THE LIMIT SET OF DEFORMATIONS OF SOME FUCHSIAN GROUPS

Harushi Furusawa

(Received October 25, 1982, revised March 11, 1983)

1. Preliminaries. Let G and Λ be a non-elementary finitely generated Fuchsian group of the second kind acting on the upper half complex plane H and its limit set, respectively. The limit set Λ of G lies on the extended real axis \hat{R} which is the boundary of H. We say that G has type ($g ; n ; m$) if we obtain $S=H / G$ from a compact surface of genus g by removing $n(\geqq 0)$ points and $m(\geqq 0)$ conformal discs. Put $m_{t}(\delta, \Lambda)=$ $\inf \sum_{i} \operatorname{dia}^{t}\left(I_{i}\right)$, where the infimum is taken over all coverings of Λ by sequences $\left\{I_{i}\right\}$ of intervals I_{i} on \hat{R} with the spherical diameter dia (I_{i}) less than a given number $\delta>0$. Further, put $m_{t}(\Lambda)=\lim _{\delta \rightarrow 0} m_{t}(\delta, \Lambda)$, which is called the t-dimensional Hausdorff measure of Λ. We call $d(\Lambda)=\inf \left\{t>0 ; m_{t}(\Lambda)=0\right\}$ the Hausdorff dimension of Λ ([1], [3]).

The first purpose of this paper is to let the Hausdorff dimension $d(\Lambda)$ increase by deformations of G without altering the type ($g ; n ; m$). This was essentially done by Beardon [4] when H / G is a punctured surface and he also proved that the Hausdorff dimension of the limit set is less than 1 for any finitely generated Fuchsian group of the second kind. The second purpose is to show the existence of Fuchsian groups of type $(1 ; 0 ; 1)$ or $(0 ; 0 ; 3)$ such that the Hausdorff dimension of its limit set is equal to an arbitrary number $t \in(0,1)$.
2. Statement of the main theorem. Let

$$
A=\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right) \quad \text { and } \quad M=\left(\begin{array}{cc}
\exp (\sqrt{-1} \pi / 4 & 0 \\
0 & \exp (-\sqrt{-1} \pi / 4)
\end{array}\right)
$$

be Möbius transformations acting on the extended complex plane and making the unit disc Δ invariant, where $a>b>1$ and $a^{2}-b^{2}=1$. Denote by $c_{1}, c_{1}^{\prime}, c_{2}$ and c_{2}^{\prime} the isometric circles of the Möbius transformations $A^{-1}, A, M A^{-1} M^{-1}$ and $M A M^{-1}$, respectively. We see that $c_{2}=M\left(c_{1}\right)$, $c_{2}^{\prime}=M^{-1}\left(c_{1}\right)$ and $\left\{c_{i}, c_{i}^{\prime}\right\}_{i=1}^{2}$ are mutually disjoint circles and that each of these circles is orthogonal to the unit circle. Put $D_{0}=\bigcap_{i=1}^{2}\left\{\operatorname{ext}\left(c_{i}\right) \cap\right.$ $\left.\operatorname{ext}\left(c_{i}^{\prime}\right)\right\}$, where ext (c) denotes the exterior of the circle c. Then the Schottky group Γ generated by A and $M A M^{-1}$ is a Fuchsian group of
type $(1 ; 0 ; 1)$ acting on the unit disc Δ and having a fundamental domain $B=D_{0} \cap \Delta$. Let $\left\{D_{\nu}\right\}$ be all of the equivalents of D_{0} by Γ. Then D_{ν} clusters to a perfect non-dence set $\Lambda(\Gamma)$ on the unit circle. We call $\Lambda(\Gamma)$ the limit set of Γ. Now, let us consider the conjugate $T^{-1} \Gamma T$ of Γ, where

$$
T=(-2 \sqrt{-1})^{-1 / 2}\left(\begin{array}{rr}
-1 & \sqrt{-1} \\
1 & \sqrt{-1}
\end{array}\right)
$$

is a Möbius transformation. Then $T^{-1} \Gamma T$ is a Fuchsian group acting on the upper half complex plane H and is generated by h and $E h E^{-1}$, where for $\lambda=a-b, h$ and E are defined by

$$
h=T^{-1} A T=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right), \quad E=T^{-1} M T=\sqrt{2^{-1}}\left(\begin{array}{rr}
-1 & -1 \\
1 & -1
\end{array}\right) .
$$

