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1. Introduction. Let H be a Hubert space and let C(H) be the set
of all closed linear subspaces in H. For a bounded linear operator A on
H, define a map φA on C(H), called the subspace map of A, by

φA(M) = (AM)- (MeC(H)),

where " —" denotes the uniform closure. Identifying every closed sub-
space M with the corresponding (orthogonal) projection PM or projM,
we see that C(H) is a subset of B(H), the Banach space of all bounded
linear operators on H and hence has the uniform, strong and weak
(operator) topologies. It was shown in [8] (cf. [2]) that the subspace
map φA is uniformly (and strongly) continuous on C(H) if and only if
the operator A is left-invertible, and moreover, in this case φA behaves
well. For instance, φA(^~) is uniformly (resp. strongly, weakly) closed
if &~ is a uniformly (resp. strongly, weakly) closed subset of C(H).

In this paper we shall show similar results on the subspace map φA

under the weaker condition that the operator A has closed range, or
equivalently, has the (Moore-Penrose) generalized inverse [1] [9]; using
operator theory of generalized inverses, we shall discuss the local con-
tinuity and some other topological properties of φA of A with closed
range, which will extend some results in [2] and [8].

Throughout this note we shall write Ae(CR) when the operator A
has closed range. The generalized inverse i f of Ae(CR) satisfies (and
is determined by) the following four Penrose identities [1]

AAΆ = A, AfAAf = A\ (AAψ = AAf and (A* A)* = AfA .

If we denote by AH and ker A the range and the kernel of A(e(CR))
respectively, then the products AAf and A}A represent the projections
onto AH and the orthogonal complement (ker A)1 of ker A respectively
[1]. For two projections P and Q, write P 1 and P V Q for the projection
onto (Pff)1 and for that onto the closed linear span of PH and QH,
respectively. Now, for our later discussion we state three lemmas on
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operators with closed range.

LEMMA 1.1 (e.g. [1, Section 8]). Let A(Φθ)eB(H). Then Ae(CR)
if and only if the lower bound Ί{A) of A, defined by

is positive. In this case A*e(CR), |A|: = (A*A)m e (CR) and

LEMMA 1.2 ([4, Proposition 2.2 and Corollary 3.8]). Let A,Be(GR).
Then ABe(CR) if and only if A*ABBf e (CR). In this case

(1-2) UABYW ^ ||A*|| \\B'\\ \\{AΆBBJ\\ .

LEMMA 1.3 ([4, Section 2]). Let P and Q be projections. Then the
following conditions are equivalent.

(1) PQe(CR).
( 2) || P'Q(P V Q1) || (= || PQ1^ V Q) ||) < 1.
(3) P' + Qe(CR).
(4) PLH + QH is closed.

If PQe(CR), i.e., if one of (l)-(4) Λ-oίds, then

UPQYW ̂  UP" + QY\\ ^ (1 - | |PXQ(P V Q1)!))-2.

2. Convergence of generalized inverses. We begin by discussing
perturbations of generalized inverses. First we remark that if A, B e (CR)
then

(2.1) B' - A' = B\BBf - AAf) + (B'B - AΆ)A* - B\B - A)Af.

Concerning the uniform perturbation, we know [10, Theorem 3.3] that

(2.2) \\B* - A'W^^maxiWBmWlA'W^WB-A\\ for A,Be(CR).

However, for our discussions on the strong convergence we need:

LEMMA 2.1. Let A, i?e(CR) and let xeH. Then

(2.3) || (BB* - AA')x ||2 ^ || B* ||21| {B* - A*)(l - AA')x f + \\ (B - A)Ax ||2

PROOF. Put PΛ = AA> and PB = BB\=B**B*). Then, we see

HPΛ1 - Pjxll ^ ||^111|5*(1 - P > | | = | | B 1 \\(B* - A*)(l - PA)x\\

and

||(1 - PB)PAx||2 ^ ||(1 - PB)PΛx||2 + \\B(B<-A<)PAx\\> = ||(1 - BA)PAx\\*

= \\{B-A)A<xf.

Hence, using the identity PB - PA = PB(1 - PA) - (1 - PB)PA, we have
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(PB - PA)x\\2 = \\PB(1 - PΛ)X\\2 + | | (1 - PB)PAx||2

^ || iT||21| CB* - A*)(l - P > | | 2 + | | ( B - A)A'a||« . q.e.d.

