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1. Introduction. For ordinary differential equations, there are
many results on stability properties and limiting equations by using the
techniques of topological dynamics (cf. [8], [10], [11]). Furthermore, Bondi,
Moauro and Visentin [2] and Artstein [1] gave some of the results as
above by assuming the uniqueness of solutions of limiting equations for
the initial conditions and by using standard arguments based on the fact
that the solution operator is completely continuous.

In this paper, more generally, we shall discuss functional differential
equations with infinite delay, for which it is known that the solution
operator is not necessarily completely continuous but an α-contraction
(cf. [3], [4]). We extend some of the results mentioned above for
ordinary differential equations; that is, we show that some stability
properties of a bounded solution of a given equation follow from stability
properties of its limiting equations without the uniqueness of the solution
of limiting equations for the initial conditions. In particular, our results
contain the following: for a periodic system, if a bounded solution is
uniformly asymptotically stable, then it is totally stable.

2. Phase space B, notations and definitions. First, we shall give
the space B discussed by Kato [7] (see also [3], [4]). Let \x\ be any
norm of x in Rn. Let B be a real linear vector space of functions
mapping (—°°,0] into Rn with a semi-norm \-\B. If x is a function
defined on (— °°, α), then for each te(— °°, α) we define the function xt

by the relation xt(s) = x{t + s), — °o < s <̂  0. The space B is assumed
to have the following properties:

( I ) If x(t) is defined on (—°°, α), continuous on [σ, α), σ < α, and
xσ e B, then for t e [σ, a) we have:

(LI) xteB.

This research was partially supported by Grant-in-Aid for Scientific Research (No,
57540058), Ministry of Education.



598 Y. HINO

(I. 2) xt is continuous in t with respect to | \B.
(I. 3) there are a K > 0 and a positive continuous function M(β),

M(β) -> 0 as β -+ oo, such that \xt\B ^ Ksup,*,*, |α>(0)| + M(t - σ)\xσ\B.
(II) 10(0)I <,Mλ\φ\B for a constant ^ > 0.

REMARK 1. Hale and Kato [4] have given hypotheses on the space
B in a slightly different way. However, in our present context, there
is no difference between the two.

Let S be a compact subset in B and let a > 0 and β > 0. Denote
by X(S, a, β) the set {xt \ t ^ 0 and x( ) is such that #0 6 S, | x{θ) | <: α f or
0e[O, oo) and \x{flι) - x(θ2)\ ^ /3 |^ - 02| for 01, ^2e[0, oo)}.

LEMMA 1. ([4, Corollary 3.2]). The closure X(S, a, β)~ of X(S, α, β)
is compact in B.

Throughout this paper we shall suppose that F(t, φ) is an unvalued
function on R x B, R = (—°of co)f and for any compact set S c 5 , F(t, φ)
is bounded and uniformly continuous on R x S. Then, it is known that
for any compact set WczR x B, any sequence {t'n}, t'n ^ 0, contains a
subsequence {tn} such that {F(t + tn, φ)} converges uniformly for (t, φ) e
W (cf. [4], [6]). The hull H(F) (resp. H+(F)) denotes the set of pairs
(G, Ω), ΩdR x B, such that there exists a sequence {tn}, tn ^ 0 (resp. tn—>
oo as %—• oo)y such that {F(t + tn, φ)} converges to G(t, φ) for (£, φ)eΩ.

REMARK 2. We shall note that if (G, Ω) e H(F), then for any com-
pact set S c δ , there exists a (G*, 0*) e H{F) such that β* DΩ U {/X S}
and G*(ί, ί̂ ) = G(ί, ̂ ) on Ω, where I = [0, oo), because I x S is separable
(see [4], [6]).

Consider the system of functional differential equations

(1) 4(ί) = F(t, xt) ,

where x(t) denotes the right hand derivative. Let x(t, F) be a solution
of (1). In particular, let x(t, s, φ\ F) be a solution of (1) through (s, 0°).
We assume that System (1) has a bounded solution u(t) defined on I and
that L = sup{|F(ί, φ)\ \t ^ 0, \Φ\B ^ 2H} < oo, where If is a positive
constant which satisfies | ut \B ^ H for ί > 0. Therefore by noting that
{ut\t^ 0}~ is contained in the compact set X({uQ}, MJI, L)~ (see Lemma
1), we may assume that for any (G, Ω) e H(F), we have Ω Z) / x {wt | ί ^ 0}~
by Remark 2. Hence it is easily shown that for any (v, G, Ω) e H(u, F)
the function vit) is a solution of
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defined on I (cf. [4]). Here and henceforth, the hulls H{u) (resp. H+(u))
and H(uf F) (resp. H+(u, F)) are defined in the same way as H(F) (resp.
H+(F)). We say that System (1) is regular if, for any (G, Ω) e H(F),
every solution of (2) is unique for the initial conditions.