Since $a>b>1$ and $a^{2}-b^{2}=1$, we have $0<\lambda<\sqrt{2}-1$. Clearly, $T^{-1} \Gamma T$ is determined by $\lambda \in(0, \sqrt{2}-1)$ and we put $T^{-1} \Gamma T=\Gamma_{\lambda}$. The domain $T^{-1}(B)=T^{-1}\left(D_{0}\right) \cap H$ is a fundamental domain of the Fuchsian group Γ_{λ} and we see easily that $T^{-1}\left(D_{0}\right)$ is bounded by four circles $|z|=\lambda$, $|z|=\lambda^{-1},\left|z \pm\left(1+\lambda^{2}\right)\left(1-\lambda^{2}\right)^{-1}\right|=2 \lambda\left(1-\lambda^{2}\right)^{-1}$ which are orthogonal to the real axis R and are denoted by $\bar{c}_{1}, \bar{c}_{1}^{\prime}, \bar{c}_{2}, \bar{c}_{2}^{\prime}$, respectively. Clearly

$$
\begin{equation*}
E\left(\bar{c}_{1}\right)=\bar{c}_{2} \quad \text { and } \quad E^{-1}\left(\bar{c}_{1}\right)=\bar{c}_{2}^{\prime} . \tag{2.1}
\end{equation*}
$$

Hence, for $\lambda \in(0, \sqrt{2}-1), \Gamma_{\lambda}$ is a Fuchsian group of the second kind of type $(1 ; 0 ; 1)$ and with the limit set $\Lambda\left(\Gamma_{\lambda}\right)=T^{-1}(\Lambda(\Gamma))$. The first purpose of this paper is to prove the following:

Theorem 1. Under the above situation, $d\left(\Lambda\left(\Gamma_{\lambda}\right)\right)$ tends to 1 as $\lambda \in$ $(0, \sqrt{2}-1)$ tends to $\sqrt{2}-1$.

In the following two sections § 3 and $\S 4$, we prove some preparatory lemmas for the proof of Theorem 1, which we give in §5. In §6, we state an application of the theorem.
3. General Cantor sets. Let I be a closed interval on the real axis R of the complex plane. We take $k(\geqq 2)$ disjoint closed intervals $I\left(i_{1}\right)$ ($i_{1}=1,2, \cdots, k$) in I and k disjoint closed intervals $I\left(i_{1} i_{2}\right)\left(i_{2}=1,2, \cdots, k\right)$ in $I\left(i_{1}\right)$ and proceed similarly. Then, after n steps, we obtain k^{n} closed intervals $I\left(i_{1} i_{2} \cdots i_{n}\right)\left(i_{1}, \cdots, i_{n}=1,2, \cdots, k\right)$ such that $I\left(i_{1} i_{2} \cdots i_{n} i_{n+1}\right) \subset$ $I\left(i_{1} i_{2} \cdots i_{n}\right)\left(i_{n+1}=1,2, \cdots, k\right)$. We put

$$
\begin{equation*}
C=\bigcap_{n=1}^{\infty} \bigcup_{i_{1}, \cdots, i_{n}=1}^{k} I\left(i_{1} i_{2} \cdots i_{n}\right) \tag{3.1}
\end{equation*}
$$

Definition 1. The set constructed above is said to be a general Cantor set if it satisfies the following conditions:
(a) There exists a constant $A \in(0,1)$ such that

$$
\left|I\left(i_{1} i_{2} \cdots i_{n} i_{n+1}\right)\right| \geqq A\left|I\left(i_{1} i_{2} \cdots i_{n}\right)\right| \quad\left(i_{n+1}=1,2, \cdots, k\right),
$$

where $|J|$ is the length of an interval J.
(b) There is constant $B \in(0,1)$ such that

$$
\rho\left(I\left(i_{1} i_{2} \cdots i_{n} s\right), I\left(i_{1} i_{2} \cdots i_{n} t\right)\right) \geqq B\left|I\left(i_{1} i_{2} \cdots i_{n}\right)\right|
$$

where $s \neq t$ and $\rho\left(J_{1}, J_{2}\right)=\inf \left\{|x-y| ; x \in J_{1}, y \in J_{2}\right\}$. Here a closed interval $I\left(i_{1} i_{2} \cdots i_{n}\right)\left(i_{1}, i_{2}, \cdots, i_{n}=1,2, \cdots, k\right)$ is said to be a fundamental interval for the set C.

Definition 2. The set $\mathscr{F}=\left\{I_{1}^{*}, I_{2}^{*}, \cdots, I_{p}^{*}\right\}$ is called a fundamental system of a given general Cantor set C, if it satisfies the following conditions:
(a) $\quad I_{i}^{*}$ is a fundamental interval for $C(1 \leqq i \leqq p)$.
(b) $I_{i}^{*} \cap I_{j}^{*}=\varnothing(i \neq j, 1 \leqq i, j \leqq p)$.
(c) $\bigcup_{i=1}^{p} I_{i}^{*} \supset C$.

The following lemmas are known.
Lemma 1 ([3], [6]). Let C be a general Cantor set constructed as in (3.1). Then $\operatorname{Max}_{1 \leq i_{1}, \cdots, i_{n} \leq k}\left|I\left(i_{1} i_{2} \cdots i_{n}\right)\right|$ tends to 0 as n tends to ∞.

