THE MULTIPLICITY OF HELICES FOR A REGULARLY INCREASING SEQUENCE OF σ-FIELDS

Dedicated to Professor Tamotsu Tsuchikura on his sixtieth birthday

Takashi Shimano

(Received March 29, 1983)

1. Introduction. The notion of helices was introduced in the theory of measure-preserving transformations as an application of the martingale theory by J. de Sam Lazaro and P. A. Meyer [2]. The multiplicity of helices has been discussed by the author in the same manner as that of square-integrable martingales [4], [5]. In this paper, we determine the multiplicity of helices under some condition of the regularity on an increasing sequence of sub- σ-fields.
2. Preliminaries. Throughout this paper (Ω, F, P) denotes a complete separable probability space and T an automorphism of Ω, that is, a bimeasurable measure-preserving bijection. Let F_{0} be a complete proper sub- σ-field of F such that
(a) $F_{n} \subset F_{n+1}$ for all $n \in Z$,
(b) $\underset{n \in Z}{ } F_{n}=F$
where $Z=\{0, \pm 1, \pm 2, \cdots\}$ and F_{n} denotes the sub- σ-field $T^{n} F_{0}$. A pair (T, F_{0}) is called a system.

Let H denote the class of all squarely integrable real random variables with expectations 0 , which is an infinite dimensional Hilbert space under the ordinary inner product, and H_{n} the subspace of H consisting of all elements measurable with respect to F_{n} for each $n \in Z$.

Definition 1. A sequence $X=\left(x_{n}\right)_{n \in Z}$ in H is called a helix of (T, F_{0}) if the following conditions are satisfied:
(a) $x_{0}=0$,
(b) $x_{n}-x_{n-1} \in H_{n} \cap H_{n-1}^{\perp}$ for all $n \in Z$
where \perp indicates the orthogonal complementation in H,

[^0]$$
\text { (c) } \quad\left(x_{n}-x_{n-1}\right) \circ T^{-\mathrm{I}}=x_{n+1}-x_{n} \text { for all } n \in Z
$$

By this definition, each helix $X=\left(x_{n}\right)$ can be written as

$$
\begin{aligned}
x_{0}=0, \quad x_{n} & =\sum_{k=1}^{n} x \circ T^{-(k-1)} \quad(n>0), \\
x_{n} & =-x_{-n} \circ T^{-n} \quad(n<0)
\end{aligned}
$$

for some $x \in H_{1} \cap H_{0}^{\perp}$.
Note that each helix has the property of a martingale, namely $\left(x_{n+m}-x_{m}, F_{n+m}\right)_{n \geq 0}$ is a square-integrable martingale. Thus we can apply the method of martingales to the study of helices.

Given two helices $X=\left(x_{n}\right)$ and $X^{\prime}=\left(x_{n}^{\prime}\right)$ of (T, F_{0}), we define the random variable $\left\langle X, X^{\prime}\right\rangle$ by

$$
\left\langle X, X^{\prime}\right\rangle=E\left[x_{1} x_{1}^{\prime} \mid F_{0}\right] .
$$

If $X=X^{\prime}$, then we write simply $\langle X\rangle$ instead of $\langle X, X\rangle$. Consider the process $\left(\langle X\rangle_{n}\right)_{n \geqq 0}$ defined by

$$
\langle X\rangle_{0}=0, \quad\langle X\rangle_{n}=\sum_{k=1}^{n}\langle X\rangle \circ T^{-(k-1)} \quad(n>0),
$$

which is nothing but the predictable increasing process of the DoobMeyer decomposition for the martingale $\left(x_{n}, F_{n}\right)_{n \geqq 0}$. We see easily that

$$
\left\langle X, X^{\prime}\right\rangle=\left\langle X^{\prime}, X\right\rangle
$$

and for another helix Y,

$$
\left\langle X+Y, X^{\prime}\right\rangle=\left\langle X, X^{\prime}\right\rangle+\left\langle Y, X^{\prime}\right\rangle
$$

Definition 2. Two helices X and X^{\prime} are said to be strictly orthogonal if $\left\langle X, X^{\prime}\right\rangle=0$.

