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Introduction. There is a well-known relationship between periodic
continued fractions and 2-dimensional cusp singularities. (See, for
instance, [10], [11].) Let π: U—>V be the minimal resolution of a 2-
dimensional cusp singularity (V, p). Then the exceptional set X = π~\p)
is either a cycle of s rational curves with self-intersection numbers
al9 α2, , a8 ^ —2 at least one of which is strictly smaller than — 2(s ^ 2),
or a rational curve with a node and with a self-intersection number
a < 0. Then we can associate to it the periodic continued fraction

(-α2) JJ(-α.)-JJί-oJ ,
or

ω = [[-α + 2]] = (-a + 2) - J j(—α + 2) - _l](-α + 2)

Conversely, we can construct a 2-dimensional cusp singularity and its
resolution as above, from a periodic continued fraction ω first by
constructing a convex cone in R2 and then applying the theory of torus
embeddings. (See Remark in §4.) Moreover, the dual graph of X can
be thought of as a subdivision of a circle S1, with alf α2, , a8 attached
to s vertices as weights in this order.

In this paper, we generalize the above relationship to higher dimen-
sions and construct higher dimensional cusp singularities from suitable
analogues of periodic continued fractions. The well-known Hubert
modular cusp singularities are special cases of the cusp singularities we
obtain.

Nakamura [15] found a duality for 2-dimensional cusp singularities.
Our higher dimensional cusp singularities also have a duality among
themselves generalizing that of Nakamura.

First in Section 1, we show that certain cusp singularities are
obtained from suitable cones in Rr with actions of subgroups of GL(r, Z),
by means of torus embeddings. In Section 2, we study some properties
and analytic invariants of such singularities. Especially, they are in
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general not Cohen-Macaulay but a part of them are quasi-Buchsbaum
singularities. (Recently, Ishida [13] showed that all of them are
Buchsbaum singularities.)

In Section 4, we show how to obtain these cusp singularities as
above explicitly, when r = 3. Our method is to consider the analogue
of the weighted subdivision of S1 as above in one higher dimension.
Namely, we consider a triangulation Δ of a compact topological surface
Γ, on each edge of which a pair of integers is attached. If it satisfies
suitable conditions, then we can construct from it a pair (C, Γ) of a
cone C in R3 and a subgroup Γ of GL(3, Z) as in Section 1, in a manner
similar to the case r = 2. The corresponding cusp singularity has a
resolution whose exceptional set consists of rational surfaces, crossing
each other along rational curves and points, in such a way that the
"dual graph" agrees with the given triangulation Δ of T. In the case
of 3-dimensional Hubert modular cusp singularities, the corresponding
compact topological surfaces T as above are 2-dimensional real tori.
Conversely, in Section 3, we see that when T is a 2-dimensional real
torus, the corresponding singularity is a 3-mensional Hubert modular
cusp singularity. Some examples of them can be found in Thomas and
Vasquez [19]. Besides 3-dimensional Hubert modular cusp singularities
we give an example with non-orientable T and those with orientable T
of genus g{T) > 1, at the end of this paper.

Our method in Section 4 has an obvious generalization in higher
dimensions, but for simplicity we restrict our consideration in Section 4
to 3-dimensional cusp singularities.

The author would like to thank Professors T. Oda and I. Satake and
Dr. M.-N. Ishida of Tδhoku University for their useful advice and
encouragement. The author also would like to thank Dr. Kimio Watanabe
and Y. Koyama who pointed out the possibility that the above singulari-
ties are not necessary Cohen-Macaulay but Buchsbaum singularities.

A part of the results in this paper was announced in [20].

1. Cones and singularities. Let N cz Zr and NR = N®ZR ~ Rr.
Let π: NR\{0) —> S r - 1 be the natural projection onto a sphere S r - 1 =
(NR\{0})/R>0. Then Aut (N) = GL(N) acts on S1-1 through π. Let S? be
the set of equivalence classes of pairs (C, Γ) of a cone C in NR and a
subgroup Γ of GL(N) satisfying the following conditions: C is open,
nondegenerate (i.e., C Π (-C) = {0}), convex and Γ-invariant. Moreover,
the induced action of Γ on D: = π{G) = C/JB>0 is properly discontinuous
and fixed point free with the compact quotient D/Γ. Here we say two
pairs (C, Γ) and (C, Γ') are equivalent, if there exists an element g
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of GL(N) such that gR(C) = C and that gΓg~ι = Γ', where gR is the
image of g in GL(NR).

Let us denote by SL(N) the special linear group, which is the sub-
group of GL(N) consisting of the elements of determinant 1. If Γ is
contained in SL{N) for (C, Γ) in ^ then D/Γ is orientable. When
r = 3, the genus g(D/Γ) of the orientable surface D/Γ is greater than 0.

Let M = N* be the Z-module dual to N with the canonical pairing
< , >: M x N->Z. For (C, Γ) in & let C* be the dual cone of C in
MR, i.e.,

C*: = Int{meJlίκ |<m, w> > 0 for all neC}

= {m e MRI <m, w> > 0 for all n e C\{0}},

where Int denotes the interior. Then C* is also a nondegenerate open
convex cone with the canonical action of Γ satisfying (g(m), g(n)) = <m, n)
for any element g of Γ. Let Θ (resp. θ*) be the convex hull of C Π N
(resp. C* Π M). We define the support function h: C* —> JR>0 of θ by

Λ(a?) = inf {(x, y) \ for all y e C Π N} .

Then /&(#) is continuous, upper convex, i.e.,

h(x + x') ^ ft(α) + h(x') for a?, a ' e C * ,

h{M n C*) = Z> 0 and θ = {y e C\ (x, y) ^ Λ(a?) for all α 6 C*}. We define
the polar Θ° of Θ to be

Θ° = {xeC*|Λ(x)^l}=:{^eC*|<α;,i/> ^ 1 for all yeθ}.

Then clearly θ° is convex and contains θ*. Moreover, we have the
duality (θ°)° = θ.

In the following, we show that the boundary dθ of Θ has a natural
/Mnvariant polyhedral decomposition by compact convex polyhedra. Our
argument is similar to that of Ehlers [24] in the Hubert modular case.
For each point t of D, there exists a point x of C such that Θ Π π~\t) =
R^ . x (: = {s - χ\s ^ 1}). Then there sxists a point m of ikίΛ such that
H(m) (: = {y e iVΛ | <m, i/> = 1}) is a support hyperplane of θ containing
x, i.e., <m, α> = 1 and <m, τ/> ^ 1 for all yeθ. Let Θ(m): = H(m)Πθ
and call it a "face" of θ. We note that D is the union of the images
under π of the "faces" of β.

LEMMA 1.1. For any support hyperplane H(m) of Θ, the intersection
H(m)ΠC is compact. Equίvalently, m belongs to C*.

PROOF. Suppose that H{m) Π C is not compact. Then Θ contains
the set {y0 + syx \ s ^ 0} for some point y0 of θ(m) and y1 of dC. Let
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e-<" ">dx*φ(x) = \
JCJC*

be the characteristic function of the cone C defined by Vinberg [21].
Then φ(x) Φ 0 for all points x of C and

e-<**>vo>. e-*<x*>yί>dx*
c*

goes to 0 as s goes to infinity, since <#*, yλ) > 0 for all x* in C*.
However, inf {φ(x) \ x e Θ) > 0, since D/Γ is compact and φ{x) is Γ-invariant
and continuous. Hence we have a contradiction.

Since π(H(m) Π C) contains D and H{m) Π C is compact, we have
π(H(m) f]C) = D. Then <m, x) > 0 for any point # of C\{0}, since R>0

a; Π £Γ(m) Φ 0 . Hence m belongs to C*. q.e.d.

For each support hyperplane H(m) of Θ, we have H(m) flC Π N Φ 0 .
For otherwise, there exists a positive real number s smaller than 1 such
that H~{sm) f]CΓϊN = 0 , where H~{sm) = {yeNR|<sm, #> ̂  1}. Then
Θ must be contained in H+(sm): = {y eNR\(sm, y) ^ 1}, a contradiction.

LEMMA 1.2. Each "face" Θ(m) of Θ is equal to the convex hull of
the finite set H(m) Π C Π N. In particular, Θ(m) is a compact convex
polyhedron.

PROOF. Let Θ'(m) be the convex hull of H(m) Γ) C Π N. It is clear
that Θ(m)pΘ\m) and ((£Γ"(m) Π C)\Θ'(m)) Π N = 0 . By Lemma 1.1,
H~(sm) Π C is compact for all positive real numbers s. Hence there
exists a positive real number s smaller than 1 so that the convex set
Cv = {#1 + u(y2 — 2/χ) I u ^ 0,7/i e Θ'(m) and #2 6 ίί(sm) Π C} satisfies (C\Ci) Π
i\Γ = 0 . Then C2 contains Θ and hence Θ'(m) = C^HirrήziΘim). More-
over, jEί(m) Π CO N is a finite set by Lemma 1.1. Hence Θ{m) = Θ\m)
is a compact convex polyhedron. q.e.d.

