GENERALIZED INVERSE METHOD FOR SUBSPACE MAPS

Dedicated to Professor Tamotsu Tsuchikura on his sixtieth birthday

SAICHI IZUMINO

(Received December 23, 1982)

1. Introduction. Let H be a Hilbert space and let C(H) be the set of all closed linear subspaces in H. For a bounded linear operator A on H, define a map ϕ_A on C(H), called the subspace map of A, by

$$\phi_{\scriptscriptstyle A}(M) = (AM)^- \qquad (M \in C(H))$$
 ,

where "-" denotes the uniform closure. Identifying every closed subspace M with the corresponding (orthogonal) projection P_M or proj M, we see that C(H) is a subset of B(H), the Banach space of all bounded linear operators on H and hence has the uniform, strong and weak (operator) topologies. It was shown in [8] (cf. [2]) that the subspace map ϕ_A is uniformly (and strongly) continuous on C(H) if and only if the operator A is left-invertible, and moreover, in this case ϕ_A behaves well. For instance, $\phi_A(\mathscr{F})$ is uniformly (resp. strongly, weakly) closed if \mathscr{F} is a uniformly (resp. strongly, weakly) closed subset of C(H).

In this paper we shall show similar results on the subspace map ϕ_A under the weaker condition that the operator A has closed range, or equivalently, has the (Moore-Penrose) generalized inverse [1] [9]; using operator theory of generalized inverses, we shall discuss the local continuity and some other topological properties of ϕ_A of A with closed range, which will extend some results in [2] and [8].

Throughout this note we shall write $A \in (CR)$ when the operator A has closed range. The generalized inverse A^{\dagger} of $A \in (CR)$ satisfies (and is determined by) the following four Penrose identities [1]

$$AA^{\dagger}A = A, A^{\dagger}AA^{\dagger} = A^{\dagger}, (AA^{\dagger})^* = AA^{\dagger} \text{ and } (A^{\dagger}A)^* = A^{\dagger}A.$$

If we denote by AH and ker A the range and the kernel of $A(\in(CR))$ respectively, then the products AA^{\dagger} and $A^{\dagger}A$ represent the projections onto AH and the orthogonal complement $(\ker A)^{\perp}$ of ker A respectively [1]. For two projections P and Q, write P^{\perp} and $P \lor Q$ for the projection onto $(PH)^{\perp}$ and for that onto the closed linear span of PH and QH, respectively. Now, for our later discussion we state three lemmas on operators with closed range.

LEMMA 1.1 (e.g. [1, Section 8]). Let $A(\neq 0) \in B(H)$. Then $A \in (CR)$ if and only if the lower bound $\gamma(A)$ of A, defined by

 $\inf\{\|Ax\|; x \in (\ker A)^{\perp}, \|x\| = 1\}$

is positive. In this case $A^* \in (CR)$, $|A|: = (A^*A)^{1/2} \in (CR)$ and

(1.1)
$$||A^{\dagger}|| = ||(A^{*})^{\dagger}|| = |||A|^{\dagger}|| = \gamma(A)^{-1}$$

LEMMA 1.2 ([4, Proposition 2.2 and Corollary 3.8]). Let $A, B \in (CR)$. Then $AB \in (CR)$ if and only if $A^{\dagger}ABB^{\dagger} \in (CR)$. In this case

(1.2)
$$||(AB)^{\dagger}|| \leq ||A^{\dagger}|| ||B^{\dagger}|| ||(A^{\dagger}ABB^{\dagger})^{\dagger}||.$$

LEMMA 1.3 ([4, Section 2]). Let P and Q be projections. Then the following conditions are equivalent.

- $(1) PQ \in (CR).$
- $(2) ||P^{\perp}Q(P \vee Q^{\perp})|| (= ||PQ^{\perp}(P^{\perp} \vee Q)||) < 1.$
- $(3) \quad P^{\perp} + Q \in (\mathbf{CR}).$
- (4) $P^{\perp}H + QH$ is closed.

If $PQ \in (CR)$, i.e., if one of (1)-(4) holds, then

$$\|(PQ)^{\dagger}\| \leq \|(P^{\scriptscriptstyle \perp}+Q)^{\dagger}\| \leq (1-\|P^{\scriptscriptstyle \perp}Q(P\vee Q^{\scriptscriptstyle \perp})\|)^{-2}$$
 .

2. Convergence of generalized inverses. We begin by discussing perturbations of generalized inverses. First we remark that if $A, B \in (CR)$ then

$$(2.1) \qquad B^\dagger - A^\dagger = B^\dagger (BB^\dagger - AA^\dagger) + (B^\dagger B - A^\dagger A) A^\dagger - B^\dagger (B - A) A^\dagger \; .$$

Concerning the uniform perturbation, we know [10, Theorem 3.3] that

 $(2.2) ||B^{\dagger} - A^{\dagger}|| \leq 3 \max\{||B^{\dagger}||^{2}, ||A^{\dagger}||^{2}\}||B - A|| \text{ for } A, B \in (CR).$

However, for our discussions on the strong convergence we need:

LEMMA 2.1. Let $A, B \in (CR)$ and let $x \in H$. Then (2.3) $\|(BB^{\dagger} - AA^{\dagger})x\|^{2} \leq \|B^{\dagger}\|^{2} \|(B^{*} - A^{*})(1 - AA^{\dagger})x\|^{2} + \|(B - A)A^{\dagger}x\|^{2}$.