Definition 3. For two helices X and X^{\prime}, we denote by $\mu_{\left\langle X, X^{\prime}\right\rangle}$ the signed measure on F_{0} with density $\left\langle X, X^{\prime}\right\rangle$, that is, for each $B \in F_{0}$

$$
\mu_{\left\langle X, X^{\prime}\right\rangle}(B)=\int_{B}\left\langle X, X^{\prime}\right\rangle d P=\int_{B} x_{1} x_{1}^{\prime} d P .
$$

It is called the helix-measure of X and X^{\prime}, and $\mu_{\langle X\rangle}$ is called the helixmeasure of X.

Definition 4. For a helix $X=\left(x_{n}\right)$ and a squarely integrable random variable ν on $\left(\Omega, F_{0}, \mu_{\langle X\rangle}\right)$, the helix $Y=\left(y_{n}\right)$ given by

$$
\begin{aligned}
y_{0}=0, \quad y_{n} & =\sum_{k=1}^{n}\left(\nu \circ T^{-(k-1)}\right)\left(x_{k}-x_{k-1}\right) \quad(n>0), \\
y_{n} & =-y_{-n} \circ T^{-n} \quad(n<0),
\end{aligned}
$$

is called the helix-transform of X by ν and denoted by $\nu * X$.
This notion is analogous to the so-called martingale-transform. We have obviously $\left\langle\nu * X, X^{\prime}\right\rangle=\nu\left\langle X, X^{\prime}\right\rangle$ and $\langle\nu * X\rangle=\nu^{2}\langle X\rangle$.

The following result is of fundamental importance in our discussion.
Proposition 1. Let (T, F_{0}) be a system. Then there exists a sequence of at most countable strictly orthogonal helices $\mathscr{X}=\left(X^{(p)}\right)$ which satisfy the following conditions:
(a) Every helix X has the representation

$$
X=\sum_{p} \nu^{(p)} * X^{(p)}, \quad \nu^{(p)} \in L^{2}\left(\Omega, F_{0}, \mu_{\left\langle X^{(p)}\right\rangle}\right)
$$

(b) $\mu_{\left\langle X^{(p+1)}\right\rangle}$ is absolutely continuous with respect to $\mu_{\left\langle Y^{(p)}\right\rangle}$ for each p.
Furthermore, if $\mathscr{Y}=\left(Y^{(p)}\right)$ is another such sequence, then $\mu_{\left\langle Y^{(p)}\right\rangle}$ is equivalent to $\mu_{\left\langle X^{(p)}\right\rangle}$ for all p.

Such a sequence of helices is called a strict base of helices of the system. Proposition 1 indicates that the length of a strict base is uniquely determined by the system.

Definition 5. The length of a strict base is called the multiplicity of helices of this system, which is denoted by $M\left(T, F_{0}\right)$.

As for a calculation of the multiplicity, the following two results are known (cf. [4], [5]):

Let $\left(T, F_{0}\right)$ be a system such that

$$
F_{0}=\bigvee_{n<0} T^{n} A
$$

for some sub- σ-field A of F. Then, it is possible to estimate the multiplicity of helices of this system.

Proposition 2. Let $\left(T, F_{0}\right)$ be the system mentioned above. Then

$$
M\left(T, F_{0}\right) \leqq \operatorname{dim} L_{0}^{2}(A)
$$

where $L_{0}^{2}(A)$ is the subspace of H consisting of all elements measurable with respect to A.

The equality in the above proposition holds for a special class of systems of the following type (cf. [4], [5]):

Definition 6. Let T be an automorphism of Ω and A a sub- σ-field of F. The pair (T, A) is called a Bernoulli system or simply a B-system if
(a) $\left(T^{n} A\right)_{n \in Z}$ is an independent sequence of sub- σ-fields,
(b) $\quad \mathrm{V}_{n \in Z} T^{n} A=F$.

