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Introduction. In the present paper we consider the problem con-
cerning local isometric or conformal immersions of Riemannian symmetric
spaces into the Euclidean spaces. The main results are announced in our
recent note [2].

It is classically well known that any Riemannian manifold can be
locally or globally isometrically immersed into the Euclidean spaces of
sufficiently large dimension. For compact Riemannian symmetric spaces
M it is known that many of them can be globally isometrically imbedded
into the Euclidean spaces in codimension ~ dimikf (Kobayashi [14]). On
the other hand, Heitsch and Lawson [8] proved that the compact Lie
groups S0(2m + 1) and U(2m + 1) with biinvariant Riemannian metrics
cannot be globally conformally immersed into the Euclidean spaces in
codimension 2m — 1 by calculating the Chern-Simons invariants. Later
their method was extended by Donnelly [6], who proved that the
Riemannian symmetric space SU(2m + l)/S0(2m + 1) cannot be globally
conformally immersed in codimension 2m — 1. The purpose of this paper
is to give a new estimate on the dimension of the Euclidean space into
which Riemannian symmetric spaces M = G/K can be locally isometrically
or conformally immersed.

Let (M, g) be an ^-dimensional Riemannian manifold and let R be
the curvature tensor field of (M, g). Define a Z-valued function r on M
by setting

r(p) = (1/2) max rank#(X, Γ) for peM,
X,YeTpM

where R(X, Y) is the curvature transformation of TPM. If there exists
an isometric immersion f of (M, g) into the m-dimensional Euclidean space
Rm, then f satisfies the so-called Gauss equation. Using this fact, we
prove that in this case the function r defined above satisfies the inequality
rip) ^ m — n for each p e M. In case f is a conformal immersion of
(M, g) into Rm, we prove, by considering the modified Gauss equation
for conformal immersions, that the inequality rip) ^ m — n + 2 holds
for each peM (Proposition 1.2).
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Let M = G/K be a Riemannian symmetric space. Then the function
r takes a constant value and we denote it by c(G/K). From the above
result, it follows that G/K cannot be isometrically (resp. conformally)
immersed into the Euclidean space in codimension c(G/K) — 1 (resp.
c(G/K) — 3) even locally. The integer c(G/K) can be expressed in the
following Lie algebraic form. Let g and ϊ be the Lie algebras of G and
K, respectively, and let g = ϊ + m be the canonical decomposition of g.
We denote by p: I —> o(m) the infinitesimal linear isotropy representation
of G/K at the origin. Then the integer c(G/K) is given by c(G/K) —
(1/2) maxJ ( F e r arank P([X, Y]) (see §3). Our main aim is, applying the
theory of Lie algebras, to determine the integers c(G/K) for all
Riemannian symmetric spaces. For this purpose we have only to deter-
mine the integers c(G/K) in the case G/K is a simply connected irreducible
Riemannian symmetric space of compact type (see Lemma 1.3).

Now our main result (Theorem 1.4) is stated as follows: Let G/K
be a simply connected irreducible Riemannian symmetric space of compact
type.

(1) If G/K is not isomorphic to any real Grassmann manifold, then
c{G/K) = (l/2)(dim G/K - rank G + rank K).

( 2 ) If G/K is isomorphic to SO(p + q)/SO(p) x SO(q) (p^q^ΐ), then

if 9 = even or 2q ^ p ^ q , q = odd ,
c(GIK) =

p{q — l)/2 + q , if p > 2q and q = odd .
It is remarkable that the real Grassmann manifolds SO(p + q)/SO(p) x
SO(q) with p ^ 2q + 2 and q = odd form an exceptional class among
irreducible Riemannian symmetric spaces of compact type. By this
theorem we know that most of the irreducible Riemannian symmetric
spaces M cannot be isometrically or conformally immersed into the
Euclidean spaces in codimension ~(1/2) dim ikf even locally.

Unfortunately our estimates obtained above are not best possible in
general. For example, it is known that the spaces of negative constant
curvature M of dimension n(*z2) cannot be isometrically immersed into
β2n-2 e v e n io c aiiy (όtsuki [21]). On the other hand, from the above
theorem we have c(M) = 1. Hence for n ^ 3 our estimate on local iso-
metric immersions is not best possible. For the Riemannian symmetric
space M = SO(5), the integer c(M) is 4 and hence SO(5) cannot be locally
isometrically immersed into i?13. But using a more delicate method, it
can be proved that SO(5) cannot be locally isometrically immersed into
R15. (This result is best possible because SO(5) is locally isomorphic to
Sp(2) and it is already known that Sp(2) can be globally isometrically
imbedded into Rlβ (Kobayashi [14]). For other examples, see Agaoka
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[1].) However our estimates for the spaces S0(2m + 1), U(2m + 1) and
SU(2m + l)/S0(2m + 1) are better than Heitsch, Lawson and Donnelly's.
In fact for these spaces the integers c(G/K) are quadratic polynomials of
m and hence c(G/K) — 3 > 2m — 1 for large m.

We now explain the contents of this paper. In § 1 after showing
the modified Gauss equation for conformal immersions, we prove Proposi-
tion 1.2 and state the main theorem (Theorem 1.4). In order to prove
Theorem 1.4, we have to look for elements X, Yemc such that the map
pc([X, Y]):mc-^mc takes a maximum rank, where m° (resp. pc) is the
complexification of m (resp. p) (see § 3). For this purpose we prepare
in § 2 several propositions concerning the root systems of compact
irreducible Riemannian symmetric spaces. In particular a subset Γ =
{βi, , βs) (s = r a n k G/K — r a n k G + r a n k K) °f positive roots of gc

satisfying certain conditions plays a fundamental role (Proposition 2.2).
We prove this proposition in Appendix 1. Using the results in § 2, we
prove Theorem 1.4. But we have to divide the proof into several cases
according as the property of G/K. In § 3 we prove the theorem for
"general" compact irreducible Riemannian symmetric spaces, which satisfy
certain conditions on root systems. Many spaces are included in this
case. The spaces which are not "general" are listed up in Proposition
3.4 and we have to prove the theorem individually. Sections 4—6 are
devoted to the proof for these spaces. In Appendix 1 we give the proof
of Proposition 2.2, using the classification of symmetric spaces. Finally
in Appendix 2 we prove, as an application of the modified Gauss equation
for conformal immersions, that an ^-dimensional compact Riemannian
manifold with non-positive sectional curvature cannot be globally con-
formally immersed into R2n~2. This is a generalization of the result of
Moore in [20].

