GENERALIZED INVERSE METHOD FOR SUBSPACE MAPS

Dedicated to Professor Tamotsu Tsuchikura on his sixtieth birthday

Saichi Izumino

(Received December 23, 1982)

1. Introduction. Let H be a Hilbert space and let $C(H)$ be the set of all closed linear subspaces in H. For a bounded linear operator A on H, define a map ϕ_{A} on $C(H)$, called the subspace map of A, by

$$
\phi_{A}(M)=(A M)^{-} \quad(M \in C(H)),
$$

where "-" denotes the uniform closure. Identifying every closed subspace M with the corresponding (orthogonal) projection P_{M} or proj M, we see that $C(H)$ is a subset of $B(H)$, the Banach space of all bounded linear operators on H and hence has the uniform, strong and weak (operator) topologies. It was shown in [8] (cf. [2]) that the subspace $\operatorname{map} \phi_{A}$ is uniformly (and strongly) continuous on $C(H)$ if and only if the operator A is left-invertible, and moreover, in this case ϕ_{A} behaves well. For instance, $\phi_{A}(\mathscr{F})$ is uniformly (resp. strongly, weakly) closed if \mathscr{F} is a uniformly (resp. strongly, weakly) closed subset of $C(H)$.

In this paper we shall show similar results on the subspace map ϕ_{A} under the weaker condition that the operator A has closed range, or equivalently, has the (Moore-Penrose) generalized inverse [1] [9]; using operator theory of generalized inverses, we shall discuss the local continuity and some other topological properties of ϕ_{A} of A with closed range, which will extend some results in [2] and [8].

Throughout this note we shall write $A \in(\mathrm{CR})$ when the operator A has closed range. The generalized inverse A^{\dagger} of $A \in(C R)$ satisfies (and is determined by) the following four Penrose identities [1]

$$
A A^{\dagger} A=A, A^{\dagger} A A^{\dagger}=A^{\dagger},\left(A A^{\dagger}\right)^{*}=A A^{\dagger} \quad \text { and } \quad\left(A^{\dagger} A\right)^{*}=A^{\dagger} A
$$

If we denote by $A H$ and ker A the range and the kernel of $A(\in(\mathrm{CR}))$ respectively, then the products $A A^{\dagger}$ and $A^{\dagger} A$ represent the projections onto $A H$ and the orthogonal complement $(\operatorname{ker} A)^{\perp}$ of ker A respectively [1]. For two projections P and Q, write P^{\perp} and $P \vee Q$ for the projection onto $(P H)^{\perp}$ and for that onto the closed linear span of $P H$ and $Q H$, respectively. Now, for our later discussion we state three lemmas on
operators with closed range.
Lemma 1.1 (e.g. [1, Section 8]). Let $A(\neq 0) \in B(H)$. Then $A \in(C R)$ if and only if the lower bound $\gamma(A)$ of A, defined by

$$
\inf \left\{\|A x\| ; x \in(\operatorname{ker} A)^{\perp},\|x\|=1\right\}
$$

is positive. In this case $A^{*} \in(\mathrm{CR}),|A|:=\left(A^{*} A\right)^{1 / 2} \in(\mathrm{CR})$ and

$$
\begin{equation*}
\left\|A^{\dagger}\right\|=\left\|\left(A^{*}\right)^{\dagger}\right\|=\left\||A|^{\dagger}\right\|=\gamma(A)^{-1} \tag{1.1}
\end{equation*}
$$

Lemma 1.2 ([4, Proposition 2.2 and Corollary 3.8]). Let $A, B \in(\mathrm{CR})$. Then $A B \in(\mathrm{CR})$ if and only if $A^{\dagger} A B B^{\dagger} \in(\mathrm{CR})$. In this case

$$
\begin{equation*}
\left\|(A B)^{\dagger}\right\| \leqq\left\|A^{\dagger}\right\|\left\|B^{\dagger}\right\|\left\|\left(A^{\dagger} A B B^{\dagger}\right)^{\dagger}\right\| \tag{1.2}
\end{equation*}
$$

Lemma 1.3 ([4, Section 2]). Let P and Q be projections. Then the following conditions are equivalent.
(1) $P Q \in(\mathrm{CR})$.
(2) $\left\|P^{\perp} Q\left(P \vee Q^{\perp}\right)\right\|\left(=\left\|P Q^{\perp}\left(P^{\perp} \vee Q\right)\right\|\right)<1$.
(3) $P^{\perp}+Q \in(\mathrm{CR})$.
(4) $P^{\perp} H+Q H$ is closed.

If $P Q \in(\mathrm{CR})$, i.e., if one of (1)-(4) holds, then

$$
\left\|(P Q)^{\dagger}\right\| \leqq\left\|\left(P^{\perp}+Q\right)^{\dagger}\right\| \leqq\left(1-\left\|P^{\perp} Q\left(P \vee Q^{\perp}\right)\right\|\right)^{-2}
$$

2. Convergence of generalized inverses. We begin by discussing perturbations of generalized inverses. First we remark that if $A, B \in(\mathrm{CR})$ then

$$
\begin{equation*}
B^{\dagger}-A^{\dagger}=B^{\dagger}\left(B B^{\dagger}-A A^{\dagger}\right)+\left(B^{\dagger} B-A^{\dagger} A\right) A^{\dagger}-B^{\dagger}(B-A) A^{\dagger} \tag{2.1}
\end{equation*}
$$

Concerning the uniform perturbation, we know [10, Theorem 3.3] that (2.2) $\left\|B^{\dagger}-A^{\dagger}\right\| \leqq 3 \max \left\{\left\|B^{\dagger}\right\|^{2},\left\|A^{\dagger}\right\|^{2}\right\}\|B-A\| \quad$ for $\quad A, B \in(\mathrm{CR})$.

However, for our discussions on the strong convergence we need:
Lemma 2.1. Let $A, B \in(\mathrm{CR})$ and let $x \in H$. Then
(2.3) $\left\|\left(B B^{\dagger}-A A^{\dagger}\right) x\right\|^{2} \leqq\left\|B^{\dagger}\right\|^{2}\left\|\left(B^{*}-A^{*}\right)\left(1-A A^{\dagger}\right) x\right\|^{2}+\left\|(B-A) A^{\dagger} x\right\|^{2}$.