We shall give several definitions of stabilities.

DEFINITION 1. The solution u(t) is uniformly stable, if for any ε >
0, there exists a δ(e) > 0 such that | xt(s, φ°9 F) — ut \B < ε for all t ^ s,
whenever \φ° — u8\B < δ(ε) for some s ^ 0.

DEFINITION 2. The solution u(t) is weakly uniformly asymptotically
stable, if it is uniformly stable and if there exists a δ0 > 0 such that
I xt(s, φ°, F) — ut \B -> 0 as t —> oo 9 whenever | φ° — u8 \ B < δ0 for some s ^ 0.

DEFINITION 3. The solution u(t) is uniformly asymptotically stable,
if it is uniformly stable and if there exists a δ0 > 0 and for any ε > 0
there exists a T(ε) > 0 such that \xt(s, φ°, F) - ut\B<e for t ^ s + Γ(ε),
whenever \φ° — u8\B < δ0 for some s ^ 0.

DEFINITION 4. The solution u(ί) is uniformly stable in H(F) (resp.
H+(F)), if for any ε > 0, there exists a δ(ε) > 0 such that for any s e I
and (v, G, Ω) e H(u, F)(resp. H+(u, F)), | φ° - v8 \ B < δ(ε) implies | xt(s, φ\ G) -
vt\B < ε for all t ^ s.

DEFINITION 5. The solution u(t) is attracting in H(F) (resp. H+(F)),
if there exists a δ0 > 0 such that for any s e ί and (v,G, Ω)eH(u, F)
(resp. H+(u9 F)), \Φ° — va\B < δ0 implies |x t (s, Φ°,G) — vt\B->0 as t -> °o.

DEFINITION 6. The solution w(£) is weakly uniformly asymptotically
stable in H(F) (resp. H+(F)), if it is uniformly stable in H(F) (resp.

and attracting in H{F) (resp. H+(F)).

DEFINITION 7. The solution u(t) is uniformly attracting in H(F)
(resp. H+(F)), if there exists a δ0 > 0 and for any ε > 0 there exists a
Γ(ε) > 0 such that for any sel and {v, G, Ω) eH(u, F) (resp. H+(u, F)),
\Φ° — v9\B< δ0 implies \xt(s, φ\ G) - vt\B < ε for t ^ s + T(ε).

DEFINITION 8. The solution u(t) is uniformly asymptotically stable
in H(F) (resp. H+(F)), if it is uniformly stable in JSΓ(JP) (resp. H+(F))
and uniformly attracting in H{F) (resp. H+(F)).

DEFINITION 9. The solution u(t) is totally stable, if for any ε > 0
there exists a δ(ε) > 0 such that if g(t) is continuous and satisfies | g(t) \ <
δ(ε) on [0, oo) and if \φ° - u8\B < δ(ε) for a n s e J , then |^(s, φ\ F + g)-
ut IB < ε for all t ^ s, where x(t, s, φ°, F + g) is a solution of
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( 3 ) x(t) = F(t, xt) + git)

through (s, φ°).

REMARK 3. In the above concepts, if the semi-norm \xt — ut\B (or
\%t — ̂ t\β) is replaced by the ϋΓ-norm, then the concepts of the stabilities
in Rn will be obtained. However, it is known that the concepts of
stabilities given in the above and stabilities in Rn are equivalent under
the hypotheses (I) and (II) (see [7, Theorem 5]).

The following Propositions 1 and 2 are well known for ordinary
differential equations and can be proved by using the parallel arguments
as in the proof of Theorem 13.3 and Theorem 13.2 in [12], respectively.
These show that some stability properties of limiting equations follow
from stability properties of (1) under suitable conditions.

PROPOSITION 1. Assume that System (1) is regular. If the solution
u{t) is uniformly stable (resp. uniformly asymptotically stable)f then it
is uniformly stable in H(F) (resp. uniformly asymptotically stable in

PROPOSITION 2. // F(t, φ) is periodic in t, then the solution u(t) is
uniformly stable in H(F) (resp. weakly uniformly asymptotically stable
in H(F), resp. uniformly asymptotically stable in H(F)), if it is uniform-
ly stable (resp. weakly uniformly asymptotically stable, resp. uniformly
asymptotically stable).

An inheritance of weak uniform asymptotic stability for almost
periodic systems will be discussed in Section 5.

