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1. Preliminaries. Let G and A be a non-elementary finitely gener-
ated Fuchsian group of the second kind acting on the upper half complex
plane H and its limit set, respectively. The limit set A of G lies on the
extended real axis R which is the boundary of H. We say that G has
type (g; n; m) if we obtain S = H/G from a compact surface of genus g
by removing n (^ 0) points and m (^ 0) conformal discs. Put mt(δ, A) =
inf Σ Ϊ dia* (It)9 where the infimum is taken over all coverings of A by
sequences {I%) of intervals It on R with the spherical diameter dia (I*)
less than a given number δ > 0. Further, put mt(A) = lim3_0 ^tiβ9 A),
which is called the ί-dimensional Hausdorff measure of A. We call
d(A) = inf {t > 0; mt(A) = 0} the Hausdorff dimension of A ([1], [3]).

The first purpose of this paper is to let the Hausdorff dimension
d(Λ) increase by deformations of G without altering the type (g; n; m).
This was essentially done by Beardon [4] when H/G is a punctured sur-
face and he also proved that the Hausdorff dimension of the limit set is
less than 1 for any finitely generated Fuchsian group of the second kind.
The second purpose is to show the existence of Fuchsian groups of type
(1; 0; 1) or (0; 0; 3) such that the Hausdorff dimension of its limit set is
equal to an arbitrary number t e (0,1).

2. Statement of the main theorem. Let

fa b\ /expθ/^ϊττ/4 0
A = and M = y

\b a) \ 0 exp(-i/-lττ/4),

be Mόbius transformations acting on the extended complex plane and
making the unit disc Δ invariant, where a > b > 1 and α2 — δ2 = 1. De-
note by d, c[, c2 and c[ the isometric circles of the Mobius transforma-
tions A"1, A, MA^M"1 and MAM~\ respectively. We see that c2 = M(c^),
c[ = M~\cύ and {cif c }2=i are mutually disjoint circles and that each of
these circles is orthogonal to the unit circle. Put Do = fγi=1 {ext (c<) Π
ext (d)}i where ext (c) denotes the exterior of the circle c. Then the
Schottky group Γ generated by A and MAM'1 is a Fuchsian group of
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type (1; 0; 1) acting on the unit disc Δ and having a fundamental domain
B = A Γ I l Let {DJ\ be all of the equivalents of Do by Γ. Then Dv

clusters to a perfect non-dence set Λ{Γ) on the unit circle. We call Λ(Γ)
the limit set of Γ. Now, let us consider the conjugate T~ιΓT of Γ, where

1 1/-]

is a Mobius transformation. Then T~XΓT is a Fuchsian group acting on
the upper half complex plane H and is generated by h and EhE~\ where
for λ = a — 6, h and E are defined by

0 \ 1-1 - 1 \
h = T - ' A T = Γ _ J , # Γ W Γ i Ύ !

Since α > 6 > 1 and α2 - 62 = 1, we have 0 < λ < l/~2~ - 1. Clearly,
T~XΓT is determined by λe(0, V~Z - 1) and we put Γ T Γ = /Y The
domain T~\B) = T~\D0) Π i ί is a fundamental domain of the Fuchsian
group Γλ and we see easily that T~λ{DQ) is bounded by four circles \z\ = λ,
|z | = λ"1, | z±( l + λ2)(l - λ2)"1! = 2λ(l - λ2)"1 which are orthogonal to the
real axis R and are denoted by clf c'19 c2, c[, respectively. Clearly

(2.1) Eic,) = c2 and E-\cλ) = c[ .

Hence, for λ e (0, i/ 2 — 1),Γλ is a Fuchsian group of the second kind of
type (1; 0; 1) and with the limit set Λ(Γλ) = T'\Λ(Γ)). The first purpose
of this paper is to prove the following:

THEOREM 1. Under the above situation, d(Λ(Γλ)) tends to 1 as λ 6
(0, i/ΊΓ - 1) tends to V~2 - 1.

In the following two sections § 3 and § 4, we prove some preparatory
lemmas for the proof of Theorem 1, which we give in § 5. In § 6, we
state an application of the theorem.