Proof. Put $P_{A}=A A^{\dagger}$ and $P_{B}=B B^{\dagger}\left(=B^{+*} B^{*}\right)$. Then, we see

$$
\left\|P_{B}\left(1-P_{A}\right) x\right\| \leqq\left\|B^{\dagger}\right\|\left\|B^{*}\left(1-P_{A}\right) x\right\|=\left\|B^{\dagger}\right\|\left\|\left(B^{*}-A^{*}\right)\left(1-P_{A}\right) x\right\|
$$

and

$$
\begin{aligned}
\left\|\left(1-P_{B}\right) P_{A} x\right\|^{2} & \leqq\left\|\left(1-P_{B}\right) P_{A} x\right\|^{2}+\left\|B\left(B^{\dagger}-A^{\dagger}\right) P_{A} x\right\|^{2}=\left\|\left(1-B A^{\dagger}\right) P_{A} x\right\|^{2} \\
& =\left\|(B-A) A^{\dagger} x\right\|^{2} .
\end{aligned}
$$

Hence, using the identity $P_{B}-P_{A}=P_{B}\left(1-P_{A}\right)-\left(1-P_{B}\right) P_{A}$, we have

$$
\begin{aligned}
\left\|\left(P_{B}-P_{A}\right) x\right\|^{2} & =\left\|P_{B}\left(1-P_{A}\right) x\right\|^{2}+\left\|\left(1-P_{B}\right) P_{A} x\right\|^{2} \\
& \leqq\left\|B^{\dagger}\right\|^{2}\left\|\left(B^{*}-A^{*}\right)\left(1-P_{A}\right) x\right\|^{2}+\left\|(B-A) A^{\dagger} x\right\|^{2} . \quad \text { q.e.d. }
\end{aligned}
$$

Corollary 2.2 ([6, Theorem 1]). Let $A, B \in(\mathrm{CR})$. Then

$$
\left\|B B^{\dagger}-A A^{\dagger}\right\| \leqq \max \left\{\left\|B^{\dagger}\right\|,\left\|A^{\dagger}\right\|\right\}\|B-A\|
$$

Proof. For $x \in H$ with $\|x\|=1$, we have

$$
\left\|\left(B^{*}-A^{*}\right)\left(1-P_{A}\right) x\right\| \leqq\|B-A\|\left\|\left(1-P_{A}\right) x\right\|
$$

and

$$
\left\|(B-A) A^{\dagger} x\right\|=\left\|(B-A) A^{\dagger} P_{A} x\right\| \leqq\|B-A\|\left\|A^{\dagger}\right\|\left\|P_{A} x\right\|
$$

Hence, by (2.3) and the identity $\left\|P_{A} x\right\|^{2}+\left\|\left(1-P_{A}\right) x\right\|^{2}=1$, we can easily get the desired inequality.
q.e.d.

Let $A_{n}(n=1,2, \cdots)$ and A be operators in $B(H)$. If the sequence $\left\{A_{n}\right\}$ converges to A uniformly (resp. strongly), then we write $A_{n} \rightarrow A$ (un) (resp. $A_{n} \rightarrow A$ (st)). On the uniform convergence of generalized inverses, we see the following by (2.2):

Lemma 2.3 ([5, Proposition 2.3]). Let $\left\{A_{n}\right\}$ be a sequence with $A_{n} \in(\mathrm{CR})$ for $n \geqq 1$, and let $A_{n} \rightarrow A \in\left(\mathrm{CR}\right.$) (un). Then $A_{n}^{\dagger} \rightarrow A^{\dagger}$ (un) if and only if $\sup _{n}\left\|A_{n}^{\dagger}\right\|<\infty$.

A similar fact holds for the strong convergence of generalized inverses:

Lemma 2.4. Let $\left\{A_{n}\right\}$ be a sequence with $A_{n} \in(\mathrm{CR})$ for $n \geqq 1$, and let $A_{n} \rightarrow A \in(\mathrm{CR})$ (*st), i.e., $A_{n} \rightarrow A$ (st) and $A_{n}^{*} \rightarrow A^{*}$ (st). Then $A_{n}^{\dagger} \rightarrow A^{\dagger}$ (*st) if and only if $\sup _{n}\left\|A_{n}^{\dagger}\right\|<\infty$.

Proof. The "only if" part is obtained from the uniform boundedness theorem. To see the "if" part, put first $B=A_{n}$ in (2.1) and (2.3). Then we have (for $x \in H$)

$$
\begin{gather*}
\left\|\left(A_{n}^{\dagger}-A^{\dagger}\right) x\right\| \leqq\left\|A_{n}^{\dagger}\right\|\left\|\left(A_{n} A_{n}^{\dagger}-A A^{\dagger}\right) x\right\|+\left\|\left(A_{n}^{\dagger} A_{n}-A^{\dagger} A\right) A^{\dagger} x\right\| \tag{2.5}\\
+\left\|A_{n}^{\dagger}\right\|\left\|\left(A_{n}-A\right) A^{\dagger} x\right\|
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|\left(A_{n} A_{n}^{\dagger}-A A^{\dagger}\right) x\right\|^{2} \leqq\left\|A_{n}^{\dagger}\right\|^{2}\left\|\left(A_{n}^{*}-A^{*}\right)\left(1-A A^{\dagger}\right) x\right\|^{2}+\left\|\left(A_{n}-A\right) A^{\dagger} x\right\|^{2} . \tag{2.6}
\end{equation*}
$$

Next, replacing, in (2.6), A_{n} and A by their adjoints A_{n}^{*} and A^{*} respectively (cf. $B^{* \dagger}=B^{+*}$ for $B \in(\mathrm{CR})$), we have

$$
\begin{equation*}
\left\|\left(A_{n}^{\dagger} A_{n}-A^{\dagger} A\right) x\right\|^{2} \leqq\left\|A_{n}^{\dagger}\right\|^{2}\left\|\left(A_{n}-A\right)\left(1-A^{\dagger} A\right) x\right\|^{2}+\left\|\left(A_{n}^{*}-A^{*}\right) A *^{\dagger} x\right\|^{2} \tag{2.7}
\end{equation*}
$$ Hence, since $\left\{\left\|A_{n}^{\dagger}\right\|\right\}$ is bounded, we conclude $A_{n}^{\dagger} x \rightarrow A^{\dagger} x$ from the above

inequalities (2.5)-(2.7). Taking the adjoints of A_{n} and A, we can also obtain $A_{n}^{+*} x \rightarrow A^{+*} x$.
q.e.d.