3. Main theorem and related results. We shall give our theorem,
whose proof will be given in Section 4.

THEOREM. // the solution u(t) is unique for the initial conditions
and weakly uniformly asymptotically stable in H+(F), then it is uni-
formly asymptotically stable in H(F) and totally stable.

REMARK 4. For ordinary differential equations, the "if" part of
Theorem F in [1] is related to our theorem, in the case where u(t) = 0.
However, there are some differences between the two, because the
concept of limiting equations defined by Artstein covers a wide family
of functions compared with SelΓs concept (our concept is a natural ex-
tension of SelΓs to functional differential equations with infinite delay)
and Artstein has assumed that any solution of every limiting equation
is unique for the initial conditions and that the null solution of a given
equation is unique for the initial conditions and uniformly attracting
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with respect to every limiting equation.

By Propositions 1 and 2 and Theorem, we have the following corol-
laries. For ordinary differential equations, Corollaries 1, 2 and 3 are
proved by using the standard arguments (cf. [12]), because the solution
operator is completely continuous.

COROLLARY 1. Assume that System (1) is regular. If u(t) is uni-
formly asymptotically stable, then it is totally stable.

COROLLARY 2. Assume that Fit, φ) is periodic in t. Then u(t) is
weakly uniformly asymptotically stable if and only if it is uniformly
asymptotically stable.

COROLLARY 3. Assume that Fit, φ) is periodic in t. If u(t) is
weakly uniformly asymptotically stable, then it is totally stable.

REMARK 5. For ordinary differential equations, Bondi, Moauro and
Visentin [2, Theorem 3.1] have shown that if F(t, x) satisfies a Lipschitz
condition and the null solution of x(t) = Fit, x) is uniformly attracting
in H+(F), then the null solution is uniformly asymptotically stable in
H(F). However, to such an equation whose limiting equation is x(t) =
— x1/s, [2, Theorem 3.1] is not applicable but our theorem is.

We shall consider the perturbed system, that is,

( 4 ) xit) = Fit, xt) + a{t, xt) ,

where a it, φ) is continuous on I x B and for any compact set SaB,
a(t, φ) —> 0 as t -> co uniformly on S.

COROLLARY 4. Suppose that Equation (4) has the null solution which
is unique for the initial conditions and that System (1) is regular.
Then the null solution of (4) is uniformly asymptotically stable and
totally stable, if the null solution of (1) is uniformly asymptotically
stable.

PPOOF. The null solution of (1) is uniformly asymptotically stable,
H+(F) = H+(F + a) and System (1) is regular. Hence for any (G, Ω) e
H+(F + a), the null solution of (2) is uniformly asymptotically stable
with the common (δ( ), So. T( )) as the one for the null solution of (1) by
Proposition 1. Hence we have the conclusion by Theorem, because the
null solution of (4) is unique for the initial conditions.

4. Proof of Theorem. We shall use the following lemma to prove
Theorem, which corresponds to [5, Lemma 2] and [6, Lemma 1] for
functional differential equations.
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LEMMA 2. Assume that any solution in H(u) is unique for the
initial conditions. Let T > 0. Then for any ε > 0, there exists a δ(ε) >
0 such that for any sel, if\φo — u8\B< δ(ε) and \g(t)| < δ(ε) on [s, s + T],
then \xt(s, ψ\ F + g) - ut\B < ε for t e [s, s + T].

PROOF. Suppose the contrary. Then, for some ε, H > ε > 0, there
exist sequences {tn}, tn e I, {gn(t)} and {τn} such that | gn(t) | < 1/n for t e
[tn, tn + T], I x ΐ n ( F + gn) -utn\B< 1/n, τn e [ ί n f tn + T], \xΐ(F + gn)-ut\B<
ε for t e [tn, τn) and \x\{F + g) - uτJB = ε. Since τn - tn e [0, Γ], we can
assume that pn = τn — tn converges to p e [0, Γ] as w —> °o. Set

= p n ( ί + tn,F + gn), te(-oofPn),

\xn(τn, F + gn) , ί e [p n , T ] .

