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Introduction. There is a well-known relationship between periodic
continued fractions and 2-dimensional cusp singularities. (See, for
instance, [10], [11].) Let #: U— V be the minimal resolution of a 2-
dimensional cusp singularity (V, p). Then the exceptional set X = z7(p)
is either a cycle of s rational curves with self-intersection numbers
ay, Ay -+, 0, < —2 at least one of which is strictly smaller than —2(s = 2),
or a rational curve with a node and with a self-intersection number
a < 0. Then we can associate to it the periodic continued fraction

o=|[[-a, —a, -+, —a,]]

=(—a) — 1[(=a) — -+ — 1]|(—a,) — 1[(—a) — ---,

or

w=[[-a+2]l=(-a+2)— 1[(-a+2)— 1[(—a +2)---.

Conversely, we can construct a 2-dimensional cusp singularity and its
resolution as above, from a periodic continued fraction ® first by
constructing a convex cone in R® and then applying the theory of torus
embeddings. (See Remark in §4.) Moreover, the dual graph of X can
be thought of as a subdivision of a circle S*, with a,, a,, - - -, a, attached
to s vertices as weights in this order.

In this paper, we generalize the above relationship to higher dimen-
sions and construct higher dimensional cusp singularities from suitable
analogues of periodic continued fractions. The well-known Hilbert
modular cusp singularities are special cases of the cusp singularities we
obtain. '

Nakamura [15] found a duality for 2-dimensional cusp singularities.
Our higher dimensional cusp singularities also have a duality among
themselves generalizing that of Nakamura.

First in Section 1, we show that certain cusp singularities are
obtained from suitable cones in R’ with actions of subgroups of GL(», Z),
by means of torus embeddings. In Section 2, we study some properties
and analytic invariants of such singularities. Especially, they are in
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general not Cohen-Macaulay but a part of them are quasi-Buchsbaum
singularities. (Recently, Ishida [13] showed that all of them are
Buchsbaum singularities.)

In Section 4, we show how to obtain these cusp singularities as
above explicitly, when 7 = 3. Our method is to consider the analogue
of the weighted subdivision of S' as above in one higher dimension.
Namely, we consider a triangulation A of a compact topological surface
T, on each edge of which a pair of integers is attached. If it satisfies
suitable conditions, then we can construct from it a pair (C,I") of a
cone C in R*and a subgroup I" of GL(8, Z) as in Section 1, in a manner
similar to the case » = 2. The corresponding cusp singularity has a
resolution whose exceptional set consists of rational surfaces, crossing
each other along rational curves and points, in such a way that the
“dual graph” agrees with the given triangulation A of T. In the case
of 3-dimensional Hilbert modular cusp singularities, the corresponding
compact topological surfaces T as above are 2-dimensional real tori.
Conversely, in Section 3, we see that when T is a 2-dimensional real
torus, the corresponding singularity is a 3-mensional Hilbert modular
cusp singularity. Some examples of them can be found in Thomas and
Vasquez [19]. Besides 3-dimensional Hilbert modular cusp singularities
we give an example with non-orientable T and those with orientable T
of genus ¢g(T) > 1, at the end of this paper.

Our method in Section 4 has an obvious generalization in higher
dimensions, but for simplicity we restrict our consideration in Section 4
to 3-dimensional cusp singularities.

The author would like to thank Professors T. Oda and I. Satake and
Dr. M.-N. Ishida of Tohoku University for their useful advice and
encouragement. The author also would like to thank Dr. Kimio Watanabe
and Y. Koyama who pointed out the possibility that the above singulari-
ties are not necessary Cohen-Macaulay but Buchsbaum singularities.

A part of the results in this paper was announced in [20].

1. Cones and singularities. Let N~ 2" and Nz = N@®:R = R".
Let m: Ng\{0} — S™! be the natural projection onte a sphere S =
(Ng\{0})/R,,. Then Aut(N)= GL(N) acts on S™* through =. Let .% be
the set of equivalence classes of pairs (C,I") of a cone C in N and a
subgroup I of GL(N) satisfying the following conditions: C is open,
nondegenerate (i.e., C N (—C) = {0}), convex and I'-invariant. Moreover,
the induced action of I on D: = n(C) = C/R,, is properly discontinuous
and fixed point free with the compact quotient D/I". Here we say two
pairs (C,I") and (C’, I'') are equivalent, if there exists an element ¢
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of GL(N) such that gg(C) = C’ and that gl'g™ = I"’, where g is the
image of g in GL(Npg).

Let us denote by SL(N) the special linear group, which is the sub-
group of GL(N) consisting of the elements of determinant 1. If I' is
contained in SL(N) for (C,I') in & then D/I' is orientable. When
r = 3, the genus g(D/I") of the orientable surface D/I" is greater than 0.

Let M = N* be the Z-module dual to N with the canonical pairing
{(y>>Mx N—Z. For (C,I') in & let C* be the dual cone of C in
My, i.e.,

C*: = Int {m € Mg|<{m, n) > 0 for all neC}
= {m € Mg|{m, n) > 0 for all neC\{0}},

where Int denotes the interior. Then C* is also a nondegenerate open
convex cone with the canonical action of I" satisfying {g(m), g(n))> = (m, n)
for any element g of I'. Let O (resp. &*) be the convex hull of CN N
(resp. C* N M). We define the support function h: C* — R., of 6 by

h(z) = inf {<x, )| for all yeCN N}.
Then h(x) is continuous, upper convex, i.e.,
h(x + 2') = h(x) + W(x') for x,a’'eC*,

MMNC*) =Z., and 6 = {yeC|<{x, y) = h(x) for all xcC*}. We define
the polar @° of 6 to be

6 ={xeC*|hx) =1} ={xeC*|<{x, y> =1 for all yc6}.

Then clearly 6° is convex and contains @*. Moreover, we have the
duality (6°)° = 6.

In the following, we show that the boundary 060 of @ has a natural
I-invariant polyhedral decomposition by compact convex polyhedra. Our
argument is similar to that of Ehlers [24] in the Hilbert modular case.
For each point ¢ of D, there exists a point x of C such that ONx~'(t) =
R.,-2 (:={s-x|s=1}). Then there sxists a point m of My such that
H(m) (: = {yeNg|l{m,y) =1}) is a support hyperplane of 6 containing
x, i.e., (m,x) =1 and {(m,y) =1 for all yeO. Let O(m): = Him)NO
and call it a “face” of . We note that D is the union of the images
under 7 of the “faces” of 6.

LEM_l_VIA 1.1. For any support hyperplane H(m) of O, the intersection
H(m) N C 1is compact. Equivalently, m belongs to C*.

PROOF. Suppose that H(m)NC is not compact. Then O contains
the set {y, + sy.|s = 0} for some point y, of &(m) and y, of dC. Let
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) = | oo
be the characteristic function of the cone C defined by Vinberg [21].

Then ¢(x) # 0 for all points # of C and
K o0 = | e o
Ci

goes to 0 as s goes to infinity, since <{x*, y> >0 for all z* in C*.
However, inf {¢(x)|x € ®} > 0, since D/I" is compact and ¢(x) is I'-invariant
and continuous. Hence we have a contradiction.

Since mw(H(m) N C) contains D and H(m)NC is compact, we have
o(Hm)NC) = D. Then (m,x) >0 for any point & of C\{0}, since R.,-
x ( Hm) = @. Hence m belongs to C*. g.e.d.

For each support hyperplane H(m) of &, we have Hm)NCN N #= Q.
For otherwise, there exists a positive real number s smaller than 1 such
that H (sm)NCN N = @, where H (sm) = {y € Ng|{(sm, y» < 1}. Then
@ must be contained in H*(sm): = {y € Ng|{sm, y) = 1}, a contradiction.

LEMMA 1.2. Each “face” O(m) of @ is equal to the comvex hull of
the finite set Hm)NCNN. In particular, O(m) is a compact convex
polyhedron.

PrROOF. Let @'(m) be the convex hull of Hm)NCNN. It is clear
that O@(m)>6'(m) and (H-(m)NC)\®'(m)) NN = @. By Lemma 1.1,
H-(sm)N C is compact for all positive real numbers s. Hence there
exists a positive real number s smaller than 1 so that the convex set
C: = {y, + ul, — y)|u =0, y,c0'(m) and y, c Hism) N C} satisfies (C\C,)N
N = @. Then C, contains ® and hence &'(m) = C,N H(m)D>O(m). More-
over, Hm)NCN N is a finite set by Lemma 1.1. Hence O(m) = 6'(m)
is a compact convex polyhedron. q.e.d.