Lemma 2 ([1], [3]). Let C be a general Cantor set and suppose that $M_{t}(C)$ is defined as for $m_{t}(C)$ with an additional restriction that the covering $\left\{I_{n}\right\}$ is a fundamental system of C. Then

$$
M_{t}(C) \geqq m_{t}(C) \geqq B^{t} M_{t}(C)
$$

Lemma 3 ([1], [3]). Let C be a general Cantor set constructed as in (3.1). If, for all $n=1,2, \cdots$ and all $i_{1}, \cdots, i_{n}=1, \cdots, k$,

$$
\sum_{j=1}^{k}\left|I\left(i_{1} i_{2} \cdots i_{n} j\right)\right|^{t} \geqq\left|I\left(i_{1} i_{2} \cdots i_{n}\right)\right|^{t}
$$

then $d(C) \geqq t$.
4. A general Cantor set associated with $\Lambda\left(\Gamma_{\lambda}\right)$. Now we return to the Fuchsian group $\Gamma_{\lambda}(\lambda \in(0, \sqrt{2}-1))$ introduced in $\S 2$. We construct a general Cantor set L_{λ} associated with the limit set $\Lambda\left(\Gamma_{\lambda}\right)$ of Γ_{λ}. Let G_{1} be the set consisting of Möbius transformations

$$
\begin{array}{lrlrl}
\text { (i i }) & \gamma_{j} & =(h E)^{j} h, & & (1 \leqq j \leqq N), \\
\text { (ii) } & \gamma_{j+N} & =\left(h E^{-1}\right)^{j} h, & & (1 \leqq j \leqq N), \tag{4.1}\\
\text { (iii) } \gamma_{j+2 N} & =(h E)^{j} h E^{-1}, & & (1 \leqq j \leqq N), \\
\text { (iv) } & \gamma_{j+3 N} & =\left(h E^{-1}\right)^{j} h E, & & (1 \leqq j \leqq N),
\end{array}
$$

together with an element $\gamma_{4 N+1}=h$, where N is an integer determined later. We shall refer to these elements as being of types (i), (ii), (iii) and (iv), respectively. Having defined G_{1}, we define G_{n} for all positive integers n inductively by

$$
G_{n+1}=\left\{U V ; U \in G_{n}, V \in G_{1}\right\}
$$

and further, put

$$
\begin{equation*}
L_{\lambda}=\bigcap_{k=1}^{\infty} \bigcup_{U \in G_{k}} U\left(\bar{I}_{\lambda}\right) \tag{4.2}
\end{equation*}
$$

where I_{λ} is the open interval $(-\lambda, \lambda)$ on the real axis R and \bar{I}_{λ} denotes the closure of I_{λ}. We see easily $h\left(\bar{I}_{\lambda}\right) \subset I_{\lambda}, E\left(\bar{I}_{\lambda}\right) \cap E^{-1}\left(\bar{I}_{\lambda}\right)=\varnothing,\left(E\left(\bar{I}_{\lambda}\right) \cup\right.$ $\left.E^{-1}\left(\bar{I}_{\lambda}\right)\right) \cap I_{\lambda}=\varnothing$ and $h E\left(\bar{I}_{\lambda}\right) \cup h E^{-1}\left(\bar{I}_{\lambda}\right) \subset I_{\lambda}$. Hence, if $U \in G_{n}$ and if V_{1} and V_{2} in G_{1} are distinct, then $I_{\lambda} \supset V_{1}\left(\bar{I}_{\lambda}\right)$ and $U V_{1}\left(\bar{I}_{\lambda}\right) \cap U V_{2}\left(\bar{I}_{\lambda}\right)=\varnothing$. Let G_{1}^{*} be the set consisting of Möbius transformations $h, h E$ and $h E^{-1}$. We define G_{n}^{*} for all positive integers n inductively by $G_{n+1}^{*}=\{U V ; U \in$ $\left.G_{n}^{*}, V \in G_{1}\right\}$. It is easily seen that $\left\{\bigcap_{n=1}^{\infty} \bigcup_{U \in G_{n}} U\left(\bar{I}_{\lambda}\right)\right\} \subset\left\{\bigcap_{n=1}^{\infty} \bigcup_{U \in G_{n}^{*}} U\left(\bar{I}_{\lambda}\right)\right\}$. Recalling that $\Gamma=T \Gamma_{\lambda} T^{-1}$ is a Schottky group and noting

$$
T\left(\bigcap_{n=1}^{\infty} \bigcup_{U \in G_{n}^{*}} U\left(\bar{I}_{\lambda}\right)\right)=\Lambda(\Gamma) \cap T\left(I_{\lambda}\right)
$$

we see

$$
\begin{equation*}
L_{\lambda} \subset\left\{\Lambda\left(\Gamma_{\lambda}\right) \cap I_{\lambda}\right\} . \tag{4.3}
\end{equation*}
$$

We prove the following which gives a useful estimate later.
Lemma 4. Let J be any sub-interval of I_{λ} and let $U \in \widetilde{G}=\bigcup_{k=1}^{\infty} G_{k}$. Then

$$
|J| / 2 \leqq|U(J)|\left|U\left(I_{\lambda}\right)\right|^{-1} \leqq|J|(1+\lambda)(1-\lambda)^{-1} \lambda^{-1} / 2
$$