3. General Cantor sets. Let / be a closed interval on the real axis
R of the complex plane. We take Λ(^2) disjoint closed intervals /(ix)
(ii = 1, 2, , k) in I and k disjoint closed intervals /(i^) (i2 = 1, 2, , k)
in /(ij and proceed similarly. Then, after n steps, we obtain kn closed
intervals I{iλ i2 - in) (il9 -. -, in = 1, 2, , k) such that I(ix i2 - in in+1) c
% i2 in) (i»+i = 1, 2, •••,&). We put

(3.1) C-ή U K^ iJ.

DEFINITION 1. The set C constructed above is said to be a general
Cantor set if it satisfies the following conditions:
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(a) There exists a constant A e (0, 1) such that

\I(ii i2 i» i»+i)l ^ A\I{ii i* in)| (i«+i = 1, 2, , &) ,

where | J | is the length of an interval J.
(b) There is constant B e (0,1) such that

p(I(\ i2 - ins), I(iι iz'" int)) ^ 2? |/( i i i 2 i») I t

where s Φ t and jθ(Jx, J2) = inί{\x — y\; xeJlf y e J2}. Here a closed inter-
val I(iλ i2 in) (ix, i2, , in = 1, 2, , k) is said to be a fundamental
interval for the set C.

DEFINITION 2. The set ^ = {/*, J2*, •••,/*} is called a fundamental
system of a given general Cantor set C, if it satisfies the following
conditions:

(a) It is a fundamental interval for C (1 ^ ί <̂  j>).
(b) i? n 1/ = 0 (i ^ i, 1 ^ i, i ^ p).
(c) Uf-ii?=>σ.
The following lemmas are known.

LEMMA 1 ([3], [6]). Let C be a general Cantor set constructed as in
(3.1). Then M.2LX1<Lhr..tin<ίk\I(i1i2 ••• in)\ tends to 0 as n tends to oo.

LEMMA 2 ([1], [3]). Let C be a general Cantor set and suppose that
Mt(C) is defined as for mt(C) with an additional restriction that the
covering {In} is a fundamental system of C. Then

Mt(C) ^ mt(C) ^ B'M^C) .

LEMMA 3 ([1], [3]). Let C be a general Cantor set constructed as in
(3.1). If, for all n = 1, 2, and all iu , in = 1, — -, k,

4. A general Cantor set associated with Λ(Γλ). Now we return to
the Fuchsian group Γλ (λ 6 (0, i/~2~ — 1)) introduced in § 2. We construct
a general Cantor set Lλ associated with the limit set Λ(Γλ) of Γλ. Let
Gi be the set consisting of Mobius transformations

i ) 7,
ϋ) τi+Λr

(iϋ) 7 i+2i, = (hEYhE-1 , (1 ^ i ^ iSΓ) ,

(iv)
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together with an element JAN+1 = h, where N is an integer determined
later. We shall refer to these elements as being of types (i), (ii), (iii)
and (iv), respectively. Having defined Gu we define Gn for all positive
integers n inductively by

Gn+1 = {UV;UeGn, VeGJ

and further, put

(4.2) Lx = f] U U{Iλ),
fc=l UeGk

where Ix is the open interval (—λ, λ) on the real axis R and Tx denotes
the closure of Ix. We see easily h(jx)alλf E(TX) Π E~\IX) = 0 , (E(ϊx) U
E-\Ίλ)) Π Iχ = 0 and hE(ϊx) U hE~ι(ϊx) c I,. Hence, if _UeGn and if F x

and F2 in Gx are distinct, then I^V^Ί^ and ZJF^) Π ϊ/V Cl;) = 0 .
Let Gf be the set consisting of Mδbius transformations h, hE and hE~~\
We define G* for all positive integers n inductively by GJ+1 = {UV; Ue
GS, VeGJ. It is easily seen that {fl*^ \Jueon U{ΊX)} c {Π~=1 U ^
Recalling that Γ = TΓxT~ι is a Schottky group and noting

.1 u U(jι) ) = Λ(nnT(iχ),
n=l UeG* /

n

we see

(4.3) Lλd{A(Γλ)Πlχ}.

We prove the following which gives a useful estimate later.

LEMMA 4. Let J be any sub-interval of Ix and let UeG = \Jΐ=1Gk.
Then

\J\/2 ^ I U(J)\\ U{Ix)\-χ ^ I J | ( l + λ)(l - X)-^~V2 .
Furthermore, if VeGlf then

\UV(Ix)\<ί\U(Ix)\/2.