COROLLARY 2.2 ([6, Theorem 1]). Lβί A, Be(CR).

PROOF. For sceiϊ with ||g|| = 1, we have

|| (B* - A*)(l - PA)x || ^ || B - A || || (1 - PA)x \\

and

|| (B - A)A^ || - | | ( B - 4 ) 4 ^ || ^ || B - A || || A*1| || PAx \\ .

Hence, by (2.3) and the identity || PAx ||2 + || (1 - PA)x ||2 = 1, we can easily
get the desired inequality. q.e.d.

Let An [n = 1, 2, •) and A be operators in B{H). If the sequence
{An} converges to A uniformly (resp. strongly), then we write An -* A
(un) (resp. An —> A (st)). On the uniform convergence of generalized
inverses, we see the following by (2.2):

LEMMA 2.3 ([5, Proposition 2.3]). Let {An} be a sequence with An e (CR)
for n ^ 1, and let An —> A e (CR) (un). Then Al —> At (un) i/ and onϊτ/
i/sup n | |Aί | | < oo.

A similar fact holds for the strong convergence of generalized in-
verses:

LEMMA 2.4. Let {An} be a sequence with An e (CR) for n ^ 1, and
let Ara->Ae(CR) (*st), i.e., An-+A (st) and AJ->A* (st). Γfcen Aί-»A
(*st) i/ and onίi/ ΐ/ supn || Ai|| < <*>.

PROOF. The "only if" part is obtained from the uniform boundedness
theorem. To see the "if" part, put first B=An in (2.1) and (2.3). Then
we have (for xeH)

(2.5) || (AL - A)x || ^ || AL \\ \\ {AnA\ - AA)x \\ + || (AU - A A) Ax \\

+ || Ai || || (A,-AJA^ ||

and

(2.6) || (AmAl - AA)x ||2 ^ || A\ ||21| {At - A*)(l - AX)x\\* + ||(An - A)Ax ||2 .

Next, replacing, in (2.6), An and A by their adjoints AJ and A* re-
spectively (cf. B*f = Bf* for Be(CR)), we have

(2.7) || (ALA* - AA)x ||2 ^ || AI ||2 ||(An - A)(l - A^Ja? ||2 + ||(A* - A*)A**x ||2 .

Hence, since {||Aί||} is bounded, we conclude Alx—> Ax from the above
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inequalities (2.5)-(2.7). Taking the adjoints of An and A, we can also
obtain Al*x —• A**x. q.e.d.

REMARK. In Lemma 2.3 we can replace the sequence {An} by a net
{Aa} (directed by a set). Similarly, in Lemma 2.4 we can replace {An}
by a net {AJ with supβ | |Aβ | | < <».

PROPOSITION 2.5. Lei Ae(CR) αwd Zeί {Pa} be a net of projections
such that Pα -> P (un) (resp. (st)). Suppose, furthermore, that APa e (CR)
for all a and APe(CR). Then (APJ -»(AP) f (un) (resp. (st)) i/

< oo.

PROOF. The equivalence on the uniform convergence is immediate
from (2.2) (or the above remark). For the strong convergence, by the
above remark, it suffices to note that APa-±AP (*st) and | |APβ | | ^ \\A\\
when Pa-+P (st). q.e.d.

COROLLARY 2.6 ([8, Corollary 1 to Proposition 1]). Let AeB(H),
and let {Ma} be a net in C(H) converging to MeC(H) uniformly (resp.
strongly). If A is bounded below on MoeC(H) (i.e., there exists ε>0
such that \\Ax\\ ^e\\x\\ for every xeM0), and if MaaMQ for all a, then
AMa,AMe(CH) and {AMa} converges to AM uniformly (resp. strongly).

PROOF. Write Pα = projikfα, P0 = projikf0 and P = PM ( = projilί).
Then, by our assumption we have Pa-^> P (un) (resp. (st)), Pa <̂  Po and
|| APox || ^ ε || Pox || for xeH. From the last inequality we see that
B: = AP0 e (CR) and B'B = Po. Since APa = AP0Pa - BPa and B"BPaPl =
Pαe(CR) (cf. P* = Pa), we see, by Lemma 1.2, that .BPαe (CR) or
APα6(CR) and

Hence, by Proposition 2.5 we have (APJ -> (AP)f or (APa)(APaY ->
(AP)(APY (un) (resp. (st)), which is the desired. q.e.d.