PROOF. Put $P_{\scriptscriptstyle A} = AA^{\scriptscriptstyle \dagger}$ and $P_{\scriptscriptstyle B} = BB^{\scriptscriptstyle \dagger}(=B^{\scriptscriptstyle \dagger}*B^*)$. Then, we see

 $||P_B(1 - P_A)x|| \le ||B^{\dagger}|| ||B^*(1 - P_A)x|| = ||B^{\dagger}|| ||(B^* - A^*)(1 - P_A)x||$ and

$$\begin{split} \|(1-P_{\scriptscriptstyle B})P_{\scriptscriptstyle A}x\|^{\scriptscriptstyle 2} &\leq \|(1-P_{\scriptscriptstyle B})P_{\scriptscriptstyle A}x\|^{\scriptscriptstyle 2} + \|B(B^{\scriptscriptstyle \dagger}-A^{\scriptscriptstyle \dagger})P_{\scriptscriptstyle A}x\|^{\scriptscriptstyle 2} = \|(1-BA^{\scriptscriptstyle \dagger})P_{\scriptscriptstyle A}x\|^{\scriptscriptstyle 2} \\ &= \|(B-A)A^{\scriptscriptstyle \dagger}x\|^{\scriptscriptstyle 2} \,. \end{split}$$

Hence, using the identity $P_B - P_A = P_B(1 - P_A) - (1 - P_B)P_A$, we have

$$\begin{aligned} \|(P_B - P_A)x\|^2 &= \|P_B(1 - P_A)x\|^2 + \|(1 - P_B)P_Ax\|^2 \\ &\leq \|B^{\dagger}\|^2 \|(B^* - A^*)(1 - P_A)x\|^2 + \|(B - A)A^{\dagger}x\|^2 \,. \quad \text{q.e.d.} \end{aligned}$$

COROLLARY 2.2 ([6, Theorem 1]). Let $A, B \in (CR)$. Then

$$||BB^{\dagger} - AA^{\dagger}|| \leq \max\{||B^{\dagger}||, ||A^{\dagger}||\}||B - A||.$$

PROOF. For $x \in H$ with ||x|| = 1, we have

$$|(B^* - A^*)(1 - P_A)x|| \le ||B - A|| ||(1 - P_A)x||$$

and

$$||(B - A)A^{\dagger}x|| = ||(B - A)A^{\dagger}P_{A}x|| \le ||B - A|| \, ||A^{\dagger}|| \, ||P_{A}x||$$

Hence, by (2.3) and the identity $||P_A x||^2 + ||(1 - P_A)x||^2 = 1$, we can easily get the desired inequality.

Let A_n $(n = 1, 2, \dots)$ and A be operators in B(H). If the sequence $\{A_n\}$ converges to A uniformly (resp. strongly), then we write $A_n \to A$ (un) (resp. $A_n \to A$ (st)). On the uniform convergence of generalized inverses, we see the following by (2.2):

LEMMA 2.3 ([5, Proposition 2.3]). Let $\{A_n\}$ be a sequence with $A_n \in (CR)$ for $n \ge 1$, and let $A_n \to A \in (CR)$ (un). Then $A_n^{\dagger} \to A^{\dagger}$ (un) if and only if $\sup_n ||A_n^{\dagger}|| < \infty$.

A similar fact holds for the strong convergence of generalized inverses:

LEMMA 2.4. Let $\{A_n\}$ be a sequence with $A_n \in (CR)$ for $n \ge 1$, and let $A_n \rightarrow A \in (CR)$ (*st), i.e., $A_n \rightarrow A$ (st) and $A_n^* \rightarrow A^*$ (st). Then $A_n^{\dagger} \rightarrow A^{\dagger}$ (*st) if and only if $\sup_n ||A_n^{\dagger}|| < \infty$.

PROOF. The "only if" part is obtained from the uniform boundedness theorem. To see the "if" part, put first $B = A_n$ in (2.1) and (2.3). Then we have (for $x \in H$)

(2.5)
$$||(A_n^{\dagger} - A^{\dagger})x|| \leq ||A_n^{\dagger}|| ||(A_n A_n^{\dagger} - AA^{\dagger})x|| + ||(A_n^{\dagger}A_n - A^{\dagger}A)A^{\dagger}x|| + ||A_n^{\dagger}|| ||(A_n - A)A^{\dagger}x||$$

and

$$(2.6) \quad \|(A_nA_n^{\dagger} - AA^{\dagger})x\|^2 \leq \|A_n^{\dagger}\|^2 \,\|(A_n^* - A^*)(1 - AA^{\dagger})x\|^2 + \|(A_n - A)A^{\dagger}x\|^2 \,.$$

Next, replacing, in (2.6), A_n and A by their adjoints A_n^* and A^* respectively (cf. $B^{*+} = B^{+*}$ for $B \in (CR)$), we have

(2.7) $\|(A_n^{\dagger}A_n - A^{\dagger}A)x\|^2 \leq \|A_n^{\dagger}\|^2 \|(A_n - A)(1 - A^{\dagger}A)x\|^2 + \|(A_n^* - A^*)A^{*\dagger}x\|^2$. Hence, since $\{\|A_n^{\dagger}\|\}$ is bounded, we conclude $A_n^{\dagger}x \to A^{\dagger}x$ from the above inequalities (2.5)-(2.7). Taking the adjoints of A_n and A, we can also obtain $A_n^{\dagger *}x \to A^{\dagger *}x$. q.e.d.