Here we note that if ©(mj Π Θ(m2) Φ 0 , then ©(mj Π Θ(m2) =
Θ((mχ + m2)/2), namely, the intersection of two "faces" of Θ is also a
"face". Since D/Γ is compact, ^ is Γ-invariant and φ(x) > ^(ίίc) for t > 1
and # e C, the restriction φ{9 oί φ to Θ is bounded above. Hence Θ is
contained in C, since 0(x) goes to infinity as x approaches the boundary dC,
by [1, Chapter II, Proposition 1.3] and [21, Chapter I, Proposition 3]. Thus
the restriction φldθ of φ to dθ is a one-to-one and continuous map onto D.

LEMMA 1.3. dθ is the union of the (r — 1) dimensional "faces" of θ.

PROOF. For any point t of D, let x be the point of dθ with π(x) = t
and let H(m0) be a support hyperplane of θ containing x. Assume that
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d: = dimθ(m β )<r-l . Let H*(θ(m9)): = {xeMR\(x, y) = l for all y e0(mo)}.
Then fl"(m) is a support hyperplane containing 0(mo) for any point m of
if*(0(mo)) Π0°. By Lemma 1.1, if*(0(mo))Π0° is contained in C*. Then
iΓ(0(mJ)n(C*\0 0)^ 0 , since jff*(0(mo))n0° is closed. Take a point
xo of H*(θ(m.))Γi(C*\θ'). Then if+(α0): = {?/e i\ΓΛ | <α0, y) ^ 1} contains
0(mo), the closure of C\H+(x0) is compact and θ\H+(x0) Φ 0 . Hence
(C\H+(x0)) Γ) iV is a finite and nonempty set. So we can find a support
hyperplane Him^ of θ such that ^ m j Π iV S -ff(m0) Π iV. Clearly ©(raj 3
0(mo) and dim ©(mj > d. Repeating this process several times, we have
a "face" 0(m) containing # with dim 0(m) = r — 1. q.e.d.

Let vol be the volume on NR normalized so that vol(S) = 1/r! for
simplices S = {a,nx + a2n2 + + arnr |0 <: αx, α2, , αr, Σi=i ^ ^ 1} for
any Z-basis {nl9 n2, , ^r} of N. Since this volume is GL(N)-invariant,
it induces a volume on C/Γ, which we also denote by the same symbol
vol. Since Ό\Γ is compact, vol((C\Θ)/Γ) is finite. On the other hand,
for each (r — l)-dimensional "face" a of Θ, the volume vol([α]) of [a]: =
{ty\O ^ t ^ 1 and t/eα} is not smaller than 1/r!, since a Π N contains
at least r points which are linearly independent in NR. Moreover,
Γa( : = {7eΓ|7 α = a}) = {id} and {7eΓ|7 α Π a Φ 0} is finite set,
since a is a compact convex polyhedron and the action of Γ on D is
fixed point free. Hence the number of Γ-equivalence classes of "faces"
of θ is finite and the number of "faces" of θ containing x is also finite
for any point x of dθ. Thus we have:

LEMMA 1.4. The boundary dθ of Θ has a natural Γ-invariant poly-
hedral decomposition • consisting of the "faces" of Θ.

The boundary 30° of Θ° has a natural Γ-invariant polyhedral decom-
position Π° dual to Π i n the following manner: To each d-dimensional
"face" a of Θ corresponds the (r—d — l)-dimensional "face" H(yx) Π H(y2) Π
• ΠH(y8) Π 30° of (θ°) if a = Θ(m) is the convex hull of {ylf y2, , y8) =
H(m) Π G Π N. The boundary 3Θ* of Θ* also has a natural Γ-invariant
polyhedral decomposition •* by the following Lemma 1.6. But β* does
not agree with Θ° and hence •* may not be dual to • in general.
The following subclass will turn out later to have nicer properties:

DEFINITION 1.5. & = {(C, Γ) e & \Θ° = Θ*}.

The polyhedral decompositions •> Π° and •* induce Γ-invariant
cell divisions of D, D* and D* under the homeomorphisms π^ dθ 2$. D,
πldθ0: deo~>D* and τr|3θ*: 30* ^ D * , respectively, where I>* = C*//ϊ>0. We
also denote them by the same symbols •> Π° and •*.
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LEMMA 1.6. If (C, Γ) is in Sf (resp. &ζ), then so is (C*, Γ).

PROOF. Since • and Π° are Γ-invariant and dual to each other
as cell divisions and Γα = {id} for each cell a of •> we have Γao
(: = {ΎeΓ\Ύ-a° = a0}) = {id} for each cell a0 of Πβ Hence the action of
Γ on D* is properly discontinuous and fixed point free. Also D*/Γ is
compact, since so is D/Γ. Moreover, (<9*)° = (<9°)° = Θ, if 0* = Θ°. q.e.d.

In the following, we use the notations of Oda [16]. For (C, Γ) in
£f let Π a s above be the cell division of D = C/JR>0 induced by the
boundary dθ of the convex hull Θ of JV Π C. Let σ(α) = R^o α be the
closure of the cone π~\ά) in iSΓΛ for each cell α of Π They by Lemma
1.2 and 1.4, we have a /"-invariant r.p.p. decomposition (JV, Σ) with 2* =
{σ(a) I for all cells a of •} U {{0}}. Clearly | J |\{0} = C, where | J | = \Jσ*Σσ.
We have a Γ-in variant map ord: 2V emb (Σ) -> Me (JV, ϋ7) with the com-
mutative diagram:

TN emb (J) — - — > Me (JV, Σ): = TN emb (N, Σ)jCTN

(c*y~τN

 l o g l

where C?7^ is the compact real torus Homgr (Λf, Z7(l)) 2̂  Z7(l)r, and Me (iV, 21)
is the "manifold with coners" associated to the r.p.p. decomposition Σ
(cf. [16, Chap. II]]. Let C be the interior of the closure of C in Me (N, Σ),
and U: = ord"1 (C). Then i7 contains X: = T^ emb (Σ)\TN, and Γ acts on
U properly discontinuously and without fixed points, since so it does on
C. Let U: = ϋ/Γ and X: = X/Γ. Then X is a compact analytic subset
in U, since the cell division of D is a Γ-invariant "dual graph" of X
and Z)/JΓ is compact.

PROPOSITION 1.7. Let U and Xbe as above. Then X is contractible,
i.e., there exists a normal isolated singularity (V, p) with a holomorphic
map Π:U-*V which maps X to a point p and whose restriction to
U\X gives an isomorphism U\X ~ V\{p}.

PROOF. If Γ is not contained in SL(N), then we have an exact
sequence 1 -+Γ' -> Γ -> ZβZ-+ 0, with Γ' contained in SL(N). In this
case, U is a quotient space of ϋ/Γ' by the cyclic group Γ/Γ' of order 2.
Hence, we may assume that Γ is contained in SL(N) without loss of
generality. The characteristic function φ(x) in the proof of Lemma 1.1 is
a Γ-invariant convex function on C, and can be extended to a continuous
function on C vanishing on C\C. (See [1, Chap. II, §1 and Chap. Ill, §2]).
Therefore the Γ-invariant continuous function ^oord on U induces a
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continuous function φonU vanishing on X. Then φ is strictly subharmonic,
since φ(x) is convex on C. Hence X is contractible in U by [9]. q.e.d.

DEFINITION 1.8. We denote by Cusp(C, Γ) the singularity (F, p) in
the above proposition for each (C, Γ) in ^ and we let ^7~ (resp. ^ , ) =
{Cusp(C, Γ)\(C, Γ) e SS) (resp. f0)}.

PROPOSITION 1.9. The correspondence Cusp(C, Γ) i-> Cusp(C*, Γ) is a
duality in J7~ and in S^

PROOF. Let (C, Γ) be in Sf. Since C is convex, the interior Int(C)
of the closure of C is equal to C. Then (C*)* = C, e.g., by [17, Theorem
4.1]. Hence the proposition follows from Lemma 1.6. q.e.d.

REMARK. When r = 2, we have S? = S^ and ^ = ^ 7 = {cusp sin-
gularities of dimension 2}. Moreover, the above duality agrees with
Nakamura's duality [15].

2. Some properties and analytic invariants of the singularities in

DEFINITION 2.1 (Watanabe [22]). An isolated singularity (V, p) is
purely elliptic, if the plurigenera defined by

8m: = dimH\V\{p], (ϋΓF)®"W ,

satisfies δm — 1 for all positive integers m, where Kv is the canonical
sheaf of V and

L2/m: = {α)eF(7\{ri, {Kvf
m)\ω is L2/m-integrable} .

PROPOSITION 2.2. Let (C, Γ) &β in &: If Γ is contained in SL(N),
then (V, p) = Cusp (C, Γ1) is purely elliptic. If Γ is not contained in
SL(N)y δm = 1 or 0 according as m is even or odd.

PROOF. First assume that ΓczSL(N). Take a global coordinate
(zlf z2, , zr) of TN ~ (C*)r (i.e., Zj = e(m5 ) for a Z-basis {m^ m2, , wr}
of M). Then the r-form ώ = (dzJZj) A (dz2/z2) Λ Λ (dzr/zr) on 2V is
/"-invariant. Hence it induces a nowhere vanishing holomorphic r-form
ω on V\{p} = U\X. Since K% = έ%(-£), we have Kπ = ^ ( - - ϊ ) by
Oda [16, Proposition 6.6], where JSΓE and Kπ denote the canonical sheaves
of U and U, respectively. Hence δm = 1 for all positive integers m,
since ωm is not L2/m-integrable, but f ωm is L2/w-integrable for any
holomorphic function / on V vanishing at p. When Γ ς£ SL(N), ώm is
/^-invariant if and only if m is even. q.e.d.