Then yn(t) is the solution of x(t) = F(t + tn, xt) + gn{t + tn) on [0, pn] such
t h a t yn, = xn

tn{F + gn). Since \yϊ\B£ \yΐ -ut\B + \ut\B ^ \x?+tn(F + gn) -
ut\B+\nt\B<e + H<2H for ί 6 [ 0 f p n ] and \yn(t)\ ^ \F(t + tn, yΐ)\ +
19n(t + tn)\<L + K2L for t e [0, p j and \yn(t)\ = 0 for t e [pn, Γ] , we may
assume t h a t y ? e X ( S , 2 ^ 1 ^ , 2L)~, where S = {aj?Λ(JF+firw)|tt = 1, 2, 3, •••}"
is compact in β . Hence we can assume t h a t F(t + tn, φ) + gn(t + tn) ->
G(ί, φ) as w —* oo uniformly on [0, p] x X(S U {̂ 0}, 2 ^ 1 ? , 2L)~ and y\t)
and ^(ί + tn) converge to solutions ι/(t) and v(t) of (2) as n —> oo uniformly
on [0, p], respectively. 2/0 = % implies \yt — vt\B = 0 on [0, p], because
v(ί) is unique for the initial conditions. However | y%% — ̂ P ί t + ί Λ 15 =
\Xpn+tn(F + grn) — uPn+tn\B = \Xτn(F + g n ) — uτJB = ε i m p l i e s \ y p — vp\B = ε ,
which is a contradiction.

PROOF OF THEOREM. It is known that if u{t) is uniformly stable
and attracting in H+(F), then it is uniformly asymptotically stable ([4,
Theorem 6.2]). Hence we shall show only that the solution u(t) is totally
stable, because the total stability implies the uniform stability. Suppose
not. Then there are sequences {tn}, tn ^ 0, {rn}, rn > 0, {gn(t)} and {xn(t,
F + gn)} and a constant δlf δ± < min{iϊ, <50/2}, such that

( 5 ) Ixn

tn{F + gn) -utn\B< IIn and |gn(t)\ < 1/n on [tni 00)

and

( 6 ) I x7n+rJίF + gn) - utn+rJB = δ, a n d \xn

t{F + gn) - ut\B < δ,

o n ^ [tny tn + rn) ,

where δ0 is the one given for the attraction in H+(F) of u(t). There
exists a sequence {qn}, 0 < qn < rn, such that

( 7 ) I x?n+qn(F + g") - utn+qn I B = δ(δJ2)/2
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and

( 8 ) δ(δJ2)/2£\xϊ(F+gn)-ut\B£δι on [tn + qn, tn + rJ ,

for a large n by (5) and (6), where δ( ) is the one given for uniform
stability in H+(F) of u(t). Suppose that there exists a subsequence of
{qn}, which we shall denote by {qn} again, such that qn converges to
some q,qel. Since any solution in H{u) is uniqe for initial conditions,
it follows from (5) that there exists an n0 > 0 such that for any n ^
no, q + 1 ̂  qn ^ 0 and \xΐn+t(F + gn) - utn+t\B < W 4 ) / 4 for t e [0, q + 1]
by Lemma 2, which contradicts (7). Therefore, we can see that qn —> oo
as n —> oo.

Put p n = r n — gπ and suppose that pn —> oo as w —> oo. Set sn = qn +
(pn/2) and zn(t) = xn(t + tn + sn, F + gn). Then, we have zn

t e X(S, 2M.H,
2L)- for te[-pJ2, PJ2], where S = { a j ^ J f + <7n)|^ - 1, 2, 3, •}",
b e c a u s e z%n/2 = xΐn+Qn(F + gn) e S a n d \z?\B = \x?+tn+8n(F + g n ) \ B =
I x7+in+.n (F + gn) - ut+tn+8n \ B + \ ut+tn+8n \B<δ1 + H<2H f o r ί e [ - pJ2,
pn/2] by (8). Clearly, z\t) and %(t + tn + sn) are solutions of x{t) =
F(t + tn + «n, a?t) + 0n(£ + tn + 8n) and x(t) = F(t + ίn + βn, a?t), respectively.
Hence we can easily show that there are a function* P(t, φ) and solutions
z(t) and v(t) of *(ί) = P(ί, ̂ ) defined on / such that jP(t + ίn + sn, ̂ ) +
^n(ί + tn + sn) -> P(t, ^) uniformly on (any compact set of I) x X(S U
{u0}, 2MιH7 2L)~ as ?t -> oo and zn(t) -> ̂ (t) and u(t + tn + sn) —• v(t) uni-
formly on any compact subset of / a s w -» c>o, taking a subsequence, if
necessary. For a fixed t > 0, there exists an ̂  > 0 such that for every
n ^ n l f r n — sn = pn/2 > t, because pn —> oo as w —> oo. Hence for w ̂  n l f

we have qn < ί + sn < rn. Thus for w ̂  ^ ,

( 9 ) l*?-w.+ ί l l + . jB^«(«i/2)/2

by (8). There exists an n2 > nL such that for every n^n2

(10) I zΐ - zt IB ̂  δ(δχ/2)/8 and | wt+tn+#ll - ^ U ̂  δ ί δ ^ / β .