Furthermore, if $V \in G_{1}$, then

$$
\left|U V\left(I_{\lambda}\right)\right| \leqq\left|U\left(I_{\lambda}\right)\right| / 2
$$

Proof. We can write $U \in \widetilde{G}$ in the form

$$
U=V_{n} \cdots V_{2} V_{1}\left(V_{i} \in G_{1}, i=1,2, \cdots, n\right)
$$

for a suitable n. For intervals $(\lambda, \infty),(-\infty,-\lambda)$ etc. on the real axis R, we see $h^{-1}((\lambda, \infty)) \subset\left(\lambda^{-1}, \infty\right), h^{-1}((-\infty,-\lambda)) \subset\left(-\infty,-\lambda^{-1}\right), E^{-1}\left(\left(\lambda^{-1}, \infty\right)\right) \subset$ $(\lambda, 1), E\left(\left(-\infty,-\lambda^{-1}\right)\right) \subset(-1,-\lambda), E\left(\left(\lambda^{-1}, \infty\right)\right) \subset E^{-1}\left(I_{\lambda}\right)$ and $E^{-1}\left(\left(-\infty,-\lambda^{-1}\right)\right) \subset$ $E\left(I_{\lambda}\right)$. Using these and putting $Q=E\left(I_{\lambda}\right) \cup E^{-1}\left(I_{\lambda}\right) \cup E^{2}\left(I_{\lambda}\right)$, we have $V^{-1}(Q) \subset Q$ for any $V \in G_{1}$. Moreover, if $V \in G_{1}$ is of type (iii), the $V^{-1}=E V_{1}^{-1}$ for some $V_{1} \in G_{1}$ of type (i) and $V^{-1}((\lambda, \infty)) \subset E\left(\left(\lambda^{-1}, \infty\right)\right) \subset$ $\left(-(1+\lambda)(1-\lambda)^{-1},-1\right)$. Noting those facts, we see that, if V_{1} is identical with h or is of type (i) or (ii), then $U^{-1}(\infty) \in E^{2}\left(I_{\lambda}\right)$ and we have
$\left|U^{-1}(\infty)\right|>\lambda^{-1}>1$. If V_{1} is of type (iii), then $U^{-1}(\infty) \in V_{1}^{-1}(Q) \subset(-\infty$, $-1) \cap E^{-1}\left(I_{\lambda}\right)$ and thus we have $U^{-1}(\infty)<-1$. Similarly, if V_{1} is of type (iv), then $U^{-1}(\infty) \in V_{1}^{-1}(Q) \subset(1, \infty) \cap E\left(I_{2}\right)$ and therefore we have $U^{-1}(\infty)>1$. Hence in all cases we have $\left|U^{-1}(\infty)\right|>1$. We now denote by $J=(\alpha, \beta)$ the interval on the real axis and put $\zeta=U^{-1}(\infty)$. Then we see

$$
\begin{aligned}
|U(J)| \cdot\left|U\left(I_{\lambda}\right)\right|^{-1} & =\left(\int_{\alpha}^{\beta}\left|U^{\prime}(x)\right| d x\right)\left(\int_{-\lambda}^{\lambda}\left|U^{\prime}(x)\right| d x\right)^{-1} \\
& =(|J| / 2) \lambda^{-1}(\zeta+\lambda)(\zeta-\lambda)(\zeta-\alpha)^{-1}(\zeta-\beta)^{-1}
\end{aligned}
$$

In the case $\zeta>1$, we have

$$
\begin{align*}
|J| / 2 & \leqq(|J| / 2) \lambda^{-1}(1-\lambda)(1+\lambda)^{-1} \leqq|U(J)|\left|U\left(I_{2}\right)\right|^{-1} \tag{4.4}\\
& \leqq(|J| / 2) \lambda^{-1}(1+\lambda)(1-\lambda)^{-1}
\end{align*}
$$

from the assumption $J \subset I_{\lambda}$. In the case $\zeta<-1$, a similar argument gives the same inequalities and completes the proof of the first part of our lemma.

Finally, we have $h E h\left(I_{\lambda}\right)=\left(\lambda^{2}\left(1-\lambda^{3}\right)\left(1+\lambda^{3}\right)^{-1}, \lambda^{2}\left(1+\lambda^{3}\right)\left(1-\lambda^{3}\right)^{-1}\right)$, $h\left(I_{\lambda}\right)=\left(-\lambda^{3}, \lambda^{3}\right)$ and since $\lambda \in(0, \sqrt{2}-1)$,

$$
\operatorname{Max}_{V \in G_{1}}\left|V\left(I_{\lambda}\right)\right| \leqq 2 \lambda^{3}\left(1-\lambda^{2}\right)^{-1}
$$

Applying (4.4) with $J=V\left(I_{\lambda}\right)$ we get $\left|U V\left(I_{\lambda}\right)\right| \leqq\left|U\left(I_{\lambda}\right)\right| / 2$, which is the second part of our lemma.
q.e.d.