In the following, we only consider the singularities in ^ , which
seem to have relatively nicer properties, and some analytic invariants
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of which can be calculated. Recall that for (C, Γ) in ^ , (N, Σ) is the
r.p.p. decomposition consisting of the cones σ(ά) joining 0 and cells a
in •> where • is the natural cell division of the boundary dθ of the
convex hull θ of N Π C. We obtained in Section 1 an open neighborhood
U of X = TN emb (Σ)\TN in TN emb (Σ) and a holomorphic map Π:U =
U/Γ -> V with Π-\p) = X=X/Γ and (F, p) = Cusp (C, Γ). Let (tf, 4)
be a Γ-invariant subdivision of (JV, I7) consisting of nonsingular cones.
(As for the existence, we refer the reader to [23] and [25].) Let
h: TN emb (A) —• TN emb (Σ) be the map induced by the identity map of
N and let W = h~\U). Then h induces a holomorphic map h: W: =
W/Γ -> Z7. Here T7 is a complex manifold and Y: = h~\X) is a divisor
on W with only normal crossings as singularities. Thus π = Π -h:
W —» V is a resolution of the singularity (V, p) — Cusp (C, Γ) with the
exceptional set Y = π~\p).

_ mod. Γ

w -w:

Y-

u
mod. Γ

, O o <ύ

X- -X- •p

THEOREM 2.3. Let Cusp (C, Γ) 6e in J7~o. In the above notations,
we have

R<π*d?w = \H

r

i(D/Γ) C) ] > 0 )

where the i-th cohomology C-vector space HXD/Γ, C) of D/Γ is regarded
as an έ?v-module through the residue map έ?v —> C(p) — έ?y\x&. Here έ?w

and <?7y are the analytic structure sheaves of W and V, respectively,
and m is the maximal ideal of the stalk έ?ViV of έ?v at p. Moreover,

m

0 i > 0 .

COROLLARY 2.4. Suppose Γ is in SL(N). A singularity {V, p) =
Cusp (C, Γ) in J^l, is not a Cohen-Macaulay but a quasi-Buchbaum sin-
gularity. Namely, if ω'v is the normalized dualizing complex of V,
then the cohomology sheaves H3\ω'v) are C(p)-vector spaces for all j Φ
- d i m V.
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REMARK. Freitag [6] noted that the Hubert modular cusps are not
Cohen-Macaulay. Ishida [13] could recently show that any Cusp (C, Γ)
in Jf, even if Γ is not contained in SL(N) and even if (C, Γ) is not in
S~o, is actually a Buchsbaum singularity, i.e., the truncation τ_r(ώv) of
the complex ωv itself, not just its cohomology sheaves, is a complex of
C(p)-vector spaces.

For the proof of the above theorem, we need some lemmas. First,
we show that the above map Π: U —> V is a "rational resolution".

LEMMA 2.5. The singularities of U are rational i.e.,

u < = 0

ikforeo υer, the Grαuert-Riemenschneider type theorem holds, i.e.,

(-X) i = 0

In particular, we have

E*π^w = R'Π^ϋ i ^ 0

Λ*ίr*^V(- Γ) = R'Π^ui-X) i ^ 0 .

PROOF. Since % is the pull-back of ft by the unramified covering
Ϊ7-»Ϊ7, it suffices to show the corresponding assertions for ft. But 17
is an open subset of a torus embedding, hence U has only rational
singularities and the Grauert-Riemenschneider vanishing theorem holds
by Kempf [14]. The last assertion follows from the Leray spectral
sequence. q.e.d.

Let Mk: = {meC* Π M\h{m) = k} = MΠ &(3Θ*) for each positive
integer kf where ft is the support function of C defined in the previous
section. The character e(m) determines a nonzero element g(m) of
H\X, έ?χ( — kX)) for each m in Mh. (For the definition of the character,
see [16].) As we saw in Section 1, there exists a Γ-invariant duality
between the natural cell divisions • and •* of dθ and 9Θ*, since (C, Γ)
belongs to &. For each cell a of Π, we denote by α* the cell of •*
dual to α. Let X°a = orb (R^o a) and Xa — X°a for each cell a of ••
We note that each Xa is also a torus embedding with respect to the
algebraic torus X°a - (C*)*-*1111*-1, and Z is the union of X°a, hence of
Xa, with α running through Π

LEMMA 2.6. Lei a be a cell of •• i^or eαcft m w ikf̂ , flf(m) vanishes
on X if and only if m does not belong ίoJlίfite*, and {g(m) \ m e M Π ka*}
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is a C-basis of H°(Xa, έ?Xa(-kX)). Moreover, we have H%Xa, έ?Xa(-kX)) =
0 for all positive integers i and for all nonnegative integers k.

PROOF. For each element m of Mkf g(m) is a nonzero element of
H\Xa, έ?Xa(-kX)) if and only if <m, a) = k, or equivalents, m belongs
to A α*. Since X°a is isomorphic to (C*)y with 1 ^ j ^ r - 1 or to a point,
g(m) with meMnka* are linearly independent on X°a and generate
H°(Xa, d7Xa(-kX)). Since Xa is the union of X°β for all β with a as a
face and g(m) with meMΓlkβ* does not vanish on X°β, έ?Xa(—kX) is
generated by grobal sections. Then by Demazure [5] and Kempf [14],
H\Xai έ?Xa( — kX)) = 0 for all positive integers i. q.e.d.

We say [J/Γ is fine if {ΎeΓ\y(a) Π β Φ 0} = {1} for any two cells
a and /3 of • with a Γ\ β Φ 0.

PROPOSITION 2.7. ίί^X, ^ ) - ίί^D/Γ, C) α^d iϊ^X, ^x(~fcX)) = 0
for all positive integers i and k.

PROOF. First, assume that d/Γ, which is the dual graph of X, is
orientable and fine. Let Σά be the set of all i-dimensional cells of Π/^,
and for each cell a of Σά let Xa be the corresponding (r — j — ̂ -dimen-
sional analytic subset of X, i.e., Xa = p(X&) for a cell ά of Π represent-
ing a, where p:X->X is the natural quotient map by Γ. Fix an
orientation of Γl/Γ. Let Qί: έ?Xa->έ?Xβ be the restriction maps for cells
β and their faces a of •• Then by Ishida [12, §3], we have the exact
sequence

« oeJ o

 α0 a ι e Σ l °Ί α r _ 1 e2 ' r _ 1

Here the coboundary map δ: Φ« ejd ^ r β —• φβeΣd+1 έ?xβ is defined by δ(fa) =
ΣiS6 2 d+1sign(α, Q̂) Q£(/«). By tensoring this with έ?u(—kX) for a non-
negative integer k, we also have the exact sequence

- θ
a^eΣ

This induces a spectral sequence

But by Lemma 2.6, E?t9 = 0 for all p ^ 0 and g > 0. Hence we have
H*(X, έ?x(-kX)) = H\K') for the complex K' with Kd = Et° =
φaeΣdH°(Xa, έ?Xa(—kX)). Note that we have a complex

( l ) o -> H\X, &x(-kX)) Λ κ° Λ ^ Λ... Λ ip-1 -> o.
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When k = 0, we have Kd = © β β *<,<?« and δ(lα) = Σ*βrd+1sign (α, /3) 1/3,
since iϊ°(Xα, ^ β ) ^ C for any a. Hence we have jff'(lΓ) = H^DjΓ, C),
since the dual graph [21Γ of X is a cell division of D/Γ. Next we
consider the case k > 0. For each element m of MJΓ, let #(ra) be the
section of έ?x( — kX) induced by Σ«em fl'W, which is a finite sum on
each point of X, by Lemma 2.6. For each cell a of I'd, let a*(Jc): =
(MC[ka*)/Γ9 where α* is the union of the cells of 30* mapped modΓ
to the cell α* dual to a. Then by Lemma 2.6, {g(m)Ua\mea*(k)} is a
C-basisof H°(Xa, έ?Xa(-kX)) for each cell a of Q/^ Moreover, clearly

δ(g(w>)\χa) = Σ sign (α, /3) Sf(m)IZ .

For each element m of (JίΠ k(dθ*))/Γ9 there exists a unique minimal
dimensional cell /3* of dθ*/Γ among the cells α* with meα*(fc). Then
for each cell a of Π/Γ, we have meα*(λθ if and only if β* is a face
of α*, or equivalently a is a face of the cell β dual to β*. Since /3 is
contractible, the sequence

(lί) 0 -> C -> 0 C ^ ^

is exact, where Σd(β) is the set of all d-dimensional cells of Π/^1 which
are faces of β and

δ\g(m)]x ) = Σ sign (α
ad a d e Σ d (β)

The complex (1) isomorphic to the direct sum of (l»)'s and hence is exact.
Thus we have H\X, έ?x(-kX)) = ίf(JS:') = 0 for all positive integers i.