By (9) and (10), for every n ^ n2

(11) \ z t - V J B ^ 1 2 ? - u t + t n + S n \ B - \ u t + t n + 8 n - v t \ B - \zn

t - z t \ B

However, \z0 — vo\B < δ0 implies |z t — vt\B-> 0 as t -> oo, which is a
contradiction of (11). We can show that {pn} is bounded.

Hence we may assume that pn converges to p, p e I, as n —> oo and
0 ^ pn < p + 1 for all n. Set

= f^n(ί + tn + qn, F + gn) , ί e ( - oo, P J ,
27 \xn(tn + rn,F+ gn), te [Pn, p + 1] .
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Then, by using the same arguments as in the proof of Lemma 2, we
may assume that F(t + tn + qn, φ) + gn(t + tn + qn) -> G(ί, φ) uniformly
on [0, p] x X(S U {u0}, 2MJI, 2L)~ as w -> oo and that y\t) and uit + tn +
qn) converge to solutions y(t) and w(t) of (2) as n—>°° uniformly on
[0, p]9 respectively. Since \y0 - wo\B = 8^2)12 by (7), we have |yp -
wPU<<5i/2. However, we have a contradiction by (6), because \yn

Vn —

VP\B = N U + g J ί 1 + gn) - xnp+tn+qS
F + Sn)\B ^ K*vP-{9n+Ut)*eso\xn(Pn +

tn + qn + θ,F + gn) - xn(p + tn + qn + θ, F + gn)\ + M(pn + qΛ)\x7n(F +

9n) - K+p-*n(
F + 9U)\B ^ 2KL\pn - p\ + M{pn + qn){\xΐn(F + g*)\B +

\XΪΛ+P_PΛ(F + gn)\B) ^ 2KL\pn -p\+ ±HM{pn + qn), and hence we have

\VP - WP\B^ \xΐn+rn(
F + 9n) -Utn+rJs- \V9 -VP\B - \VP - VPJB- \yn

Pn-
χtn+rn(F + gn)IB - I u ί w + r w - wPn\B- \wPn- wp\B^ δJ2 f o r a l l l a r g e n.
Thus the solution w(t) is totally stable.

5. Almost periodic systems. In this section, we shall assume that
B is separable and that F(t, Φ) is almost periodic in t uniformly for φeB.
Then, it is known that for any sequence {t'n}, there exists a subsequence
{tn} of {t'n} and a continuous function G(t, φ) such that F(t + tny φ) —> G(ί, φ)
as ^ -> oo uniformly pn i? x S, where S is any compact set in B. We shall
note that G(ί, #) also is almost periodic in t uniformly for φeB (cf. [7]).

COROLLARY 5. Suppose that System (1) is regular and has the null
solution which is weakly uniformly asymptotically stable. Then the null
solution of (1) is uniformly asymptotically stable.

PROOF. We shall show that the null solution of (1) is attracting in
H+(F). Then the conclusion follows from Proposition 1 and Theorem,
immediately.

By Proposition 1, for any (G, R x B)e H+(F) and s ^ 0, xt(s, φ\ G)
exists in the future and \xt(s, φ°,G)\B < δo/2 for all t ^ s, if | ^ ° U <
δ(δo/4)/2, where <5( ) and δ0 are the ones given for weak uniform as-
ymptotic stability of the null solution of (1). Uniform stability of the
null solution of (2) implies that |x t(s, φ°,G)\B-+0 as t -> °o, as required,
or there exists a constant r > 0 such that r ^ | xt(s, φ°, G) \ B < δo/2 for
all t ^ s.

Suppose that r ^ \xt(s, φ°, G)\B < δo/2 for all t ^ s. Then, there exists
a sequence {pn}, pn -> oo as ^ -> oo, such that G(ί + pn, φ) -+ Fit, φ) as

n —• oo uniformly on i? x {^ | ί ^ s}~ and a?(ί + pn, s, 0°, G) —> y(t) uniformly
on any compact subset of R as n—> oo. Clearly, y{t) is the solution of
(1) through \yQ\B<δQ and \yt\B^r/2 for all t :> 0. However, 12/01̂  <
<50 implies | ̂  | B -> 0 as t —> oo, which is a contradiction. Hence the null
solution of (1) is attracting in H+(F).



FUNCTIONAL DIFFERENTIAL EQUATIONS 605

REMARK 6. It is known that for ordinary differential equations
Corollary 5 holds good without the regularity assumption. (Cf. [1], [9],
[12]). The author feels that the condition "System (1) is regular" in
Corollary 5 can be dropped, but is unable to prove so.
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