If we set $F_{0}=\mathrm{V}_{n<0} T^{n} A$, then (T, F_{0}) is clearly a system, which is called a Kolmogorov system.

Proposition 3. Let (T, A) be a B-system and $\left(T, F_{0}\right)$ the Kolmogorov system derived from (T, A). Then all helix-measures of a strict base are equivalent to P on F_{0} and

$$
M\left(T, F_{0}\right)=\operatorname{dim} L_{0}^{2}(A) .
$$

3. Predictable independence. In this section, we define some independence of a sequence of helices and investigate the procedure of Schmidt's orthogonalization for helices.

Definition 7. A sequence ($X^{(p)}$) of helices is said to be predictably independent if $\left\langle\sum_{p} \nu^{(p)} * X^{(p)}\right\rangle$ is not equal to 0 for any $\nu^{(p)} \in L^{2}\left(\Omega, F_{0}, \mu_{\left\langle X^{(p)}\right\rangle}\right)$ unless all $\nu^{(p)}$ are equal to 0 .

Note that all subsequences of such a sequence of helices are also predictably independent. Further, we remark the following on this independence of helices. If the sequence $\left(X^{(p)}\right)$ is strictly orthogonal and each $\left\langle X^{(p)}\right\rangle$ is positive a.s., then $\left(X^{(p)}\right)$ is predictably independent. Indeed, if ($X^{(p)}$) is strictly orthogonal, then

$$
\begin{aligned}
\left\langle\sum_{p} \nu^{(p)} * X^{(p)}\right\rangle & =\sum_{p} \nu^{(p)^{2}}\left\langle X^{(p)}\right\rangle+\sum_{p \neq q} \nu^{(p)} \nu^{(q)}\left\langle X^{(p)}, X^{(q)}\right\rangle \\
& =\sum_{p} \nu^{(p)^{2}}\left\langle X^{(p)}\right\rangle .
\end{aligned}
$$

Hence, if $\left\langle\sum_{p} \nu^{(p)} * X^{(p)}\right\rangle=0$, then all $\nu^{(p)}$ are equal to 0 since all $\left\langle X^{(p)}\right\rangle$ are positive a.s.

Suppose that a sequence $\left(X^{(p)}\right)_{p=1,2, \cdots, \kappa}$ of helices is predictably independent and each $\left\langle X^{(p)}\right\rangle$ is positive a.s. In the case that $\kappa=\infty$, this means simply that the sequence is countably infinite. From such a sequence, we can obtain the strictly orthogonal sequence $\left(Y^{(p)}\right)_{p=1,2, \cdots, \kappa}$ of helices by the following procedure.

Schmidt's orthogonalization. First put $y^{(1)}=x_{1}^{(1)} \mid\left\langle X^{(1)}\right\rangle^{1 / 2}$ and construct a helix $Y^{(1)}=\left(y_{n}^{(1)}\right)$ such that $y_{1}^{(1)}=y^{(1)}$, that is,

$$
\begin{aligned}
y_{1}^{(1)}=0, & y_{n}^{(1)}=\sum_{k=1}^{n} y^{(1)} \circ T^{-(k-1)} \quad(n>0), \\
& y_{n}^{(1)}=-y_{-n} \circ T^{-n} \quad(n<0),
\end{aligned}
$$

so that $\left\langle Y^{(1)}\right\rangle=E\left[y^{(1) 2} \mid F_{0}\right]=E\left[x_{1}^{(1)^{2}} \mid F_{0}\right] /\left\langle X^{(1)}\right\rangle=1$. Then put

$$
z^{(2)}=x_{1}^{(2)}-\left\langle X^{(2)}, Y^{(1)}\right\rangle y^{(1)}
$$

and construct a helix $Z^{(2)}=\left(\boldsymbol{z}_{n}^{(2)}\right)$ such that $\boldsymbol{z}_{1}^{(2)}=\boldsymbol{z}^{(2)}$ in the same way as
above for $Y^{(1)}$, that is,