In the general case, take a finite unramified Galois covering
ψ: Uf —> U of U with the covering transformation group G = Γ/Γ' for
some subgroup Γ' of Γ such that the dual graph of X'\ — ψ~\X) is
orientable and fine. Then by the above, it suffices to show that
W{X', ^{-kXf)f = Hj(X, έ?(-kX)) for all nonnegative integers j and
k. By Grothendieck [7, Corollary 3 to Theorem 5.3.1], we have the
spectral sequence:

E?>« = H*{G, H%X', έ?A~kX'))) - H>+<(X, ^2(^^(-AX')))

Since G is finite and H\X\ &z.(—hX')) are C-vector spaces, we have
HP(G, H9(X', <?z>(-kX'))) = 0 for all positive integers p. On the other
hand, ψ is unramified and φ*#z(—kX) = έ?x>(—kX'). Hence we have

l X ' = <rz(-kX). Thus W{X't <?A-kX'))G = W{X, <?z(-kX)).
q.e.d.
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PROOF OF THEOREM 2.3. By the comparison theorem in [8] and
Banica-Stana§ila [2], we have

(R'Π^uΓ = projlim*JEW,

(RΊI*<?„(-X)Γ = projlim* JEΓ

where Λ denotes the m-adic completion. In view of the exact sequences

0 -> <5*r(-ftX) -» ^ / ^ ( - ( f t + 1)X) -» ^ / ^ ( - Λ X ) -+ 0

0 -> ̂ χ(-ΛX) -> <s^(-X)/^(-(ft + l)X) -> ̂ ( - X ) / ^ ( - f t X ) -> 0 ,

we are done by Proposition 2.7 and Lemma 2.5. q.e.d.

PROOF OF COROLLARY 2.4. Let αv and αv be the normalized dualizing
complexes of V and W, respectively, so that they are complexes with
nonzero terms between degrees —r through 0, where r = dim V = dim W.
(See, for instance, Schenzel [18].) We see as in the proof of Proposition
2.2 that when Γ c SL(N), the canonical divisor of W is - Y. Since W
is nonsingular, ωw = έ?w(— Y)[r]. By the duality theorem (see Banica
and Stana§ila [2]), we have

Rκ*<?w — Rπ*R Hom^ (ω'w, ωw) = R Hom^F (Rπ^ω'w, <ov) .

On the other hand, Rπ*ωw = Rπ*έ?w(— Y)[r] = m[r] by Theorem 2.3.
Hence

Γ ], ω-v) = R Hom^F (nx, ωv[—r]) .

By the long exact sequence arising from the short exact sequence 0 —>
m —> ^V —> C—>• 0, we get the isomorphisms Rιπ^d7w — Ext^F (̂ V, CUF[—r])
for i ^ r — 2 and the exact sequence

0 — ExtS;1 (̂ V, α)r[-r]) -> i ? 1 * - 1 ^ ^ -> C-> Ext^F (^F, ωr[-r]) — 0 ,

since R*π*<!?w = 0 for i ^ r and Ext^F(C, α>r[-r|) = 0 for i ^ ?• and =C
for i = r, by [18]. On the other hand, Ext^F (̂ V, ω^-r]) = JEr'(a)r[-r]).
Hence, in view of Theorem 2.3, we see that Hs(<Ov[ — r]) for j Φ 0 are
C-vector spaces. q.e.d.

Next we define the length and the principal degree of a singularity in
^ 7 , which may be regarded as a generalization of those of Nakamura [15],
and consider the relation between them and the embedding dimension.

DEFINITION 2.8. The length length (V) of (V, p) = Cusp (C, Γ) in
^l is the number of the Γ-equivalence classes of N Π dθ.

DEFINITION 2.9. The principal degree Deg(F) of (V, p) is
dimcHXX, <?Z(-
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Here, we note that Deg (V) = dimc H\ Y, έ?γ(- Γ)) by Lemma 2.5
and that Deg (V) = — Y2, when r = dim V = 2. Moreover, as we will
see in Corollary 2.15, the length and the principal degree are analytic
invariants. Let Mk = {Γ-equivalence classes of Mk = MΓ)k(dΘ*)}. Recall
that for each element m of Mk, g(m) is a section of έ?x{—kX) induced

by Σmem#(wO

PROPOSITION 2.10. {g(m)\meMk} is a C-basis of H\X, έ?x(-kX)).
Especially Όeg(V) = length (F*).

PROOF. We have a homomorphism

Θ C. ΎU -ί> TT°( Ϋ S?~( h ΫWΓ — Ή°( Y S? ( h YΎ\v/ lib —* JΠ \Λ-9 CS χ\ — /C.Λ. )) — XI \-Λ.f Cs x\ — wΛ. )) ,

w h e r e t h e first a r r o w sends m t o g(m). The map g is injective by
Lemma 2.6. F o r any element s of H\X, έ?χ( — kX)), w e h a v e s =
Σmej^αmflKwO w i t h α m 6 C, by Lemma 2.6. Since s is Γ- invar iant ,
{am Im e m) is constant for any m of JβΓA. Thus w e h a v e s — Σm6^ f c dm ff(w).
Hence ^ is sur ject ive. q.e.d.

We now s t u d y t h e embedding dimension.

L E M M A 2.11. Σ βσ n* K ^ O I converges on W.

P R O O F . Take a maximal dimensional cone a = i?^0^i + R^W2 + +
R^onr of ^1, let {m^ m 2, , m r } be t h e Z-basis of Mdual t o {nlf n2f , %r}
and let ^̂  = e(ms) for j = 1 t h r o u g h r . Take a point z = (2^ «2, , s r )
of t 7 \ y and let s = sjix + s2w2 + + srnr e C be t h e image of z u n d e r
ord: TN emb (A) —> Me (iV, ^1). Then for any element m = b1mι + δ2m2 +
•• + 6 r m r of C * Γ ) M , we h a v e \e(m)\ = \z\ι -zh

2

2 zhs\ = (e"8 l)& 1

(β"82)&2 (e-O*r = β"<m'β> < 1, and blf b2, , br > 0, since C* is contained
in t h e dual cone <τ* = R^om1 + R^0m2 + + R^omr of σ. Hence
Σmec nΛf |β(m) I converges on U(σ, s): = o rd" 1 ( { t ^ + ί Λ + + ί r^ r [ίj > sd

for i = 1 t h r o u g h r}) c {(wlf w2y , w r ) 6 Γ^ emb ({faces of σ}) | | w i | < 1^1
for j = 1 t h r o u g h r} . Since T7 coincides w i t h t h e union \JO8 U(σ, s) of
t h e open sets U(σ9 s) of TN emb (A) w i t h σ r u n n i n g t h r o u g h all maximal
dimensional cones of A and w i t h s r u n n i n g t h r o u g h all points of C,

\e(m)\ converges on W. q.e.d.

By this lemma, Σmeme(m) converges to a holomorphic function on
W, for any m of (C* Π M)/Γ. Clearly it is Γ-invariant and vanishes on
Ϋ. Thus we have a holomorphic function /(m) on W vanishing on Y.
Since C* is convex, M Π C* is a semi-group and e(m + m') = e(m) e(m')
for any m and m' of ΛfΓϊC*. Let C{MΠC*} be the set consisting of
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the series ΣmeMnc*MW converging on some neighborhood of Ϋ in W.
Each element of the subset of Γ-in variants C{JlίflC*}Γ of C{MnC*}
induces a holomorphic function on some neighborhood of p in V,
vanishing at p.

LEMMA 2.12. We have a canonical isomorphism C{Mf] C*}Γ — m,
where m is the maximal ideal of d7v at p.

PROOF. Clearly, we have an injective homomorphism C{ikΓfiC*}Γc^>m.
Let /em, and let / be the holomorphic function on some neighborhood
of Ϋ in W, induced by /. For any r-dimensional nonsingular cone σ of
A, f is expressed as a convergent series

Σ ame{m) (am e C) ,
mβJfn(σ \{0ί)

on some neighborhood of orb (σ). Clearly, C*\{0} is equal to the inter-
section Π o* of the dual cones of all r-dimensional nonsingular cones σ
of A. Hence / is expressed as a series

Σ ame(m) (αm e C) .
m e M Π C*

It is contained in C{MnC*}Γ, since / is Γ-in variant. q.e.d.

REMARK. C{MίlCT is contained in the ring C[[(M Π C*) U {0}]]Γ of
the Γ-in variant formal power series. Cohn [3, Theorem 3.10] showed
that C[[ikfΓΊC*]]Γ- C[[ . ,/(m), ]]Γ with m running through Ml9

when r = 2 and length (V) ^ 3. Moreover, he also showed in [4] that
C[[ikf Π C*]]Γ are finitely generated for 3-dimensional Hubert modular
cusp singularities and found generators for them, in some special cases.

Recall that Ms = { m e l ί l C*\h(m) = j}, where h is the support
function of C, defined at the beginning of Section 1. Here, we note
that Mλ = dθ° Π M and \Jjez>0M3- = M Π C*. Then we have a filtration
{nij}j=i,2,.~ m m by rtij = C{\Jk>όMk}

Γ. Clearly, the i-th power ideal mj

is contained in m,-.

THEOREM 2.13. Emb. dim (V) ^ Deg (V) for a cusp singularity (V, p)
in J7"o. Moreover, the equality holds ifr = S and the cell division Π*/^
of the compact topological surface D*/Γ induced by dθ*, is a fine cell
division.