Remark. In Lemma 2.3 we can replace the sequence $\left\{A_{n}\right\}$ by a net $\left\{A_{\alpha}\right\}$ (directed by a set). Similarly, in Lemma 2.4 we can replace $\left\{A_{n}\right\}$ by a net $\left\{A_{\alpha}\right\}$ with $\sup _{\alpha}\left\|A_{\alpha}\right\|<\infty$.

Proposition 2.5. Let $A \in(\mathrm{CR})$ and let $\left\{P_{\alpha}\right\}$ be a net of projections such that $P_{\alpha} \rightarrow P$ (un) (resp. (st)). Suppose, furthermore, that $A P_{\alpha} \in(\mathrm{CR})$ for all α and $A P \in(\mathrm{CR})$. Then $\left(A P_{\alpha}\right)^{\dagger} \rightarrow(A P)^{\dagger}$ (un) (resp. (st)) if and only if $\sup _{\alpha}\left\|\left(A P_{\alpha}\right)^{\dagger}\right\|<\infty$.

Proof. The equivalence on the uniform convergence is immediate from (2.2) (or the above remark). For the strong convergence, by the above remark, it suffices to note that $A P_{\alpha} \rightarrow A P$ (${ }^{*}$ st) and $\left\|A P_{\alpha}\right\| \leqq\|A\|$ when $P_{\alpha} \rightarrow P$ (st).
q.e.d.

Corollary 2.6 ([8, Corollary 1 to Proposition 1]). Let $A \in B(H)$, and let $\left\{M_{\alpha}\right\}$ be a net in $C(H)$ converging to $M \in C(H)$ uniformly (resp. strongly). If A is bounded below on $M_{0} \in C(H)$ (i.e., there exists $\varepsilon>0$ such that $\|A x\| \geqq \varepsilon\|x\|$ for every $x \in M_{0}$), and if $M_{\alpha} \subset M_{0}$ for all α, then $A M_{\alpha}, A M \in(C H)$ and $\left\{A M_{\alpha}\right\}$ converges to $A M$ uniformly (resp. strongly).

Proof. Write $P_{\alpha}=\operatorname{proj} M_{\alpha}, \quad P_{0}=\operatorname{proj} M_{0}$ and $P=P_{M} \quad(=\operatorname{proj} M)$. Then, by our assumption we have $P_{\alpha} \rightarrow P$ (un) (resp. (st)), $P_{\alpha} \leqq P_{0}$ and $\left\|A P_{0} x\right\| \geqq \varepsilon\left\|P_{0} x\right\|$ for $x \in H$. From the last inequality we see that $B:=A P_{0} \in(\mathrm{CR})$ and $B^{\dagger} B=P_{0}$. Since $A P_{\alpha}=A P_{0} P_{\alpha}=B P_{\alpha}$ and $B^{\dagger} B P_{\alpha} P_{\alpha}^{\dagger}=$ $P_{\alpha} \in(\mathrm{CR})$ (cf. $P_{\alpha}^{\dagger}=P_{\alpha}$), we see, by Lemma 1.2, that $B P_{\alpha} \in(\mathrm{CR})$ or $A P_{\alpha} \in(\mathrm{CR})$ and

$$
\left\|\left(A P_{\alpha}\right)^{\dagger}\right\| \leqq\left\|B^{\dagger}\right\|\left\|\left(B^{\dagger} B P_{\alpha}\right)^{\dagger}\right\| \leqq\left\|B^{\dagger}\right\| .
$$

Hence, by Proposition 2.5 we have $\left(A P_{\alpha}\right)^{\dagger} \rightarrow(A P)^{\dagger}$ or $\left(A P_{\alpha}\right)\left(A P_{\alpha}\right)^{\dagger} \rightarrow$ $(A P)(A P)^{\dagger}$ (un) (resp. (st)), which is the desired. q.e.d.
3. Local continuity of subspace maps. Let $A \in(\mathrm{CR})$ and $Q=A^{\dagger} A$. Then, for a projection P in $B(H)$ we have $A^{\dagger} A\left(Q^{\perp} \vee P\right)=Q\left(Q^{\perp} \vee P\right) \in(\mathrm{CR})$, so that $A\left(Q^{\perp} \vee P\right) \in(\mathrm{CR})$ (say, by Lemma 1.2). Using this fact, we have the following:

Lemma 3.1. Let $A \in(\mathrm{CR})$ and $Q=A^{\dagger} A$. Then for $M \in C(H)$ we have $(A M)^{-}=A\left(Q^{\perp} \vee P_{M}\right) H$, or equivalently,

$$
\begin{equation*}
\operatorname{proj} \phi_{A}(M)=\left\{A\left(Q^{\perp} \vee P_{M}\right)\right\}\left\{A\left(Q^{\perp} \vee P_{M}\right)\right\}^{\dagger}=A\left\{A\left(Q^{\perp} \vee P_{K}\right)\right\}^{\dagger} \tag{3.1}
\end{equation*}
$$

Proof. Since $(A M)^{-}=\left(A P_{M} H\right)^{-} \subset\left\{A\left(Q^{\perp} \vee P_{M}\right) H\right\}^{-}=A\left(Q^{\perp} \vee P_{M}\right) H \subset$
$(A M)^{-}$, we have the first identity. The identities (3.1) is now clear.
q.e.d.