PROOF. We can write UeG in the form

U= Vn VιV1(VteGι,i = l,2, -•.,*)

for a suitable n. For intervals (λ, oo), (— oo, — x) etc. on the real axis R,
we see ^ ( ( λ , oo))c(λ~1, oo), h~\(—oof — λ))c(— ooy —λ"1), E~\(X~\ °°))c

Using these and putting Q = ̂ (7^) U ^ " ' ( / ) U jS2(ίι), we have
V-\Q)dQ for any FeG l β Moreover, if VeGx is of type (iii), the
V-1 = ί/Fx"1 for some VΊeGί of type (i) and F " 1 ^ , oo)) dE((χ-\ oo))c
( —(1 + λ)(l — λ)"1, —1). Noting those facts, we see that, if Fx is identi-
cal with h or is of type (i) or (ii), then U~\oo) eE\Ix) and we have
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\U~\oo)\> x-1 > 1. If V, is of type (iii), then U~\oo)e Vr\Q)c(-oo,
-1)Π E-\Iλ) and thus we have U'^oo) <: - l . Similarly, if V1 is of
type (iv), then U~\oo) e Vr\Q)c: (1, oo) Γ\ E(IX) and therefore we have
U~\oo) > 1. Hence in all cases we have \U~\oo)\ > 1. We now denote
by J = (α, β) the interval on the real axis and put ζ = U~\°°). Then
we see

I U{J) I. I U(Iλ) I"1 = ( £ I EP(aO | <te)( j ^ | U\x)

= (I Jl^λ-XC + λ)(ζ - λ)(ζ - ά)-\ζ -

In the case ζ > 1, we have

(4.4) IJΊ/2 ^ {\J\12)X-\1 - λ)(l + λ)"1 ^

from the assumption Jalx. In the case ζ < — 1, a similar argument
gives the same inequalities and completes the proof of the first part of
our lemma.

Finally, we have hEh(Iλ) = (λ_X_l - λ3)(l + λ3)"1, λ2(l + λ3)(l - λ3)"1),
h(Iλ) = (~λ8, λ8) and since λ e (0, V 2 - 1),

Max|V(Ij)| ^ 2λ3(l - λ2)"1

VeG1

Applying (4.4) with J= V(IX) we get 1177(1;)| ^ \U(Iλ)\/2, which is the
second part of our lemma. q.e.d.

By using Lemma 4, we show the following.

LEMMA 5. The set Lλ in (4.2) is a general Cantor set on the real
axis.

PROOF. Let I = Tλ and 7,(1;) = I(j) for 7, eG, (1 ̂  j ^ AN + 1) in
(4.1). We can take k — AN + 1 disjoint closed intervals I(i) (i = 1, 2, ,
ft) in J and ft disjoint closed intervals 7*7,(7;) = I(i, i) (i = 1, 2, , ft) in
I(i) for ΊfΐjeG^ Proceeding similarly, we have inductively

{UV(ϊλ); Ve GJ - {!«, ΐ2 - i j ) ; 1 ̂  j ^ ft}

for UeGn. Then, applying the first inequality of Lemma 4 to J = V{Iλ)
(7eG x ) and UeG, we have | C77(J;) |_^ A| Ϊ7(7;)| for the constant A =
MinFβ(?117(I;) |/2. The set A U F Θ ^ 7(7;) consists of a finite number of
open arcs Jt. If Vlf 72 are distinct elements oί'G19 then there exists a
subarc Jof Iλ lying between 7 ^ ) and V2(Iλ) with | J|/2 ^ Min | Jt\/2 > 0.
As U{J) lies between Z77i(I;) and J772(I;), Lemma 4 implies

), UV2(Tλ)) ^ I C7(J)| ^ I J\\ U(Ix)\/2 ^ B\ Uiϊλ)\
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for B = Mirii I Jt |/2. Thus, by Definition 1 we see that Lλ is a general
Cantor set. q.e.d.

Next we show the following lemma.

LEMMA 6. Let k be any integer greater than 1 and let au a2, , ak

and s be the positive numbers satisfying 0 <Ξ aΰ ^ a < 1 (1 ^ j ^ h) and
0 ^ s <; a1 + a2 + + ak < 1. Then

a[ + α2

r + + al ^ 1 ,

r = 1 - (1 - β)(l - α)"1 .