PROOF. The canonical map nx/m2 -* H°(X, έ?x(—X)) is surjective, by
Proposition 2.10, since it sends /(m) + m2 to g(m) for any m of Mγ. Thus
the first assertion of the theorem is proved. As for the second assertion,
it is sufficient to show that m2 = trtg, since dimcm/rtt, = %(MJΓ) = Deg (V).
Clearly, mi/mί.+1 is generated by {/(m) + mi+1|meΛfy = M3 /Γ}. For each
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in of Mj, let m be a representative of m and let α* be the 2-dimensional
cell of 3(9* which contains (l/j)m. We can find three elements m19 m2

and m3 of α* Π Λf which form a Z-basis of M such that the semi-group
Z^mλ + Z^0m2 + Z^omB generated by them contains m (See the proof
(2) => (3) of Proposition 4.5.). Since h{m^) = h(m2) = h(m3) = 1 and h{m) = j ,
we can choose llf l2, , lό from {m^ m2, m3} so that lλ + l2 + + £,. = m.
Next for any j elements yίf 72, , Ίs of Γ, we see that 7 ^ + Ί2l2 + +
Ίόl5 e Mj if and only if 7jίl9 Ύ2l2, , Ίόlά are on one and the same cell of
3Θ*. When Π*/^ is a fine cell division, the latter condition is equivalent
t o 7 1 = 72 = = Ty. Then f(m) - /(I,) ./(Γ2) - f(Jά) e mj+1, where ΐt e M1

is the image of UeM^ Then (m/nt,)®' -*m i/m i+1 is surjective and m is
generated by /(m) with m e Mt. Hence τn2 = tn2. q.e.d.

For (V,p) = Cusp (C, Γ) in J ^ let Π f be the cell division of D = C/R>0

induced by that of the boundary 3(Θ*)° of the polar (θ*)° of the convex
hull Θ* of ΛfnC*. Let (U\ Xf) -> (V, p) be the rational resolution of
V obtained from the r.p.p. decomposition Σ* corresponding to the cell
division of 3(0*)° as in Section 1 and Lemma 2.5 for U, X, Σ. For each
vertex v of Π7A w e assign a positive integer l{v) as follows: Take a
representative v of v and let u be the vertex of 3(Θ*)° corresponding
to it, i.e., v is the image of u by π:C->D. Then there is a positive
integer I such that Z u is the primitive element of R^0 uΓ\N. We then
let l(v) = I. Clearly it does not depend on the choice of v, since 3(Θ*)° is
Γ-invariant. Let X f = Σ l(v)Xf

vf where X* is the irreducible component
of X f corresponding to v. When (V, p) is in ^ , the above (U\ Xf)
agrees with the rational resolution at the beginning of this section and
j p = X\ We now study the geometric significance of (U\ Xf) for
(V,p).

Choose an embedding h: (V, p) ̂  (2?, 0) of V into an open set B of
CL with h(p) = 0. For the blowing-up (?: ( Z / P ^ 1 ) - ^ ^ , 0) of B at 0, let
V be the proper transform of h(V) by g. Hence q:V-+V is the
blowing-up of V at p.

THEOREM 2.14. If the dual graph [jyr of X+ is fine, then W is
isomorphic to the normalization of the blowing up V of V at p, where
Π: (U\ X^) -+(V,p) is the above rational resolution.

PROOF. We see that ^ i ( — X*) is base point free, in the same way
as in the proof of Lemma 2.6, when ΠV^ i s fine We have a holomor-
phic map h: U'—> Z with q -h = h- Π, as follows: Let (zl9 z2, , zL) be
a coordinate CL and let gi be the image of zjlv + tn2 by the canonical
map rn/rn2 —> H°(X\ ^ t(—X f )) , which is surjective. Then for each point
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x of X\ h(x) = (&(&), g2(x\ , gL(x)) e P * 1 = q-\0)czZ. Clearly Λ(ΪO = F.
When ZJ/Γ is fine, fl"°(JC, ^ ( - X 1 ) ) is a linear subspace of
H\X\ έTA-X*)) and has a basis {V(m)|me(Γδ* n Λf)/Γ} for any cell a
of Π7A where α* is the cell dual to a respresentative a of α and XJ
is an irreducible sub variety of X1 corresponding to α. The restriction
λ|(jΓt)0 of Λ to the algebraic torus (XI)0 (~(C*)d) of XI is finite, since
d = dimXi = dimα*.
for all cells of ΠVΓ,

Since X is the
the restriction Λ

finite union U«βπτ/r (-Xί)β of (-X2)0

t of Λ to X f is also finite. On
the other hand, h is an isomorphism over W\X\
to the normalization of V.

Hence W is isomorphic
q.e.d.

REMARK. When \Z\IΓ is not fine, the above theorem does not
necessarily hold. We give a simple 2-dimensional example. Let (V, p)
be a 2-dimensional cusp singularity with a resolution Π: (U, X) —>(V, p)

FIGURE 2.1

such that the exceptional set I is a rational curve with a node and
with the self-intersection number —1. Then dimiZ"°(X, ^(—-X")) = 1
and X has only one point x, on which all global sections of ^ z (—X)
vanish. Let (U,Y)-+(U,x) be the blowing-up of U at x and let
(£7, X)-*(U'f xr) be the blowing-down of the proper transform X of
X in U to a point xf. Then the blowing-up of V at p is isomorphic
to U'.
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COROLLARY 2.15. Let (V,p) = Cusp(C, Γ) and (V, p') = Cusp (C, Γ')
be in Jf. Then V and V are analytically isomorphic near p and p'9
if and only if (C, Γ) and (C, Γ') are equivalent in the sense at the
beginning of Section 1.

PROOF. We consider the rational resolutions in Theorem 2.14, but
for simplicity, we omit the dagger. Thus let (U, X) and (£Γ, X') be
the rational resolutions of (V, p) and (F' , pf) obtained by the boundaries
9(0*)° and 3((Θ')*)° of the polars (β*)° and ((θ')*)β of the convex hulls <9*
and (Θ')* of ikfnC* and Λfn(C')*, respectively, as in Theorem 2.14.
When both cell divisions Π/Γ and Π/Γ' of (C/B>o)/Γ and (C'/R>o)/Γ'
induced by those of 3(0*)° and 3((Θ')*)% respectively, are fine, an isomor-
phism of V and V near p and pf induces an isomorphism of U and Uf

near X and X', by Theorem 2.14.
We also have the same assertion in the cases that Π/.Γ and Π'/T'

are not necessarily fine, as follows. Take a suitable subgroup Γo of Γ
of finite index such that the induced cell division Π/Λ on (C/R>O)IΓ0 is
fine. Then we have the finite covering U0-*U induced by the covering
map (C/R>o)IΓ0-^(C/R>Q)/Γ, where Uo is the rational resolution of
(Vo, Po): = Cusp(C, Γo) with the commutative diagram:

Uo >V0

I I
U > V

Take a Γ-invariant subdivision (JV, A') of (N, Σr) consisting of nonsingular
cones, where (N9 Σ

r) is the r.p.p. decomposition of N induced by 3((θ')*)β

If (V, p) and (V, p') are analytically isomorphic near p and p', we have
another resolution W-*V of the singularity (V, p) with nonsingular
W by (N, A!) and through this isomorphism. The dual graph Δ'jΓ' of
the exceptional set of this resolution is a subdivision of Π'//1' induced
by 2". We have the following commutative diagram:

Ut
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Here W (resp. W0J resp. WΌ) is the normalization of the irreducible
component of U x vW

r (resp. Vo x VW, resp. Vo x FTF') with the surjec-
tive map onto V by the natural projection and /: W —> W is the map
naturally induced by the projection UxvW -+W. The vertical arrows
are finite covering maps. Since Uo-+U is unramified, so is Wo —> W.
Suppose that WΌ —> W is ramified. The branch locus of W contains a
component Y'o of the exceptional set Yf of W, since W is nonsingular
and WΌ —> TF' is unramified over T7'\F\ Clearly, W contains an analytic
subvariety Γ with f(Y) = Y'o. Then W0-*W must be ramified at Γ,
since the restriction of / to W\f~~\Y') is an isomorphism. Hence
WΌ —> W is unramified. The analytic subvariety of W corresponding
to each simplex of Δ'/Γf is toric and hence simply connected. Therefore,
the covering map WΌ —> W' is induced by an unramified covering map
Δ'/Γ'0-*Δ'/Γ' of the dual graph and (V'o, pΌ): = Cusp(C", Γ'o) is isomorphic
to (Vo, Po) near p0 and p'O9 where Γ'o is a subgroup of Γ' of finite index.
Next take a suitable subgroup Γ[ of Γ'o of finite index such that ΠV-̂ ί
is fine. Then by the same argument, we have a subgroup Γλ of Γo of
finite index such that (Vl9 pλ): = Cusp (C, /\) is isomorphic to (Fί, p[): =
Cusp (C, JΓI). Here Π/A is also fine. Hence by the first consideration,
we have an isomorphism (Ulf XJ—>(U[, X[) near Xx and X[ between the
rational resolutions {UuXι) and {JJ[, X[) of (Vl9 px) and (Fί, pi) induced
by d(Θ*)° and 3((Θ')*)% respectively. Then we have an isomorphism
{U, X) ^(U', X') by the following commutative diagram:

—> u'\x'.
The isomorphism (U, X) ^ (Uf, X') obtained in the above way, induces
an isomorphism Γ~>Γ' and a Γ-equivariant isomorphism (ϋ, X)2$(U', X').
It is easy to see that (C, Γ) is determined by X and ^( — X), which is
dual to the normal sheaf of X in U, uniquely up to equivalence. Hence
(C, Γ) and (C, Γ') are equivalent. q.e.d.