Here we note that if O(m,) N O(m, # @, then O(m,) N O(m,) =
O((m, + m,)/2), namely, the intersection of two “faces” of @ is also a
“face”. Since D/I' is compact, ¢ is I'-invariant and ¢(x) > ¢(tx) for ¢ >1
and xeC, the restriction g5 of ¢ to @ is bounded above. Hence 6 is
contained in C, since ¢(x) goes to infinity as x approaches the boundary oC,
by [1, Chapter II, Proposition 1.3] and [21, Chapter I, Proposition 3]. Thus
the restriction ¢,,6 of ¢ to 90 is a one-to-one and continuous map onto D.

LEMMA 1.8. 06 is the union of the (r — 1) dimensional “faces” of 6.

ProoF. For any point ¢ of D, let = be the point of 00 with z(x) = ¢
and let H(m,) be a support hyperplane of © containing . Assume that
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d: =dim O(m,)<r—1. Let H*(O(m,)): ={x € My|{x, y)=1 for all y € O(m,)}.
Then H(m) is a support hyperplane containing &(m,) for any point m of
H*(6(m,)N6°. By Lemma 1.1, H*(®(m,))NO° is contained in C*. Then
H*(O0(m,))N(C*\6°) + @, since H*(O(m,)NO° is closed. Take a point
x, of H*(O(m,)N (C*\6°). Then H*(x,): = {y € Nx|{x,, ¥> =1} contains
O(m,), the closure of C\H*(x,) is compact and 6\H*(xz,) +# @. Hence
(C\H*(xz,)) N N is a finite and nonempty set. So we can find a support
hyperplane H(m,) of © such that H(m,) NN 2 H(m,) N N. Clearly 6(m,) D
O(m,) and dim O(m,) > d. Repeating this process several times, we have
a ‘“face” O(m) containing x with dim O(m) = r — 1. q.e.d.

Let vol be the volume on N, normalized so that vol(S) = 1/r! for
simplices S = {a,n, + am, + --- + a1, |0 L ay, a,, -+ -, a,, D a; < 1} for
any Z-basis {n,, n,, -+, n,} of N. Since this volume is GL(N)-invariant,
it induces a volume on C/I', which we also denote by the same symbol
vol. Since D/I" is compact, vol ((C\®)/I') is finite. On the other hand,
for each (» — 1)-dimensional “face” a of 6, the volume vol([a]) of [a]: =
{tyl]0 £t <1 and yeca} is not smaller than 1/»!, since &« N N contains
at least 7~ points which are linearly independent in Ni. Moreover,
'(:={ellv-a=a})={id} and {vel'|Y-aNa* @} is finite set,
since « is a compact convex polyhedron and the action of I" on D is
fixed point free. Hence the number of I'-equivalence classes of “faces”
of @ is finite and the number of “faces” of @ containing x is also finite
for any point x of 06. Thus we have:

LEMMA 1.4. The boundary o0 of O has a natural I'-invariant poly-
hedral decomposition [] consisting of the “faces” of 6.

The boundary 060° of ©° has a natural I'-invariant polyhedral decom-
position []° dual to [] in the following manner: To each d-dimensional
“face” o of O corresponds the (»r—d—1)-dimensional “face” H(y,)NH(y,)N
-+ NH(y,)Na6° of (0°) if @ = &(m) is the convex hull of {y, ¥, -, ¥,} =
Hm)NCNN. The boundary 60* of ©* also has a natural I'-invariant
polyhedral decomposition []* by the following Lemma 1.6. But 6* does
not agree with ©° and hence []* may not be dual to [] in general.
The following subelass will turn out later to have nicer properties:

DEFINITION 1.5. &% ={(C, ') e &’ |0° = 6*}.

The polyhedral decompositions [], []° and []* induce ['-invariant
cell divisions of D, D* and D* under the homeomorphisms 7;6: 060 = D,
Tjse0: 00° 5 D* and 7 6. 00* =5 D*, respectively, where D* = C*/R,,. We
also denote them by the same symbols [], [I° and []*.
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LEmMA 1.6. If (C,T) is in & (resp. &), then so is (C*, I').

PROOF. Since [] and []° are I'-invariant and dual to each other

as cell divisions and I', = {id} for each cell @« of [], we have I,
={vel|7-a’ = a’}) = {id} for each cell a° of [I°. Hence the action of
I’ on D* is properly discontinuous and fixed point free. Also D*/I" is
compact, since so is D/I’. Moreover, (0*) = (6°)° = 0, if 6* =6°. q.e.d.

In the following, we use the notations of Oda [16]. For (C,I') in
S let [] as above be the cell division of D = C/R,, induced by the
boundary 90 of the convex hull ® of NN C. Let o(a) = Ry, -« be the
closure of the cone 7% (a) in N for each cell @ of []. They by Lemma
1.2 and 1.4, we have a [-invariant r.p.p. decomposition (N, 3) with ¥ =
{o(a)|for all cells « of [} U {{0}}. Clearly |>|\{0} = C, where | 3| = U,ex 0.
We have a I-invariant map ord: Ty emb (3) — Mec (N, ¥) with the com-
mutative diagram:

T, emb (5) —2% ., Mc (N, 5): = T, emb (N, 3)/CTs
C*y =T, 2% LN ~ R,

where CT is the compact real torus Hom,, (M, U(1)) =~ U(1)", and Mc (N, %)
is the “manifold with coners” associated to the r.p.p. decomposition ¥
(cf. [16, Chap. II]). Let C be the interior of the closure of C in Me (N, 2),
and U: = ord~* (). Then U contains X: = Ty emb (X)\Ty, and I" acts on
U properly dlscontmuously and without fixed points, since so it does on
C. LetU: = U/ and X: = X/I'. Then X is a compact analytic subset
in U, since the cell division of D is a I'-invariant “dual graph” of X
and D/I" is compact.

PROPOSITION 1.7. Let U and X be as above. Then X is contractible,
i.e., there exists a normal isolated singularity (V, p) with a holomorphic
map II: U—V which maps X to a point » and whose restriction to
U\X gives an isomorphism U\X =~ V\{p}.

Proor. If I' is not contained in SL(N), then we have an exact
sequence 1 — 1" — I — Z/2Z — 0, with I’ contained in SL(N). In this
case, U is a quotient space of U/’ by the cyclic group I'/T" of order 2.
Hence, we may assume that I' is contained in SL(N) without loss of
generality. The characteristic function ¢(x) in the proof of Lemma 1.1 is
a F-invarianj convex function on C, and can be extended to a continuous
function on C vanishing on C\C. (See [1, Chap. II, §1 and Chap. III, §2]).
Therefore the I'-invariant continuous function goord on U induces a
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continuous function ¢ on U vanishing on X. Then ¢ is strictly subharmonie,
since ¢(x) is convex on C. Hence X is contractible in U by [9]. g.e.d.

DEeFINITION 1.8. We denote by Cusp(C, I') the singularity (V, p) in
the above proposition for each (C, I') in & and we let .7 (resp. .9, =
{Cusp(C, IN)|(C, I') € &) (resp. A)}.

PROPOSITION 1.9. The correspondence Cusp(C, I') — Cusp(C*, I') is a
duality in 7 and in .

PROOF. Let (C,I') be in &% Since C is convex, the interior Int(C)
of the closure of Cis equal to C. Then (C*)* = C, e.g., by [17, Theorem
4.1]. Hence the proposition follows from Lemma 1.6. q.e.d.

REMARK. When » = 2, we have .&¥ = & and 9 = 7, = {cusp sin-
gularities of dimension 2}. Moreover, the above duality agrees with
Nakamura’s duality [15].

2. Some properties and analytic invariants of the singularities in
T o

DEeFINITION 2.1 (Watanabe [22]). An isolated singularity (V, p) is
purely elliptic, if the plurigenera defined by

on: = dim H'(V\{p}, (Ky)*™)/ L™ ,

satisfies 6,, = 1 for all positive integers m, where K, is the canonical
sheaf of V and

L™ = {we H(V\{p}, (Ky)®™)|w is L¥™-integrable} .

ProPOSITION 2.2. Let (C,I') be in &% If I' is contained in SL(N),
then (V, p) = Cusp(C, I') is purely elliptic. If I' is mot contained in
SL(N), 6,, =1 or 0 according as m is even or odd.

ProOF. First assume that I"c SL(N). Take a global coordinate
(%), 2y, -+, 2,) of Ty~ (C*)" (i.e., 2; = e(m;) for a Z-basis {m,, m,, - --, m,}
of M). Then the r-form @& = (dz,/2,) A (dz,/z,) A\ --- A (dz,/z,) on T is
I-invariant. Hence it induces a nowhere vanishing holomorphic »-form
® on V\{p} = U\X. Since K; = &(—X), we have K, = &y(—X) by
Oda [16, Proposition 6.6], where K7 and K, denote the canonical sheaves
of U and U, respectively. Hence §, =1 for all positive integers m,
since w™ is not L¥™-integrable, but f-w™ is L¥™-integrable for any
holomorphic function f on V vanishing at p. When I' ¢ SL(N), &™ is
I-invariant if and only if m is even. q.e.d.