Throughout this paper we always assume the differentiability of
class C°°.

1. The rank of the curvature transformations and the main theorem.

1.1. Let (M, g) be an ^-dimensional Riemannian manifold. We
denote by V the covariant differentiation associated with the Levi-Civita
connection of (ikf, g) and by R the curvature tensor field of (Jlf, g). For
a C°° function φ on M and tangent vectors Xu - , Xk e TPM we define

fe k

VXl VXkφeR by VZl VXkφ = (V^V^)(X l f , Xk) where V^~Vφ
is the k-th covariant derivative of φ. Let f = (f\ , fm) be a mapping
of M into the m-dimensional Euclidean space Rm and we set VXl • VXlf =
( , VXl VXJ\ •••). Then we have:
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where X, Y, Z denote tangent vectors at p e M.
Let < , > be the standard inner product of Rm. If f is an immer-

sion of M into Rm, then <Vf, Vf > gives a Riemannian metric on M. By
definition an immersion is called conformal with respect to g if there
exists a function p on M satisfying <W, Vf> = e2^.

Let f be a conformal immersion of (Mf g) into /2m. We define an
Um-valued symmetric 2-tensor field α and a symmetric 2-tensor field β
by setting

, Γ) = VxVFf - {(V^)VFf + (VFί>)Vxf - g(X,

, Γ) = f{vzVτp - (Vxp)(VYp) + λg(ξ, ξ)g(X,

where ξ stands for the dual of Vp, i.e., the vector field determined by
the equality g(ξ, X) = Vxp. Then we have the following

LEMMA 1.1 (cf. Gasqui [7]).

(1.2) <a(X, Y\ V*f> = 0 .

(1.3) <μ{X, Y\ a(W, Z)) - <μ(X, Z\ a(W, Γ)> + β(X, Y)g{W, Z)

+ g(X, Y)β{W, Z) - β(X9 Z)g(W, Y) - g(X, Z)β(W, Y)

= -S>g(R(X,W)Y,Z).

PROOF. Differentiating covariantly the equation <Vf, Vf> = e2pg,
we have

<VzVFf, Vzf> + <VFf, VxVzf) = 2(VxPyog(Y, Z) .

Then cyclic permutation of {X, Yf Z} yields

<VxVFf, Vzf) = e^{(Vxp)g(Y, Z) + (Vγp)g(Z, X) - (Vzp)g(X, Y)}

and (1.2) follows from this equation.

Next we differentiate the equality (1.2). Then we have

(Vwa{X, Y\ Vzf) + <α(X, Y), VwVzf) = 0 .

Interchanging X and W, we have

(Vxa(W, Y), Vzf) + <a(W, Y), VxVzf) = 0 .

From these two equalities we obtain
<α(X, Y), a(W, Z)) - (a(X, Z\ a(W, Γ)>

= <V*α(W, Y) - Vwa(X, Y\ Vzf) .

On the other hand we have
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, Y) - Vwa(X, Y)

+ {9(W, Y)VVχξf - g(X,

+ {g(W, Γ)VXV/ - g{X,

Then by use of (1.2) and the integrability condition (1.1) we have

, Y),Vzf)

, W)Y, Z) - β(X, Y)g(W, Z) - g{X, Y)β(W, Z)

+ β(X, Z)g{W, Y) + g(X, Z)β(W, Y) .

This proves the equality (1.3). q.e.d.

We call (1.3) the modified Gauss equation for conformal immersions.

REMARK. If f is an isometric immersion, i.e., p is identically zero
on Λf, then a is nothing but the usual second fundamental form of f.
We also remark that in this case β = 0 and the equality (1.3) reduces
to the usual Gauss equation.

1.2. Let r be the Z-valued function on M defined in Introduction.
Using Lemma 1.1, we prove the following proposition.

PROPOSITION 1.2. If (M, g) can be isometrically immersed into Rm,
then for each point pe M the inequality r(p) :£ m — n holds. If (M, g)
can be conformally immersed into Rm, then r(p) ^ m — n + 2 for each
pe M. In particular any open Riemannian submanifold of (Λf, g) con-
taining p cannot be isometrically (resp. conformally) immersed into the
Euclidean space in codimension r(p) — 1 (resp. r(p) — 3).

PROOF. Suppose that there exists a conformal immersion f: M—>Rm.
Let a and β be the symmetric tensor fields on M defined above and we
denote by T£M the normal space to M at pe M. For each ξe T?M we
define a symmetric endomorphism Aξ of TPM by g(Aξ(X), Y) =
<α(X, Γ), ξ)(X9 Ye TPM) and let B be a symmetric endomorphism of
TPM defined by g(B(X), Y) = β(X, Y). Then the modified Gauss equation
(1.3) can be expressed in the form

(1.4) e^R(Xf Y)Z = Aα{YtZ)X - Aα{X>z) Y - β(X, Z). Y

-g(X, Z).B(Y) + g(Y, Z) B{X) + β(Y, Z) X .

Hence for all X, Ye TPM we have

rank R(X, Y) ^ dim {Aα{XiZ)Y\Ze TPM) + dim {Aα{Y>z)X\Ze TPM] + 4

^ 2 dim TϊM + 4 ,
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which implies r{p) ^ dim T?M + 2 = m — n + 2. In case f is an iso-
metric immersion, we substitute p = β — 0 into the above equality (1.4).
Then we have

rank R(X, Y) ^ 2 dim T^M

for all X, Ye TVM, implying r{p) ^ m — n. q.e.d.