By using Lemma 4, we show the following.
Lemma 5. The set L_{λ} in (4.2) is a general Cantor set on the real axis.

Proof. Let $I=\bar{I}_{\lambda}$ and $\gamma_{j}\left(\bar{I}_{\lambda}\right)=I(j)$ for $\gamma_{j} \in G_{1}(1 \leqq j \leqq 4 N+1)$ in (4.1). We can take $k=4 N+1$ disjoint closed intervals $I(i)(i=1,2, \cdots$, $k)$ in I and k disjoint closed intervals $\gamma_{i} \gamma_{j}\left(\bar{I}_{k}\right)=I(i, j)(j=1,2, \cdots, k)$ in $I(i)$ for $\gamma_{i} \gamma_{j} \in G_{2}$. Proceeding similarly, we have inductively

$$
\left\{U V\left(\bar{I}_{\lambda}\right) ; V \in G_{1}\right\}=\left\{I\left(i_{1} i_{2} \cdots i_{n} j\right) ; 1 \leqq j \leqq k\right\}
$$

for $U \in G_{n}$. Then, applying the first inequality of Lemma 4 to $J=V\left(I_{\lambda}\right)$ $\left(V \in G_{1}\right)$ and $U \in \widetilde{G}$, we have $\left|U V\left(\bar{I}_{\lambda}\right)\right| \geqq A\left|U\left(\bar{I}_{\lambda}\right)\right|$ for the constant $A=$ $\operatorname{Min}_{V \in G_{1}}\left|V\left(I_{\lambda}\right)\right| / 2$. The set $I \backslash \bigcup_{V \in G_{1}} V\left(\bar{I}_{\lambda}\right)$ consists of a finite number of open arcs J_{i}. If V_{1}, V_{2} are distinct elements of G_{1}, then there exists a subarc J of I_{λ} lying between $V_{1}\left(I_{\lambda}\right)$ and $V_{2}\left(I_{\lambda}\right)$ with $|J| / 2 \geqq \operatorname{Min}\left|J_{i}\right| / 2>0$. As $U(J)$ lies between $U V_{1}\left(I_{\lambda}\right)$ and $U V_{2}\left(I_{\lambda}\right)$, Lemma 4 implies

$$
\rho\left(U V_{1}\left(\bar{I}_{\lambda}\right), U V_{2}\left(\bar{I}_{\lambda}\right)\right) \geqq|U(J)| \geqq|J|\left|U\left(I_{\lambda}\right)\right| / 2 \geqq B\left|U\left(\bar{I}_{\lambda}\right)\right|
$$

for $B=\operatorname{Min}_{i}\left|J_{i}\right| / 2$. Thus, by Definition 1 we see that L_{i} is a general Cantor set.
q.e.d.

Next we show the following lemma.
Lemma 6. Let k be any integer greater than 1 and let $a_{1}, a_{2}, \cdots, a_{k}$ and s be the positive numbers satisfying $0 \leqq a_{j} \leqq a<1(1 \leqq j \leqq k)$ and $0 \leqq s \leqq a_{1}+a_{2}+\cdots+a_{k}<1$. Then

$$
a_{1}^{r}+a_{2}^{r}+\cdots+a_{k}^{r} \geqq 1
$$

where

$$
r=1-(1-s)(1-a)^{-1}
$$

Proof. Let $x \in(0,1)$ be a number uniquely determined by $a_{1}^{x}+$ $a_{2}^{x}+\cdots+a_{k}^{x}=1$. The inequality $y^{t}-1 \leqq t(y-1)$ holds for $y \geqq 0$ and $0 \leqq t \leqq 1$. Taking $y=a_{j}$ and $t=1-x$, we have $a_{j}^{1-x}-1 \leqq\left(a_{j}-1\right)(1-$ $x) \leqq(a-1)(1-x)$, which shows

$$
a_{j} \leqq\{1-(1-x)(1-a)\} a_{j}^{x}, \quad(1 \leqq j \leqq k)
$$

Hence we have $s \leqq \sum_{j=1}^{k} a_{j} \leqq\{1-(1-x)(1-a)\}$. q.e.d.
5. Proof of Theorem 1. Now we are going to prove Theorem 1. As we have seen in (4.4) and in Lemma 5 , the set L_{λ} in (4.2) is a general Cantor set contained in $\Lambda\left(\Gamma_{\lambda}\right) \cap I_{\lambda}$. So it is sufficient to show that the Hausdorff dimension $d\left(L_{\lambda}\right)$ of L_{λ} tends to 1 as λ tends to $\sqrt{2}-1$. Put

$$
F=I_{\lambda} \backslash \bigcup_{V \in G_{1}} V\left(\bar{I}_{\lambda}\right),
$$

and

$$
Y=I_{\lambda} \backslash\left\{h\left(\bar{I}_{\lambda}\right) \cup h E\left(\bar{I}_{\lambda}\right) \cup h E^{-1}\left(\bar{I}_{\lambda}\right)\right\}
$$