3. Local continuity of subspace maps. Let A e (CR) and Q = AfA.
Then, for a projection P in JB(JEΓ) we have A*A{QL V P) = ζKQ1 V P) 6 (CR),
so that A(QL V P) e (CR) (say, by Lemma 1.2). Using this fact, we
have the following:

LEMMA 3.1. Let A e (CR) ami Q = AfA. T%*m /or MeC(H) we have
(AM)" = A(QX V PM)H, or equivalently,

(3.1) proj ^(ikf) = {A(Q^ V P Λ H A ^ V P^)}f = A{A(Q± V P^Γ .

PROOF. Since (AM)~ = (AP^ίΓJ-cUίQ 1 V P J # } " = ^(Q 1 V
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(AM)*", we have the first identity. The identities (3.1) is now clear.
q.e.d.

To discuss the local continuity of a subspace map φA (Ae(CR)), it
is convenient to introduce the auxiliary functions ψA and ηQ (Q = A* A)
from C(H) into B(H), defined by

ψA(M) = {A(Q^ V PM)Y and ηQ(M) = Q^ V PM .

THEOREM 3.2. Let A e (CR), Q = A*A and Mo e C(H). Then the
following conditions are equivalent.

(1) φA is uniformly (resp. strongly) continuous at ikΓ0.
(2) φQ is uniformly (resp. strongly) continuous at Mo.
(3) ψA is uniformly (resp. strongly) continuous at MQ.
(4) Ύ]q is uniformly (resp. strongly) continuous at Mo.

PROOF. (Since the argument is quite parallel for the strong topology,
we only give the proof for the uniform topology.)

(1) <=* (3) By Lemma 3.1 we see proj φA(M) = AψA(M) and ψA(M) =
QψA(M) = A*'"projφA(M). Those identities show the desired equivalence.

(2) ~ (4) It suffices to note that Q1 V P = Q(QL V P) + Q1 =
proj ΦQ(PH) + Q1 for every projection P.

(2) => (3) Let {Ma} be a net in C(H) converging to MQ e C(H) uni-
formly. Write Ra = Q(QL V Pa) and Ro = Q(QL V Po), where Pa = projMo

and PQ = projΛfo. Then, since IKAiJ^H ^ \\A*\\ (say, by (1.2)), we have
(ARay -> (AR0Y (un) if Ra->R0 (un) by Proposition 2.5. Hence the as-
sumption (2) implies (3).

(3)=>(2) Note ||ARβ|| ^ ||A||. Hence we have, by Remark after
Lemma 2.4, that ARa = (ARar -> (Ai20)

n = Ai20 (un) if (ARaY -+ (AR0Y
(un). Hence, if we assume (3) we have Ra = A*ΆRa-^> Af AR0 = Ro

(un), which implies (2). q.e.d.

REMARK. Define lim infα Ma = {x; dist(a?, Mα) -> 0} for a net {ikία} in
C(JEΓ). Suppose Ma->MeC(H) strongly. Then we can prove

lim inf φA{Ma) 3 φA(M)
a

(without the restriction Ae(CR)). This relation says that φA is lower
semicontinuous at M with respect to the strong topology.

To seek more precise conditions for the local continuity of subspace
maps, we provide the following result.

LEMMA 3.3. Let P and Q be projections satisfying the three con-
ditions;
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( 2) PLH +QHΦH,
(3) P^ΛQ^O, i.e., PΉ(\QHΦ{<d}.

Then, φQ is not uniformly (strongly) continuous at PH.

PROOF. By (1) there exists a sequence {xn} in H such that ||a?n|| = 1
and || PQLxn || -»1 . We easily see that Pxn - xn -> 0 and QLxn - xn -> 0.
Since P 1 ! ? + QJEZ" is nowhere dense in H by (2), we may assume that
for all n, xn g PLH + QH, or equivalents, Pxn ί PQH. Put

yn = Pxn/\\Pxn\\ , zn = Q'-xJWQ^W

and choose weP^^HπQH with | |w| | = 1. By using those elements we
define

Un = yn®yn, Rn = (anzn + bnw)<g)(anzn + bnw) ,

where an = cos(l/w), &n = sin(l/w) and y(&y (y eH) is an operator such
that (y (g) j/)& = (a;, ?/)7/ for x e H. Clearly, they are projections and
Un - Rn -+ 0 (un). For each n, the operator F n : = P - Un ( = P(1 - *7J)
is also a projection and || FnJBre|| = | |P( l - 17n)JBn | |^\\Rn- Un\\->0. Hence,
we may assume || VnRn(Vϊ VRϊ)\\ < 1 for all n. By Lemma 1.3 we then
have Sn: = Vn + Rne (CR) and