REMARK. The "isometric" part of this proposition is essentially
equivalent to Theorem 1 in Matsumoto [17].

Now we consider the case where (ikf, g) is a Riemannian symmetric
space G/K. In this case the function r{p) is constant on G/K, as is
stated in Introduction, and we denote this constant by c{GjK) e Z.
Using the elementary facts on the curvature transformation of G/K at
the origin (see [15]), we have

LEMMA 1.3. (1) Let M = Mλ x x Mk be a product of Riemannian
symmetric spaces. Then c(M) = Σ^iCίλfJ.

(2) Let M be a Riemannian symmetric space of compact type and
let M* be its non-compact dual space. Then c(M*) = c(M).

We determine the number c(G/K) for each simply connected irre-
ducible Riemannian symmetric space G/K of compact type. Then by
Lemma 1.3 and the fact c(Rn) = 0, we know the value c(G/K) for all
Riemannian symmetric spaces G/K. (We remark that the integer c(G/K)
is determined by the infinitesimal property of G/K.)

The rest of this paper is devoted to the proof of the following main
theorem.

THEOREM 1.4. Let M — G/K be a simply connected irreducible
Riemannian symmetric space of compact type. If G/K is not isomorphic
to any real Grassmann manifold, then

c(G/K) = (1/2)-(dim G/K - rank G + rank K) .

For real Grassmann manifolds G/K = SO(p + q)/SO(p) x SO(g) (p}tq}>ΐ),

if Q = e v e n or Zq^P^Q > q = odd ,
(GIK) -

\p(q - l)/2 + q , if P > 2q and q = odd ,
where [ ] is the Gauss symbol.

We remark that the equality c(G/K) = (l/2)(dim G/K - rank G +
rank K) holds except for the case G/K = SO(p + q)/SO(p) x SO(q) with
p >̂ 2q + 2 and q = odd, which includes the standard sphere Sn (n ^ 4).

2. Riemannian symmetric spaces. In order to prove Theorem 1.4,



LOCAL ISOMETRIC IMMERSIONS 113

we prepare in this section several propositions concerning irreducible
Riemannian symmetric spaces of compact type.

2.1. Let G/K be an irreducible Riemannian symmetric space of com-
pact type and let g (resp. ϊ) be the Lie algebra of G (resp. K). We
denote by θ the involutive automorphism of G associated with G/K. We
also denote by the same letter θ the involutive automorphism of g induced
by θ. Let us define an inner product ( , ) of g by setting (X, Y) =
-J5(X, Γ), X, Γeg, where B stands for the Killing form of g.

Let g — ϊ + tn be the canonical decomposition of g obtained by θ.
Then [ϊ, ϊ] c ϊ, [ϊ, m] am and [m, m] c ϊ. Let a be a maximal abelian
subspace of m and t be a Cartan subalgebra of g containing α. We put
b = tn I. Then we have t = a + h (orthogonal direct sum). In particular
we have θt = t. In the following discussions we fix a 0-order " < " in t,
i.e., a linear order in t satisfying: If H > 0, Hίh, then ΘH < 0. We
denote by gc the complexification of g. We extend θ and Ad (g) (g e G)
to complex linear isomorphisms of gc by complex linearity and denote
them by the same letters.

Let α e t . We define a subspace gα of gc by

gα = {Xe gc | [H, X] = V^Λ(a, H)X for all He t} .

An element α e t is called a root of gc (with respect to tc) if gα Φ {0}.
Let Δ (resp. Δ+) denote the set of non-zero roots (resp. positive roots)
of gc. Clearly we have ΘΔ = Δ and θQa = Qθa for each ae Δ.

Let τ be the conjugation of gc with respect to g. Then it can be
easily verified that τgα = g_α for as Δ. The following is easy to prove.

PROPOSITION 2.1. There exists a set of vectors {ZaeQa\ae Δ} satis-
fying

(1) τZa = Z_a, θZa^_ZΦa;
(2) [Zβ,£_J = 2 i/- l/(α f α).α.

We fix once for all such a set of vectors {Za e gα | a e Δ} stated in

Proposition 2.1.
Let us define a non-negative integer s(G/K) by setting s(G/K) =

rank GjK - rank G + rank K. Then the following proposition plays an
important role in the proof of Theorem 1.4. The proof will be given in
Appendix 1.

PROPOSITION 2.2. Assume that s = s(G/K) > 0. Then there exists a

subset Γ = {β19 , β8} of Δ+ satisfying:
(1) θβ.= -β., i.e., / 3 f e J + n a ;
( 2 ) /3 ί ±/3 J £ΛU{0} (iΦ o).
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REMARK. (1) The set Γ = {βί9 , ft} having the above properties
is not uniquely determined. In Appendix 1 we explicitly construct
Γ = {/3i, , ft} for each GjK, using the classification of Riemannian
symmetric spaces.

(2) The spaces satisfying s(G/K) = 0, i.e., the spaces of split rank,
are exhausted by the following; the compact simple Lie groups,
All SU(2n)/Sp(n), DII S0(2n + 2)/SO(2n + 1) and EIV EJFA. These
spaces are exceptional in our point of view and we have to prove Theo-
rem 1.4 for these spaces individually (§ 4 and § 6).

Let Γ = {ft, , ft} be a subset of Δ+ with the properties stated in
Proposition 2.2. Then since the length of the ft-series containing βs

(i Φ j) is 1, we have (ft, ft) = 0 for i φ j . For each βte Γ we denote
by Xβ. and Yβ. the real part and the imaginary part of Zβ.y respectively.
Then:

Xβi = ( l/2)(^ i + τZβt) = (l/2)(Zβi + £_,,) = (lβ)(Zβi + θZβi)et

Yβi = (l/2ι/jΛ)(Zβi - τZβ%) = (\l2V=l){Zh - Z_β%)

We set α0 = Σί=i Rβu \ = Σί=i RXβC Then we have α0 c α, b o c ! and
it is easily observed that dim α0 = dim ί>0 = s. Let at be the orthogonal
complement of α0 in α. Then we have dim αx = dim α — dim α0 =
rank G/if — s — rank G — rank K. With the above notations, we prove

PROPOSITION 2.3. ( 1 ) bQίs orthogonal to b and h1 = h0 + h (orthogonal
direct sum) is a Car tan subalgebra of ϊ.