To discuss the local continuity of a subspace map $\dot{\phi}_{A}(A \in(\mathrm{CR}))$, it is convenient to introduce the auxiliary functions ψ_{A} and $\eta_{Q}\left(Q=A^{\dagger} A\right)$ from $C(H)$ into $B(H)$, defined by

$$
\psi_{A}(M)=\left\{A\left(Q^{\perp} \vee P_{M}\right)\right\}^{\dagger} \quad \text { and } \quad \eta_{Q}(M)=Q^{\perp} \vee P_{M}
$$

Theorem 3.2. Let $A \in(\mathrm{CR}), Q=A^{\dagger} A$ and $M_{0} \in C(H)$. Then the following conditions are equivalent.
(1) ϕ_{A} is uniformly (resp. strongly) continuous at M_{0}.
(2) ϕ_{Q} is uniformly (resp. strongly) continuous at M_{0}.
(3) ψ_{A} is uniformly (resp. strongly) continuous at M_{0}.
(4) η_{Q} is uniformly (resp. strongly) continuous at M_{0}.

Proof. (Since the argument is quite parallel for the strong topology, we only give the proof for the uniform topology.)
$(1) \Leftrightarrow(3) \quad$ By Lemma 3.1 we see $\operatorname{proj} \phi_{A}(M)=A \psi_{A}(M)$ and $\psi_{A}(M)=$ $Q \psi_{A}(M)=A^{\dagger} \cdot \operatorname{proj} \phi_{A}(M)$. Those identities show the desired equivalence.
$(2) \Leftrightarrow(4) \quad$ It suffices to note that $Q^{\perp} \vee P=Q\left(Q^{\perp} \vee P\right)+Q^{\perp}=$ $\operatorname{proj} \phi_{Q}(P H)+Q^{\perp}$ for every projection P.
(2) \Rightarrow (3) Let $\left\{M_{\alpha}\right\}$ be a net in $C(H)$ converging to $M_{0} \in C(H)$ uniformly. Write $R_{\alpha}=Q\left(Q^{\perp} \vee P_{\alpha}\right)$ and $R_{0}=Q\left(Q^{\perp} \vee P_{0}\right)$, where $P_{\alpha}=\operatorname{proj} M_{0}$ and $P_{0}=\operatorname{proj} M_{0}$. Then, since $\left\|\left(A R_{\alpha}\right)^{\dagger}\right\| \leqq\left\|A^{\dagger}\right\|$ (say, by (1.2)), we have $\left(A R_{\alpha}\right)^{\dagger} \rightarrow\left(A R_{0}\right)^{\dagger}$ (un) if $R_{\alpha} \rightarrow R_{0}$ (un) by Proposition 2.5. Hence the assumption (2) implies (3).
(3) \Rightarrow (2) Note $\left\|A R_{\alpha}\right\| \leqq\|A\|$. Hence we have, by Remark after Lemma 2.4, that $A R_{\alpha}=\left(A R_{\alpha}\right)^{\dagger \dagger} \rightarrow\left(A R_{0}\right)^{\dagger \dagger}=A R_{0}$ (un) if $\left(A R_{\alpha}\right)^{\dagger} \rightarrow\left(A R_{0}\right)^{\dagger}$ (un). Hence, if we assume (3) we have $R_{\alpha}=A^{\dagger} \cdot A R_{\alpha} \rightarrow A^{\dagger} \cdot A R_{0}=R_{0}$ (un), which implies (2). q.e.d.

Remark. Define $\lim \inf _{\alpha} M_{\alpha}=\left\{x ; \operatorname{dist}\left(x, M_{\alpha}\right) \rightarrow 0\right\}$ for a net $\left\{M_{\alpha}\right\}$ in $C(H)$. Suppose $M_{\alpha} \rightarrow M \in C(H)$ strongly. Then we can prove

$$
\lim _{\alpha} \inf \phi_{A}\left(M_{\alpha}\right) \supset \phi_{A}(M)
$$

(without the restriction $A \in(\mathrm{CR})$). This relation says that ϕ_{A} is lower semicontinuous at M with respect to the strong topology.

To seek more precise conditions for the local continuity of subspace maps, we provide the following result.

Lemma 3.3. Let P and Q be projections satisfying the three conditions;
(1) $\left\|P Q^{\perp}\right\|=1$,
(2) $P^{\perp} H+Q H \neq H$,
(3) $P^{\perp} \wedge Q \neq 0$, i.e., $P^{\perp} H \cap Q H \neq\{0\}$.

Then, ϕ_{Q} is not uniformly (strongly) continuous at PH.
Proof. By (1) there exists a sequence $\left\{x_{n}\right\}$ in H such that $\left\|x_{n}\right\|=1$ and $\left\|P Q^{\perp} x_{n}\right\| \rightarrow 1$. We easily see that $P x_{n}-x_{n} \rightarrow 0$ and $Q^{\perp} x_{n}-x_{n} \rightarrow 0$. Since $P^{\perp} H+Q H$ is nowhere dense in H by (2), we may assume that for all $n, x_{n} \notin P^{\perp} H+Q H$, or equivalently, $P x_{n} \notin P Q H$. Put

$$
y_{n}=P x_{n} /\left\|P x_{n}\right\|, \quad z_{n}=Q^{\perp} x_{n} /\left\|Q^{\perp} x_{n}\right\|
$$

and choose $w \in P^{\perp} H \cap Q H$ with $\|w\|=1$. By using those elements we define

$$
U_{n}=y_{n} \otimes y_{n}, \quad R_{n}=\left(a_{n} z_{n}+b_{n} w\right) \otimes\left(a_{n} z_{n}+b_{n} w\right)
$$

where $a_{n}=\cos (1 / n), b_{n}=\sin (1 / n)$ and $y \otimes y(y \in H)$ is an operator such that $(y \otimes y) x=(x, y) y$ for $x \in H$. Clearly, they are projections and $U_{n}-R_{n} \rightarrow 0$ (un). For each n, the operator $V_{n}:=P-U_{n}\left(=P\left(1-U_{n}\right)\right)$ is also a projection and $\left\|V_{n} R_{n}\right\|=\left\|P\left(1-U_{n}\right) R_{n}\right\| \leqq\left\|R_{n}-U_{n}\right\| \rightarrow 0$. Hence, we may assume $\left\|V_{n} R_{n}\left(V_{n}^{\perp} \vee R_{n}^{\perp}\right)\right\|<1$ for all n. By Lemma 1.3 we then have $S_{n}:=V_{n}+R_{n} \in(\mathrm{CR})$ and

$$
\left\|S_{n}^{\dagger}\right\| \leqq\left(1-\left\|V_{n} R_{n}\left(V_{n}^{\perp} \vee R_{n}^{\perp}\right)\right\|\right)^{-2} \leqq\left(1-\left\|V_{n} R_{n}\right\|\right)^{-2} \quad(\rightarrow 1)
$$