In the following, we only consider the singularities in .7,, which
seem to have relatively nicer properties, and some analytic invariants
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of which can be calculated. Recall that for (C,I') in &, (N, 2) is the
r.p.p. decomposition consisting of the cones od(a) joining 0 and cells a
in [], where [] is the natural cell division of the boundary 06 of the
convex hull ® of NN C. We obtained in Section 1 an open neighborhood
U of X=Tyemb(Z)\Ty in Tyemb (Z) and a holomorphic map II: U =
U/r - v with I (p) = X = X/I" and (V, p) = Cusp(C, I'). Let (N, 4)
be a I'-invariant subdivision of (N, J) consisting of nonsingular cones.
(As for the existence, we refer the reader to [23] and [25].) Let
h: Ty emb (4) » Tyemb (Z) be the map induced by the identity map of
N and let W=h*U). Then % induces a holomorphic map h: W: =
W/I' -U. Here W is a complex manifold and Y: = A %(X) is a divisor
on W with only normal crossings as singularities. Thus 7z =1 -h:
W — V is a resolution of the singularity (V, p) = Cusp (C, I') with the
exceptional set Y = 77(p).

mod. I

%

=~

h

mod. /

Q—|——

Y

‘ U |4
) P
X

X

THEOREM 2.3. Let Cusp(C,I") be in 7,. In the above motations,
we have
ﬁy 7: = 0
HYD|I', C) 1>0,

where the i-th cohomology C-vector space HXD|I', C) of D|I' is regarded
as an Zy-module through the residue map &, — C(p) = &y/m. Here O
and & are the analytic structure sheaves of W and V, respectively,
and m is the maximal ideal of the stalk &%, of & at p. Moreover,

R, Op(—Y) = {m v=0

¥ (o i>0.

COROLLARY 2.4. Suppose I' is in SL(N). A singularity (V, ») =
Cusp (C, I") in F,, 18 not a Cohen-Macaulay dbut a quasi-Buchbaum sin-
gularity. Namely, if ®, is the nmormalized dualizing complex of V,

then the cohomology sheaves Hi(w,) are C(p)-vector spaces for all j +#
—dim V.

Rin*ﬁw = i
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REMARK. Freitag [6] noted that the Hilbert modular cusps are not
Cohen-Macaulay. Ishida [13] could recently show that any Cusp (C, I")
in .7, even if I' is not contained in SL(N) and even if (C, I') is not in
7., is actually a Buchsbaum singularity, i.e., the truncation z_,(w;) of
the complex w, itself, not just its cohomology sheaves, is a complex of
C(p)-vector spaces.

For the proof of the above theorem, we need some lemmas. First,
we show that the above map I7: U — V is a “rational resolution”.

LEMMA 2.5. The singularities of U are rational i.e.,

Ty =0

0 1>0.

Moreover, the Grauert-Riemenschneider type theorem holds, i.e.,
7y(—X) 1=20

0 1>0.

R‘h*ﬂw = {

R, Tp(—Y) = {

In particular, we have
Rn, Oy = RII Oy =0
Rz, Oy(—7Y) = RIl Zy(—X) 1=20.

PROOF. Since h is the pull-back of % by the unramified covering
U—U, it suffices to show the corresponding assertions for h. But U
is an open subset of a torus embedding, hence U has only rational
singularities and the Grauert-Riemenschneider vanishing theorem holds

by Kempf [14]. The last assertion follows from the Leray spectral
sequence. q.e.d.

Let M, ={meC*NM|h(m)=Fk} =MnNk(060*) for each positive
integer &, where h is the support function of C defined in the previous
section. The character e(m) determines a nonzero element g(m) of
H (X, 23(—kX)) for each m in M,. (For the definition of the character,
see [16].) As we saw in Section 1, there exists a I'-invariant duality
between the natural cell divisions [] and []* of 96 and 06*, since (C, I")
belongs to &%. For each cell @ of [}, we denote by a* the cell of [*
dual to . Let X = orb (R -a) and X, = X? for each cell a of .
We note that each X, is also a torus embedding with respect to the
algebraic torus X2 ~ (C*)~%=21 and X is the union of X°, hence of
X,, with a running through [].

'I:EMMA 2.6. Let a be a cell of []. For each m in M,, g(m) vanishes
on X if and only if m does mot belong to M N ka*, and {g(m)| me M N ka*}
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is a C-basis of H(X,, Tx,( —kX)). Moreover, we have H(X,, ﬁxa(—k)?)):
0 for all positive integers i and for all nonmnegative integers k.

ProoF. For each element m of M,, g(m) is a nonzero element of
H(X,, ﬁ’xa(—k)? )) if and only if (m, @) = k, or equivalently, m belongs
to ka*. Since X? is isomorphic to (C*)! with 1 £ j < r — 1 or to a point,
g(m) with me M N ka* are linearly independent on X; and generate
H(X,, ﬂxa(—kf )). Since X, is the union of Xj for all @ with a as a
face and g(m) with me M N kB* does not vanish on Xj, ﬁxa(—kff) is
generated by grobal sections. Then by Demazure [5] and Kempf [14],
HY{X,, & (—kX)) =0 for all positive integers i. q.e.d.

We say [/ is fine if {vel'|7(a)N B # @} = {1} for any two cells
a and g of []J with ang+# Q2.

ProroOSITION 2.7. HYX, &%) = HY(D/I', C) and H X, Zx(—kX)) =0
Jor all positive integers 1 and k.

ProOOF. First, assume that [ /I, which is the dual graph of X, is
orientable and fine. Let X; be the set of all j-dimensional cells of /I,
and for each cell @ of X; let X, be the corresponding (» — j — 1)-dimen-
sional analytic subset of X, i.e., X, = p(X3) for a cell @ of [] represent-
ing «, where p: X — X is the natural quotient map by I'. Fix an
orientation of []/I'. Let Qf: Tx,— Ox, be the restriction maps for cells
B and their faces @ of []. Then by Ishida [12, §3], we have the exact
sequence

Oﬁﬁx-’nyao_’Qﬁxux—"""" D ﬁa,_l'“’o-

agely a ey Cp €30
Here the coboundary map 8: @.cx, Px, = Bpesyy, Tx, is defined by 6(f,) =
Dlsessy, Sign (a, B) - Q4(f,). By tensoring this with &(—kX) for a non-
negative integer %, we also have the exact sequence
0 T(~kX)> @ Ty, (—kX)—> @ Tx,(—kX)— -

apely ajely

- @& ,,—0.

1€y

This induces a spectral sequence
Bt = @ H(X., Op (kX)) = H*(X, Oo(—kX) .

aely,

But by Lemma 2.6, E* =0 for all p =0 and ¢ > 0. Hence we have
HYX, Z#x(—kX)) = H(K') for the complex K with K¢= E* =
®D..:, H(X,, Zx (—kX)). Note that we have a complex

(1) 0 HX, Ze—kX) S K515 ... S g1,
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When k =0, we have K? = @,.r,C. and 0(1,) = s, sign (o, B) - 1,
since HX,, &%, = C for any a. Hence we have HYK') = H(D/I', C),
since the dual graph [J/I" of X is a cell division of D/I'. Next we
consider the case k> 0. For each element m of M,/I", let g(in) be the
section of Zx(—kX) induced by >...n g(m), which is a finite sum on
each point of X, by Lemma 2.6. For each cell @ of 3,, let a*(k): =
(M N ka*)/I’, where @* is the union of the cells of d60* mapped mod I
to the cell a* dual to . Then by Lemma 2.6, {g(),|M ca*(k)} is a
C-basis of H(X,, & (—kX)) for each cell @ of [J/I". Moreover, clearly
o(glm)ix,) = 3 signa, £)- G, -

eZdim g+1
For each element m of (M N k(00*))/I", there exists a unique minimal
dimensional cell g* of 00*/I" among the cells a* with m ea*(k). Then
for each cell a of [1/I', we have mea*(k) if and only if B* is a face
of a*, or equivalently a is a face of the cell @ dual to @*. Since g is
contractible, the sequence
) 0-C— @ Cofli)y, > @ C-glim)y, >

apeXy(p) a;eX(B)
o' -
=€ §i)x, — 0

is exact, where 3,(8) is the set of all d-dimensional cells of [J/I" which
are faces of 8 and

F@)y,) = S, sign (s )T, -

ag+1€2g+1()

The complex (1) isomorphic to the direct sum of (1;)'s and hence is exact.
Thus we have HY (X, Z«(—kX)) = H(K') = 0 for all positive integers .

