P* Vv Q)| =1, which implies (1) of Lemma 3.3. g.e.d.

For the subspace map of a general operator we have:

PROPOSITION 3.6. Let Aec B(H) and @ = proj(A*H)~. If we add
(4) Ae(CR) or
(4) (PrNQA*A =0
to the conditions (1)-(3) in Lemma 3.3, then ¢, is not uniformly (strongly)
continuous at PH.

PrROOF. We use the same notations as in Lemma 3.3. By (3.3),
(3.4) and the obvious identity AQ = A, we have (APH)  c(AP,H)™ and
Awe AP,H. Hence we have

(AP, H)" = (APH)™ + [Aw] .

Now, to see the discontinuity of ¢, at PH, it suffices to show that
Aw ¢ (APH)~. First, (4) implies this relation. For otherwise Awe
(APH)" = A(Q* V P)H, so that w = A"AweQ(Q* V P)YHC(P* N\ @)‘H.
This is a contradiction. Next, (4’) implies that Aw is orthogonal to
(APH)~, because (Aw, APu) = (w, (P* A QA*APu) =0 for ue H. q.e.d.

With a norm inequality we give an equivalent condition for the
uniform continuity of a subspace map at a point.

THEOREM 3.7. Let Ac(CR) and MecC(H). Write Q = A'A and
P = P,. Then the condition

(3.5) min{|| PQ* |, [ P*Q[]} <1
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implies that ¢, is uniformly continuous at M. Conversely, if we assume
APe (CR) then the uniform continwity of ¢, at M implies (3.5).

PrOOF. Assume || PQ*||<1, and let P,:=proj M,— P (un) (M, € C(H)).
Then, since | P,Q*(PrV Q)| =< || P,Q*|| — || PQ*||, we have P,Q e (CR) for
all sufficiently large », by Lemma 1.3. Furthermore, we have

[(P@) =1 - PP VA=A —[PRINT"— 1 — [[PR])*.

Hence {||(QP,)'||} is bounded, so that (QP,)'— (QP) or (QP,)(QP,) —
(OP)(@QP)' (un). This implies the uniform continuity of ¢, and hence
of ¢, at M (say, by Theorem 3.2). Using the identity || PiQ(P,V Q1) =
| P,Q*(P: V Q)||, we could obtain the same conclusion when we begin
with the assumption ||P‘Q| <1 instead of ||PQ*|| <1. To see the
latter half of the theorem, let ¢, (and hence ¢,) be uniformly continuous
at M. Then, by Corollary 3.4 we see that Pr AQ =0 or PA Q* = 0.
If P AQ =0, then under the assumption APec(CR) or equivalently
QPec (CR)) we have ||QP!| =||QP*(Q*V P)||<1 by Lemma 1.3. We can
see | PQ*|| <1 similarly, when P A Q* = 0. g.e.d.

The next result was shown by Longstaff [8, Theorem 1] without the
assumption A € (CR).

COROLLARY 3.8. Let A (% 0)e(CR). Then ¢, s uniformly con-
tinuwous on C(H), i.e., at every point MeC(H) if and only if A 1is
left-invertible.

Proor. If A is not left-invertible, then @Q: = A'A 1. Hence,
putting P = @', we see that the left hand side of (3.5) is equal to 1.
The converse assertion is clear by (3.5). q.e.d.

4. Lipschitz constants of subspace maps. For A e (CR), define
(4.1) C,H)={MecC(H); P, commutes with A'A}.

Then, since A'AP,(M e C,(H)) is a projection we easily see that AP, € (CR)
(say, by Lemma 1.2) or AM = (AM)~. If we restrict the map ¢, on

C,(H), then since ||(APy)'|| =< ||A"|| for MeC,(H) (say, by (1.2)) we see
by Corollary 2.2 that

[ proj g4(M) — proj 6,(N)|| = [[(APy)APy)" — (APy)(AFy)'|
= |AY[| Al [Py — Pyl . (M, NeCy(H))

In [2] we introduced the Lipschitz constant of ¢, by
k4 = sup{|| proj g,(M) — proj ¢.(N)||/|| Py — Py|l; M, Ne C«(H), M # N},
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and proved that x, = || A]|/Y(A) when A is left-invertible [2, Theorem 3]
(cf. [3, Theorem 3.1]). The following result shows that this identity is
still true for every A c(CR).

PROPOSITION 4.1. If Ae(CR), then k. = || A| || A’

ProOF. Let A = V|A| be the polar decomposition of A with a partial
isometry V which satisfies V*V = A'A. Then, since |A|'|A| = V*V, we
see that |A|P, e (CR) for any LeC,(H) and

(3.6) (A|P) = (|A|P)'V*V.
Hence, AL = V|A|P,H = V(|A|P,)|A|P,)'H = V(| A| P,)(|A| P,)'V*H, or
proj AL = V(| A| P.)(|A| P)'V* .