This says that $\left\{\left\|S_{n}^{\dagger}\right\|\right\}$ is bounded. Hence, since $S_{n} \rightarrow P$ (un), we see $S_{n} S_{n}^{\dagger} \rightarrow P$ (un) by Lemma 2.3. Put $P_{n}=S_{n} S_{n}^{\dagger}$. Now, what we want to show is thst $\phi_{Q}\left(P_{n} H\right)$ does not converge to $\phi_{Q}(P H)$ uniformly. Since w is orthogonal to $\phi_{Q}(P H)$, it suffices to show

$$
\begin{equation*}
\phi_{Q}\left(P_{n} H\right)=\phi_{Q}(P H)+[w], \tag{3.2}
\end{equation*}
$$

where $[w]$ is the linear space generated by w. To this end, let $u \in \operatorname{ker} S_{n} Q$ or $S_{n} Q u=0$. Then we have

$$
P Q u-\left(Q u, y_{n}\right) y_{n}+\left(Q u, a_{n} z_{n}+b_{n} w\right)\left(a_{n} z_{n}+b_{n} w\right)=0 .
$$

Since $z_{n}, y_{n} \in P H$ and $w \in P^{\perp} H$, we see $\left(Q u, a_{n} z_{n}+b_{n} w\right)=0$, so that $P Q u=\left(Q u, y_{n}\right) y_{n}$. Recall $y_{n} \notin P Q H$. Hence $P Q u=0$, i.e., $u \in \operatorname{ker} P Q$. This implies

$$
\begin{equation*}
(Q P H)^{-} \subset\left(Q S_{n} H\right)^{-} \quad\left(=\left(Q P_{n} H\right)^{-}\right) \tag{3.3}
\end{equation*}
$$

Moreover, we see, by a simple computation, $Q S_{n} w=b_{n}^{2} w$ or

$$
\begin{equation*}
w \in Q S_{n} H \tag{3.4}
\end{equation*}
$$

Hence we have

$$
\begin{aligned}
\left(Q S_{n} H\right)^{-} \subset\left\{Q\left(V_{n}+R_{n}\right) H\right\}^{-} & \subset\left\{Q P\left(1-U_{n}\right) H\right\}^{-}+\left(Q R_{n} H\right)^{-} \\
& \subset(Q P H)^{-}+[w] \subset\left(Q S_{n} H\right)^{-}
\end{aligned}
$$

which implies (3.2). For the strong continuity, note that the convergence of $\left\{S_{n}\right\}$ (and hence $\left\{P_{n}\right\}$) is strong by the construction of S_{n}, so that the identity (3.2) also shows the discontinuity of ϕ_{Q} at $P H$. q.e.d.

Corollary 3.4. Let P and Q be projections with $P \wedge Q^{\perp} \neq 0$ and $P^{\perp} \wedge Q \neq 0$. Then ϕ_{Q} is not uniformly (strongly) continuous at $P H$.

Proof. We have $\left\|P Q^{\perp} x\right\|=\|x\|$ for $x \in\left(P \wedge Q^{\perp}\right) H$, i.e., $\left\|P Q^{\perp}\right\|=1$. We also have $P^{\perp} H+Q H \subset\left(P \wedge Q^{\perp}\right)^{\perp} H \neq H$.
q.e.d.

Corollary 3.5. Let P and Q be projections with $P Q \notin(\mathrm{CR})$ and $P^{\perp} \wedge Q \neq 0$. Then ϕ_{Q} is not uniformly (strongly) continuous at $P H$.

Proof. By Lemma 1.3 we see that $P^{\perp} H+Q H$ is not closed, so that we have (2) of Lemma 3.3. Again, by Lemma 1.3 we have $1 \geqq\left\|P Q^{\perp}\right\| \geqq$ $\left\|P Q^{\perp}\left(P^{\perp} \vee Q\right)\right\|=1$, which implies (1) of Lemma 3.3.
q.e.d.

For the subspace map of a general operator we have:
Proposition 3.6. Let $A \in B(H)$ and $Q=\operatorname{proj}\left(A^{*} H\right)^{-}$. If we add

$$
\begin{equation*}
A \in(\mathrm{CR}) \quad o r \tag{4}
\end{equation*}
$$

$$
\left(P^{\perp} \wedge Q\right) A^{*} A=0
$$

to the conditions (1)-(3) in Lemma 3.3, then $\dot{\phi}_{A}$ is not uniformly (strongly) continuous at PH.

Proof. We use the same notations as in Lemma 3.3. By (3.3), (3.4) and the obvious identity $A Q=A$, we have $(A P H)^{-} \subset\left(A P_{n} H\right)^{-}$and $A w \in A P_{n} H$. Hence we have

$$
\left(A P_{n} H\right)^{-}=(A P H)^{-}+[A w]
$$

Now, to see the discontinuity of ϕ_{A} at $P H$, it suffices to show that $A w \notin(A P H)^{-}$. First, (4) implies this relation. For otherwise $A w \in$ $(A P H)^{-}=A\left(Q^{\perp} \vee P\right) H$, so that $w=A^{\dagger} A w \in Q\left(Q^{\perp} \vee P\right) H \subset\left(P^{\perp} \wedge Q\right)^{\perp} H$. This is a contradiction. Next, (4') implies that $A w$ is orthogonal to $(A P H)^{-}$, because $(A w, A P u)=\left(w,\left(P^{\perp} \wedge Q\right) A^{*} A P u\right)=0$ for $u \in H$. q.e.d.