Then $F \supset Y$ and

$$
\begin{align*}
F \backslash Y & =h E\left(\bar{I}_{\lambda}\right) \cup h E^{-1}\left(\bar{I}_{\lambda}\right) \backslash \bigcup_{V \in G_{1}} V\left(\bar{I}_{\lambda}\right) \tag{5.1}\\
& =\left\{F \cap h E\left(\bar{I}_{\lambda}\right)\right\} \cup\left\{F \cap h E^{-1}\left(\bar{I}_{\lambda}\right)\right\}
\end{align*}
$$

Now we have

$$
\begin{aligned}
F \cap(h E)^{n}\left(\bar{I}_{2}\right) \backslash(h E)^{n}(Y) & =(h E)^{n}\left(\bar{I}_{\lambda}\right) \backslash \bigcup_{V \in G_{1}} V\left(\bar{I}_{\lambda}\right) \backslash(h E)^{n}(Y) \\
& =(h E)^{n}\left(\bar{I}_{\lambda} \backslash Y\right) \bigcup_{V \in G_{1}} V\left(\bar{I}_{\lambda}\right) .
\end{aligned}
$$

If we denote by $\{-\lambda, \lambda\}$ the set consisting of two points $-\lambda$ and λ on the real axis, then the right hand side of the above is equal to

$$
\begin{gathered}
(h E)^{n}\left\{h\left(\bar{I}_{\lambda}\right) \cup h E\left(\bar{I}_{\lambda}\right) \cup h E^{-1}\left(\bar{I}_{2}\right)\right\} \cup(h E)^{n}(\{-\lambda, \lambda\}) \backslash \bigcup_{V \in G_{1}} V\left(\bar{I}_{\lambda}\right) \\
=(h E)^{n+1}\left(\bar{I}_{\lambda}\right) \cup(h E)^{n}(\{-\lambda, \lambda\}) \backslash \bigcup_{V \in G_{1}} V\left(\bar{I}_{\lambda}\right) .
\end{gathered}
$$

This, together with the inclusion $F \supset(h E)^{n}(Y)$, gives

$$
m_{1}\left(F \cap(h E)^{n}\left(\bar{I}_{2}\right)\right)=m_{1}\left((h E)^{n}(Y)\right)+m_{1}\left((h E)^{n+1}\left(\bar{I}_{\lambda}\right) \cap F\right),
$$

where $m_{1}(S)$ denotes the Lebesgue measure on the real axis. A similar equality holds with $h E$ replaced by $h E^{-1}$. Using these two equalities for $n=1,2, \cdots, N-1$ and (5.1), we have

$$
\begin{aligned}
m_{1}(F)= & m_{1}(Y)+\sum_{k=1}^{N-1} m_{1}\left((h E)^{k}(Y)\right)+m_{1}\left((h E)^{N}\left(\bar{I}_{\lambda}\right) \cap F\right) \\
& +\sum_{k=1}^{N-1} m_{1}\left(\left(h E^{-1}\right)^{k}(Y)\right)+m_{1}\left(\left(h E^{-1}\right)^{N}\left(\bar{I}_{2}\right) \cap F\right)
\end{aligned}
$$

As both Y and I_{λ} are symmetric with respect to the imaginary axis, we have $m_{1}\left((h E)^{k}(Y)\right)=m_{1}\left(\left(h E^{-1}\right)^{k}(Y)\right)$ and we see that a similar equality holds with I_{λ} replaced by Y. Thus

$$
\begin{equation*}
m_{1}(F) \leqq m_{1}(Y)+2 \cdot \sum_{k=1}^{N-1} m_{1}\left((h E)^{k}(Y)\right)+2 m_{1}\left((h E)^{N}\left(\bar{I}_{2}\right)\right) \tag{5.2}
\end{equation*}
$$

We first estimate $m_{1}(Y)$. Put $\varepsilon=\left(\lambda+\lambda^{-1}\right)^{2}-8>0$. Then

$$
\begin{align*}
m_{1}(Y) & =2 \cdot\left\{\lambda\left(1-\lambda^{2}\right)-\left((1+\lambda)(1-\lambda)^{-1}-(1-\lambda)(1+\lambda)^{-1}\right) \lambda^{2}\right\} \tag{5.3}\\
& =2 \lambda^{3}\left(1-\lambda^{2}\right)^{-1} \varepsilon<\varepsilon .
\end{align*}
$$

Next we estimate $m_{1}\left((h E)^{k}(Y)\right)$. Put

$$
\begin{equation*}
(h E)^{k}(z)=\left(a_{k} z+b_{k}\right)\left(c_{k} z+d_{k}\right)^{-1}, \quad a_{k} d_{k}-b_{k} c_{k}=1 \tag{5.4}
\end{equation*}
$$