This says that {|J JSΓ̂  11} is bounded. Hence, since Sn—> P (un), we see
SnSl -> P (un) by Lemma 2.3. Put Pn = SnSn

f. Now, what we want to
show is thst φQ(PnH) does not converge to φq(PH) uniformly. Since w
is orthogonal to φQ(PH), it suffices to show

(3.2) ΦQ(PnH) = φQ(PH) + [w] ,

where [w] is the linear space generated by w. To this end, let u e ker SnQ
or SnQu — 0. Then we have

PQu - (Qu, yn)yn + (Qu, anzn + bnw)(anzn + δnw) = 0 .

Since zn, yn e PH and w e P1!/", we see (Qu, anzn + bnw) = 0, so that
PQu = (Qu, yn)yn. Recall yn$PQH. Hence PQu = 0, i.e., u e k e r PQ.
This implies

(3.3) (QPH)- c (QSJ5Γ)- (= (QPnHT) .

Moreover, we see, by a simple computation, QSnw — b\w or

(3.4) w e QSnH .

Hence we have
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(QSnH)-c{Q(Vn + Rn)H}~c{QP(1 - Un)H}~ + (QRnH)~

a(QPHY + [w]<z(QSnHT ,

which implies (3.2). For the strong continuity, note that the convergence
of {Sn} (and hence {Pn}) is strong by the construction of Sn9 so that the
identity (3.2) also shows the discontinuity of φQ at PH. q.e.d.

COROLLARY 3.4. Let P and Q be projections with P Λ Q1 Φ 0 and
P 1 Λ Q Φ 0. Then φQ is not uniformly (strongly) continuous at PH.

PROOF. We have \\PQLx\\ = \\x\\ for xe(PΛQλ)H, i.e., \\PQL\\ = 1.
We also have PLH + QHa(PA QψH Φ H. q.e.d.

COROLLARY 3.5. Let P and Q be projections with PQg(CR) and
P1 /\ Q φ 0. Then φQ is not uniformly (strongly) continuous at PH.

PROOF. By Lemma 1.3 we see that PLH + QH is not closed, so that
we have (2) of Lemma 3.3. Again, by Lemma 1.3 we have 1 ^ HPQ1!! ^
|| PQ^P1 V Q)\\ = 1, which implies (1) of Lemma 3.3. q.e.d.

For the subspace map of a general operator we have:

PROPOSITION 3.6. Let A e B(H) and Q = proj (A*H)~. If we add

(4) Ae(CR) or

(4') (P 1 Λ Q)A*A - 0

to the conditions (l)-(3) in Lemma 3.3, then φA is not uniformly (strongly)
continuous at PH.

PROOF. We use the same notations as in Lemma 3.3. By (3.3),
(3.4) and the obvious identity AQ = A, we have (APH)" c (APnH)~ and
Aw 6 APnH. Hence we have

(APnHY = (APH)- + [Aw] .

Now, to see the discontinuity of φA at PfiΓ, it suffices to show that
Aw £ (APH)~. First, (4) implies this relation. For otherwise Aw e
(APH)- = A(Qλ V P)H, so that w = A"Aw e Q(Qλ V P)Hcz(P1 A QVH.
This is a contradiction. Next, (4') implies that Aw is orthogonal to
(APH)-, because (Aw, APu) = (w, (P1 Λ Q)A*APu) = 0 for u e H. q.e.d.

With a norm inequality we give an equivalent condition for the
uniform continuity of a subspace map at a point.

THEOREM 3.7. Let Ae(GR) and MeC(H). Write Q = AfA and
P' = PM. Then the condition

(3.5)
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implies that φA is uniformly continuous at M. Conversely, if we assume
APe (CR) then the uniform continuity of φA at M implies (3.5).