3. A remark on Hubert modular cusp singularities. First, we recall
Hubert modular cusp singularities. Let K be a totally positive real
algebraic number field of degree r over Q. Then we have r distinct
embeddings x-^x{ί\ i = 1 through r, of K into R. Let N be an addi-
tive subgroup of K of rank r, and let Λ be a multiplicative subgroup
of [7^ of rank r — 1, where UN is the group of totally poistive units
λ with xN = N. Let
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λ e A, μ e N\

Then G(N, A) acts properly discontinuously and without fixed points on
the product φ r of r copies of the upper half plane φ by

Then V(N, A) = (£ r Ό {°°})/G(N, A) is called a Hubert modular cusp
singularity. By the embedding NBX H-> (x{1), x{2\ , x{r)) e Rr, N(czZr)
is a lattice in Rr, i.e., JVΛ = Rr. Since λiV = iV and λ is totally positive
for each λ in Λί, A is a subgroup of SL{N). We see that C: = (i2>0)

r is
Λ-invariant and the induced action of A on D: = C/JR>0 is properly
discontinuous, fixed point free and with compact quotient by the Dirichlet
unit theorem. Hence (C, A) is in ^ and Cusp (C, 4) - V(N, A). In this
case, D/A is the (r — l)-dimensional real torus. Conversely, we have
the following, at least in dimension three.

THEOREM 3.1. Let (C, Γ) be a Z-dimensional pair in Sf. If (C/B>o)/Γ
is a 2-dimensional real torus, then Cusp (C, Γ) is a 3-dίmensional Hilbert
modular cusp singularity.

PROOF. Let 7 and δ be generators of Γ. We first show that all
eigenvalues of 7 and δ are real. Suppose not. Then with respect to
some basis {vl9 v2, vΆ} of NR, we can express 7 in the form

Γ ° ° \
0 r cos θ r sin θ\ with r e R>0 , 0 < 0 < 2ττ .

\ 0 — r sin θ r cos 0/
Since C is open, it contains a point v = s^i + s2v2 + s3ι;3 with s1s2s3 Φ 0.
Observing the orbit of v under 7Z, we see that C contains v1 or — vx

according as s1 > 0 or sx < 0, since C is a convex and Γ'-invariant cone.
But the images π(±vλ) of ±vx by the projection π: NR\{0} —> S2 are fixed
points of 7, a contradiction.

We next show that not all eigenvalues of 7 are ± 1 . Otherwise,
with respect to some basis {vlf v2, vz] of NQ, we can express 72 in the
form

i1 x °\
( i ) 0 1 01 or (ii)

\0 0 1/
In the first case (i), the orbit {(Sj + ks^Vi + s2v2 + s3vs\keZ} of a point
v = s^i + s2v2 + s3v3 of C with s2 =̂  0 under 72Z cannot be contained in
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any open nondegenerate convex cone of NRf a contradiction. In the second
case (ii), δ2 is expressed in the form

with α, β 6 Q ,

since Γ is abelian. If a = q/p with p,qeZf then δ2prf~2q (Φid) is ex-
pressed in the form

0 β'\

1 0 with β' Φ 0 .

0 1/

But this cannot occur as in the first case. By these considerations, the
characteristic polynomial of 7, regarded as an element of SL(3, Z) with
respect to some Z-basis of N, is an irreducible cubic equation over Q
with three real roots, or the product of an irreducible quadratic equation
with real roots and a linear equation. In both cases, 7 has three
eigenvectors v19 v2 and vs with real eigenvalues ςl9 ξ2 and £3 different
from each other. Let K = Q(ξu ξ2, £8) be the field generated by ξ19 ξ2

and £8 over Q. Let {nL9 n2, n3} be a Z-basis of N9 and let vά = h^n, +
h2jn2 + hsjnz for j = 1, 2, 3. We may assume tha t hi5 e K. Then

0 0\

ξz 0) with H=(hts).

^0 0 ft/

Since Γ is abelian,

τy2 0 with ηβeK.

0 %/

First, suppose that & = 1. Then if is a quadratic extension of Q. We
denote by f, the conjugate of each element ς of K. Since vx — Ίvι and
Vi = Ίvl9 we have ^ = evx for some ε 6 K, where vλ = \hll9 h21, hsi). Hence
RVi Π N Φ 0 . Then ηt also must be 1, since ηγ > 0, δVi = τj1v1 and δe
SL(N). But it contradicts the fact that Γ acts on some open set of
S2 properly discontinuously and without fixed points. Therefore, ξlt ξ2

and £8 are roots of an irreducible cubic equation with integral coefficients.
Then we denote by σίf the automorphisms of K which send £, to £< for
i = 1, 2, 3, respectively. Since £<*(&!<, fe2ί, Λ8<) = Ί\hιiy h2i, hZi) and £<*(ffi(/&n),
^i(Λ2i), ^i(λ8i)) = 7ί(σί(fe11), σi(h2ύ9 ^Ϊ(Λ3I)), we may assume that ^(Λ^) = fe^.
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Moreover, we have 0",(ft) = ft, since σ<(ft)v, = δvt. Let H~ι = (ΛJy), let
JP\Γ' = h'nZ + Λί2Z + /4Z and let A = £f x 77?. Then iSΓ is a lattice of rank
3 in K and is ^(-invariant, since H~\N) = i(N'), where i: Nί cz R* is
the isomorphism defined by i(ξ (x) 1) = (0Ί(f), 02(ξ), ̂ β(ί)) Hence we see
that Cusp (C, Γ) is isomorphic to V(N', A), where C = JR>0VI + Λ>oV2 +
R>0v3. Let £7 be the union of great circles E19 E2 and E3 passing
through three pairs of points of {π(Vi), π(v2), π(v3)}. Then Γ acts on S2\J5
properly discontinuously and without fixed points and each connected
component of (S2\E)/Γ is isomorphic to a 2-dimensional real torus. If
Ed Π D Φ 0 , then it must be a minor arc of Ei9 since D = C/R>0 is
spherically convex. But it is impossible, since the free abelian group
Γ of rank 2 then would act on Eό Π D properly discontinuously and
without fixed points. Hence D agrees with one of the connected com-
ponents of S2\E, since D/Γ is compact. Therefore, C = JB>0^1 + R>0u2 +
R>Qu3 with u± (resp. u2, resp. u3) = ±vt (resp. ±v2, resp. ±v3), and hence
Cusp (C, Γ) is a Hubert modular cusp singularity. q.e.d.

COROLLARY 3.2. If (C, Γ) is in & then DjΓ cannot be a Klein
bottle, where D = C/R>0.

PROOF. Suppose that D/Γ is a Klein bottle. Let Γ = Γ Π SL(iSΓ),
which is a subgroup of Γ of index 2. Then D/Γ' is a 2-dimensional
real torus. We have C = B>0Vi + R>Qv2 + R>0v3 for some vί9 v2 and v3 of
-ZVΛ, by the proof of the above theorem. Hence any element 7 of Γ not
contained in Γ' is expressed in the form

0 0\ /0 0 ft\ /0 ft 0\

0 0 ft), 10 ft 01 or (ft 0

0̂ ft 0/ \ft 0 0/ \0 0

with respect to the basis {vl9 v2, v3) of NR, since C is 7-invariant. Then
72 has the double eigenvalue ftft besides the simple eigenvalue η\. Since
the eigenvalues of Ύ2eSL(N) are cubic integers with product 1, we
conclude that η\ and ftft are ± 1 . But ft, ft, ft > 0, since 7(C) = C. Thus
ft = ftft = l Then 7 has an eigenvector vt + v2 + Ύ]3v3 or Ύ]3v1 + v2 + v3,
a contradiction to the fact that Ί(Φl) has no fixed point on D. q.e.d.

4. Explicit construction of (C, Γ) in &. In this section, we deal
only with the 3-dimensional case for simplicity. We keep the notations
from Section 1. Recall that for (C, Γ) in ^ we had a Γ-invariant r.p.p.
decomposition (JV, A) consisting of nonsingular cones with \A |(: = \JσeΛ o) =
CU{0} and from it a resolution ώ: (TΓ, Γ)—>(V, p) of the singularity
(V, p) = Cusp (C, Γ). We have a Γ-invariant triangulation Δ of D = C/R>0
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χ(k)

π{m)

FIGURE 4.1

by the projection π: NR\{0} —> S2 from (N, A). Moreover, we attach
integers on both sides of each edge of Δ in the following way: Let
μ = R>Qk + R^l + R^m and v = R^ol + R>Qm + R±on be 3-dimensional
cones of A with a common 2-dimensional face R^l + R^om. Since μ and
v are nonsingular, there exist integers a and b such that the equality

( * ) n + k + al + bm = 0

holds. Then we attach the integers a and & on the sides of π(l) and π(m)9

respectively, to the edge π(R^Ql + R±Qm) of Δ as weights (cf. Figure 4.1).
Here, we note that the above integers a an & are equal to the self-

intersection numbers (ElZ2)
2 = Z\ Z2 and (EΪZl)

2 = Z, Z\ of the curve
E: = orb (μ Π v) on the surfaces Z2: = orb {R^m) and j ^ : = orb (R>ol)>
respectively, e.g., by [16, Proposition 6.7].