In the general case, take a finite unramified Galois covering
: U —U of U with the covering transformation group G = I'/I"" for
some subgroup I" of I' such that the dual graph of X': = 4 Y(X) is
orientable and fine. Then by the above, it suffices to show that
H(X', o(—kX")* = H(X, #(—kX)) for all nonnegative integers j and
k. By Grothendieck [7, Corollary 3 to Theorem 5.3.1], we have the
spectral sequence:

Ept = H*G, H(X', Pz (—kX")) = H* (X, y(Px(—kX"))) .

Since G is finite and HYX’, & (—kX')) are C-vector spaces, we have
H*(G, H(X', Zx(—kX'))) = 0 for all positive integers p. On the other
hand, 4 is unramified and *@y(—kX) = &% (—kX'). Hence we have
VsOx(—kX'") = Ox(—kX). Thus H(X', Oy (—kX"))¢ = H(X, Ox(—kX)).

q.e.d.
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PrOOF OF THEOREM 2.3. By the comparison theorem in [8] and
Binica-Stanasila [2], we have
(R &) = projlim, H(U, &/ Zy(—kX))
(Bl &y(—X))" = projlim, H(U, (- X)|Oy(—kX)) ,
where ~ denotes the m-adic completion. In view of the exact sequences

0 — Zx(—hX)— Py Py(—(k + 1)X) = /| Ty(—kX) — 0
0 - Zx(—kX) > P~ X)| O —(k + DX) - Ty(—X)|Ty(—kX) -0,

we are done by Proposition 2.7 and Lemma 2.5. q.e.d.

PROOF OF COROLLARY 2.4. Let w, and w; be the normalized dualizing
complexes of V and W, respectively, so that they are complexes with
nonzero terms between degrees —r» through 0, where » = dim V = dim W.
(See, for instance, Schenzel [18].) We see as in the proof of Proposition
2.2 that when I" < SL(N), the canonical divisor of W is —Y. Since W
is nonsingular, w;, = Z(—Y)[r]. By the duality theorem (see Banica
and Stdnigila [2]), we have

Rr,2 = Rr,R Hom, , (wy, ®y) = RHom,, (R, wy, ®y) .
On the other hand, Rz,w, = Rr,.Z%(—Y)[r] = m[r] by Theorem 2.3.
Hence
R7,Z% = R Hom,,, (m[r], ;) = R Hom,, (m, w,[—7]) .
By the long exact sequence arising from the short exact sequence 0 —
m— & — C—0, we get the isomorphisms R'n,Z% = Extl, (&, w,[—7])
for + < » — 2 and the exact sequence
0 — Ext! (Fy, wy[—7]) > R Py — C— Extl, (P, 0)[—7]) =0,

since Rz, = 0 for j = r and Ext., (C, wy[—7]) =0 for ¢ # » and =C
for ¢ = r, by [18]. On the other hand, Ext’, (&%, w;[—7]) = H{(w,/[—7]).
Hence, in view of Theorem 2.3, we see that H'(w,[—7]) for j+ 0 are
C-vector spaces. q.e.d.

Next we define the length and the principal degree of a singularity in
Z,, which may be regarded as a generalization of those of Nakamura [15],
and consider the relation between them and the embedding dimension.

DEFINITION 2.8. The length length (V) of (V, p) = Cusp(C, ') in
7, is the number of the I'-equivalence classes of NN 6.

DEFINITION 2.9. The principal degree Deg (V) of (V,p) is
dim; H(X, Zx(— X)).
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Here, we note that Deg (V) = dim¢ H(Y, Z%(—Y)) by Lemma 2.5
and that Deg (V)= —Y? when » =dim V = 2. Moreover, as we will
see in Corollary 2.15, the length and the principal degree are analytic
invariants. Let M, = {I'-equivalence classes of M, = M Nk(36*)}. Recall
that for each element % of M,, g(m) is a section of Zx(—kX) induced
by Simenm g(m).

PROPOSITION 2.10. {g(m)|#m € M,} is a C-basis of HY X, Zx(—kX)).
FEspecially Deg (V) = length (V'*).

PrROOF. We have a homomorphism

@ ¢S H(X, oA—kX)Y = H(X, O« —kX)),

meMy
where the first arrow sends # to g(m). The map § is injective by
Lemma 2.6. For any element s of H%X, :(—kX)), we have s =
Simen; 0ng(m) with a,€C, by Lemma 2.6. Since s is [-invariant,
{@n|m € m} is constant for any m of M,. Thus we have s = 5.5, @n-J(M).
Hence g is surjective. q.e.d.

We now study the embedding dimension.
LEMMA 2.11. S.coenu |e(m)| converges on W.

ProOF. Take a maximal dimensional cone 0 = R.n, + Rogn, + - -+ +
R.m, of 4, let {m, m,, ---, m,} be the Z-basis of M dual to {n,, n,, - - -, n,}
and let z; = e(m;) for j =1 through ». Take a point z = (2, 2,, -+, 2,)
of W\Y and let s =smn, + s,n, + -+ + s,m, € C be the image of z under
ord: Ty emb (4) — Mc (N, 4). Then for any element m = bm, + bm, +

ces +bm, of C*NM, we have |e(m)| = |2 2% ... 20| = (e71)r.
(e7*2)2. vvv (g7 )r = g™ < 1,and b, b, - -+, b, > 0, since C* is contained
in the dual cone ¢*= R.m, + R.jm, + --- + R.ym, of o. Hence

Simeceny | €(m)| converges on U(ag, 8): = ord™ ({t,n, + t,n, + « + - + .1, |t; > 8;
for j =1 through »}) c {(w,, w,, -+, w,) € Ty emb ({faces of a})| |w;| < |%,|
for j =1 through r}. Since W coincides with the union U,, U(c, s) of
the open sets U(o, s) of Ty emb (4) with ¢ running through all maximal
dimensional cones of 4 and with s running through all points of C,
Smeceny |€(m)| converges on W. q.e.d.

By this lemma, >,.=e(m) converges to a holomorphic function on
W, for any % of (C* N M)/I". Clearly it is I'-invariant and vanishes on
Y. Thus we have a holomorphic function f(#) on W vanishing on Y.
Since C* is convex, M N C* is a semi-group and e(m + m') = e(m) - e(m’)

for any m and m’ of M N C*. Let C{M N C*} be the set consisting of
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the series S.cunce @n€(m) converging on some neighborhood of ¥ in W.
Each element of the subset of I'-invariants C{M N C*}" of C{M N C*}
induces a holomorphic function on some neighborhood of » in V,
vanishing at »p.

LEMMA 2.12. We have a canonical isomorphism C{M N C*}' ~m,
where m is the maximal ideal of &, at p.

ProoF. Clearly, we have an injective homomorphism C{M N C*}  =>m.
Let fem, and let f be the holomorphic function on some neighborhood
of ¥ in W, induced by f. For any »-dimensional nonsingular cone ¢ of
A, fis expressed as a convergent series

ane(m)  (an.cC),
me M (*\(0)

on some neighborhood of orb (o). Clearly, C*\{0} is equal to the inter-
section No* oNf the dual cones of all r-dimensional nonsingular cones ¢
of 4. Hence f is expressed as a series

S, ane(m) (a,eC) .

meMNC*

It is contained in C{M N C*}), since f is [-invariant. q.e.d.

REMARK. C{M N C*}' is contained in the ring C[[(M N C*) U {0}]]F of
the I'-invariant formal power series. Cohn [3, Theorem 3.10] showed
that C[[MNC*))| =C[[---, f(m), ---]]F with % running through I,
when » = 2 and length (V) = 3. Moreover, he also showed in [4] that
C[[M N C*]]" are finitely generated for 3-dimensional Hilbert modular
cusp singularities and found generators for them, in some special cases.

Recall that M; ={meMnC*|h(m) = j}, where h is the support
function of C, defined at the beginning of Section 1. Here, we note
that M, = 060°N M and Ujez,,M; = M N C*. Then we have a filtration
{m;};c1,... in m by m; = C{U,z; M,}'. Clearly, the j-th power ideal m’
is contained in m;.