PROOF. Let α? e (0,1) be a number uniquely determined by al +
α? + + al = 1. The inequality y* - 1 <: ί(y - 1) holds for y ^ 0 and
0 ^ ί ^ 1. Taking y = aό and t = 1 — x, we have α}~x — 1 ^ (αy — 1)(1 —
α) ^ (α — 1)(1 — x)f which shows

a5 ^ {1 - (1 - a?)(l - a)}axj , (1 ^ j ^ ft) .

Hence we have s ^ Σ*=i aj ^ {1 — (1 — »)(1 — ̂ )} q.e.d.

5. Proof of Theorem 1. Now we are going to prove Theorem 1.
As we have seen in (4.4) and in Lemma 5, the set Lλ in (4.2) is a
general Cantor set contained in A(Γλ) Π /;. So it is sufficient to show
that the Hausdorff dimension d(Lλ) of Lλ tends to 1 as λ tends to
l / Ύ - 1. Put

F=Iλ\\J V(Tλ)9
VeG1

and

Y = Iχ\{h(Tλ) U hE(ϊλ) U hE-\Ίλ)}.

Then Fz)Y and

(5.1) F\Y = hE(ϊλ) U hE-\ϊλ)\V V{Ίλ)

= {FΠ hE(Tx)} ϋ{FΠ hE-\Ix)} •

Now we have

= (hEnϊx\Y)\\J V{ΊX).
VeGι

If we denote by { — λ, λ} the set consisting of two points — λ and λ on
the real axis, then the right hand side of the above is equal to
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x) U hE(ϊx) U hE-ι(Jx)} U ( W ( { - λ , λ})\U V(ϊx)
VeGJ

U W«-λ, λ})\U
VeO1

This, together with the inclusion Fz>(hE)n(Y), gives

V\) Π

where m^S) denotes the Lebesgue measure on the real axis. A similar
equality holds with hE replaced by hE~\ Using these two equalities
for n = 1, 2, , N — 1 and (5.1), we have

mλ{F) = mλ(Y) + Σ mME)\Y)) + mME)N{Ίλ) Π F)

1 + m^hE-γdz) Π F) .

As both Y and Ix are symmetric with respect to the imaginary axis, we
have m^ihEfiY)) = mJ^hE'^iY)) and we see that a similar equality
holds with Ix replaced by Y. Thus

(5.2) mλ{F) ^ mx(Γ) + 2-5?

We first estimate m^Γ). Put ε = (λ + λ"1)2 - 8 > 0. Then

(5.3) mi(Y) = 2 {λ(l - λ2) - ((1 + λ)(l - λ)-1 - (1 - λ)(l + λ)"1)^

= 2λ3(l - λ2)-^ < e .

Next we estimate m^hEfiY)). Put

(5.4) (hE)\z) = (akz + bk)(ckz + dk)-1 , akdk - bkek = 1 .

We easily see hE(.E(Iλ)) = R\Ii 3 E(IX) and also have (hEKEdx)) z> ̂
inductively. Hence we can deduce that the pole of (hE)k(z) lies in E(JX).
This implies that \dk\ > X\ek\. Therefore we have the following estimate

(5.5) mMEfiY)) =[ \ckz + d
Jr

Next we compute ck and dk. For real numbers ak, bk, ck, dk in (5.4), we
have

/α 4 + 1 bk+λ _ fak bλ,— J λ λ \

\β*+i dt+J ~ W dj [-X-1 λ"1/ '

By an elementary computation, we have

ck = (p* - qη{(P - αXi/T)*}-1, _

dk = {p*+1 - g*+1 + λ(p* - q")}{(p ~ qyy 2 )*}"1 ,
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where p = {-(λ + λ"1) - V(X + λ~x)2 - 8}/2 and q = {-(λ + λ"1) +
v/(λ + λ-α)2--8}/2. From p + λ < g + λ < 0 and | p | = (λ + λ"1 +
l/ e )/2 > i/"2" > |QΊ = (λ + λ"1 - 1/ ε )/2 > λ, we see

(5.6) \p - q\(\dh\ - X\ck\) = 2-<">{\pk(p + λ) - β*(ff + λ) | - |p f t - «»|}

= 2-*"{|p|*(|p| - λ - 1) + |flf|»(λ + 1 -

Since \p\ — \q\ = Vs. and —λ + λ"1 = i/s + 4, we have

(5.7) Σl(l<*»|-λ|c,|Γ

Σ
fc=i

= 2( |p | - M)2(l2>| - λ -
= 2e{(v/s + 4 - 2 + 1/ e )/2}~2{(e + i/ ε 1/8 + SV2}-1

< (v/Γ+1 + 2 - i/T)2 ε-1/2

< 16ε-1/2.