( 2 ) tx = αx + ί>! (orthogonal direct sum) is a Cartan subalgebra of g.

PROOF. ( 1 ) Since (tc, gβ) = 0 for a e Δ, it follows that (b0, b) - 0.
Consequently we have dim bx = dim b0 + dim b = s + (rank G — rank Cr/ίΓ) =
rank K. Hence in order to show that bx is a Cartan subalgebra of ϊ,
we have only to show that bx is abelian. This can be verified by the
following equalities:

[H, Xβi] = (1/2)[JT, Z^4 + Z ^ J = (V^ϊ/2)(βif H)(Zβi - Z ^ ) = 0 ,

[Xβi, Xβj] = (l/4d[Zβt + Z_βi, Zβj + Z_βj] = 0 ,

where He b, β o ft e Γ. (Note that fte^nα and βt ± ft ί Δ for ΐ ^ j.)
Hence we have [blf bj = {0}, proving that bt is a Cartan subalgebra of ϊ.

(2) Clearly we have [alf αj = [αlf b] = [blf bj = {0}. We also obtain
[α1,b0] = {0}, because [H, X J - (l/^ϊ(ft, H)/2)(Zβi - Z.^) = 0, where
ί ί e o ! and ftef. Therefore we have [tx, t j = {0}. Since (a^hj = 0, it
follows that dim tx = dim αx + dim bx = rank G — rank K + rank K = rank G.
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This proves that tL is a Cartan subalgebra of g. q.e.d.

REMARK. Let Γ' = {β[, , /3'J be a subset of A+ satisfying the
properties (1) and (2) in Proposition 2.2. Then by Proposition 2.3(1) it
can be easily proved that t ^ s(G/K), i.e., s(G/K) is the largest integer
possessing the property in Proposition 2.2.

2.2. We now set W = Σί=i Yβt (ent) and g = exp (-ττ/2 TF) (eG).
Then we have

PROPOSITION 2.4. Let He t. Tftew:

Ad(g) H = H+± 09,, if)X^ - Σ (ft
i=l 1=1

Consequently Aά(g) a0 — b0, Ad(flr)|Ol+B = id ami Ad(βf) t = tL.

Before proceeding to the proof we show

LEMMA 2.5. For each Het, /34eΓ, it holds

Ad (exp tYft)Ή = H- (sin t)(βit H)Xh

+ (cos t - 1) (/3ί; #)/(&, A) A (t 6 R) .

PROOF. By Proposition 2.1, we obtain the following equalities:

[Yβi,H] = -{βuH)Xh Het;

Hence by induction on n, we can easily prove

(ad Yhy
+ί H = (-1)"+1(/Si( H)Xh ,

(ad Yftr».H = (-D"+1(/3o H)/(βt, A) A

Therefore we have

Ad (exp t Γ ^ fl" = if + Σ t"/w! -(ad Yh)
n H

n = l

- if + (A, H) ± (-l)"+1t* +1/(2» + 1)! Xίs

(~l)n+Ψn+il{2n + 2)!
n=0

Since ΣΓ=o (-l)nt2n+1/(2n + 1)1 = sinί and Σ^o(-l)n + 1ί2 n + 2/(2n + 2)! =
cos t — 1, we obtain the desired equality. q.e.d.

PROOF OF PROPOSITION 2.4. We first remark the following equali-
ties: [Yβif β3] = [Γ^., X .̂] = [Yβv Yβj] = 0 for i ^ i. Hence we have
Ad (exp tW) = Ad (exp ί Y"̂ ) Ad (exp t Yβj) and Ad (exp t Yβ.) βά = ft,

F ^ ) - ^ . = X .̂ for i Φ j . Thus by Lemma 2.5, we obtain
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Ad (exp tW) H=H- (sin t) Σ (β
t
, H)X

β
.

ΐ = l

+ (cos t - 1) Σ (A, H)/(β
u
 β,) -ft (teB).

i=l

Putting t = —π/2 into the above equality, we have the desired equality.
We now prove the latter part of the proposition. In view of the

formulas obtained above, we can easily check that Ad(#)|Ol+B = id. Also
we have Ad (g) βt = (βif βi)Xβi for fteΓ, because (βi9 βd) = 0 for i Φ j .
Hence Ad (g)-a0 = b0. Consequently we have Ad(βr) t = tx and the proof
is completed. q.e.d.

LetaeΔ. We set a = Ad (g)>a (e tx) and Za = Ad (g)-Za (e QC).
Then it is easily seen that a is a non-zero root of gc with respect to t;
and that CZa is the root space of gc corresponding to α. (We remark
that θtλ = tx.) We put z/# - z/Π(α0 + b). Then we have θά = a if and
only if a 6 zf#.

Let α 6 J|. Since θά = ά, it follows that θZa 6 CZα. Hence there
exists a complex number εα such that θZa = ε«Zα. Since ^2 = id, we have
ea = ± 1 .

LEMMA 2.6. (1) Let ae Δ%. Then ea = ε_α.
( 2 ) Lei α, yβe J f. Then if a + βeJ^ ea+β = εα ε̂ .

PROOF. (1) Applying 0 on both sides of the equality [Za, Z_a] =
2v/:=:ΐ/(α, α) α, we obtain εα ε_α = 1. This proves (1). The assertion
(2) is obvious. q.e.d.