Hence, using the identity |A| = V*V|A| and (3.6), we have, vfor M,
NeC,(H),

|l proj AM — proj AN|| = || V{(IA| Pu)(| A Py)" — (| A Py)(|A| Py)} V|
= || (| A Pu)(| A| Pi)" — (|A| Py)(| A Py)'|

Clearly, this shows £, = k.. On the other hand, from the first para-
graph of this section we easily see that k£, < ||A] ||A'||]. Hence it
suffices to show that the supremum «, attains ||A]/||A'||. Now, let
|A] = B0 be the direct sum representation of |A| with respect to
the orthogonal decomposition (ker A)* @ ker A of H. Then B is a non-
negative invertible operator on K: = (ker A)*. Since A'A has the re-
presentation 1 0, we see that every operator E€ 0 with a projection
E on Kisin C,(H). Hence our problem is reduced to computing £; (< £,)
on Cx(K). But then ||B| = ||Al, and ¥(B)™ = || B'|| = || |Al'| = [|4"||
(say, by Lemma 1.1), so that we obtain k; = || B||/7(B) = || A|| || A'||
g.e.d.

5. Transforms of families of closed linear subspaces. In this
section we shall discuss some behavior of a subspace map ¢, (4 e (CR))
on the set C,(H) defined by (4.1). The following result extends [8,
Theorem 2].

THEOREM 5.1. Let Ac(CR). If & 1is a uniformly (resp. strongly,
weakly) closed subset of C,(H) and P, < A'A (i.e., M C (ker A)*) for all
M e F, then the image ¢,(F ) is also uniformly (resp. strongly, weakly)
closed.

Proor. Let {M,} be a net in & and AM,— NeC,(H) uniformly
(resp. strongly). (C,(H) is uniformly and strongly closed.) Write P, =
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proj M,. Then (AP,)(AP,)'— Py (un) (resp. (st)). Hence, noting A'AP, =
P,, we have (AP,)'= A'-(AP,)AP,)'— A'Py (un) (resp. (st)). Since
|AP,|| < ||A]l, we see, by Remark after Lemma 2.4, that

AP, = (AP,)"" — (A'Py)' (un) (resp. (st)).

Hence, P, — A'A'Py)' (un) (resp. (st)), so that M: = AYA'Py)'He &.
Hence, by the uniform (resp. strong) continuity of ¢, (say, directly by
Proposition 2.5), we obtain that N = AMe¢,(5 ), which implies the
uniform (resp. strong) closedness of ¢,(%#). The weak closedness of
$4(F) can be now obtained by (argument similar to that in [8]) using
the weak compactness of any ball {T'e B(H): |T|| <C} for C>0. q.e.d.

If o7 is a subset of B(H), then we write Lat . for the lattice
of all M e C(H) invariant under every member of .9 For a subset &
of C(H) we denote by Alg & the algebra of all T € B(H) leaving every
member of & invariant. We say that & cC(H) is reflexive if & =
Lat Alg .&#. Now, we give an extension of [8, Proposition 2].

PROPOSITION 5.2. Let Ae (CR), and let .Z be a subset of C,(H) with
A'AHe . Then ¢,Lat Alg & )U{H} = Lat Alg ¢,(&). Hence, if F
18 reflexive then so 1s ¢,(F ) U {H}.

PrRoOOF. Write & =¢,(& ). First, in order to show ¢,(Lat Alg . &)
Lat Alg &, let M = Lat Alg .&#. Then, for Tec Alg &, we see TAHC AH,
so that

(5.1) AA'TA =TA.
Put X = A'TA. Then, for every Fe &
XF = A'TAF = A" TAF C A'AF'.

Hence, since P, commutes with A'4, we have XF cC F, which implies
XeAlg &, Hence XMcM, or ATAMcM. By (5.1) this relation yields

TAM = AA'TAM C AM .

Since T e Alg & is arbitrary, this implies AM € Lat Alg &, which is the de-
sired. Next, to show the opposite inclusion Lat Alg & c¢,(Lat Alg &)U
{H}, let NeLatAlg% and N+ H. Then Y(1 — AA") e Alg & for every
YeB(H). Hence Y(1 — AAYNCN. Since Y is arbitrary and N # H,
we easily see that (1 — AA"N = {0}, or N = AA'N. Now, it suffices to
show that A'NeLat Alg.&. For, if this is shown then N = AA'Ne
#.(Lat Alg &) (which is the desired). Let Se Alg.#, and put R = ASA".
Then, for any G: = AFe % (Fe. %), we have



GENERALIZED INVERSE METHOD 659

RG = ASA'G = ASA'AFC ASFCAF =G,

that is, Rec Alg . Hence we see RNCN, or ASA'Nc N. Since the
assumption ATAH e & means SA'A = ATASA'A, we have

SA'N = SA'A-A'N = ATASA'A-A'N = A" ASA'NC A'N .

This implies A'N e Lat Alg %, because Sc Alg & is arbitrary. Finally,
if & is reflexive, then

< U{H} = ¢,(Lat Alg & )U{H} = Lat Alg ¥ U{H} = Lat Alg (¥ U{H}),
so that & U {H} is reflexive. g.e.d.
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