With a norm inequality we give an equivalent condition for the uniform continuity of a subspace map at a point.

Theorem 3.7. Let $A \in(\mathrm{CR})$ and $M \in C(H)$. Write $Q=A^{\dagger} A$ and $P=P_{M}$. Then the condition

$$
\begin{equation*}
\min \left\{\left\|P Q^{\perp}\right\|,\left\|P^{\perp} Q\right\|\right\}<1 \tag{3.5}
\end{equation*}
$$

implies that $\dot{\phi}_{A}$ is uniformly continuous at M. Conversely, if we assume $A P \in(\mathrm{CR})$ then the uniform continuity of ϕ_{A} at M implies (3.5).

Proof. Assume $\left\|P Q^{\perp}\right\|<1$, and let $P_{n}:=\operatorname{proj} M_{n} \rightarrow P($ un $)\left(M_{n} \in C(H)\right)$. Then, since $\left\|P_{n} Q^{\perp}\left(P_{n}^{\perp} \vee Q\right)\right\| \leqq\left\|P_{n} Q^{\perp}\right\| \rightarrow\left\|P Q^{\perp}\right\|$, we have $P_{n} Q \in(\mathrm{CR})$ for all sufficiently large n, by Lemma 1.3. Furthermore, we have

$$
\left\|\left(P_{n} Q\right)^{\dagger}\right\| \leqq\left(1-\left\|P_{n} Q^{\perp}\left(P_{n}^{\perp} \vee Q\right)\right\|\right)^{-2} \leqq\left(1-\left\|P_{n} Q^{\perp}\right\|\right)^{-2} \rightarrow\left(1-\left\|P Q^{\perp}\right\|\right)^{-2}
$$

Hence $\left\{\left\|\left(Q P_{n}\right)^{\dagger}\right\|\right\}$ is bounded, so that $\left(Q P_{n}\right)^{\dagger} \rightarrow(Q P)$ or $\left(Q P_{n}\right)\left(Q P_{n}\right)^{\dagger} \rightarrow$ $(O P)(Q P)^{\dagger}$ (un). This implies the uniform continuity of ϕ_{Q} and hence of ϕ_{4} at M (say, by Theorem 3.2). Using the identity $\left\|P_{n}^{\perp} Q\left(P_{n} \vee Q^{\perp}\right)\right\|=$ $\left\|P_{n} Q^{\perp}\left(P_{n}^{\perp} \vee Q\right)\right\|$, we could obtain the same conclusion when we begin with the assumption $\left\|P^{\perp} Q\right\|<1$ instead of $\left\|P Q^{\perp}\right\|<1$. To see the latter half of the theorem, let ϕ_{A} (and hence ϕ_{Q}) be uniformly continuous at M. Then, by Corollary 3.4 we see that $P^{\perp} \wedge Q=0$ or $P \wedge Q^{\perp}=0$. If $P^{\perp} \wedge Q=0$, then under the assumption $A P \in(\mathrm{CR})$ or equivalently $Q P \in(\mathrm{CR})$) we have $\left\|Q P^{\perp}\right\|=\left\|Q P^{\perp}\left(Q^{\perp} \vee P\right)\right\|<1$ by Lemma 1.3. We can see $\left\|P Q^{\perp}\right\|<1$ similarly, when $P \wedge Q^{\perp}=0$. q.e.d.

The next result was shown by Longstaff [8, Theorem 1] without the assumption $A \in(\mathrm{CR})$.

Corollary 3.8. Let $A(\neq 0) \in(\mathrm{CR})$. Then ϕ_{A} is uniformly continuous on $C(H)$, i.e., at every point $M \in C(H)$ if and only if A is left-invertible.

Proof. If A is not left-invertible, then $Q:=A^{\dagger} A \neq 1$. Hence, putting $P=Q^{\perp}$, we see that the left hand side of (3.5) is equal to 1 . The converse assertion is clear by (3.5).
q.e.d.
4. Lipschitz constants of subspace maps. For $A \in(\mathrm{CR})$, define

$$
\begin{equation*}
C_{A}(H)=\left\{M \in C(H) ; P_{M} \text { commutes with } A^{\dagger} A\right\} \tag{4.1}
\end{equation*}
$$

Then, since $A^{\dagger} A P_{M}\left(M \in C_{A}(H)\right)$ is a projection we easily see that $A P_{M} \in(\mathrm{CR})$ (say, by Lemma 1.2) or $A M=(A M)^{-}$. If we restrict the map ϕ_{A} on $C_{A}(H)$, then since $\left\|\left(A P_{M}\right)^{\dagger}\right\| \leqq\left\|A^{\dagger}\right\|$ for $M \in C_{A}(H)$ (say, by (1.2)) we see by Corollary 2.2 that

$$
\begin{aligned}
\left\|\operatorname{proj} \phi_{A}(M)-\operatorname{proj} \phi_{A}(N)\right\| & =\left\|\left(A P_{M}\right)\left(A P_{M}\right)^{\dagger}-\left(A P_{N}\right)\left(A P_{N}\right)^{\dagger}\right\| \\
& \leqq\left\|A^{\dagger}\right\|\|A\|\left\|P_{M}-P_{N}\right\| \cdot \quad\left(M, N \in C_{A}(H)\right)
\end{aligned}
$$

In [2] we introduced the Lipschitz constant of ϕ_{A} by

$$
\kappa_{A}=\sup \left\{\left\|\operatorname{proj} \phi_{A}(M)-\operatorname{proj} \phi_{A}(N)\right\| /\left\|P_{M}-P_{N}\right\| ; M, N \in C_{A}(H), M \neq N\right\}
$$

and proved that $\kappa_{A}=\|A\| / \gamma(A)$ when A is left-invertible [2, Theorem 3] (cf. [3, Theorem 3.1]). The following result shows that this identity is still true for every $A \in(\mathrm{CR})$.