REMARK. In Lemma 2.3 we can replace the sequence $\{A_n\}$ by a net $\{A_{\alpha}\}$ (directed by a set). Similarly, in Lemma 2.4 we can replace $\{A_n\}$ by a net $\{A_{\alpha}\}$ with $\sup_{\alpha} ||A_{\alpha}|| < \infty$.

PROPOSITION 2.5. Let $A \in (CR)$ and let $\{P_{\alpha}\}$ be a net of projections such that $P_{\alpha} \to P(un)$ (resp. (st)). Suppose, furthermore, that $AP_{\alpha} \in (CR)$ for all α and $AP \in (CR)$. Then $(AP_{\alpha})^{\dagger} \to (AP)^{\dagger}$ (un) (resp. (st)) if and only if $\sup_{\alpha} ||(AP_{\alpha})^{\dagger}|| < \infty$.

PROOF. The equivalence on the uniform convergence is immediate from (2.2) (or the above remark). For the strong convergence, by the above remark, it suffices to note that $AP_{\alpha} \rightarrow AP$ (*st) and $||AP_{\alpha}|| \leq ||A||$ when $P_{\alpha} \rightarrow P$ (st).

COROLLARY 2.6 ([8, Corollary 1 to Proposition 1]). Let $A \in B(H)$, and let $\{M_{\alpha}\}$ be a net in C(H) converging to $M \in C(H)$ uniformly (resp. strongly). If A is bounded below on $M_0 \in C(H)$ (i.e., there exists $\varepsilon > 0$ such that $||Ax|| \ge \varepsilon ||x||$ for every $x \in M_0$), and if $M_{\alpha} \subset M_0$ for all α , then AM_{α} , $AM \in (CH)$ and $\{AM_{\alpha}\}$ converges to AM uniformly (resp. strongly).

PROOF. Write $P_{\alpha} = \operatorname{proj} M_{\alpha}$, $P_0 = \operatorname{proj} M_0$ and $P = P_M$ (= $\operatorname{proj} M$). Then, by our assumption we have $P_{\alpha} \to P$ (un) (resp. (st)), $P_{\alpha} \leq P_0$ and $||AP_0x|| \geq \varepsilon ||P_0x||$ for $x \in H$. From the last inequality we see that $B: = AP_0 \in (\operatorname{CR})$ and $B^{\dagger}B = P_0$. Since $AP_{\alpha} = AP_0P_{\alpha} = BP_{\alpha}$ and $B^{\dagger}BP_{\alpha}P_{\alpha}^{\dagger} = P_{\alpha} \in (\operatorname{CR})$ (cf. $P_{\alpha}^{\dagger} = P_{\alpha}$), we see, by Lemma 1.2, that $BP_{\alpha} \in (\operatorname{CR})$ or $AP_{\alpha} \in (\operatorname{CR})$ and

$$\|(AP_{a})^{\dagger}\| \leq \|B^{\dagger}\| \, \|(B^{\dagger}BP_{a})^{\dagger}\| \leq \|B^{\dagger}\| \; .$$

Hence, by Proposition 2.5 we have $(AP_{\alpha})^{\dagger} \rightarrow (AP)^{\dagger}$ or $(AP_{\alpha})(AP_{\alpha})^{\dagger} \rightarrow (AP)(AP)^{\dagger}$ (un) (resp. (st)), which is the desired. q.e.d.

3. Local continuity of subspace maps. Let $A \in (CR)$ and $Q = A^{\dagger}A$. Then, for a projection P in B(H) we have $A^{\dagger}A(Q^{\perp} \vee P) = Q(Q^{\perp} \vee P) \in (CR)$, so that $A(Q^{\perp} \vee P) \in (CR)$ (say, by Lemma 1.2). Using this fact, we have the following:

LEMMA 3.1. Let $A \in (CR)$ and $Q = A^{\dagger}A$. Then for $M \in C(H)$ we have $(AM)^{-} = A(Q^{\perp} \vee P_{M})H$, or equivalently,

$$(3.1) \qquad \operatorname{proj} \phi_A(M) = \{ A(Q^{\perp} \lor P_M) \} \{ A(Q^{\perp} \lor P_M) \}^{\dagger} = A \{ A(Q^{\perp} \lor P_K) \}^{\dagger} .$$

PROOF. Since $(AM)^- = (AP_MH)^- \subset \{A(Q^{\perp} \lor P_M)H\}^- = A(Q^{\perp} \lor P_M)H \subset$

 $(AM)^{-}$, we have the first identity. The identities (3.1) is now clear.

q.e.d.

To discuss the local continuity of a subspace map ϕ_A $(A \in (CR))$, it is convenient to introduce the auxiliary functions ψ_A and η_Q $(Q = A^{\dagger}A)$ from C(H) into B(H), defined by

$$\psi_{\scriptscriptstyle A}(M) = \{A(Q^{\scriptscriptstyle \perp} \lor P_{\scriptscriptstyle M})\}^{\scriptscriptstyle \dagger} \quad {
m and} \quad \eta_{\scriptscriptstyle Q}(M) = Q^{\scriptscriptstyle \perp} \lor P_{\scriptscriptstyle M} \; .$$

THEOREM 3.2. Let $A \in (CR)$, $Q = A^{\dagger}A$ and $M_0 \in C(H)$. Then the following conditions are equivalent.