THEOREM 2.13. Emb.dim (V) = Deg (V) for a cusp singularity (V, p)
in 7, Moreover, the equality holds if r = 3 and the cell division [1*/I"
of the compact topological surface D*|/I" induced by 00*, is a fine cell
division. :

ProOF. The canonical map m/m* —» HY(X, Z(— X)) is surjective, by
Proposition 2.10, since it sends f(#) + m? to g(i) for any m of M,. Thus
the first assertion of the theorem is proved. As for the second assertion,
it is sufficient to show that m* = m,, since dim, m/m, = #(M,/I") = Deg (V).
Clearly, m;/m;,, is generated by {f(m) + m;,,|m e M; = M,;/T'}. For each



CUSP SINGULARITIES 621

m of M;, let m be a representative of # and let a* be the 2-dimensional
cell of 00* which contains (1/j)m. We can find three elements m,, m,
and m, of a* N M which form a Z-basis of M such that the semi-group
Z-gm, + Z.ym, + Z-ym, generated by them contains m (See the proof
(2) = (3) of Proposition 4.5.). Since A(m,) = h(m,) = h(m;) =1 and h(m) = j,
we can choose l,, I,, - - -, I; from {m,, m,, ms} so that I, + I, + -+ + I, = m.
Next for any j elements v, 7,, ---, ¥; of I', we see that v,l, + 7,l, + --- +
v,l;€ M; if and only if 7,l,, 7,0, -+, 7;l; are on one and the same cell of
00*. When []*/I" is a fine cell division, the latter condition is equivalent

to v,=",=---=7; Then fim) — f(1)-f1,) --- f1;) em,,,, where I,e I,
is the image of l,e M. The_n (m/m,)® — m;/m;,, is surjective and m is
generated by f(m) with 7 e¢ M,. Hence m, = m. q.e.d.

For (V, p) = Cusp (C, I') in .7, let []" be the cell division of D = C/R.,
induced by that of the boundary 9(6*)° of the polar (©*)° of the convex
hull 6* of M N C*. Let (U', X")— (V, p) be the rational resolution of
V obtained from the r.p.p. decomposition 3* corresponding to the cell
division of 3(@*)° as in Section 1 and Lemma 2.5 for U, X, . For each
vertex v of [JY/I", we assign a positive integer l(v) as follows: Take a
representative 7 of » and let u be the vertex of 4(6*)° corresponding
to it, i.e., 7 is the image of w by #: C — D. Then there is a positive
integer I such that [-u is the primitive element of R.,-uNN. We then
let I(v) = I. Clearly it does not depend on the choice of 7, since 9(0*)° is
I-invariant. Let X' = 3 l(v)X], where X is the irreducible component
of X' corresponding to v. When (V, p) is in 7,, the above (U', X")
agrees with the rational resolution at the beginning of this section and
X'= X' We now study the geometric significance of (U', X') for
(V, »).

Choose an embedding h: (V, p) = (B, 0) of V into an open set B of
C* with h(p) = 0. For the blowing-up ¢: (Z, P*™*)— (B, 0) of B at 0, let
V be the proper transform of A(V) by q. Hence q: V—V is the
blowing-up of V at ».

THEOREM 2.14. If the dual graph [1Y/I" of X' is fine, them U' is
isomorphic to the mormalization of the blowing up V of V at p, where
II:(U', X") — (V, p) is the above rational resolution.

PROOF. We see that «71(—X") is base point free, in the same way
as in the proof of Lemma 2.6, when ['/I" is fine. We have a holomor-
phic map h: U — Z with q-h = h-II, as follows: Let (2,2, -, 2,) be
a coordinate C* and let g; be the image of z;, + m* by the canonical
map m/m* — HY(X', &x(—X"), which is surjective. Then for each point



622 H. TSUCHIHASHI

@ of X', h(x) = (g,(x), g:(®), - - -, g.(&)) e P =q7(0)CZ. Clearly h(U)= V.
When [YI' is fine, H"(X], ﬁ’xz(—}? ) is a linear subspace of
HY(X', #x(—X") and has a basis {g(m)|m € (I'a* N M)/T'} for any cell
of [1Y/I", where @* is the cell dual to a respresentative & of a« and X}
is an irreducible subvariety of X' corresponding to a. The restriction
hixtye of h to the algebraic torus (XJ)° (=(C*)?) of X! is finite, since
d = dim X! = dima*. Since X is the finite union U,.t,r (XI)° of (X})
for all cells of ['/I", the restriction 4,5t of & to X' is also finite. On
the other hand, % is an isomorphism over U\X'. Hence U' is isomorphic
to the normalization of V. q.e.d.

REMARK. When [J/I" is not fine, the above theorem does not

necessarily hold. We give a simple 2-dimensional example. Let (V, p)
be a 2-dimensional cusp singularity with a resolution I7: (U, X) —(V, p)

U

e N

U

Aing—up atp
\'

FiGurE 2.1

such that the exceptional set X is a rational curve with a node and
with the self-intersection number —1. Then dim HY(X, &% (—X)) =1
and X has only one point z, on which all global sections of Z(—X)
vanish. Let (U, Y)— (U, ) be the blowing-up of U at x and let
(U, X) > (U, ') be the blowing-down of the proper transform X of
X in U to a point #'. Then the blowing-up of V at p is isomorphic
to U".
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COROLLARY 2.15. Let (V, p) = Cusp (C, I') and (V’, p’) = Cusp (C’, I')
be in F. Then V and V' are analytically isomorphic mear p and p',

if and only if (C,I') and (C',I") are equivalent in the sense at the
beginning of Section 1.

PrRoOF. We consider the rational resolutions in Theorem 2.14, but
for simplicity, we omit the dagger. Thus let (U, X) and (U’, X’) be
the rational resolutions of (V, p) and (V’, p') obtained by the boundaries
9(@*) and 9((0")*)° of the polars (0*)° and ((0")*)° of the convex hulls 6*
and (0)* of MNC* and M N (C')*, respectively, as in Theorem 2.14.
When both cell divisions [/I" and ['/I" of (C/R.,)/I" and (C'/R.,)/I"’
induced by those of 3(6*)° and 0((0')*)°, respectively, are fine, an isomor-
phism of V and V'’ near p and p’ induces an isomorphism of U and U’
near X and X', by Theorem 2.14.

We also have the same assertion in the cases that []/I" and ['/I"
are not necessarily fine, as follows. Take a suitable subgroup I', of I
of finite index such that the induced cell division [}/I", on (C/R..)/I, is
fine. Then we have the finite covering U, — U induced by the covering
map (C/R.,)/I",— (C/R.,)/I’y where U, is the rational resolution of
(V,, »,): = Cusp (C, I',) with the commutative diagram:

Uo——) Vo

|

U—V

Take a I'-invariant subdivision (N, 4’) of (N, 2’) consisting of nonsingular
cones, where (N, 2’) is the r.p.p. decomposition of N induced by a((6")*)°.
If (V, p) and (V’, p’') are analytically isomorphic near p and p’, we have
another resolution W' — V of the singularity (V, p) with nonsingular
W' by (N, A") and through this isomorphism. The dual graph 4'/I" of
the exceptional set of this resolution is a subdivision of ]’/ induced
by 3’. We have the following commutative diagram:

U,

/) 7
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Here W (resp. W,, resp. W,) is the normalization of the irreducible
component of U x ,W' (resp. V, X ,W, resp. V, x ,W') with the surjec-
tive map onto V by the natural projection and f: W — W' is the map
naturally induced by the projection Ux, W’ — W’'. The vertical arrows
are finite covering maps. Since U, — U is unramified, so is W,— W.
Suppose that W, — W' is ramified. The branch locus of W' contains a
component Y, of the exceptional set Y’ of W', since W' is nonsingular
and W, — W' is unramified over W'\Y’. Clearly, W contains an analytic
subvariety Y with f(Y)=Y.. Then W,— W must be ramified at Y,
since the restriction of f to W\f(Y’) is an isomorphism. Hence
W.— W' is unramified. The analytic subvariety of W' corresponding
to each simplex of 4’/I" is toric and hence simply connected. Therefore,
the covering map W, — W' is induced by an unramified covering map
4|y — 4'|I'" of the dual graph and (V,, p.): = Cusp (C’, I'}) is isomorphic
to (V,, p,) near p, and p,, where I, is a subgroup of I” of finite index.
Next take a suitable subgroup I'; of I', of finite index such that '/}
is fine. Then by the same argument, we have a subgroup I, of I', of
finite index such that (V,, p,): = Cusp (C, I',) is isomorphic to (V;, py): =
Cusp (C’, I')). Here [/, is also fine. Hence by the first consideration,
we have an isomorphism (U, X,) — (U;, X;) near X, and X, between the
rational resolutions (U,, X,) and (Uj, X]) of (V,, »,) and (V7, p;) induced
by 0(6*)» and o((@)*)°, respectively. Then we have an isomorphism
(U, X) = (U’', X') by the following commutative diagram:

Ul — Ul\Xl — U\X

2 ! !

U — UNX — UNX'.
The isomorphism (U, X) = (U’, X’) obtained in the above way, induces
an isomorphism I~ I and a I'-equivariant isomorphism (U, X) = (U, X').
It is easy to see that (C, I") is determined by X and #%(—X), which is
dual to the normal sheaf of X in U, uniquely up to equivalence. Hence
(C, I') and (C’, I'") are equivalent. q.e.d.