PROOF. Assume || PQ11| < 1 , and let Pn: = proj Mn-^P (un) (Mn e C(H)).
Then, since \\PnQ

1(PiVQ)\\^\\PnQ
1\\->\\PQ1\\, we have PnQ e (CR) for

all sufficiently large n, by Lemma 1.3. Furthermore, we have

UPnQY\\ ^ (1 - II P ^ P . 1 V Q)\\r2 £ (1 - | | P n ^ | | ) - 2 - > ( l - | |PQ 1 ! ! )" 2 .

Hence {\\iQPJ\\} is bounded, so that {QPnγ->{QP) or (QPn)(QPn)*->
(OP)(QPy (un). This implies the uniform continuity of φQ and hence
of φA at M (say, by Theorem 3.2). Using the identity || PiQ{Pn V Q1) || =
|| PnQ

L(Pn V Q) ||, we could obtain the same conclusion when we begin
with the assumption | |P- L Q| |<1 instead of \\PQL\\<1. To see the
latter half of the theorem, let φA (and hence φQ) be uniformly continuous
at M. Then, by Corollary 3.4 we see that P1 A Q = 0 or P Λ Q1 = 0.
If P 1 Λ Q = 0, then under the assumption i4.Pe(CR) or equivalently
QPe(CR)) we have ||QP1 \\ = \\QP^Q1 V P ) | | < 1 by Lemma 1.3. We can
see IIPQ1!! < 1 similarly, when P Λ Qλ = 0. q.e.d.

The next result was shown by Longstaff [8, Theorem 1] without the
assumption A e (CR).

COROLLARY 3.8. Let A ( ^ 0 ) e ( C R ) . Then φA is uniformly con-
tinuous on C(H), i.e., at every point MeC(H) if and only if A is
left-invertible.

PROOF. If A is not left-invertible, then Q: = AfA Φ 1. Hence,
putting P = Q1, we see that the left hand side of (3.5) is equal to 1.
The converse assertion is clear by (3.5). q.e.d.

4. Lipschitz constants of subspace maps. For A e (CR), define

(4.1) CA(H) = {MeC(H); PM commutes with A1 A] .

Then, since AfAPM(Me CA(H)) is a projection we easily see that APM e (CR)
(say, by Lemma 1.2) or AM = {AM)". If we restrict the map φA on
CA(H), then since \\{APMy\\ ^ ||A+|| for MeCA{H) (say, by (1.2)) we see
by Corollary 2.2 that

llproj^(M) - proj^(i\0| | = \\{APM){APMy - {APN)(APNy\\

<ί || AMI IIA|| HP, - P * | | . {M, NeCA(H))

In [2] we introduced the Lipschitz constant of φA by

κA = sup{||projφA{M) - projφA{N) | |/| |PM-PN\\;M,NeCA{H), MΦ N} ,
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and proved that κA = ||A||/7(A) when A is left-invertible [2, Theorem 3]
(cf. [3, Theorem 3.1]). The following result shows that this identity is
still true for every Ae(CR).

PROPOSITION 4.1. If Ae(CR), then κA = || A|| || A'\\.

PROOF. Let A — V\A\ be the polar decomposition of A with a partial
isometry V which satisfies V*V — A*A. Then, since |AΠA| = F*F, we
see that \A\PLe(CR) for any LeCA(H) and

(3.6) (\A\PLy = QA\PLYV*V.

Hence, AL = V\A\PLH= V(\A\PL)(\A\PLYH = V(\A\PL)(\A\PLyV*H, or

vτoj AL=V{\A\PL){\A\PLγV*.

Hence, using the identity \A\ = F*F|A| and (3.6), we have, for M,
NeCA(H),

||projAAΓ-projAJVΊI = \\V{(\A\PM)(\A\PMγ - (\A\PNχ\A\PNy}V*\\

= U\A\PM)(\A\PMy-(\A\PN){\A\PNγ\\ .

Clearly, this shows κA = ιcU\. On the other hand, from the first para-
graph of this section we easily see that κA ^ || A\\ || A+||. Hence it
suffices to show that the supremum κA attains | |A|| | |A t | |. Now, let
IAI = B 0 0 be the direct sum representation of \A\ with respect to
the orthogonal decomposition (ker A)1 φ ker A of H. Then B is a non-
negative invertible operator on K: = (ker A)1. Since AfA has the re-
presentation l φ O , we see that every operator ϋ 7 φ θ with a projection
E on K is in CA(H). Hence our problem is reduced to computing κB (^ κA)
on CB(K). But then | | £ | | = ||A||, and Ί{B)~ι = \\B~ι\\ = | | |AΠ| = \\A\\
(say, by Lemma 1.1), so that we obtain κB = ||B||/7(B) = ||A\\ \\Af\\.

q.e.d.