We easily see $h E\left(E\left(I_{\lambda}\right)\right)=\hat{R} \backslash I_{\lambda} \supset E\left(I_{\lambda}\right)$ and also have $(h E)^{k}\left(E\left(I_{\lambda}\right)\right) \supset \hat{R} \backslash I_{\lambda}$ inductively. Hence we can deduce that the pole of $(h E)^{k}(z)$ lies in $E\left(\bar{I}_{\lambda}\right)$. This implies that $\left|d_{k}\right|>\lambda\left|c_{k}\right|$. Therefore we have the following estimate

$$
\begin{equation*}
m_{1}\left((h E)^{k}(Y)\right)=\int_{Y}\left|c_{k} z+d_{k}\right|^{-2} d z \leqq\left(\left|d_{k}\right|-\lambda\left|c_{k}\right|\right)^{-2} m_{1}(Y) . \tag{5.5}
\end{equation*}
$$

Next we compute c_{k} and d_{k}. For real numbers $a_{k}, b_{k}, c_{k}, d_{k}$ in (5.4), we have

$$
\left(\begin{array}{ll}
a_{k+1} & b_{k+1} \\
c_{k+1} & d_{k+1}
\end{array}\right)=\left(\begin{array}{ll}
a_{k} & b_{k} \\
c_{k} & d_{k}
\end{array}\right) / \sqrt{2^{-1}}\left(\begin{array}{cc}
\lambda & \lambda \\
-\lambda^{-1} & \lambda^{-1}
\end{array}\right) .
$$

By an elementary computation, we have

$$
\begin{aligned}
c_{k} & =\left(p^{k}-q^{k}\right)\left\{(p-q)(\sqrt{2})^{k}\right\}^{-1} \\
d_{k} & =\left\{p^{k+1}-q^{k+1}+\lambda\left(p^{k}-q^{k}\right)\right\}\left\{(p-q)(\sqrt{2})^{k}\right\}^{-1}
\end{aligned}
$$

where $\quad p=\left\{-\left(\lambda+\lambda^{-1}\right)-\sqrt{\left(\lambda+\lambda^{-1}\right)^{2}-8}\right\} / 2 \quad$ and $\quad q=\left\{-\left(\lambda+\lambda^{-1}\right)+\right.$ $\left.\sqrt{\left(\lambda+\lambda^{-1}\right)^{2}-8}\right\} / 2$. From $\quad p+\lambda<q+\lambda<0 \quad$ and $\quad|p|=\left(\lambda+\lambda^{-1}+\right.$ $\sqrt{\bar{\varepsilon}}) / 2>\sqrt{\overline{2}}>|q|=\left(\lambda+\lambda^{-1}-\sqrt{\bar{\varepsilon}}\right) / 2>\lambda$, we see

$$
\begin{align*}
|p-q|\left(\left|d_{k}\right|-\lambda\left|c_{k}\right|\right) & =2^{-k / 2}\left\{\left|p^{k}(p+\lambda)-q^{k}(q+\lambda)\right|-\left|p^{k}-q^{k}\right|\right\} \tag{5.6}\\
& =2^{-k / 2}\left\{|p|^{k}(|p|-\lambda-1)+|q|^{k}(\lambda+1-|q|)\right\} \\
& >2^{-k / 2}\left\{|p|^{k}(|p|-\lambda-1)\right\}
\end{align*}
$$

Since $|p|-|q|=\sqrt{\varepsilon}$ and $-\lambda+\lambda^{-1}=\sqrt{\varepsilon+4}$, we have

$$
\begin{align*}
& \sum_{k=1}^{N-1}\left(\left|d_{k}\right|-\lambda\left|c_{k}\right|\right)^{-2} \tag{5.7}\\
& \leqq \sum_{k=1}^{\infty} 2^{k}(|p|-|q|)^{2}\left\{|p|^{k}(|p|-\lambda-1)\right\}^{-2} \\
&=2(|p|-|q|)^{2}(|p|-\lambda-1)^{-2}\left(|p|^{2}-2\right)^{-1} \\
&=2 \varepsilon\{(\sqrt{\varepsilon+4}-2+\sqrt{\varepsilon}) / 2\}^{-2}\{(\varepsilon+\sqrt{\varepsilon} \sqrt{8+\varepsilon}) / 2\}^{-1} \\
&<(\sqrt{\varepsilon+4}+2-\sqrt{\varepsilon})^{2} \cdot \varepsilon^{-1 / 2} \\
&<16 \varepsilon^{-1 / 2}
\end{align*}
$$