$$
Z^{(2)}=1 * X^{(2)}-\left\langle X^{(2)}, Y^{(1)}\right\rangle * Y^{(1)}
$$

Then $\left\langle Z^{(2)}, Y^{(1)}\right\rangle=\left\langle X^{(2)}, Y^{(1)}\right\rangle-\left\langle X^{(2)}, Y^{(1)}\right\rangle \cdot\left\langle Y^{(1)}\right\rangle=0$ and $\left\langle Z^{(2)}\right\rangle>0$ a.s., since $X^{(1)}$ and $X^{(2)}$ are predictably independent. Put $y^{(2)}=\boldsymbol{z}^{(2)} \mid\left\langle\boldsymbol{Z}^{(2)}\right\rangle^{1 / 2}$ and construct a helix $Y^{(2)}=\left(y_{n}^{(2)}\right)$ such that $y_{1}^{(2)}=y^{(2)}$. When $Y^{(1)}, Y^{(2)}$, $\cdots, Y^{(p-1)}$ are obtained in this way, so that $\left\langle Y^{(q)}, Y^{(r)}\right\rangle=\delta_{q r}$ for $1 \leqq q$, $r \leqq p-1$, put

$$
\boldsymbol{z}^{(p)}=x_{1}^{(p)}-\sum_{q=1}^{p-1}\left\langle X^{(p)}, Y^{(q)}\right\rangle y^{(q)}
$$

and construct a helix $Z^{(p)}=\left(z_{n}^{(p)}\right)$ such that $z_{1}^{(p)}=\boldsymbol{z}^{(p)}$, that is,

$$
Z^{(p)}=1 * X^{(p)}-\sum_{q=1}^{p-1}\left\langle X^{(p)}, Y^{(q)}\right\rangle * Y^{(q)}
$$

Then $\left\langle Z^{(p)}, Y^{(q)}\right\rangle=0$ for $1 \leqq q \leqq p-1$ and $\left\langle Z^{(p)}\right\rangle>0$ a.s., since $X^{(1)}$, $X^{(2)}, \cdots, X^{(p)}$ are predictably independent. Put $y^{(p)}=\boldsymbol{Z}^{(p)} /\left\langle\boldsymbol{Z}^{(p)}\right\rangle^{1 / 2}$ and construct a helix $Y^{(p)}=\left(y_{n}^{(p)}\right)$ such that $y_{1}^{(p)}=y^{(p)}$ in the same way as above. Hence $Y^{(p)}$ added to $Y^{(1)}, Y^{(2)}, \cdots, Y^{(p-1)}$ retains the property that $\left\langle Y^{(q)}, Y^{(r)}\right\rangle=\delta_{q r}$ for $1 \leqq q, r \leqq p$, and this procedure can be continued to $p=\kappa$. Thus we obtain a strictly orthogonal sequence $\left(Y^{(p)}\right)_{p=1,2}, \cdots, \kappa$ of helices such that $\mu_{\left\langle Y^{(p)}\right\rangle}=P$ on F_{0} for all p.

By this procedure, we can show the following for the multiplicity of helices of a system:

Theorem 1. Let $\left(T, F_{0}\right)$ be a system such that
(a) $\quad F_{0}=\mathrm{V}_{n<0} T^{n} A$ for some sub- σ-field A and
(b) $\operatorname{dim} L_{0}^{2}(A)=\kappa$.

If $\left(X^{(p)}\right)_{p=1,2, \ldots, c}$ is a predictably independent sequence of helices of $\left(T, F_{0}\right)$ and each $\left\langle X^{(p)}\right\rangle$ is positive a.s., then all helix-measures of each strict base of helices of $\left(T, F_{0}\right)$ are equivalent to P on F_{0} and