(1) ϕ_A is uniformly (resp. strongly) continuous at M_0 .

(2) ϕ_Q is uniformly (resp. strongly) continuous at M_0 .

(3) ψ_A is uniformly (resp. strongly) continuous at M_0 .

(4) η_{ϱ} is uniformly (resp. strongly) continuous at M_{ϱ} .

PROOF. (Since the argument is quite parallel for the strong topology, we only give the proof for the uniform topology.)

(1) \Leftrightarrow (3) By Lemma 3.1 we see $\operatorname{proj} \phi_A(M) = A\psi_A(M)$ and $\psi_A(M) = Q\psi_A(M) = A^{\dagger} \cdot \operatorname{proj} \phi_A(M)$. Those identities show the desired equivalence. (2) \Leftrightarrow (4) It suffices to note that $Q^{\perp} \vee P = Q(Q^{\perp} \vee P) + Q^{\perp} = \operatorname{proj} \phi_Q(PH) + Q^{\perp}$ for every projection P.

 $(2) \Rightarrow (3)$ Let $\{M_{\alpha}\}$ be a net in C(H) converging to $M_0 \in C(H)$ uniformly. Write $R_{\alpha} = Q(Q^{\perp} \vee P_{\alpha})$ and $R_0 = Q(Q^{\perp} \vee P_0)$, where $P_{\alpha} = \operatorname{proj} M_o$ and $P_0 = \operatorname{proj} M_0$. Then, since $||(AR_{\alpha})^{\dagger}|| \leq ||A^{\dagger}||$ (say, by (1.2)), we have $(AR_{\alpha})^{\dagger} \to (AR_0)^{\dagger}$ (un) if $R_{\alpha} \to R_0$ (un) by Proposition 2.5. Hence the assumption (2) implies (3).

(3) \Rightarrow (2) Note $||AR_{\alpha}|| \leq ||A||$. Hence we have, by Remark after Lemma 2.4, that $AR_{\alpha} = (AR_{\alpha})^{\dagger} \rightarrow (AR_{0})^{\dagger} = AR_{0}$ (un) if $(AR_{\alpha})^{\dagger} \rightarrow (AR_{0})^{\dagger}$ (un). Hence, if we assume (3) we have $R_{\alpha} = A^{\dagger} \cdot AR_{\alpha} \rightarrow A^{\dagger} \cdot AR_{0} = R_{0}$ (un), which implies (2). q.e.d.

REMARK. Define $\liminf_{\alpha} M_{\alpha} = \{x; \operatorname{dist}(x, M_{\alpha}) \to 0\}$ for a net $\{M_{\alpha}\}$ in C(H). Suppose $M_{\alpha} \to M \in C(H)$ strongly. Then we can prove

$$\lim_{\alpha} \inf \phi_A(M_{\alpha}) \supset \phi_A(M)$$

(without the restriction $A \in (CR)$). This relation says that ϕ_A is lower semicontinuous at M with respect to the strong topology.

To seek more precise conditions for the local continuity of subspace maps, we provide the following result.

LEMMA 3.3. Let P and Q be projections satisfying the three conditions;

 $(1) ||PQ^{\perp}|| = 1,$

Then, ϕ_o is not uniformly (strongly) continuous at PH.

PROOF. By (1) there exists a sequence $\{x_n\}$ in H such that $||x_n|| = 1$ and $||PQ^{\perp}x_n|| \to 1$. We easily see that $Px_n - x_n \to 0$ and $Q^{\perp}x_n - x_n \to 0$. Since $P^{\perp}H + QH$ is nowhere dense in H by (2), we may assume that for all $n, x_n \notin P^{\perp}H + QH$, or equivalently, $Px_n \notin PQH$. Put

$$oldsymbol{y}_n = P x_n / \| \, P x_n \|$$
 , $oldsymbol{z}_n = Q^{\perp} x_n / \| \, Q^{\perp} x_n \|$

and choose $w \in P^{\perp}H \cap QH$ with ||w|| = 1. By using those elements we define

$${old U}_n={old y}_n\otimes {old y}_n$$
 , ${old R}_n=(a_n{old z}_n+{old b}_nw)\otimes (a_n{old z}_n+{old b}_nw)$,

where $a_n = \cos(1/n)$, $b_n = \sin(1/n)$ and $y \otimes y$ $(y \in H)$ is an operator such that $(y \otimes y)x = (x, y)y$ for $x \in H$. Clearly, they are projections and $U_n - R_n \to 0$ (un). For each *n*, the operator $V_n := P - U_n$ $(=P(1 - U_n))$ is also a projection and $||V_n R_n|| = ||P(1 - U_n)R_n|| \le ||R_n - U_n|| \to 0$. Hence, we may assume $||V_n R_n(V_n^{\perp} \vee R_n^{\perp})|| < 1$ for all *n*. By Lemma 1.3 we then have $S_n := V_n + R_n \in (CR)$ and

$$\|S_n^{\scriptscriptstyle +}\| \leq (1 - \|V_n R_n (V_n^{\scriptscriptstyle \perp} \lor R_n^{\scriptscriptstyle \perp})\|)^{-2} \leq (1 - \|V_n R_n\|)^{-2} ~~(
ightarrow 1) ~.$$