Furthermore, we have from (5.6)

$$
\begin{equation*}
m_{1}\left((h E)^{N}\left(\bar{I}_{2}\right)\right)<\varepsilon / 2 \tag{5.8}
\end{equation*}
$$

for N sufficiently large. Hence (5.2), (5.3), (5.5), (5.7) and (5.8) imply

$$
m_{1}(F) \leqq 2 \varepsilon+32 \varepsilon^{1 / 2}
$$

Since $F=I_{\lambda} \backslash \bigcup_{V \in G_{1}} V\left(\bar{I}_{\lambda}\right)$, we have

$$
\left|U\left(\bar{I}_{\lambda}\right)\right|=m_{1}(U(F))+\sum_{V \in G_{1}}\left|U V\left(\bar{I}_{\lambda}\right)\right|
$$

for any element $U \in \widetilde{G}$ and also have

$$
\begin{equation*}
\sum_{V \in G_{1}}\left|U V\left(\bar{I}_{\lambda}\right)\right|\left|U\left(\bar{I}_{\lambda}\right)\right|^{-1}=1-m_{1}(U(F))\left|U\left(\bar{I}_{\lambda}\right)\right|^{-1} \tag{5.9}
\end{equation*}
$$

As F is a union of open intervals, we have from Lemma 4 that, if $\lambda>1 / 5$, then

$$
m_{1}(U(F))\left|U\left(\bar{I}_{\lambda}\right)\right|^{-1} \leqq(1+\lambda)\{\lambda(1-\lambda)\}^{-1} m_{1}(F) / 2 \leqq 4 m_{1}(F)
$$

From this inequality and (5.9), we have

$$
\begin{equation*}
\sum_{V \in G_{1}}\left|U V\left(\bar{I}_{\lambda}\right) \| U\left(\bar{I}_{\lambda}\right)\right|^{-1} \geqq 1-4 m_{1}(F) \tag{5.10}
\end{equation*}
$$

We take the numbers $a_{1}, a_{2}, \cdots, a_{k}$ in Lemma 6 to be the ratios $\left|U V\left(\bar{I}_{\lambda}\right) \| U\left(\bar{I}_{\lambda}\right)\right|^{-1}, U \in \widetilde{G}, V \in G_{1}$. Putting $a=1 / 2$ and $s=1-4 m_{1}(F)$ in Lemma 4 and noting Lemmas 1, 2 and 3 we have

$$
d\left(\Lambda\left(\Gamma_{\lambda}\right)\right) \geqq d\left(L_{\lambda}\right) \geqq 1-8\left(2 \varepsilon+16 \varepsilon^{1 / 2}\right)
$$

from (5.10). Thus the proof of Theorem 1 is complete.
6. Applications. Let M, A, h, E and $\left\{c_{i}, c_{i}^{\prime}\right\}_{i=1}^{2}$ be as those previously described in $\S 2$. The group Γ generated by A and $M A M^{-1}$ is a Fuchsian group acting on the unit dise and is of type ($1 ; 0 ; 1$). Put $W_{1}=E^{-1} h^{-1}$ and $W_{2}=E^{-1} h$. Then the group G freely generated by W_{1}, W_{2} has type $(0 ; 0 ; 3)$. The fundamental system of $\Lambda(\Gamma)$ coincides with that of $\Lambda(G)$. It is easily seen that $d(\Lambda(\Gamma))=d(\Lambda(G))$ by Lemma 2. Applying Theorem 4 stated in [2] and [5] and Theorem 1 in the present paper, we have the following whose proof may be omitted.

Theorem 2. Assume $0<t<1$. Then there are Fuchsian groups G of types $(0 ; 0 ; 3)$ and $(1 ; 0 ; 1)$ with $d(\Lambda(G))=t$.

As a direct result of this theorem, we have the following.
Corollary 1. There exist two distinct Fuchsian groups G_{1} and G_{2} with $d\left(\Lambda\left(G_{1}\right)\right)=d\left(\Lambda\left(G_{2}\right)\right)$ and with the same fundamental regions.

Using the continuity argument in [5], we also have the following.
Corollary 2. Let Γ be a Fuchsian group of type $(g ; 0 ; m)$ with $2 g-2+m>0, m>0$. Then there is a quasiconformal mapping w_{ε} of the extended complex plane onto itself such that $d\left(\Lambda\left(w_{\varepsilon} \Gamma w_{\varepsilon}^{-1}\right)\right)>1-\varepsilon$ for any small positive number ε.

References

[1] T. Akaza, Local property of the singular sets of some Kleinian groups, Tôhoku Math. J. 25 (1973), 1-22.
[2] T. Akaza and H. Furusawa, The exponent of convergence of Poincaré series on some Kleinian groups, Tôhoku Math, J. 32 (1980), 447-452.
[3] A. F. Beardon, The Hausdorff dimension of singular sets of properly discontinuous groups, Amer. J. Math. 88 (1966), 722-736.
[4] A. F. Beardon, Inequalities for certain Fuchsian groups, Acta Math. 127 (1971), 221-258.
[5] H. Furusawa, The Hausdorff dimension of limit sets of some Fuchsian groups, Tôhoku Math. J. 33 (1981), 409-412.
[6] M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959.
Department of Mathematics
Kanazawa Women's Junior College
Kanazawa, 920-13
Japan