$$
M\left(T, F_{0}\right)=\kappa .
$$

Proof. By the procedure of Schmidt's orthogonalization for ($X^{(p)}$), we can obtain a strictly orthogonal sequence $\left(Y^{(p)}\right)_{p=1,2, \ldots, \kappa}$ of helices such that $\mu_{\langle Y(p)\rangle}=P$ on F_{0} for all p. Then we have that $\kappa \leqq M\left(T, F_{0}\right)$. By Proposition 2 and the condition (b) in the statement, we have that $M\left(T, F_{0}\right) \leqq \kappa$ and hence $M\left(T, F_{0}\right)=\kappa$. Thus ($Y^{(p)}$) is a strict base of helices of $\left(T, F_{0}\right)$ such that $\mu_{\langle Y(p)\rangle}=P$ on F_{0} for all p. q.e.d.
4. Helices for regularly increasing sub- σ-fields. In this section, we deal with a system (T, F_{0}) of the following type:
$F_{0}=\mathrm{V}_{n<0} T^{n} A$ where a sub- σ-field A is generated by a partition $\alpha=\left\{A_{0}, A_{1}, \cdots, A_{\kappa}\right\}$ of Ω.

In addition, we impose the following condition of regularity on this system:

Definition 8. The system (T, F_{0}) of the above type is said to be regular if
$0<P\left(A_{p} \mid B\right)<1$ for all $B \in F_{0}$ with $P(B)>0$ and all $A_{p} \in \alpha$
where $P(A \mid B)$ denotes the conditional probability of A under B.
It is obvious that (T, F_{0}) is regular if (T, A) is a B-system. This definition means that all parts of Ω are homogeneously mixed by the transformation T.

Theorem 2. If a system (T, F_{0}) is regular, then all helix-measures of each strict base of helices of $\left(T, F_{0}\right)$ are equivalent to P on F_{0} and

$$
M\left(T, F_{0}\right)=\kappa .
$$

Proof. Let $\alpha=\left\{A_{0}, A_{1}, \cdots, A_{k}\right\}$ be a partition which generates A. Obviously, $\operatorname{dim} L_{0}^{2}(A)=\kappa$. For $1 \leqq p \leqq \kappa$, put

$$
x^{(p)}=1_{A_{p}}-E\left[1_{A_{p}} \mid F_{0}\right]
$$

where 1_{A} denotes an indicator of the event A. Then $x^{(p)} \in H_{1} \cap H_{0}^{\perp}$. Corresponding to each $x^{(p)}$, construct a helix $X^{(p)}=\left(x_{n}^{(p)}\right)$ such that $x_{1}^{(p)}=x^{(p)}$. To prove the statement under the condition of regularity, it is sufficient to show that the sequence $\left(X^{(p)}\right)_{p=1,2, \ldots, \kappa}$ is predictably independent and each $\left\langle X^{(p)}\right\rangle$ is positive a.s. by Theorem 1 in the preceding section.

First, we shall show that $\left\langle X^{(p)}\right\rangle>0$ a.s. for $1 \leqq p \leqq \kappa$. By the regularity of (T, F_{0}), it is obvious that

$$
0<E\left[1_{A_{p}} \mid F_{0}\right]<1
$$

for $0 \leqq p \leqq \kappa$. Then

$$
\left\langle X^{(p)}\right\rangle=E\left[x^{(p)^{2}} \mid F_{0}\right]=E\left[1_{A_{p}} \mid F_{0}\right]\left(1-E\left[1_{A_{p}} \mid F_{0}\right]\right)
$$

is positive a.s. for $1 \leqq p \leqq \kappa$. Next, to prove that $\left(X^{(p)}\right)_{p=1,2, \ldots, \kappa}$ is predictably independent, we put

$$
B=\left\{\left\langle\sum_{p=1}^{\kappa} \nu^{(p)} * X^{(p)}\right\rangle=0\right\}
$$

where $\nu^{(p)} \in L^{2}\left(\Omega, F_{0}, \mu_{\left\langle X^{(p)}\right\rangle}\right)$ for $1 \leqq p \leqq \kappa$ and

$$
\sum_{p=1}^{\kappa} \int_{B} \nu^{(p)} 2 d \mu_{\left\langle X^{(p)}\right\rangle}<\infty
$$