3. A remark on Hilbert modular cusp singularities. First, we recall
Hilbert modular cusp singularities. Let K be a totally positive real
algebraic number field of degree » over @ Then we have » distinct
embeddings « — 2, ¢ = 1 through », of K into R. Let N be an addi-
tive subgroup of K of rank », and let 4 be a multiplicative subgroup
of Uy of rank r» — 1, where Ujy is the group of totally poistive units
N with AN = N. Let
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G(N, A): =
v, 2: = 4[5 )

Then G(N, A) acts properly discontinuously and without fixed points on
the product §" of 7 copies of the upper half plane $ by

xeA,,ueN} .

(zly zz’ R z'r) — ()\:(l)zl + #(1)’ )\1(2)22 + #(2)’ ce e )‘(r)zr + #(1)) .

Then V(N, 4) = (9" U {=})/G(N, 4) is called a Hilbert modular cusp
singularity. By the embedding Nsz+— (™, 2%, ---, 2")e R", N(=Z")
is a lattice in R, i.e., Nx = R”. Since NN = N and ) is totally positive
for each )\ in 4, 4 is a subgroup of SL(N). We see that C: = (R.,)" is
A-invariant and the induced action of 4 on D: = C/R,, is properly
discontinuous, fixed point free and with compact quotient by the Dirichlet
unit theorem. Hence (C, 4) is in & and Cusp (C, 4) = V(N, 4). In this
case, D/A is the (r — 1)-dimensional real torus. Conversely, we have
the following, at least in dimension three.

THEOREM 3.1. Let (C, I') be a 3-dimensional pair in & If (C/R\)/I"
is a 2-dimensional real torus, then Cusp (C, I') is a 3-dimensional Hilbert
modular cusp singularity.

PROOF. Let 7 and 6 be generators of I'. We first show that all
eigenvalues of ¥ and o6 are real. Suppose not. Then with respect to
some basis {v,, v,, v} of Ni, we can express 7 in the form

(1t 0 0
0 recosf rsinf| with reR,,, 0<0<2rx.
0 —rsind 7rcosd

Since C is open, it contains a point v = sv, + s,v, + s, With s,s,8, # 0.
Observing the orbit of » under 7% we see that C contains », or —uv,
according as s, > 0 or s, < 0, since C is a convex and ['-invariant cone.
But the images w(+wv,) of +wv, by the projection m: Ng\{0} — S* are fixed
points of v, a contradiction.

We next show that not all eigenvalues of 7 are +1. Otherwise,
with respect to some basis {v, v, v;} of N,, we can express 7* in the

form
110 110
(i) (0 1 0) or (ii) (0 11
0 01 0 01

In the first case (i), the orbit {(s, + ksy)v, + s, + sw;|ke Z} of a point
v = 80, + 8, + 8w, of C with s, # 0 under 7*? cannot be contained in
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any open nondegenerate convex cone of Ng, a contradiction. In the second
case (ii), 0% is expressed in the form

1 a B
(0 1 a) with «a, B€Q,

0 0 1

since I' is abelian. If a = q/p with p, g€ Z, then "7 (#id) is ex-
pressed in the form

1 0 p8
(0 1 0 with g #0.
0 0 1

But this cannot occur as in the first case. By these considerations, the
characteristic polynomial of v, regarded as an element of SL(3, Z) with
respect to some Z-basis of N, is an irreducible cubic equation over @
with three real roots, or the product of an irreducible quadratic equation
with real roots and a linear equation. In both cases, ¥ has three
eigenvectors v,, v, and v, with real eigenvalues ¢, & and &, different
from each other. Let K= Q(&, &, &) be the field generated by ¢, &
and & over Q. Let {n, n, n;} be a Z-basis of N, and let v; = h;;n, +
hyin, + hym, for 5 =1,2,3. We may assume that ;€ K. Then

& 000
H'vH = (0 & 0) with H = (h;) .
0 0 &
Since I' is abelian,
7, 0 0
H'%9H =0 7, 0) with 7;e K.
0 0 7

First, suppose that ¢ = 1. Then K is a quadratic extension of @. We
denote by &, the conjugate of each element & of K. Since v, = Yv, and
¥, = 7¥,, we have ¥, = ev, for some ¢ € K, where @, = ¥(h,,, hy, hy). Hence
Rv,N N = . Then 7, also must be 1, since 7, >0, ov, = v, and d¢
SL(N). But it contradicts the fact that I" acts on some open set of
S* properly discontinuously and without fixed points. Therefore, &, &,
and &, are roots of an irreducible cubic equation with integral coefficients.
Then we denote by o,, the automorphisms of K which send ¢, to &, for
1=1, 2,3, respectively. Since ¢*(hy, hy, bs;) = Y*(hyi, hysy hs;) and &40 (hy),
0(hy), 0hy)) = 7(0(hy), 0(hy), 0(hy)), we may assume that o,(h;) = h;..
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Moreover, we have o,(n,) = 7, since o,(9,)v;, = dv,. Let H™ = (hi;), let
N' =hy,Z + h,Z + hi,Z and let 4 = &2 x % Then N’ is a lattice of rank
3 in K and is A-invariant, since H(N) = 4(N'), where 4: Nz =~ R® is
the isomorphism defined by (¢ ® 1) = (0,(¢8), 0.(¢), 05(£)). Hence we see
that Cusp (C’, I') is isomorphic to V(N’, 4), where C' = R.w, + R.w, +
R.w,, Let E be the union of great circles E,, FE, and E; passing
through three pairs of points of {n(v)), ©(v,), w(v;)}. Then I' acts on S\E
properly discontinuously and without fixed points and each connected
component of (S®\E)/I" is isomorphic to a 2-dimensional real torus. If
E;ND=+ @, then it must be a minor arc of E;, since D = C/R,, is
spherically convex. But it is impossible, since the free abelian group
I' of rank 2 then would act on E;N D properly discontinuously and
without fixed points. Hence D agrees with one of the connected com-
ponents of S\ E, since D/I" is compact. Therefore, C = R.,u, + R u, +
R.,u; with u, (resp. u,, resp. u,) = +wv, (resp. *+wv,, resp. =£v,), and hence
Cusp (C, I') is a Hilbert modular cusp singularity. q.e.d.

COROLLARY 3.2. If (C,I') is im % then D|I' camnot be a Klein
bottle, where D = C/R.,.

PrOOF. Suppose that D/I' is a Klein bottle. Let I'" = I' N SL(N),
which is a subgroup of I of index 2. Then D/I” is a 2-dimensional
real torus. We have C = R..v, + R.w, + R..v; for some v, v, and v, of
Nz, by the proof of the above theorem. Hence any element v of I not
contained in I'' is expressed in the form

n 0 0 0 0 % 0 n 0
(0 0 7;2>, (O n, 0] or (7]2 0o 0},
0 7 O 7, 0 0 0 0

with respect to the basis {v,, v,, v;} of Nz, since C is 7-invariant. Then
7* has the double eigenvalue 7,7, besides the simple eigenvalue ;. Since
the eigenvalues of Y2e SL(N) are cubic integers with product 1, we
conclude that 7 and .9, are 1. But »,, %, 7, > 0, since Y(C) = C. Thus
N, = N, = 1. Then v has an eigenvector v, + v, + W, or Y, + v, + v,,
a contradiction to the fact that v(sI) has no fixed point on D. q.e.d.

4. Explicit construction of (C, ') in & In this section, we deal
only with the 3-dimensional case for simplicity. We keep the notations
from Section 1. Recall that for (C, I') in &%, we had a [I-invariant r.p.p.
decomposition (N, 4) consisting of nonsingular cones with [4|(: = U,.,0) =
CU {0} and from it a resolution @&: (W, Y)— (V, p) of the singularity
(V, ») = Cusp (C, I'). We have a [-invariant triangulation A of D = C/R,,
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(1)

7(k)

(m)

FIGURE 4.1

by the projection 7: Ng\{0} — S* from (N, 4). Moreover, we attach
integers on both sides of each edge of A in the following way: Let
2= Ryk + Ryl + Roym and v = Ryl + R.ym + R.;n be 3-dimensional
cones of 4 with a common 2-dimensional face R, + R.;m. Since g and
vy are nonsingular, there exist integers a and b such that the equality

(*) n+k+al +bm=0

holds. Then we attach the integers a and b on the sides of #(l) and z(m),
respectively, to the edge w(R.,! + R.ym) of A\ as weights (cf. Figure 4.1).

Here, we note that the above integers a an b are equal to the self-
intersection numbers (E|,)* = Z?-Z, and (E ;) = Z,-Z; of the curve
E: =orb(Ny) on the surfaces Z,: = orb (R.;m) and Z;: = orb (R.,l),
respectively, e.g., by [16, Proposition 6.7].