This says that $\{||S_n^{\dagger}||\}$ is bounded. Hence, since $S_n \to P$ (un), we see $S_n S_n^{\dagger} \to P$ (un) by Lemma 2.3. Put $P_n = S_n S_n^{\dagger}$. Now, what we want to show is that $\phi_Q(P_nH)$ does not converge to $\phi_Q(PH)$ uniformly. Since w is orthogonal to $\phi_Q(PH)$, it suffices to show

(3.2)
$$\phi_{\varrho}(P_nH) = \phi_{\varrho}(PH) + [w]$$
,

where [w] is the linear space generated by w. To this end, let $u \in \ker S_n Q$ or $S_n Q u = 0$. Then we have

$$PQu - (Qu, y_n)y_n + (Qu, a_n z_n + b_n w)(a_n z_n + b_n w) = 0.$$

Since $z_n, y_n \in PH$ and $w \in P^{\perp}H$, we see $(Qu, a_n z_n + b_n w) = 0$, so that $PQu = (Qu, y_n)y_n$. Recall $y_n \notin PQH$. Hence PQu = 0, i.e., $u \in \ker PQ$. This implies

(3.3)
$$(QPH)^{-} \subset (QS_{n}H)^{-} (=(QP_{n}H)^{-}).$$

Moreover, we see, by a simple computation, $QS_nw = b_n^2w$ or

Hence we have

$$(QS_nH)^{-} \subset \{Q(V_n + R_n)H\}^{-} \subset \{QP(1 - U_n)H\}^{-} + (QR_nH)^{-} \\ \subset (QPH)^{-} + [w] \subset (QS_nH)^{-},$$

which implies (3.2). For the strong continuity, note that the convergence of $\{S_n\}$ (and hence $\{P_n\}$) is strong by the construction of S_n , so that the identity (3.2) also shows the discontinuity of ϕ_q at *PH*. q.e.d.

COROLLARY 3.4. Let P and Q be projections with $P \wedge Q^{\perp} \neq 0$ and $P^{\perp} \wedge Q \neq 0$. Then ϕ_{Q} is not uniformly (strongly) continuous at PH.

PROOF. We have $||PQ^{\perp}x|| = ||x||$ for $x \in (P \land Q^{\perp})H$, i.e., $||PQ^{\perp}|| = 1$. We also have $P^{\perp}H + QH \subset (P \land Q^{\perp})^{\perp}H \neq H$. q.e.d.

COROLLARY 3.5. Let P and Q be projections with $PQ \notin (CR)$ and $P^{\perp} \wedge Q \neq 0$. Then ϕ_Q is not uniformly (strongly) continuous at PH.

PROOF. By Lemma 1.3 we see that $P^{\perp}H + QH$ is not closed, so that we have (2) of Lemma 3.3. Again, by Lemma 1.3 we have $1 \ge ||PQ^{\perp}|| \ge ||PQ^{\perp}(P^{\perp} \lor Q)|| = 1$, which implies (1) of Lemma 3.3. q.e.d.

For the subspace map of a general operator we have:

PROPOSITION 3.6. Let $A \in B(H)$ and $Q = \operatorname{proj}(A^*H)^-$. If we add

 $(4') \qquad \qquad (P^{\perp} \wedge Q)A^*A = 0$

to the conditions (1)-(3) in Lemma 3.3, then ϕ_A is not uniformly (strongly) continuous at PH.

PROOF. We use the same notations as in Lemma 3.3. By (3.3), (3.4) and the obvious identity AQ = A, we have $(APH)^- \subset (AP_nH)^-$ and $Aw \in AP_nH$. Hence we have

$$(AP_nH)^- = (APH)^- + [Aw]$$
.

Now, to see the discontinuity of ϕ_A at *PH*, it suffices to show that $Aw \notin (APH)^-$. First, (4) implies this relation. For otherwise $Aw \in (APH)^- = A(Q^{\perp} \lor P)H$, so that $w = A^{\dagger}Aw \in Q(Q^{\perp} \lor P)H \subset (P^{\perp} \land Q)^{\perp}H$. This is a contradiction. Next, (4') implies that Aw is orthogonal to $(APH)^-$, because $(Aw, APu) = (w, (P^{\perp} \land Q)A^*APu) = 0$ for $u \in H$. q.e.d.

With a norm inequality we give an equivalent condition for the uniform continuity of a subspace map at a point.

THEOREM 3.7. Let $A \in (CR)$ and $M \in C(H)$. Write $Q = A^{\dagger}A$ and $P = P_{M}$. Then the condition

$$(3.5) \qquad \qquad \min\{\|PQ^{\perp}\|, \|P^{\perp}Q\|\} < 1$$

S. IZUMINO

implies that ϕ_A is uniformly continuous at M. Conversely, if we assume $AP \in (CR)$ then the uniform continuity of ϕ_A at M implies (3.5).