5. Transforms of families of closed linear subspaces. In this
section we shall discuss some behavior of a subspace map φA (A e (CR))
on the set CA(H) defined by (4.1). The following result extends [8,
Theorem 2].

THEOREM 5.1. Let Ae(CR). If J^ is a uniformly (resp. strongly,
weakly) closed subset of CA(H) and PM 5* A^A {i.e., Ma (ker A)1) for all
M e J^~~, then the image φA{^) is also uniformly (resp. strongly, weakly)
closed.

PROOF. Let {Ma} be a net in &~ and AMa-> NeCA(H) uniformly
(resp. strongly). (CA(H) is uniformly and strongly closed.) Write Pa =
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proj Ma. Then (APa)(APay -> PN (un) (resp. (st)). Hence, noting AfAPa =
Pa, we have (APaγ = A< (APa)(APay-+ A'PN (un) (resp. (st)). Since
||APα | | ^ || A||, we see, by Remark after Lemma 2.4, that

APa = (APa)
n^(A'PNy (un) (resp. (st)) .

Hence, Pa -> A\A"PNy (un) (resp. (st)), so that M: = A\AΨNyH e jr.
Hence, by the uniform (resp. strong) continuity of φA (say, directly by
Proposition 2.5), we obtain that N = AMeφA(^~), which implies the
uniform (resp. strong) closedness of φA(J~). The weak closedness of
ΦA(^~) can be now obtained by (argument similar to that in [8]) using
the weak compactness of any ball {TeB(H): \\T\\^ C) for C> 0. q.e.d.

If Jzf is a subset of B(H), then we write Lat £>/ for the lattice
of all MeC(H) invariant under every member of Jzf. For a subset jr
of C{H) we denote by Alg ^ the algebra of all T e B(H) leaving every
member of ^~ invariant. We say that ^~(zC(H) is reflexive if
Lat Alg ^ 7 Now, we give an extension of [8, Proposition 2].

PROPOSITION 5.2. Let Ae(GR), and let jβ~ be a subset ofCA(H) with
A*AH e ^ T Then ^(Lat Alg J Π U {if} = Lat Alg φA(^~). Hence, if
is reflexive then so is φA{^) U {H}.

PROOF. Write & = φA{^). First, in order to show ^A(
Lat Alg ^ , let M = Lat Alg ^ T Then, for Γe Alg^, we see TAH a AH,
so that

(5.1) i4A+ΓA = TA .

Put X = A^Λ. Then, for every Fe^r

XF = ^ Γ A F - Af T A F c AΆF .

Hence, since P F commutes with AfA, we have XFczF, which implies
I e Alg^T Hence XMaM, or AΎAMczM. By (5.1) this relation yields

= AA'TAMaAM.

Since Te A l g ^ is arbitrary, this implies AM e Lat Alg gf, which is the de-
sired. Next, to show the opposite inclusion Lat Alg^c^A(Lat Alg^~)U
{#}, let iVeLat A l g ^ and NΦ H. Then Γ(l - AA*)eAlgϊ? for every
Γ € # ( # ) . Hence Y(l - AA>)Na N. Since Γ is arbitrary and N Φ H,
we easily see that (1 — AAf)N = {0}, or N = AA*N. Now, it suffices to
show that AW e Lat Alg ^ T For, if this is shown then N=AA*Ne
φA(L3,t Alg ^r) (which is the desired). Let S G Alg ^ and put R = ASA\
Then, for any G: = AFe& ( F e ^ ) , we have
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RG = ASA'G = ASAfAFczASFdAF = G ,

that is, ΛeAlggf. Hence we see RNaN, or ASANcN. Since the
assumption A*AH e ^~ means SA*A = A*ASA*A9 we have

SAW = SA'AΆ'N = AfASAfAΆfN = A*. ASA We AW .

This implies AW e Lat Alg^7 because SeAlg^ is arbitrary. Finally,
if &~ is reflexive, then

gf U {Jff} = ^(Lat Alg J Π U {H} = Lat Alg S? U {iί} = Lat Alg (Sf U {#}) ,

so that ^ U {iT} is reflexive. q.e.d.
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