Conversely, we can reconstruct (C, I')e & from /A/I" and the pair
of integers for each edge as follows: Let T be a compact topological
surface, T'— T its universal covering and I = 7,(T), the fundamental
group of T. Let A be a [-invariant triangulation of 7.

DEFINITION 4.1. A [-invariant N-weighting of /\ satisfying the
monodromy condition at the vertices is a pair (o, p) consisting of a map
o: {all vertices of A}— N and a homomorphism p: I' - GL(N) satisfying
the following conditions: (i) o is I'-equivariant through p. (ii) For
the three vertices v,, v, and v, of each triangle of A\, their images o(v,),
o(v,) and o(v,) form a Z-basis of N. (iii) For each vertex v of A, if

s 7 0(vs)

- VA
U3 La)

FIGURE 4.2

V2
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- (A)

7(ny)

FIGURE 4.3
vy, Vg -+, ¥, are the vertices of its link going around v in this order,
then 7-o(v,), w-0(w,), --+, w-0(v,) also go around = -o(v) once in this

order (cf. Figure 4.2).

DEFINITION 4.2. A [-invariant double Z-weighting of /\ satisfying
the monodromy condition at the vertices is a pair of integers attached
to each edge of A with one integer on the side of one vertex and with
the other integer on the side of the other vertex satisfying the following
conditions: (i) These integers are [-invariantly attached. (ii) For
each vertex » of A, let v, v, ---, v, be the vertices of its link going
around v in this order. Let {n, n, n,} be an arbitrary Z-basis of N.
We then let n,, n, and n be the N-weightings of the vertices v,, v, and
v, respectively. Then we can determine the N-weightings n,, - - -, n,, 7,,,

and 7n,,, of the vertices v, ---, v,, v, and v, in this order by the pair of
integers on each edge and by the equality (x). Then we require that
Nop1 = Ny MNgpy = M, and that z(n,), 7(n,), - - -, ©(n,) go around x(n) once

in this order (cf. Figure 4.3).

Let DZW be the set of all I'-invariant triangulations A\ of the
universal covering spaces T of compact surfaces T, endowed with I-
invariant double Z-weightings satisfying the monodromy condition at the
vertices, where I' = 7(T). For A in DZW, choose a Z-basis of N and
a triangle of A\, and attach the three elements of the Z-basis to the three
vertices of the triangle as N-weights. Then we have an N-weighting
of A, i.e., a map o: {all vertices of A}— N, by the equality (+), since T
is simply connected. Moreover, we have a homomorphism 0: I' - GL(N),
by p(7)-0®) = a(7-v) for any element v of I' and vertices v of A.
Clearly, the pair (o, 0) is a I-invariant N-weighting of A satisfying
the monodromy condition at the vertices. We obtain a I'-equivariant
local homeomorphism f: T — S?, extending the map 7 -o such that the
image of each triangle of A is a spherical triangle. We denote by C(y),
the cone 77'(f(p)) U{0} = R.,-f(1t) for each simplex # of A. Let
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A = {C(p) |simplexes g of A} U{{0}},

C = |A\0} = z~Y(AT)) and D = n(C) = f(T). Clearly we have:

PROPOSITION 4.8. Assume that the following condition (x*) 18
satisfied:

(xx) f is injective, f(T) is spherically convex and its closure f(T)
18 contaimed inm a hemisphere of S

Then (N, A) is an r.p.p. decomposition of N, C is a [-imvariant
open nondegenerate convex cone, O 1s injective and the action of I' on D
is properly discontinuous and fixed point free. Hence (C,I") is in A

REMARK. A 2-dimensional cusp singularity (V, p) corresponds to a
1-dimensional periodic continued fraction w = [[b,, b,, - - -, b,]], Where b;
are integers greater than or equal to 2. (See for instance [11].) The
former is obtained from the latter in a manner similar to the one above.
In this case, T =S, T is a line and A is a triangulation of 7, on the
vertices {v;} of which the integers —b, attached periodically, i.e., —b; =
—b, if 7 =k (mod.s). Then we have a map o: {vertices of A}— Z* by
the equality: o(v;_,) + 0(v;.,) — bjo(v;) = 0 for all je Z and o(v,) = <_01>,
ov,) = <(1)> Moreover, we have a matrix

B R

Then (V, p) = Cusp (C, I'), where I' is the cyclic group of infinite order

~bi —b —bu

vj-1 vj Vj+1

FIGURE 4.4
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N
7

FIGURE 4.5

generated by A, and C is the cone in R® generated by the two eigen-
vectors & and g, of A. (See Figure 4.4.)

In the following, we will examine some sufficient condition under
which f satisfies the above condition (xx). For each nonzero element m of
My we define the affine plane H(m) in N by H(m) = {n e Ni|{m, n) =1}
as in Section 1.

DEFINITION 4.4. A 7,(T)-invariant triangulation A of the universal
covering space T of a compact topological surface T with a z,(7T)-
invariant double Z-weighting satisfying the monodromy condition at the
vertices is strictly locally comvex (resp. locally convex) if there exists
a m(T)-invariant cell division [] of T, of which A is a subdivision and
which satisfies the following condition (P) (resp. (P"): Attaching the
three elements of a Z-basis of N to the three vertices of a triangle of
A, we have a r(T)-invariant N-weighting of A satisfying the
monodromy condition at the vertices. For each 2-dimensional cell a of
[], there exists a unique element m of M (resp. Mpz) such that o(v) is
on the plane H(m) (i.e., {(m, o(v)) = 1) for any vertex v of a, and that
o(v) is above the plane H(m) (i.e., (m, o(»)) > 1) for any vertex v of
a\a, where @ denotes the union of all cells of [], which have common
faces with a. (See Figure 4.5.)

In the above definition ¢(v) need not be on the plane H(m), for a
vertex v of A in « if it is not a vertex of []. Clearly “strictly locally
convex” implies “locally convex”. The local convexity conditions (P) and
(P") in fact imply the “global convexity” as we now see in Theorem 4.5.

THEOREM 4.5. If a 7,(T)-invariant triangulation A of the universal
covering space T of a compact topological surface T with a w(T)-
imvariant double Z-weighting satisfying the monodromy condition at the
vertices s locally comvex, them (xx) is satisfied, i.e., the map f: T — S?
nduced by it as after Definition 4.2 is injective, f(T) is spherically
convex and its closure is contained in a hemisphere of S°.
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FIGURE 4.6

ProOF. Fix a point s of T and take a sufficiently small circle S!
on §* with the center f(s). Let W be the union Uj.sr W, of the longest
curves W, on T starting from s whose images by f are on the great
circles of S intersecting S' at 4. Then W is an open set of 7. As
we will see shortly in the proof of the sublemma, f(W,) is strictly a
minor arc of a great circle for each 6 of S'. Then f(W,) N f(Wy) = {f(s)},
if & # 6'. Hence the restriction f, of f to W is injective. There is a
unique I'-equivariant continuous locally injective map 7: T — Ng\{0} such
that f = = -7 and that the image z(\) of each 2-dimensional cell » of a
cell division [] of T as in Definition 4.4 is on a plane in Nx. Let a be a
2-dimensional cell of [] containing s, and let m, be the element of My such
that z(a) is on the plane H(m,). Then k(t): = {(m,, =(t)> and h: = k- f;} are
continuous functions on 7' and D = f(W), respectively. (See Figure 4.6.)

SUBLEMMA. hk7Y(l) is a closed curve for any positive real nmumber 1
greater than 1.

ProoF. First we show that the length of z(W,) is infinite by any
Euclidean metric of N; for any 6 of S'. Let {u;} be the set of all
turning points of z(W,) for #eS' fixed once for all. Namely, u; is
either the image by t of the point at which W, intersects transversally
an edge of [] or is a vertex of [ ] which lies on W,. By the local
convexity assumption, we easily see that {u;} is an infinite set. Let
v; = u;, when 77;(u;) is a vertex of [J. When 7j;(u;) lies on an edge E
of [, let v»; be one of the images by 7 of two vertices v; and v} of E
with (m,, v;) < {(m,, u;»>. Then v;ecW and {v;} is an infinite set, since
for all vertices v of [], the numbers of edges meeting at v are bounded.
Suppose that the length of z(W,) is finite and let I, = sup {k(¢)|t € W,}.
Then clearly V,: = ¢({te W|k(t) < 1,}) must be contained in some compact
set K of Nr. Since k-ty(v;) = (m,, v;) < {(m,, u;y <1l, and v;€ N, {v;}
is contained in KN N, a contradiction to the finiteness of the lattice
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H

HNH

7(s) H(mo)NH

FIGURE 4.7

points KN N in the compact set K. Hence the length of (W) is
infinite. There exists a unique plane H containing z(Ws) for each 6 € S".
Let H, be the plane in Ni defined by {n e Ng|{(m,, n) =1}. Then H, is
parallel to H(m,) and intersects H along a line. By the condition (P')
of Definition 4.3, t(We)\I is above the line containing I in H, for any
line segment I of z(W,). Therefore, t(We) N H, is exactly one point.
Hence we have the map S'— D sending each element 6 of S' to
n(z(We) N H,). Clearly it is continuous and its image is equal to A7(]).
(See Figure 4.7.) qg.e.d.