Now we set 4( + ) = {ae Δ%\ea = 1} and Jt( —) = {ae Δ^\εa = — 1}.
Then we have

Ic = bj + Σ C^α + Σ C(^β + 0J2L) (direct sum) ,

m = αj + Σ Ĉ α + Σ C(Za - θZa) (direct sum) .

Let ίZ"eαS + bc. We define two subsets ic^H) and /c2(ίί) of J by
setting K^H) = {αe J,(-) |(α, ί ί) = 0} and /c2(H) = {ae Δ+\Δ,\(af H) = 0}.

LEMMA 2.7. For if e αo

c + b% βeί H = Ad(g)-He b;. Tfcê  ί̂ e follow-
ing equality holds:

dimc Ker (ad if |mc) = rank G - rank jfiΓ + #/Ci(H) + #/c2(iϊ) ,

where %tCi(H) denotes the cardinality of ic^H).

PROOF. We first note that ad i ϊ α? = {0}, aΔH Za = l / ~ ( α , £Γ)Zα

and ad ίϊ - θZa = #(ad 0ff - ^β) = 0(ad ff Zβ) - V - l(α, Jff)0 β̂ for a e Δ.
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Hence we know that each factor that appears in the decomposition of
mc obtained above is invariant under (ad£Γ|mC). Therefore we have:

Ker(ad#LO = αί + Σ CZa + Σ C(2a-θ2a).
aeic^H) aeκ2(H)

Consequently we have dimcKer (adi?|m«) = dimcaj + JA^CEΓ) + #tc2(H) =
rank G - rank K + jtaCff) + #κ*(H). q.e.d.

2.3. Finally we study the sets Δ%{ + ) and Δ%( — ) more closely. We
show

PROPOSITION 2.8. (1) ±Γ = {±βl9 , ±β8} c 4 ( - ) .
( 2 ) Assume that ae ΔΠί>. T%ew α G J f ( - ) i/ α^d O Ϊ̂T/ if a±βt^ Δ

for some β^e Γ.

We first prove

LEMMA 2.9. (1) Assume that ae J# α^d ίfeαί ίfcere existsβte Γ such
that 2(α, A)/(A, A) = 1 αwd « + /3< ί 4. Γfee :̂

Ad (exp t Yβi) - ^ = cos (t/2) Za + 2 sin (t/2)[ Yβi, Za]

Ad (exp t Yβi) - Z_a = cos (t/2) Z_α + 2 sin (ί/2)[ Γ^, ^_α] (ί 6 R) .

( 2 ) Assume ίfeαί α G J |Ί ί) α^cί ίhat there exists βiβ Γ such that
a ± βiβ Δ. Then:

Aά(exvtYβ.) Za = cost Za + sint [Yβt,Za] , (teR) .

PROOF. (1) Under the assumptions we know that a — βte Δ\J{0}
and a — 2β igJU{0}. Hence we have

(ad γβtγ za = (i/4)[zβt, [z_βi, za\\ = a/mzβp z_hι za]
= (-l/4)2(α, βt)l(βt, βt) Za = -(l/4)Zβ .

Therefore by induction on n(eZ, ^ 0), we can easily prove that
(2LdYβίY

n.Za = (-l/4T Za and (ad Yβiγ»+1 Za = (-1/4)»-[Γ*, ^ J Conse-
quently

- cos (t/2)'Za + 2 sin (t/2) [Yβt9 Za] .

This proves the first equality. In the same manner the second equality
can also be proved.

( 2) We first note that since aeb and βt e Γcα 0, we have (α, βt) = 0.
Hence we know that a ± 2 ^ ^ JU{0}. In fact if a + 2/3*6 JU{0} (resp.
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a - 2βie zί(J{0}), then it follows that a - 2βie Δ{J{0} (resp. a + 2βte
JU{0}), because (a, β%) — 0. Consequently the /3rseries of a contains at
least five roots. But this contradicts the fact that for any 7,δeΔf the
length of the δ-series of 7 is at most four (see Bourbaki [4]). Thus
a ± 2βiί JU{0}. Hence we obtain the following:

[Z_βi, [Zβί, Za\\ = [Zβp [Z_βi, Za]] = -2Za ,

(see Helgason [9] Chap. III). Therefore

(ad YβiY Za = ( l / 4 ) { [ ^ , [Zβt9 Za]] + [Zβi, [Z_βif Za]]} = - Z β .

Hence by induction on n, we can easily show that (ad Yβ.y
n Za = ( — l)nZa

and (ad Yβ.)
2n+1 Za = (-l)n[Yβ., Za]. Consequently we have

Ad (exp tYβi) Za= ( Σ (-Dnfn/(2n)\)-Za

+ ( Σ (-l)nί2n+7(2w + ΐ)l)'[Yβif Za]
\n=0 /

= cost Za + sinί tΓ^, Za] .

Thus the proof of the lemma is completed. q.e.d.

LEMMA 2.10. Let aeJ*. Then Ad(g-2) θZa = εa-Za.

PROOF. We note that since W = Σί=i ^ . e m , it follows that ΘW =
- W. Hence θ(g) - 0(exp (-πβ-W)) = exp (-πβ-ΘW) = exp (π/2-W) = flΓ1.
Thus ^ α - fl(Ad (g) Zβ) = Ad (θ(g)) ί Z β = Ad (ίΓ1) ί Z β = Ad (g) - Ad (^"2). θZa.
On the other hand since θZa = εa'Za = εa Ad(g)-Za, we obtain kά{g~2)'θZa =
εaZa. q.e.d.

PROOF OF PROPOSITION 2.8. (1) By Lemma 2.10 we obtain
Ad (g-2)-(Xβ. - V^ΛΎ^ = eβ.(Xβ. + l / ^ l Γ ^ ) . Comparing the imaginary
parts of both sides, we have Ad(g~2)Ύβi — —εβ.Yβ.. On the other hand
since [Yβi, Yβj\ = 0 for βuβ5eΓ, it follows'that Ad (sr2)- Γ^ = Γ .̂.
This proves ε̂ . = —1. Hence we have ±/3Ϊ6Z/ # (~) (see Lemma 2.6).