PROOF. Assume $||PQ^{\perp}|| < 1$, and let $P_n := \operatorname{proj} M_n \to P(\operatorname{un}) (M_n \in C(H))$. Then, since $||P_nQ^{\perp}(P_n^{\perp} \lor Q)|| \leq ||P_nQ^{\perp}|| \to ||PQ^{\perp}||$, we have $P_nQ \in (\operatorname{CR})$ for all sufficiently large n, by Lemma 1.3. Furthermore, we have

$$\|(P_nQ)^{\dagger}\| \leq (1 - \|P_nQ^{\bot}(P_n^{\bot} \lor Q)\|)^{-2} \leq (1 - \|P_nQ^{\bot}\|)^{-2} \to (1 - \|PQ^{\bot}\|)^{-2} .$$

Hence $\{\|(QP_n)^{\dagger}\|\}$ is bounded, so that $(QP_n)^{\dagger} \to (QP)$ or $(QP_n)(QP_n)^{\dagger} \to (OP)(QP)^{\dagger}$ (un). This implies the uniform continuity of ϕ_Q and hence of ϕ_A at M (say, by Theorem 3.2). Using the identity $\|P_n^{\perp}Q(P_n \vee Q^{\perp})\| = \|P_nQ^{\perp}(P_n^{\perp} \vee Q)\|$, we could obtain the same conclusion when we begin with the assumption $\|P^{\perp}Q\| < 1$ instead of $\|PQ^{\perp}\| < 1$. To see the latter half of the theorem, let ϕ_A (and hence ϕ_Q) be uniformly continuous at M. Then, by Corollary 3.4 we see that $P^{\perp} \wedge Q = 0$ or $P \wedge Q^{\perp} = 0$. If $P^{\perp} \wedge Q = 0$, then under the assumption $AP \in (CR)$ or equivalently $QP \in (CR)$) we have $\|QP^{\perp}\| = \|QP^{\perp}(Q^{\perp} \vee P)\| < 1$ by Lemma 1.3. We can see $\|PQ^{\perp}\| < 1$ similarly, when $P \wedge Q^{\perp} = 0$.

The next result was shown by Longstaff [8, Theorem 1] without the assumption $A \in (CR)$.

COROLLARY 3.8. Let $A \ (\neq 0) \in (CR)$. Then ϕ_A is uniformly continuous on C(H), i.e., at every point $M \in C(H)$ if and only if A is left-invertible.

PROOF. If A is not left-invertible, then $Q: = A^{\dagger}A \neq 1$. Hence, putting $P = Q^{\perp}$, we see that the left hand side of (3.5) is equal to 1. The converse assertion is clear by (3.5). q.e.d.

4. Lipschitz constants of subspace maps. For $A \in (CR)$, define

(4.1)
$$C_A(H) = \{M \in C(H); P_M \text{ commutes with } A^{\dagger}A\}$$

Then, since $A^{\dagger}AP_{M}(M \in C_{A}(H))$ is a projection we easily see that $AP_{M} \in (CR)$ (say, by Lemma 1.2) or $AM = (AM)^{-}$. If we restrict the map ϕ_{A} on $C_{A}(H)$, then since $||(AP_{M})^{\dagger}|| \leq ||A^{\dagger}||$ for $M \in C_{A}(H)$ (say, by (1.2)) we see by Corollary 2.2 that

$$\|\operatorname{proj} \phi_A(M) - \operatorname{proj} \phi_A(N)\| = \|(AP_M)(AP_M)^{\dagger} - (AP_N)(AP_N)^{\dagger}\| \\ \leq \|A^{\dagger}\| \|A\| \|P_M - P_N\| . \qquad (M, N \in C_A(H))$$

In [2] we introduced the Lipschitz constant of ϕ_A by

$$\kappa_{\scriptscriptstyle A} = \sup\{\|\operatorname{proj} \phi_{\scriptscriptstyle A}(M) - \operatorname{proj} \phi_{\scriptscriptstyle A}(N)\| / \|P_{\scriptscriptstyle M} - P_{\scriptscriptstyle N}\|; M, N \in C_{\scriptscriptstyle A}(H), M
eq N\},$$

and proved that $\kappa_A = ||A||/\gamma(A)$ when A is left-invertible [2, Theorem 3] (cf. [3, Theorem 3.1]). The following result shows that this identity is still true for every $A \in (CR)$.

PROPOSITION 4.1. If $A \in (CR)$, then $\kappa_A = ||A|| ||A^{\dagger}||$.

PROOF. Let A = V|A| be the polar decomposition of A with a partial isometry V which satisfies $V^*V = A^{\dagger}A$. Then, since $|A|^{\dagger}|A| = V^*V$, we see that $|A|P_L \in (\mathbb{CR})$ for any $L \in C_A(H)$ and

(3.6)
$$(|A|P_L)^{\dagger} = (|A|P_L)^{\dagger}V^*V.$$

Hence, $AL = V|A|P_LH = V(|A|P_L)(|A|P_L)^{\dagger}H = V(|A|P_L)(|A|P_L)^{\dagger}V^*H$, or proj $AL = V(|A|P_L)(|A|P_L)^{\dagger}V^*$.