Furthermore, we have from (5.6)

(5.8) mMWUx)) < e/2

for N sufficiently large. Hence (5.2), (5.3), (5.5), (5.7) and (5.8) imply

mJ,F) ^ 2ε + 32ε1/2 .

Since F = Iχ\\JVeσi V(ϊx), we have

|CT(Γi)| = m1(CT(2Γ))+ Σ \UV(ΊX)\
V eG1

for any element UeG and also have

(5.9) Σ I UV{Ίλ)\\ U(ϊx)r = 1 - mi{U{F))\ U(ϊλ)r .

As F is a union of open intervals, we have from Lemma 4 that, if
λ > 1/5, then

From this inequality and (5.9), we have

(5.10) Σ I UV(ϊλ)\\ U{TX)I"1 ^ 1 - 4mx
VeGλ

We take the numbers au a2, , ak in Lemma 6 to be the ratios
I UV(Iλ)\\ U{ϊλ)\-\ UeG, VeGx. Putting a = 1/2 and s = 1 - 4m1(F) in
Lemma 4 and noting Lemmas 1, 2 and 3 we have



FUCHSIAN GROUPS 581

d(Λ(Γλ)) ^ d(Lx) ^ 1 - 8(2ε + 16ε1/2)

from (5.10). Thus the proof of Theorem 1 is complete.

6. Applications. Let M, A, h, E and {cu c$ = 1 be as those previously
described in § 2. The group Γ generated by A and MAM'1 is a Fuchsian
group acting on the unit disc and is of type (1; 0; 1). Put Wι = E^hr1

and W2 = E~ιh. Then the group G freely generated by Wlf W2 has type
(0; 0; 3). The fundamental system of Λ(Γ) coincides with that of Λ(G).
It is easily seen that d(Λ(Γ)) = d(Λ(G)) by Lemma 2. Applying Theorem
4 stated in [2] and [5] and Theorem 1 in the present paper, we have the
following whose proof may be omitted.

THEOREM 2. Assume 0 < t < 1. Then there are Fuchsian groups G
of types (0; 0; 3) and (1; 0; 1) with d(Λ(G)) = t.

As a direct result of this theorem, we have the following.

COROLLARY 1. There exist two distinct Fuchsian groups Gλ and G2

with d(A(Gi)) — d(Λ(G2)) and with the same fundamental regions.

Using the continuity argument in [5], we also have the following.

COROLLARY 2. Let Γ be a Fuchsian group of type (g; 0; m) with
2g — 2 + m > 0, m > 0. Then there is a quasiconformal mapping wε of
the extended complex plane onto itself such that d{A{w£Γw71)) > 1 — e for
any small positive number ε.

REFERENCES

[ 1 ] T. AKAZA, Local property of the singular sets of some Kleinian groups, Tόhoku Math.
J. 25 (1973), 1-22.

[2] T. AKAZA AND H. FURUSAWA, The exponent of convergence of Poincare series on some
Kleinian groups, Tδhoku Math, J. 32 (1980), 447-452.

[3] A. F. BEARDON, The Hausdorff dimension of singular sets of properly discontinuous
groups, Amer. J. Math. 88 (1966), 722-736.

[4] A. F. BEARDON, Inequalities for certain Fuchsian groups, Acta Math. 127 (1971), 221-258.
[5] H. FURUSAWA, The Hausdorff dimension of limit sets of some Fuchsian groups, Tδhoku

Math. J. 33 (1981), 409-412.
[6] M. TSUJI, Potential theory in modern function theory, Maruzen, Tokyo, 1959.

DEPARTMENT OF MATHEMATICS

KANAZAWA WOMEN'S JUNIOR COLLEGE

KANAZAWA, 920-13

JAPAN