( 2 ) We first assume that a ± βt e Δ for some βt e Γ. Then for any
Ŝy e Γ (j Φ i) it holds that a± βs$ Δ. In fact if a + /3̂  6 J, then

(α + βt) - (α + /3y) = A - ft e J U {0}, because (α + βif a + βd) = {a, a) > 0.
This is a contradiction, a — βά $ Δ can be analogously proved. Hence
we have Ad (exp t Yβj) - Za = Za for any β5 eΓ (j Φ i). Therefore
Ad (g~2) θZa = Ad (exp ττT7) Z9a = Ad (exp TΓΓ^) - Ad (exp πYβ) • Zα =
Ad(exp7rΓ^.) Zα = -Za (see Lemma 2.9(2)). Then by Lemma 2.10 we
have εa = — 1, i.e., α e J # ( —). Conversely we suppose that a±βi&Δ
for any fteΓ. (We remark that a + βi&Δ if and only if a — βi&Δ
because (α, &) = 0.) Then it is clear that Ad (exp tYβ.) Za = Za for any
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βtβΓ and hence Ad (g~2) θZa = Za. This shows that εa = 1, implying
α e 4 ( + ). q.e.d.

REMARK. (1) If s{G/K) = 0, then Δ% = z/ΓΊb because α0 = 0. Con-
sequently by Proposition 2.8(2) we have Δ%{~) = 0 .

(2 ) As is easily observed that Proposition 2.1 also holds even if we
replace Zβ. and Z_β. by —Zβ. and —Z_β.f respectively for some fteΓ.
Such a modification brings about a change in the sign of Yβi and hence
alters the sets Δ%{ + ) and Δ%( — ). (See §5 and §6. We remark that the
union Δ% = Δ%( + )Ό Δ%( —) is unchanged by this modification.) However it
should be noted that under such a change in the sign of Yβ. Proposition
2.8 remains to be true. The proof of this fact is left to the reader.

3. Proof of Theorem 1.4. (General case). In this section we deter-
mine the integers c(G/K) for many G/K that are "general" in our sense.

Let G/K be a Riemannian symmetric space of compact type and let
Q = ΐ + m be the canonical decomposition of g. In a usual way m can
be identified with the tangent space at the origin o e G/K. We denote
by p:l—>o(nt) the linear isotropy representation of G/K at oeG/K.
Then as is well known, the curvature transformation R(X, Y) (X, Yem)
at the origin oeG/K is given by R(X, Y) = — p([X, Y]): m-+m (see
Kobayashi and Nomizu [15]). Hence we have

c(G/K) = (1/2) max rank p([X, Y]) .
X,Yem

The following lemma is easy to verify.

LEMMA 3.1. Let pc: tc —> o(tnc) be the complexification of the linear
isotropy representation p. Then

c{GIK) = (1/2) max rank p\[Xf Y]) .
X,Yemc

By this lemma we may consider the problem in the complex category.
Now we define a non-negative integer co(G/K) by co(G/K) =

(l/2)(dim G/K - rank G + rank K). We first prove

LEMMA 3.2. c(G/K) ̂  co(G/K).

PROOF. Let X, Y be arbitrary elements of m. Since [X, Y]eΐ and
since bx is a Car tan subalgebra of ϊ, there exists an element keK such
that Ad (&) [X, Y] e ί>x. We set H = Ad (k) - [X, Y] and H = Ad far1) -Q.
Then by Lemma 2.7, we obtain rank p([X, Y]) = rank /o(^) = dim G/K —
dimc ίΓer (ad H\mc) ̂  dim G/ίΓ - rank G + rank if = 2co(G/K). Hence we
have c(G/K) = (1/2) maxx,Fei« rank p([X, Y]) ^ co(G/X). q.e.d.

PROPOSITION 3.3. Let Γ = {&, •••, /3j 6e α suδseί of Δ+ satisfying
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the conditions in Proposition 2.2 and assume that the set Γ satisfies the
following two conditions:

( 1 ) For each a e Δ\Δ% there exists βt e Γ such that (a, βt) Φ 0.
(2 ) For each ae ΔΠb, fteΓ it holds a ± βt$ Δ.
Then c(G/K) = cQ(G/K).

PROOF. Let alf * , α 8 be complex numbers that are linearly inde-
pendent over the field Q of rational numbers. We set X = Σ* = 1 atZpif

Y = ΣiUiZ-βi and H = [X, Y]. Since ± f t e 4 ( - ) (Proposition 2.8,
Lemma 2.6), it follows that X = Ad(sO X e m% Γ = Ad(g) Γ e mc and
£Γ = Ad(#) i ϊ = [X, Ϋ]. By a simple calculation we obtain H=
Σ U 2l/ : i Ία i /(A, &)• A eαj and hence JΪG b j c b j . Therefore
(l/2)rankc jo

c([X, Y]) = (l/2)rankc/o ( 5 ) = (l/2)rank c (adΰ| m C ) =
( ^ ( ^ ( i r ) + JtaCED) (Lemma 2.7).

We now show that ^(fl") = /τ2(ίί) = 0 , then we have c(G/K) ^ co(G/K).
This together with Lemma 3.2 proves the proposition. Let aeΔ satisfy
(a, H) = 0. Then since alf •• , α s are linearly independent over Q and
since 2(α, £<)/(&, βi)eZ, it follows that (α, ^ ) = 0 for all & e Γ . Thus
by the condition (1), we know that aίΔ\Δif i.e., ae Δ$c:a0 + b. This
means that ic2(jff) = 0 . We next show that a e Δ ΓΊ b. In fact since
Γ = {/?!, , β8] forms a basis of α0, the σ0-component of a is equal to
0. Hence a e Δ Π b. Therefore by the condition (2) and by Proposition
2.8, we know that α ί 4 ( —). This implies that tcx(H) = 0 . Thus the
proof is completed. q.e.d.