Proposition 4.1. If $A \in(\mathrm{CR})$, then $\kappa_{A}=\|A\|\left\|A^{\dagger}\right\|$.
Proof. Let $A=V|A|$ be the polar decomposition of A with a partial isometry V which satisfies $V^{*} V=A^{\dagger} A$. Then, since $|A|^{\dagger}|A|=V^{*} V$, we see that $|A| P_{L} \in(\mathrm{CR})$ for any $L \in C_{A}(H)$ and

$$
\begin{equation*}
\left(|A| P_{L}\right)^{\dagger}=\left(|A| P_{L}\right)^{\dagger} V^{*} V \tag{3.6}
\end{equation*}
$$

Hence, $A L=V|A| P_{L} H=V\left(|A| P_{L}\right)\left(|A| P_{L}\right)^{\dagger} H=V\left(|A| P_{L}\right)\left(|A| P_{L}\right)^{\dagger} V^{*} H$, or

$$
\operatorname{proj} A L=V\left(|A| P_{L}\right)\left(|A| P_{L}\right)^{\dagger} V^{*}
$$

Hence, using the identity $|A|=V^{*} V|A|$ and (3.6), we have, for M, $N \in C_{A}(H)$,

$$
\begin{aligned}
\|\operatorname{proj} A M-\operatorname{proj} A N\| & =\left\|V\left\{\left(|A| P_{M}\right)\left(|A| P_{M}\right)^{\dagger}-\left(|A| P_{N}\right)\left(|A| P_{N}\right)^{\dagger}\right\} V^{*}\right\| \\
& =\left\|\left(|A| P_{M}\right)\left(|A| P_{M}\right)^{\dagger}-\left(|A| P_{N}\right)\left(|A| P_{N}\right)^{\dagger}\right\| .
\end{aligned}
$$

Clearly, this shows $\kappa_{A}=\kappa_{|A|}$. On the other hand, from the first paragraph of this section we easily see that $\kappa_{A} \leqq\|A\|\left\|A^{\dagger}\right\|$. Hence it suffices to show that the supremum κ_{A} attains $\|A\|\left\|A^{\dagger}\right\|$. Now, let $|A|=B \oplus 0$ be the direct sum representation of $|A|$ with respect to the orthogonal decomposition $(\operatorname{ker} A)^{\perp} \oplus \operatorname{ker} A$ of H. Then B is a nonnegative invertible operator on $K:=(\operatorname{ker} A)^{\perp}$. Since $A^{\dagger} A$ has the representation $1 \oplus 0$, we see that every operator $E \oplus 0$ with a projection E on K is in $C_{A}(H)$. Hence our problem is reduced to computing $\kappa_{B}\left(\leqq \kappa_{A}\right)$ on $C_{B}(K)$. But then $\|B\|=\|A\|$, and $\gamma(B)^{-1}=\left\|B^{-1}\right\|=\left\||A|^{\dagger}\right\|=\left\|A^{\dagger}\right\|$ (say, by Lemma 1.1), so that we obtain $\kappa_{B}=\|B\| / \gamma(B)=\|A\|\left\|A^{\dagger}\right\|$.
q.e.d.
5. Transforms of families of closed linear subspaces. In this section we shall discuss some behavior of a subspace map $\phi_{A}(A \in(\mathrm{CR}))$ on the set $C_{A}(H)$ defined by (4.1). The following result extends [8, Theorem 2].

Theorem 5.1. Let $A \in(\mathrm{CR})$. If \mathscr{F} is a uniformly (resp. strongly, weakly) closed subset of $C_{A}(H)$ and $P_{M} \leqq A^{\dagger} A$ (i.e., $M \subset(\operatorname{ker} A)^{\perp}$) for all $M \in \mathscr{F}$, then the image $\phi_{A}(\mathscr{F})$ is also uniformly (resp. strongly, weakly) closed.

Proof. Let $\left\{M_{\alpha}\right\}$ be a net in \mathscr{F} and $A M_{\alpha} \rightarrow N \in C_{A}(H)$ uniformly (resp. strongly). ($C_{A}(H)$ is uniformly and strongly closed.) Write $P_{\alpha}=$
proj M_{α}. Then $\left(A P_{\alpha}\right)\left(A P_{\alpha}\right)^{\dagger} \rightarrow P_{N}$ (un) (resp. (st)). Hence, noting $A^{\dagger} A P_{\alpha}=$ P_{α}, we have $\left(A P_{\alpha}\right)^{\dagger}=A^{\dagger} \cdot\left(A P_{\alpha}\right)\left(A P_{\alpha}\right)^{\dagger} \rightarrow A^{\dagger} P_{N}$ (un) (resp. (st)). Since $\left\|A P_{\alpha}\right\| \leqq\|A\|$, we see, by Remark after Lemma 2.4, that

$$
A P_{\alpha}=\left(A P_{\alpha}\right)^{\dagger \dagger} \rightarrow\left(A^{\dagger} P_{N}\right)^{\dagger}(\text { un }) \text { (resp. (st)) } .
$$

Hence, $P_{\alpha} \rightarrow A^{\dagger}\left(A^{\dagger} P_{N}\right)^{\dagger}$ (un) (resp. (st)), so that $M:=A^{\dagger}\left(A^{\dagger} P_{N}\right)^{\dagger} H \in \mathscr{F}$. Hence, by the uniform (resp. strong) continuity of ϕ_{A} (say, directly by Proposition 2.5), we obtain that $N=A M \in \phi_{A}(\mathscr{F})$, which implies the uniform (resp. strong) closedness of $\phi_{A}(\mathscr{F})$. The weak closedness of $\phi_{A}(\mathscr{F})$ can be now obtained by (argument similar to that in [8]) using the weak compactness of any ball $\{T \in B(H):\|T\| \leqq C\}$ for $C>0$. q.e.d.