Conversely, we can reconstruct (C, Γ)eS^ from Δ/^ and the pair
of integers for each edge as follows: Let T be a compact topological
surface, Γ—>Tits universal covering and Γ — π^T), the fundamental
group of T. Let Δ be a Γ-invariant triangulation of f.

DEFINITION 4.1. A Γ-invariant N-weighting of Δ satisfying the
monodromy condition at the vertices is a pair (<J, p) consisting of a map
σ: {all vertices of Δ} -* N and a homomorphism p: Γ -* GL(N) satisfying
the following conditions: (i) σ is Γ-equivariant through p. (ii) For
the three vertices v19 v2 and vs of each triangle of Δ> their images o(v^9

σ(v2) and (7(v8) form a Z-basis of iV. (iii) For each vertex v of Δ, if

FIGURE 4.2
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π(ns)

<nx)

π(n2)

π{n3)

FIGURE 4.3

Vi,v2, -—,v8 are the vertices of its link going around v in this order,
then π σ(v^), π σ(v2)9 , π σ(v8) also go around π σ(v) once in this
order (cf. Figure 4.2).

DEFINITION 4.2. A Γ-invariant double Z-weighting of Δ satisfying
the monodromy condition at the vertices is a pair of integers attached
to each edge of Δ with one integer on the side of one vertex and with
the other integer on the side of the other vertex satisfying the following
conditions: (i) These integers are Γ-invariantly attached, (ii) For
each vertex v of Δ> let vl9 v2, -m',v8 be the vertices of its link going
around v in this order. Let {nf nlf n2} be an arbitrary Z-basis of N.
We then let nlf n2 and n be the iV-weightings of the vertices vlf v2 and
v, respectively. Then we can determine the N- weight ings n3, , n8, n8+1

and n8+2 of the vertices vB, , v8J vx and v2 in this order by the pair of
integers on each edge and by the equality (*). Then we require that
n8+1 = nlf n8+2 = n2 and that π(nύ, π(n2), , π(n8) go around π(ri) once
in this order (cf. Figure 4.3).

Let DZW be the set of all Γ-invariant triangulations Δ of the
universal covering spaces T of compact surfaces T, endowed with Γ-
invariant double Z-weightings satisfying the monodromy condition at the
vertices, where Γ = π^T). For Δ in DZW, choose a Z-basis of JV and
a triangle of Δ, and attach the three elements of the Z-basis to the three
vertices of the triangle as JV-weights. Then we have an JV-weighting
of Δ, i.e., a map σ: {all vertices of Δ}—••ΛΓ, by the equality (*), since f
is simply connected. Moreover, we have a homomorphism p: Γ—>GL(N)f

by p{Ί)-σ{v) = σ(7 v) for any element 7 of Γ and vertices v of Δ
Clearly, the pair (σf p) is a Γ-invariant JV-weighting of Δ satisfying
the monodromy condition at the vertices. We obtain a Γ-equivariant
local homeomorphism f:T—> S\ extending the map π o such that the
image of each triangle of Δ is a spherical triangle. We denote by C(μ),
the cone π~\f{μ))U{0} = R^-f(μ) for each simplex μ of Δ Let
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is

A = {C(μ) I simplexes μ of Δ} U {{0}} ,

C = \Λ\\{0} = π~\f{T)) and D = ττ(C) = /(Γ). Clearly we have:

PROPOSITION 4.3. Assume that the following condition (**)
satisfied:

(**) / is injective, f(T) is spherically convex and its closure f(T)
is contained in a hemisphere of S2.

Then (N, A) is an r.p.p. decomposition of N, C is a Γ-invariant
open nondegenerate convex cone, p is injective and the action of Γ on D
is properly discontinuous and fixed point free. Hence (C, Γ) is in &.

REMARK. A 2-dimensional cusp singularity (V, p) corresponds to a
1-dimensional periodic continued fraction ω = [[δi, b2f , 68]], where bά

are integers greater than or equal to 2. (See for instance [11].) The
former is obtained from the latter in a manner similar to the one above.
In this case, T — S\ f is a line and Δ is a triangulation of T, on the
vertices {VJ} of which the integers — b3- attached periodically, i.e., — bj =
— bk if j = k (mod. s). Then we have a map σ: {vertices of Δ}—• Z2 by

the equality: σ{v,λ) + σ(vj+1) - bsσ(Vj) = 0 for all /eZand σ(v0) = ( ~λ ),
/ 0 \

σ(vλ) — ( i )• Moreover, we have a matrix

A =
0

- 1

0 1 0 1

Then (V, p) — Cusp(C, Γ), where Γ is the cyclic group of infinite order

-A -b;.

FIGURE 4.4
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H{m)

FIGURE 4.5

generated by A, and C is the cone in R2 generated by the two eigen-
vectors & and ξ2 of A. (See Figure 4.4.)

In the following, we will examine some sufficient condition under
which / satisfies the above condition (**). For each nonzero element m of
MR we define the affine plane H(m) in NR by Him) = {neNR\(m, n) = 1}
as in Section 1.

DEFINITION 4.4. A ττ1(Γ)-invariant triangulation Δ of the universal
covering space Γ of a compact topological surface T with a πx(T)-
invariant double Z-weighting satisfying the monodromy condition at the
vertices is strictly locally convex (resp. locally convex) if there exists
a πΛT)-invariant cell division • of T, of which Δ is a subdivision and
which satisfies the following condition (P) (resp. (P')): Attaching the
three elements of a Z-basis of N to the three vertices of a triangle of
Δ, we have a ^(T)-invariant iSΓ-weighting of Δ satisfying the
monodromy condition at the vertices. For each 2-dimensional cell a of
Π, there exists a unique element m of M (resp. MR) such that σ(v) is
on the plane H(m) (i.e., <m, σ(v)) = 1) for any vertex v of α, and that
φ) is above the plane H(m) (i.e., <m, σ(v)) > 1) for any vertex v of
ά\a, where a denotes the union of all cells of •, which have common
faces with a. (See Figure 4.5.)

In the above definition σ{v) need not be on the plane H(m), for a
vertex v of Δ in a if it is not a vertex of Π Clearly "strictly locally
convex" implies "locally convex". The local convexity conditions (P) and
(P') in fact imply the "global convexity" as we now see in Theorem 4.5.

THEOREM 4.5^ If a π^Tyinvariant triangulation Δ of the universal
covering space T of a compact topological surface T with a π^T)-
invariant double Z-weίghting satisfying the monodromy condition at the
vertices is locally convex, then (**) is satisfied, i.e., the map f: T-> S2

induced by it as after Definition 4.2 is injective, f(T) is spherically
convex and its closure is contained in a hemisphere of S2.
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FIGURE 4.6

PROOF. Fix a point s of f and take a sufficiently small circle S1

on S2 with the center /(s). Let W be the union \Jθes^ WΘ of the longest
curves Wθ on T starting from s whose images by / are on the great
circles of S2 intersecting S1 at θ. Then W is an open set of f. As
we will see shortly in the proof of the sublemma, f(Wθ) is strictly a
minor arc of a great circle for each θ of S\ Then f(Wθ) Π f(Wθ>) = {/(*)},
if θ Φ θ\ Hence the restriction f{w of / to W is injective. There is a
unique Γ-equivariant continuous locally injective map τ: f -> iSΓΛ\{0} such
that / = π τ and that the image r(λ) of each 2-dimensional cell λ of a
cell division • of T as in Definition 4.4 is on a plane in NR. Let a be a
2-dimensional cell of • containing s, and let m0 be the element of MR such
that τ(ά) is on the plane H{m0). Then ft(ί): = <m0, r(ί)> and fe: = fe /[^ are
continuous functions on T and D = f(W), respectively. (See Figure 4.6.)

SUBLEMMA. hr\ϊ) is a closed curve for any positive real number I
greater than 1.

PROOF. First we show that the length of τ{Wθ) is infinite by any
Euclidean metric of NR for any θ of S1. Let {uά} be the set of all
turning points of τ(Wθ) for θeS1 fixed once for all. Namely, ud is
either the image by τ of the point at which Wθ intersects transversally
an edge of • or is a vertex of • which lies on Wθ. By the local
convexity assumption, we easily see that {ud} is an infinite set. Let
Vj = uj9 when τγw(us) is a vertex of •• When τ\w(us) lies on an edge E
of Π> let Vj be one of the images by τ of two vertices v) and v) of E
with <m0, Vj) ^ <m0, %>. Then t ^ erTF and {v̂  } is an infinite set, since
for all vertices v of •, the numbers of edges meeting at v are bounded.
Suppose that the length of τ(Wθ) is finite and let l0 = sup{&(£)|£ 6 Wθ}.
Then clearly Vo: = τ({te W\k(t) ^ l0}) must be contained in some compact
set K of iVΛ. Since & τγw(Vj) = <m0, v )̂ ^ <m0, ̂ 5-> < i0 and vs 6 JV, {v̂ }
is contained in Kf)N, a contradiction to the finiteness of the lattice
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H(mo)ΠH

FIGURE 4.7

points KCϊN in the compact set K. Hence the length of τ(Wθ) is
infinite. There exists a unique plane H containing τ(Wθ) for each Θ eS 1.
Let jffj be the plane in NR defined by {neNR\<m0, n) = Z}. Then Hi is
parallel to H(m0) and intersects H along a line. By the condition (P')
of Definition 4.3, τ(Wθ)\I is above the line containing I in Jff, for any
line segment I of τ(Wθ). Therefore, τ(Wθ) Π Ht is exactly one point.
Hence we have the map S1-^ D sending each element θ of S1 to
π(τ(Wθ) ΓΊ Ht). Clearly it is continuous and its image is equal to h~\l).
(See Figure 4.7.) q.e.d.