Hence, using the identity $|A| = V^* V |A|$ and (3.6), we have, for M, $N \in C_A(H)$,

$$\|\operatorname{proj} AM - \operatorname{proj} AN\| = \|V\{(|A|P_{\scriptscriptstyle M})(|A|P_{\scriptscriptstyle M})^{\dagger} - (|A|P_{\scriptscriptstyle N})(|A|P_{\scriptscriptstyle N})^{\dagger}\}V^*\| \ = \|(|A|P_{\scriptscriptstyle M})(|A|P_{\scriptscriptstyle M})^{\dagger} - (|A|P_{\scriptscriptstyle N})(|A|P_{\scriptscriptstyle N})^{\dagger}\| \;.$$

Clearly, this shows $\kappa_A = \kappa_{|A|}$. On the other hand, from the first paragraph of this section we easily see that $\kappa_A \leq ||A|| ||A^{\dagger}||$. Hence it suffices to show that the supremum κ_A attains $||A|| ||A^{\dagger}||$. Now, let $|A| = B \bigoplus 0$ be the direct sum representation of |A| with respect to the orthogonal decomposition $(\ker A)^{\perp} \bigoplus \ker A$ of H. Then B is a nonnegative invertible operator on $K: = (\ker A)^{\perp}$. Since $A^{\dagger}A$ has the representation $1 \bigoplus 0$, we see that every operator $E \bigoplus 0$ with a projection E on K is in $C_A(H)$. Hence our problem is reduced to computing $\kappa_B (\leq \kappa_A)$ on $C_B(K)$. But then ||B|| = ||A||, and $\gamma(B)^{-1} = ||B^{-1}|| = ||A|| ||A^{\dagger}|| = ||A^{\dagger}||$ (say, by Lemma 1.1), so that we obtain $\kappa_B = ||B||/\gamma(B) = ||A|| ||A^{\dagger}||$.

q.e.d.

5. Transforms of families of closed linear subspaces. In this section we shall discuss some behavior of a subspace map ϕ_A $(A \in (CR))$ on the set $C_A(H)$ defined by (4.1). The following result extends [8, Theorem 2].

THEOREM 5.1. Let $A \in (CR)$. If \mathscr{F} is a uniformly (resp. strongly, weakly) closed subset of $C_A(H)$ and $P_{\mathscr{M}} \leq A^{\dagger}A$ (i.e., $M \subset (\ker A)^{\perp}$) for all $M \in \mathscr{F}$, then the image $\phi_A(\mathscr{F})$ is also uniformly (resp. strongly, weakly) closed.

PROOF. Let $\{M_{\alpha}\}$ be a net in \mathscr{F} and $AM_{\alpha} \to N \in C_{\mathcal{A}}(H)$ uniformly (resp. strongly). $(C_{\mathcal{A}}(H)$ is uniformly and strongly closed.) Write $P_{\alpha} =$

S. IZUMINO

proj M_{α} . Then $(AP_{\alpha})(AP_{\alpha})^{\dagger} \to P_N$ (un) (resp. (st)). Hence, noting $A^{\dagger}AP_{\alpha} = P_{\alpha}$, we have $(AP_{\alpha})^{\dagger} = A^{\dagger} \cdot (AP_{\alpha})(AP_{\alpha})^{\dagger} \to A^{\dagger}P_N$ (un) (resp. (st)). Since $||AP_{\alpha}|| \leq ||A||$, we see, by Remark after Lemma 2.4, that

$$AP_{\alpha} = (AP_{\alpha})^{\dagger\dagger} \rightarrow (A^{\dagger}P_{N})^{\dagger}$$
 (un) (resp. (st)).

Hence, $P_{\alpha} \to A^{\dagger}(A^{\dagger}P_{N})^{\dagger}$ (un) (resp. (st)), so that $M: = A^{\dagger}(A^{\dagger}P_{N})^{\dagger}H \in \mathscr{F}$. Hence, by the uniform (resp. strong) continuity of ϕ_{A} (say, directly by Proposition 2.5), we obtain that $N = AM \in \phi_{A}(\mathscr{F})$, which implies the uniform (resp. strong) closedness of $\phi_{A}(\mathscr{F})$. The weak closedness of $\phi_{A}(\mathscr{F})$ can be now obtained by (argument similar to that in [8]) using the weak compactness of any ball $\{T \in B(H): ||T|| \leq C\}$ for C > 0. q.e.d.

If \mathscr{A} is a subset of B(H), then we write Lat \mathscr{A} for the lattice of all $M \in C(H)$ invariant under every member of \mathscr{A} . For a subset \mathscr{F} of C(H) we denote by Alg \mathscr{F} the algebra of all $T \in B(H)$ leaving every member of \mathscr{F} invariant. We say that $\mathscr{F} \subset C(H)$ is reflexive if $\mathscr{F} =$ Lat Alg \mathscr{F} . Now, we give an extension of [8, Proposition 2].

PROPOSITION 5.2. Let $A \in (CR)$, and let \mathscr{F} be a subset of $C_A(H)$ with $A^{\dagger}AH \in \mathscr{F}$. Then $\phi_A(\text{Lat Alg }\mathscr{F}) \cup \{H\} = \text{Lat Alg } \phi_A(\mathscr{F})$. Hence, if \mathscr{F} is reflexive then so is $\phi_A(\mathscr{F}) \cup \{H\}$.