If \mathscr{A} is a subset of $B(H)$, then we write Lat \mathscr{A} for the lattice of all $M \in C(H)$ invariant under every member of \mathscr{A}. For a subset \mathscr{F} of $C(H)$ we denote by $\operatorname{Alg} \mathscr{F}$ the algebra of all $T \in B(H)$ leaving every member of \mathscr{F} invariant. We say that $\mathscr{F} \subset C(H)$ is reflexive if $\mathscr{F}=$ Lat Alg \mathscr{F}. Now, we give an extension of [8, Proposition 2].

Proposition 5.2. Let $A \in(\mathrm{CR})$, and let \mathscr{F} be a subset of $C_{A}(H)$ with $A^{\dagger} A H \in \mathscr{F}$. Then $\phi_{A}($ Lat Alg $\mathscr{F}) \cup\{H\}=$ Lat Alg $\phi_{A}(\mathscr{F})$. Hence, if \mathscr{F} is reflexive then so is $\phi_{A}(\mathscr{F}) \cup\{H\}$.

Proof. Write $\mathscr{G}=\phi_{A}(\mathscr{F})$. First, in order to show $\phi_{A}($ Lat Alg $\mathscr{F}) \subset$ Lat Alg \mathscr{G}, let $M=$ Lat Alg \mathscr{F}. Then, for $T \in \operatorname{Alg} \mathscr{G}$, we see $T A H \subset A H$, so that

$$
\begin{equation*}
A A^{+} T A=T A \tag{5.1}
\end{equation*}
$$

Put $X=A^{\dagger} T A$. Then, for every $F \in \mathscr{F}$

$$
X F=A^{\dagger} T A F=A^{\dagger} \cdot T A F \subset A^{\dagger} A F
$$

Hence, since P_{F} commutes with $A^{\dagger} A$, we have $X F \subset F$, which implies $X \in \operatorname{Alg} \mathscr{F}$. Hence $X M \subset M$, or $A^{+} T A M \subset M$. By (5.1) this relation yields

$$
T A M=A A^{\dagger} T A M \subset A M
$$

Since $T \in \operatorname{Alg} \mathscr{G}$ is arbitrary, this implies $A M \in \operatorname{Lat} \operatorname{Alg} \mathscr{G}$, which is the desired. Next, to show the opposite inclusion Lat Alg $\mathscr{G} \subset \phi_{A}($ Lat Alg $\mathscr{F}) \cup$ $\{H\}$, let $N \in \operatorname{Lat} \operatorname{Alg} \mathscr{G}$ and $N \neq H$. Then $Y\left(1-A A^{\dagger}\right) \in \operatorname{Alg} \mathscr{G}$ for every $Y \in B(H)$. Hence $Y\left(1-A A^{\dagger}\right) N \subset N$. Since Y is arbitrary and $N \neq H$, we easily see that $\left(1-A A^{\dagger}\right) N=\{0\}$, or $N=A A^{\dagger} N$. Now, it suffices to show that $A^{\dagger} N \in$ Lat Alg \mathscr{F}. For, if this is shown then $N=A A^{\dagger} N \in$ $\phi_{A}($ Lat $\operatorname{Alg} \mathscr{F})$ (which is the desired). Let $S \in \operatorname{Alg} \mathscr{F}$, and put $R=A S A^{\dagger}$. Then, for any $G:=A F \in \mathscr{G}(F \in \mathscr{F})$, we have

$$
R G=A S A^{\dagger} G=A S A^{\dagger} A F \subset A S F \subset A F=G,
$$

that is, $R \in \operatorname{Alg} \mathscr{G}$. Hence we see $R N \subset N$, or $A S A^{\dagger} N \subset N$. Since the assumption $A^{\dagger} A H \in \mathscr{F}$ means $S A^{\dagger} A=A^{\dagger} A S A^{\dagger} A$, we have

$$
S A^{\dagger} N=S A^{\dagger} A \cdot A^{\dagger} N=A^{\dagger} A S A^{\dagger} A \cdot A^{\dagger} N=A^{\dagger} \cdot A S A^{\dagger} N \subset A^{\dagger} N
$$

This implies $A^{\dagger} N \in \operatorname{Lat} \operatorname{Alg} \mathscr{F}$, because $S \in \operatorname{Alg} \mathscr{F}$ is arbitrary. Finally, if \mathscr{F} is reflexive, then
$\mathscr{G} \cup\{H\}=\phi_{A}(\operatorname{Lat} \operatorname{Alg} \mathscr{F}) \cup\{H\}=\operatorname{Lat} \operatorname{Alg} \mathscr{G} \cup\{H\}=\operatorname{Lat} \operatorname{Alg}(\mathscr{G} \cup\{H\})$, so that $\mathscr{G} \cup\{H\}$ is reflexive.
q.e.d.

References

[1] A. Ben-Israel and T. N. Greville, Generalized Inverses: Theory and Applications, Wiley, New York, 1974.
[2] S. Izumino, Inequalities on transforms of subspaces of a Hilbert space, Math. Japon. 25 (1980), 131-134.
[3] S. Izumino, Inequalities on operators with closed range, Math. Japon. 25 (1980), 423-429.
[4] S. Izumino, The product of operators with closed range and an extension of the reverse order law, Tôhoku Math. J. 34 (1982), 43-52.
[5] S. Izumino, Convergence of generalized inverses and spline projectors, J. Approx. Theory 38 (1983), 269-278.
[6] Y. Kato and N. Moriya, Maeda's inequality for pseudoinverses, Math. Japon. 22 (1977), 89-91.
[7] W. E. Longstaff, A note on transforms of subspaces of Hilbert space, Proc. Amer. Math. Soc. 76 (1979), 268-270.
[8] W. E. Longstaff, Subspace maps of operators on Hilbert space, Proc. Amer. Math. Soc. 84 (1982), $195-201$.
[9] M. Z. Nashed, ed., Generalized Inverses and Applications, Academic Press, New York, San Francisco and London, 1976.
[10] G. W. Stewart, On the perturbations of pseudo-inverses, projections and linear squares problems, SIAM Review 19 (1977), 634-662.
Faculty of Education
Toyama University
3190 Gofuku, Toyama-shi 930
Japan