PROOF OF THEOREM 4.5 CONTINUED. Let D(l) = {ue D|h(u) =1}. By
the above sublemma, D(l) is closed for any real number [ greater than 1.
Let {t;} be a sequence of points of W, converging to a point of T. Sincek
is a continuous function, I, = max {k(T;)} is finite. Then {f(t;)} converges
to a point u of D(I,)cD. Since f» is homeomorphie, t; = fi - f(¢;) con-
verges to f7X(u), which is a point of W. Therefore W is closed. Hence
W = T and f: T— D is injective. Moreover, D is star-shaped with f(s)
as the center, i.e., for any point ¢ of D, the minor arc of the great
cirele joining f(s) and t is contained in D. However, the choice of s at
the beginning of this proof was arbitrary. Hence D is spherically
convex. Since 7(W\a) and z(a) are above and on the plane H(m.),
respectively, the closure of D = 7 -7(T) is contained in the hemisphere
which is the image of H(m,) by the projection . q.e.d.

By this theorem, each locally convex A inNDZW induces a (C, I') of
< If A is strictly locally convex, then z(7T') in the proof, coincides
with the boundary 96 of the convex hull ® of CN N.

PROPOSITION 4.6. The following three conditions are equivalent for
(C, I in S
(1) (G, Nes.



634 H. TSUCHIHASHI

(2) (C,TI') comes from a strictly locally convexr /A im DZW.

(8) (C,TI) comes from a /\ in DZW satisfying the following con-
ditions: (1) The sum of the double weights on each edge of /\ is mot
greater than —2. (i) We get a cell division [ by deleting all edges
of A\ which have the sum of the double weights equal to —2.

In this case, the Euler number X(T) < 0.

ProoF. (3)=(2). Let (0o, o) be the induced I"-invariant N-weighting
of A. Let two triples (v, v, v;) and (v,, vs, v,) of vertices of A form
two adjacent triangles of A. Then o(v,), d(v,) and o(v,) lie on a plane
H(m) with m belonging to M, since they form a Z-basis of N. By the
equality (x), o(v,) is above (resp. on, resp. under) the plane H(m), i.e.,
{m, d(v)) > 1 (resp. = 1, resp. < 1) if and only if the sum of the double
weights on the edge incident to both v, and w,, is smaller than (resp.
equal to, resp. greater than) —2. From these facts, we see immediately
that ¢ and [] satisfy the condition (P) of Definition 4.4.

(2) = (1). For each 2-dimensional cell @ of a cell division [] as in
Definition 4.4, 7(a), which is a face of 00, is on a plane H(m) with m
belonging to M. Thus all vertices of 00° are contained in M. Hence
6° = 6*.

(1) = (8). Since ©° = 0*, each face F' of 90 is on a plane H(m) with
m belonging to M. Take an arbitrary tiangulation A, of F with the
vertex set NN F. (See Figure 4.8.) Then the three vertices n,, n, and
n, of each triangle of A, form a Z-basis of N, since {(m, n,) =1 and
n, — n, and n, — n, form a basis of the Z-submodule {n e N|{(m, n,y = 0}
of N. The manner of the division of each edge of 96 in the above
triangulation is unique. Hence we obtain a I'-invariant triangulation A
of 00 in the following way: Taking representatives of faces of 900/I,
triangulate each of them as above, and translate it to other faces of

A

FIGURE 4.8
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00 by the action of I'. We have a I'-invariant double Z-weighting of
A by the equality (x). Clearly it satisfies the conditions (i) and (ii) of
(3), and induces (C, I').

To prove the last assertion, we may replace I by a subgroup of
finite index. Thus without loss of generality, we assume that A/’
gives rise to a triangulation of T. Let s, s, and s, be the numbers of
the vertices, edges and faces, respectively, in A/I". Let v, v, -+, Vi
be the vertices of the link of a vertex v of A, and qa, a, ---, a,, be
the weights attached to the sides of v, v, - -, v, of the edges vv,, vv,,
“e-, VV,, respectively. Then we have the equality: 3::% a, = 3(4 — s(v))
([16, p. 58]). Since 2s, = 3s,, we have

0> 3, (24 the sum of the double weights)

edges of 4|I"
8(v)

(Z ai> + 2s,
vertices of 4/I" \i=1
= 12s, — 3(2s,) + 2s, = 12(s, — 8, + 8,) = 12X(T) . g.e.d.

5. Examples. (I) Let A, be an octahedral triangulation of a 2-
dimensional sphere S®. Take a double covering T of S? ramified at all
six vertices of A, and let A, be the triangulation of T induced by A,.
Then T is a compact orientable surface of genus 2. Let A be the
triangulation of the universal covering space T of T induced by A,, and
let ' = n,(T). We have I'-invariant double Z-weightings of A\, pulling
back those of A, as in Figure 5.1 (i) through (vii), by the map T —
T —S? We easily see that they are convex and satisfy the monodromy
condition.

(II) Let T be the surface and A\, be its triangulation we obtain
from the one in Figure 5.2 by identifying the two edges and the four
vertices having the same numbers and the same symbols, respectively.
Then T is a non-orientable surface with Euler number X(T) = —2.
Attach —2 (resp. —1) on both sides of the edges of A, which come from
thick (resp. thin) lines of the one in Figure 5.2. Then pulling it back
on the universal covering space T of T, we have a convex member in
DZW.

(III) Let [], be a tetrahedral triangulation of a sphere S*. Let T
be the double covering of S* ramified at all vertices and centers of all
faces of [, and let [ ], be the hexagonal subdivision of 7 induced by
(- Then T is a compact topological surface with g(7T') = 3 and [, is
self-dual, i.e., the dual graph [} of ], is mapped to [J, by an isomor-
phism of T. Let A, be a triangulation of T we obtain by triangulating
each hexagon of [], as in Figure 5.3.1. To each edges of A, which are
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FIGURE 5.1

on the edges of [J,, attach double weights —1 and —8 on the side of
the vertex of [], and on the opposite side, respectively. Attach —1 on
both sides of the other edges of A,. (See Figure 5.3.2.) Pulling them
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back to the triangulation A on a universal covering space T of T
induced by A\,, we have a = (T)-invariant double Z-weighting on A
satisfying the monodromy condition at the vertices. Clearly, it satisfies

—_———2—
_1——1—
FIGURE 5.2
FIGURE 5.3.1
\_1 _1/
. e
‘1 -1 . Y —iS -1
~-1 ‘1/ | .
\71_1 1/ \_1 -3 _/ \_3\\—1‘1—1 A
L K O
R S AN
-1 \—1 1 —1/ ’ -1/ I \-1 )
l /_lj<—l\ / ]3 N

FIGURE 5.3.2
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the condition (8) of Proposition 4.6. Let (C, ") be an element of &
obtained from the above A, and let (C*, I') be the dual element of &.
We see by easy calculations that there is an isomorphism 7: N - M =
Hom (N, Z) such that i, sends the cone C onto the dual cone C* and
that 7-v =7 -4 for all vy of I". Hence we have Cusp (C, I') =~ Cusp (C*, I).

We list in Table 5.1 the numerical invariants for the singularities
we obtain in the above examples.

TABLE 5.1

A T X(T) the length the principal degree
I @) orientable -2 6 35
(ii) ” ” ” 36
(iii) ” ” ” 29
(iv) ” ” ” 34
(v) ” ” ” 32
(vi) ” ” ” 28
(vii) ” ” ” 40
I non-orientable -2 4 46
il orientable -3 44 44

REMARK. Let C,, C, and C, be the cones arising from the above
examples (I) (vii), (I) and (III), respectively. Then the cones C, and C,
are expressed as

{am, + am, + asnglal — 8(ai + a.a5 + ai) > 0, a, > 0}
and
{am; + a,n, + asn;lal — 6(a; + aa; + ai) > 0, a, > 0},

for some Z-bases {n,, m,, n;} and {n;, n;, n;} of Z* respectively. Hence
these cones are circular. On the other hand, the cone C, is not circular.
Otherwise, there must be a quadratic form @ on R® such that Q(o(gv)) =1
for any element g of #,(T) and for a vertex v of a triangulation A of
T, where o is an N-weighting of A induced by the double Z-weighting
of the example (I) (vii). However, by an easy calculation, we can verify
that such a quadratic form does not exist.
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