PROOF. Write $\mathscr{G} = \phi_{\mathcal{A}}(\mathscr{F})$. First, in order to show $\phi_{\mathcal{A}}(\operatorname{Lat} \operatorname{Alg} \mathscr{F}) \subset$ Lat Alg \mathscr{G} , let $M = \operatorname{Lat} \operatorname{Alg} \mathscr{F}$. Then, for $T \in \operatorname{Alg} \mathscr{G}$, we see $TAH \subset AH$, so that

$$(5.1) AA^{\dagger}TA = TA .$$

Put $X = A^{\dagger}TA$. Then, for every $F \in \mathscr{F}$

$$XF = A^{\scriptscriptstyle \dagger}TAF = A^{\scriptscriptstyle \dagger} \cdot TAF \,{\subset}\, A^{\scriptscriptstyle \dagger}AF$$
 .

Hence, since P_F commutes with $A^{\dagger}A$, we have $XF \subset F$, which implies $X \in \text{Alg } \mathcal{F}$. Hence $XM \subset M$, or $A^{\dagger}TAM \subset M$. By (5.1) this relation yields

$$TAM = AA^{\dagger}TAM \subset AM$$
.

Since $T \in \operatorname{Alg} \mathscr{G}$ is arbitrary, this implies $AM \in \operatorname{Lat} \operatorname{Alg} \mathscr{G}$, which is the desired. Next, to show the opposite inclusion $\operatorname{Lat} \operatorname{Alg} \mathscr{G} \subset \phi_A(\operatorname{Lat} \operatorname{Alg} \mathscr{F}) \cup \{H\}$, let $N \in \operatorname{Lat} \operatorname{Alg} \mathscr{G}$ and $N \neq H$. Then $Y(1 - AA^{\dagger}) \in \operatorname{Alg} \mathscr{G}$ for every $Y \in B(H)$. Hence $Y(1 - AA^{\dagger})N \subset N$. Since Y is arbitrary and $N \neq H$, we easily see that $(1 - AA^{\dagger})N \subset N$. Since Y is arbitrary and $N \neq H$, we easily see that $(1 - AA^{\dagger})N = \{0\}$, or $N = AA^{\dagger}N$. Now, it suffices to show that $A^{\dagger}N \in \operatorname{Lat} \operatorname{Alg} \mathscr{F}$. For, if this is shown then $N = AA^{\dagger}N \in \phi_A(\operatorname{Lat} \operatorname{Alg} \mathscr{F})$ (which is the desired). Let $S \in \operatorname{Alg} \mathscr{F}$, and put $R = ASA^{\dagger}$. Then, for any $G := AF \in \mathscr{G}$ $(F \in \mathscr{F})$, we have

$$RG = ASA^{\scriptscriptstyle \dagger}G = ASA^{\scriptscriptstyle \dagger}AF {\,\sub\,} ASF {\,\sub\,} AF = G$$
 ,

that is, $R \in Alg \mathcal{G}$. Hence we see $RN \subset N$, or $ASA^{\dagger}N \subset N$. Since the assumption $A^{\dagger}AH \in \mathcal{F}$ means $SA^{\dagger}A = A^{\dagger}ASA^{\dagger}A$, we have

$$SA^{\dagger}N = SA^{\dagger}A \cdot A^{\dagger}N = A^{\dagger}ASA^{\dagger}A \cdot A^{\dagger}N = A^{\dagger} \cdot ASA^{\dagger}N \subset A^{\dagger}N$$
 .

This implies $A^{\dagger}N \in \text{Lat Alg } \mathcal{F}$, because $S \in \text{Alg } \mathcal{F}$ is arbitrary. Finally, if \mathcal{F} is reflexive, then

$$\mathscr{G} \cup \{H\} = \phi_{\mathcal{A}}(\operatorname{Lat} \operatorname{Alg} \mathscr{G}) \cup \{H\} = \operatorname{Lat} \operatorname{Alg} \mathscr{G} \cup \{H\} = \operatorname{Lat} \operatorname{Alg} (\mathscr{G} \cup \{H\}),$$

so that $\mathscr{G} \cup \{H\}$ is reflexive. q.e.d.

References

- A. BEN-ISRAEL AND T. N. GREVILLE, Generalized Inverses: Theory and Applications, Wiley, New York, 1974.
- [2] S. IZUMINO, Inequalities on transforms of subspaces of a Hilbert space, Math. Japon. 25 (1980), 131-134.
- [3] S. IZUMINO, Inequalities on operators with closed range, Math. Japon. 25 (1980), 423-429.
- [4] S. IZUMINO, The product of operators with closed range and an extension of the reverse order law, Tôhoku Math. J. 34 (1982), 43-52.
- [5] S. IZUMINO, Convergence of generalized inverses and spline projectors, J. Approx. Theory 38 (1983), 269-278.
- [6] Y. KATO AND N. MORIYA, Maeda's inequality for pseudoinverses, Math. Japon. 22 (1977), 89-91.
- [7] W. E. LONGSTAFF, A note on transforms of subspaces of Hilbert space, Proc. Amer. Math. Soc. 76 (1979), 268-270.
- [8] W. E. LONGSTAFF, Subspace maps of operators on Hilbert space, Proc. Amer. Math. Soc. 84 (1982), 195-201.
- [9] M. Z. NASHED, ED., Generalized Inverses and Applications, Academic Press, New York, San Francisco and London, 1976.
- [10] G. W. STEWART, On the perturbations of pseudo-inverses, projections and linear squares problems, SIAM Review 19 (1977), 634-662.

FACULTY OF EDUCATION TOYAMA UNIVERSITY 3190 GOFUKU, TOYAMA-SHI 930 JAPAN