The conditions in Proposition 3.3 are satisfied for many Riemannian
symmetric spaces. In fact we have

PROPOSITION 3.4. Let G/K be a simply connected irreducible
Riemannian symmetric space of compact type, which is not isomorphic
to any of the following spaces:

(1°) Compact simple Lie groups, AH SU(2(n + 1))/Sp(n + 1) (n ^ 1),
DI, II SO(p + q)/SO(p) x SO(q) (p, q = odd, p^q + 2), EIV EJFA.

(2°) BI, IIS O(p + q)/SO(p) x SO(q) (p = even, q = odd, p ^ q + 3),
CII Sp(p + q)/Sp(p) x Sp(q) (p ^ ? ^ 1), F / / i^4/Spin (9).
T%ew ίfee seί T7 = {βl9 , β8} selected in Appendix 1 satisfies the condi-
tions (1) and (2) w Proposition 3.3. /w particular c(G/K) = cQ(G/K).

PROOF. We note that since G/K is not isomorphic to any spaces
listed in (1°), we have s(GjK) Φ 0 (see Table 1 in Appendix 1). First
we suppose that s(G/K) = rank G/K. Then we have rank G = rank K
and hence aλ = {0}. Therefore the condition (1) of Proposition 3.3 is
automatically satisfied. We next consider the case where s(G/K) <
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rankG/iί. By Table 1 in Appendix 1, we know that such spaces are
limited to the following three types:

AI SU(n + ΐ)/SO(n + 1) (n ^ 1)

DI SO(p + q)/SO(p) x SO(q) (p = g = odd)

El EJSp(4) .

Then we have rank G = rank G/K and hence t = a. Consequently we
have θa = —a for each aeJ. Now let us suppose there exists aeA+

satisfying (α, βt) = 0 for any ftef. Then it follows that a ± βt $ A U {0}.
(It is known that for a simple Lie algebra gc of type [At], [Dt] or [E^
the α-series containing three roots are of the form — α, 0, a.) Then the
set Γf = {a}\jΓ satisfies the conditions of Proposition 2.2. But this con-
tradicts the maximality of the set Γ (see Remark after Proposition 2.3).
This shows the property (1) of Proposition 3.3.

For the verification of the property (2), see Remark at the end of
Appendix 1. We know that since GjK is not isomorphic to any spaces
listed in (2°), α±/3i£ΛU{0} for any αez/nb, fteΓ. q.e.d.

We remark that any Hermitian symmetric space is not contained in
neither (1°) nor (2°) and hence the proof of Theorem 1.4 is completed
for Hermitian symmetric spaces.

In the subsequent sections we prove Theorem 1.4 for each G/K listed
in (1°) and (2°) of Proposition 3.4.

4. Proof of Theorem 1.4. (Compact simple Lie groups, All and
EIV). In this section we treat the cases G/K — compact simple Lie
groups, All SU(2(n + 1))/Sp(n + 1) (n ^ 2) and EIV EJF4. We remark
that for these spaces s(G/K) = 0 and hence X and Y which we defined
in the proof of Proposition 3.3 reduce to 0. We use the same notations
as in § 2 and § 3.

4.1. Compact simple Lie groups. Let ikί* be a compact simple Lie
group with a biinvariant Riemannian metric and let m* be the Lie algebra
of M*. Then as is well known that Λf* may be represented by the
Riemannian symmetric space G/K, where G = M"* x M*9 K = {(x9 x)\xe M*}
and the involution θ of G is given by θ(x, y) = (y, x) for (x, y) e G.

Let g (resp. f) be the Lie algebra of G (resp. K). Then we have
g = m * φ m*f t = {(X, X) e g | Xe m*}. The differential of θ at the identity
of G, denoted by the same letter θ, is given by Θ(X, Y) = (Y, X) for
(X, Y) e m* φ m* = g. We define an inner product ( , ) of g by
((Zlf Yi), (X2, Γt)) - -{B(XU X2) + B(YU Y2)} for (Xif Yτ)e g (ί = 1, 2). As
is easily observed, ( , ) is invariant under θ and the orthogonal comple-
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ment m of ί in g with respect to ( , ) is given by m = {(X, —X)e
Q\Xem*}. Let α* be a Cartan subalgebra of m* and set t = α*©α*.
Then we know that t is a Cartan subalgebra of g containing a maximal
abelian subspace a = {(X, —X)eg|Xeα*} of m and b — tflϊ is given by
b = {(X, X)βQ\Xe α*}. We define a linear order " < " in t by the follow-
ing law: (Hif H2) > 0 if and only if Hx > H2 or Ht = H2> 0, where <
denotes an arbitrary linear order in α*. Then it is easy to see that <
is a 0-order in t. Let Δ* (resp. Δ) be the set of non-zero roots of (m*)c

(resp. gc) with respect to (α*)c (resp. tc). Then we have Δ — {a+, a~\ae zί*},
where a+ = (α, 0), or = (0, α). Clearly we have θa+ = or and 0α~ = α+

for ae Δ*.

PROOF OF THEOREM 1.4. Let 77* = {al9 , α j (Z = ranknx*) denote
the set of simple roots of (m*)c with respect to <.