PROOF OF THEOREM 4.5 CONTINUED. Let D(l) = {ueD\h(u) ^ ϊ}. By
the above sublemma, D(l) is closed for any real number I greater than 1.
Let {tά} be a sequence of points of W, converging to a point of T. Since k
is a continuous function, l0 = max {&(?,•)} is finite. Then {/(*,-)} converges
to a point u of D(lo)aD. Since jf,̂  is homeomorphic, ty = f~w f(tά) con-
verges to fΰt(u), which is a point of W. Therefore W is closed. Hence
W = T and /: f -> D is injective. Moreover, D is star-shaped with f(s)
as the center, i.e., for any point t of D, the minor arc of the great
circle joining f(s) and t is contained in D. However, the choice of s at
the beginning of this proof was arbitrary. Hence D is spherically
convex. Since τ{W\ά) and τ(a) are above and on the plane H(mo)>

respectively, the closure of D = π τ(T) is contained in the hemisphere
which is the image of H(m0) by the projection π. q.e.d.

By this theorem, each locally convex Δ in DZW induces a (C, Γ) of
^ If Δ is strictly locally convex, then τ(Γ) in the proof, coincides
with the boundary dθ of the convex hull θ of C Π N.

PROPOSITION 4.6. The following three conditions are equivalent for

(C, Γ) in St
(1) (C,Γ)e^0.
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(2) (C, Γ) comes from a strictly locally convex Δ in DZW.
(3) (C, Γ) comes from a A in DZW satisfying the following con-

ditions: (i) The sum of the double weights on each edge of Δ is not
greater than — 2. (ii) We get a cell division • by deleting all edges
of Δ which have the sum of the double weights equal to —2.

In this case, the Euler number X(T) < 0.

PROOF. (3) => (2). Let (σ, p) be the induced Γ-invariant JV-weighting
of Δ Let two triples {vu v2, v3) and (v2f vZy v4) of vertices of Δ form
two adjacent triangles of Δ Then σ(vL), σ(v2) and σ(vz) lie on a plane
H(m) with m belonging to M, since they form a Z-basis of N. By the
equality (*), σ(v4) is above (resp. on, resp. under) the plane H(m), i.e.,
<m, σ(v^)) > 1 (resp. = 1, resp. < 1) if and only if the sum of the double
weights on the edge incident to both v2 and v3, is smaller than (resp.
equal to, resp. greater than) —2. From these facts, we see immediately
that σ and • satisfy the condition (P) of Definition 4.4.

(2) => (1). For each 2-dimensional cell a of a cell division • as in
Definition 4.4, τ(α), which is a face of 30, is on a plane H(m) with m
belonging to M. Thus all vertices of 30° are contained in M, Hence
Θo = ©*.

(1) => (3). Since Θ° = Θ*, each face F of 3© is on a plane H(m) with
m belonging to M. Take an arbitrary tiangulation Δ^ of F with the
vertex set Nf) F. (See Figure 4.8.) Then the three vertices n19 n2 and
n3 of each triangle of Δ^ form a Z-basis of N, since <m, n^) — 1 and
n2 — nλ and nz — nγ form a basis of the Z-submodule {neN\(m, nλ} = 0}
of N. The manner of the division of each edge of dθ in the above
triangulation is unique. Hence we obtain a Γ-invariant triangulation Δ
of 3Θ in the following way: Taking representatives of faces of dθ/Γ,
triangulate each of them as above, and translate it to other faces of

FIGURE 4.8
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dΘ by the action of Γ. We have a Γ-invariant double Z-weighting of
Δ by the equality (*). Clearly it satisfies the conditions (i) and (ii) of
(3), and induces (C, Γ).

To prove the last assertion, we may replace Γ by a subgroup of
finite index. Thus without loss of generality, we assume that Δ/Γ
gives rise to a triangulation of T. Let sOf 81 and s2 be the numbers of
the vertices, edges and faces, respectively, in A/Γ. Let vltvif

 m m

fva{v)

be the vertices of the link of a vertex v of Δ , and al9 a2, , a8{υ) be
the weights attached to the sides of vl9 v2, , v8{υ) of the edges vvlf vv2,
" , wβ ( v ) f respectively. Then we have the equality: Σ?ivί at = 3(4 — s(v))
([16, p. 58]). Since 2s1 = 3s2, we have

0 > Σ (2 + the sum of the double weights)

edges of Δ\Γ

Σ aλ + 2Sl

= 12s0 - 3(28^ + 2βx = 12(s0 - β l + β2) = 12Z(Γ) . q.e.d.
5. Examples. (I) Let Δi be an octahedral triangulation of a 2-

dimensional sphere S2. Take a double covering T of S2 ramified at all
six vertices of Δi and let Δ 2 be the triangulation of T induced by Δi
Then T is a compact orientable surface of genus 2. Let Δ be the
triangulation of the universal covering space f of T induced by Δ2, and
let Γ = π^Γ). We have Γ-invariant double Z-weightings of Δ, pulling
back those of Δi as in Figure 5.1 (i) through (vii), by the map T—>
Γ->S2. We easily see that they are convex and satisfy the monodromy
condition.

(II) Let T be the surface and Δi be its triangulation we obtain
from the one in Figure 5.2 by identifying the two edges and the four
vertices having the same numbers and the same symbols, respectively.
Then Γ is a non-orientable surface with Euler number X(T) = — 2.
Attach —2 (resp. —1) on both sides of the edges of Δi which come from
thick (resp. thin) lines of the one in Figure 5.2. Then pulling it back
on the universal covering space T of Γ, we have a convex member in
DZW.

(III) Let Πi be a tetrahedral triangulation of a sphere S2. Let T
be the double covering of S2 ramified at all vertices and centers of all
faces of Πi> and let Π2 be the hexagonal subdivision of T induced by
• l β Then Γ is a compact topological surface with g{T) = 3 and Π2 is
self-dual, i.e., the dual graph Π2* of Π2 is mapped to Q> by an isomor-
phism of T. Let Δ 2 be a triangulation of T we obtain by triangulating
each hexagon of Π2 as in Figure 5.3.1. To each edges of Δ 2 which are
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on the edges of Π2> attach double weights —1 and —3 on the side of
the vertex of Π2 and on the opposite side, respectively. Attach —1 on
both sides of the other edges of Δ 2. (See Figure 5.3.2.) Pulling them
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back to the triangulation Δ on a universal covering space T of T
induced by Δ2> we have a π^Tymvariant double 2Γ-weighting on Δ
satisfying the monodromy condition at the vertices. Clearly, it satisfies

# 4
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FlGURE 5.2
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the condition (3) of Proposition 4.6. Let (C, Γ) be an element of ^
obtained from the above Δ , and let (C*, Γ) be the dual element of ^ .
We see by easy calculations that there is an isomorphism i:N^M =
Horn (N, Z) such that ίR sends the cone C onto the dual cone C* and
that i 7 = 7 i for all 7 of Γ. Hence we have Cusp (C, Γ) ~ Cusp (C*, Γ).

We list in Table 5.1 the numerical invariants for the singularities
we obtain in the above examples.

TABLE 5.1

Δ

I (i)
(ϋ)

(iϋ)
(iv)
(v)

(vi)
(vii)

Π

W

T

orientable
ff

n

n

n

n

n

non-orientable
orientable

ΆT)

- 2
n

n

n

tt

ft

//

-2
- 3

the length

6

n

rt

n

tt

4

44

the principal degree

35
36
29
34
32
28
40
46
44

REMARK. Let C19 C2 and C3 be the cones arising from the above
examples (I) (vii), (II) and (III), respectively. Then the cones C2 and C3

are expressed as

{a.n, + a2n2 + a3n3 \ a\ — 8(αl + α2α3 + α2

3) > 0, αx > 0}
and

{a^ + a2n2 + azn'3 \ a\ — Q(al + a2a3 + a\) > 0, ax > 0} ,

for some Z-bases {nu n29 nz} and {n[, n'ly n[] of Z3, respectively. Hence
these cones are circular. On the other hand, the cone Cλ is not circular.
Otherwise, there must be a quadratic form Q on R3 such that Q(σ(gv)) = 1
for any element g of πλ{T) and for a vertex v of a triangulation Δ of
T, where σ is an ^-weighting of Δ induced by the double Z-weighting
of the example (I) (vii). However, by an easy calculation, we can verify
that such a quadratic form does not exist.
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