Then we have that

$$
\begin{aligned}
E\left[\left(1_{B} \cdot \sum_{p=1}^{\kappa} \nu^{(p)} x^{(p)}\right)^{2} \mid F_{0}\right] & =1_{B} \cdot E\left[\left(\sum_{p=1}^{\kappa} \nu^{(p)} x^{(p)}\right)^{2} \mid F_{0}\right] \\
& =1_{B} \cdot\left\langle\sum_{p=1}^{\kappa} \nu^{(p)} * X^{(p)}\right\rangle \\
& =0 \quad \text { a.s. }
\end{aligned}
$$

This implies that

$$
1_{B} \cdot \sum_{p=1}^{\kappa} \nu^{(p)} x^{(p)}=0 \quad \text { a.s. }
$$

and hence

$$
1_{B} \cdot \sum_{p=1}^{\kappa} \nu^{(p)} 1_{A_{p}}=1_{B} \cdot \sum_{p=1}^{\kappa} \nu^{(p)} E\left[1_{A_{p}} \mid F_{0}\right] \quad \text { a.s. }
$$

By the measurability of the right hand side of the above formula, the left hand side is also measurable with respect to F_{0}, which implies that

$$
E\left[\left(1_{B} \cdot \sum_{p=1}^{\kappa} \nu^{(p)} 1_{A_{p}}\right)^{2} \mid F_{0}\right]=\left(1_{B} \cdot \sum_{p=1}^{\kappa} \nu^{(p)} 1_{A_{p}}\right)^{2} .
$$

Then we have

$$
1_{B} \cdot \sum_{p=1}^{\kappa} \nu^{(p)^{2}} E\left[1_{A_{p}} \mid F_{0}\right]=1_{B} \cdot \sum_{p=1}^{\kappa} \nu^{(p)^{2}} 1_{A_{p}}
$$

since $A_{p} \cap A_{q}=\varnothing$ for $p \neq q$. The right hand side of this formula is equal to 0 on A_{0}. Then we have

$$
1_{A_{0}}\left(1_{B} \cdot \sum_{p=1}^{\kappa} \nu^{(p)^{2}} E\left[1_{A_{p}} \mid F_{0}\right]\right)=0 \quad \text { a.s. }
$$

and hence by conditioning both sides relative to F_{0}, we obtain

$$
E\left[1_{A_{0}} \mid F_{0}\right]\left(1_{B} \cdot \sum_{p=1}^{K} \nu^{(p)^{2}} E\left[1_{A_{p}} \mid F_{0}\right]\right)=0 \quad \text { a.s. }
$$

Since $E\left[1_{A_{0}} \mid F_{0}\right]>0$ by the regularity of $\left(T, F_{0}\right)$, we have

$$
1_{B} \cdot \sum_{p=1}^{K} \nu^{(p)^{2}} E\left[1_{A_{p}} \mid F_{0}\right]=0 \quad \text { a.s. }
$$

and since $E\left[1_{A_{p}} \mid F_{0}\right]>0$ for $1 \leqq p \leqq \kappa$, we have the consequence that $\nu^{(p)}$ is equal to 0 on B for $1 \leqq p \leqq \kappa$.

References

[1] N. H. A. Davis and P. Varaiya, The multiplicity of an increasing family of σ-fields, Ann. Probab. 2 (1974), 958-963.
[2] J. de Sam Lazaro and P. A. Meyer, Méthodes de martingales et théorie de flots, Z. Wahrsch. Verw. Gebiete 18 (1971) 116-140.
[3] H. Kunita and S. Watanabe, On square integrable martingales, Nagoya Math. J. 30 (1967), 209-245.
[4] T. Shimano, An invariant of systems in ergodic theory, Tôhoku Math. J. 30 (1978), 337-350.
[5] T. Shimano, Helix-representation in ergodic theory, Math. Rep. Toyama Univ. 6 (1982), 37-84.

Department of Mathematics
College of Humanities and Social Sciences
Iwate University
Morioka 020
Japan

[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 57540098), The Ministry of Education.