Let alf - —, dι be complex numbers that are linearly independent over
Q. We then set X = Σ U at(Za+ - θZa+), Y = Σ U (̂ -«+ - θZ_a+) and
set fl" = [X, Y]. Then we have Xem% Yemc and by a simple calcula-
tion we obtain H = 2 i / ^ ϊ Σ U «i/(«i+, at)'{at + βα<+)e bc. (Note that
αί - α+, at~ - a7 ί z/U{0} (i ^ i), a ί ± aj £ ΔU{0}.) By Lemma 2.7 we
have rankc p

e(H) = rankc (ad ff)|mβ = 2co(G/K) - (#^(5) + #*,(#)). (Note
that since s{GjK) = 0, it follows that # = e and hence Ad(g) H = H,
Aά(g) Za = Zβ.) We now show that /Ci(iϊ) = ic2(Jϊ) = 0 , then it holds
c(G/iT) ^ co(G/K). This together with Lemma 3.2 proves c(G/JBΓ) = co(G/K).
Let α+ = (α, 0)6 Δ satisfy (α+, Jϊ) = 0. Since au , at are linearly
independent over Q and since 2(α+, at)/{at, at) e Z, (α+, βα<") = 0, it fol-
lows that (α+, αt̂ ) = — B(α, α<) = 0 for all 0^6 77*. But it is impossible
because {αJ forms a basis of α* and hence we have (α+, Jϊ) ^ 0. Simi-
larly we can prove that (α", JBΓ) =5t 0 for all α~ e Δ. Hence we have

= 0 . q.e.d.

REMARK. Since c{Rn) = 0, it can be easily seen that the equality
c(M*) = (l/2)(dim Jkf* — rank Λf *) holds for any compact Lie group M*
with a biinvariant Riemannian metric.

4.2. JL/7 St7(2(w + 1))/Sp{n + l){n^ 2). In the following arguments
we assume that n ^ 2. In the case w = 1, G/iί = SU(£)/Sp(2) is isomor-
phic to SO(6)/SO(5) and we treat this case in § 6.

Let 77 = {aly , α2n+1} denote the simple roots of §ιt(2(w + l))c. Then
the Satake diagram of G/K and the restriction of θ on t are given as
follows:

α l a2 α 3 α 2 w - l α2Λ α 2 w + l

• o # o #
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(θa2i = - ( α 2 ί _ ! + a2i + a2W) (1 ^ i ^ n) ,

W2i-1 = «2i-l (1 ^ ί ^ W + 1) -

We first prove

LEMMA 4.1. Let aeJ. Then for some i (1 ^ i ^ n) it holds

{a, a2i + θa2ι) Φ 0.

PROOF. AS is well known that there exists a basis {λx, , λ2n+2} of
t φ f i such that (λ,, λ,) = cδ«y (eeΛ\{0})f t = {Σ?=l2α,λ<IΣ?=l2α, = 0} and
at = λ, - λ i + ι (1 ^ ΐ ^ 2n + 1) (Bourbaki [4]).

Let a be written in the form a = ± ( λ p — λg+1) (1 ^ p ^ g ^ 2^ + 1).
Since α2 i + 0α2ί = — (α8i-i + ot2i+1) = — (X2i_x — λ2ί + λ2i+1 — λ2i+2), it holds
(a, ap + θap) Φ 0 in case p = even, g Φ p + 1. We have (a, ap_2 +
^αP-2) ^ 0 or (α, α p + 2 + ^αp + 2) ^ 0 in case p = even, q = p + 1. (Note
that we are assuming w ^ 2.) Similarly we have (α, αp_! + ία,,^) ^ 0
in case ί) = odd > 1 and (α, a2 + <?α2) ^ 0 in case p = 1, g Φ p + 1. Finally
we have (α, α4 + 0α4) ^ 0 in case p = 1, q = 2, proving the lemma, q.e.d.

We remark that Lemma 4.1 does not hold if n = 1.

PROOF OF THEOREM 1.4. Let au , an be complex numbers that are
linearly independent over Q. We set X = Σ?=i alZ^^i-i^. — θZ^1}i-ia2i)9

Y = Σ?=i (^<-n*«2i - ΘZ<-»*«*) and ί ί = [X, Γ ] . Then we' have l e mc,
Γ e mc. Since a2i ± a2j <£AU{0}(iΦ j), a2i ± θa2j i ΔUJO} (i Φ j - 1, j + 1),
a2i + θa2ί+2, a2i + Θa2i_2<ί JU{0}, we obtain H = 2\/-lΣJ=i(-l)ί~1aJ(a2i,
0L2ί)-(a2i + Θa2ί)ehc. Let α e J satisfy (α, i ϊ ) = 0. Then since alf , αn

are linearly independent over Q and since 2(α, α2 i + Θa2i)/(a2i, a2i) e Z, we
have (α, α2 ί + ^α2ί) = 0 for all a2i (1 <J i <£ M). But it is impossible (Lemma
4.1). Hence we have ic^H) = /c2(ίf) = 0 . Therefore by Lemma 2.7 we
obtain rank c pc(H) = rank c (ad H)\mc = co(G/K). This together with Lemma
3.2 shows that c(G/ίΓ) - cQ(G/K). q.e.d.

4.3. i^/F JS?β/F4. Let 77 = {alf , aβ} be the set of simple roots of
Cg with respect to a 0-order in t. Then the Satake diagram of G/K and
the restriction of θ on t are given as follows:

α l α 3 α 4 α 5 α 6

o # o
α 2

= — (aL + a2 + 2a3 + 2α4 + α5) ,

6 = — (α2 + α3 + 2α4 + 2α5 + αβ) ,

έ = cίi (2 ^ i ^ 5) .
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We first prove

LEMMA 4.2. Let a be a non-zero root satisfying (α, ax + θaj =

(α, aQ + θaQ) = 0. Then ae AΠh.

PROOF. By the Dynkin diagram of ej, we know that (ai9 at) = 2c
(1 ^ i ^ 6), («!, α3) = (α3, α4) = (α2, α4) = (α4, α5) = (α5, α6) = - e and other-
wise (ai9 a5) = 0, where c is a positive constant. We express a =
Σ L i mtat. Then since α^ + θaγ = — (α2 + 2α3 + 2α4 + αβ) and αβ + 0α6 =
— (α2 + α3 + 2α4 + 2α5), we obtain 2mx — 2m3 + mβ = m,! — 2m5 + 2m6 = 0
from (a, αx + θaL) = (α, αβ + θaQ) = 0. Hence we know that m1 — even,
mβ = even. On the other hand, since the highest root of c? is aγ + 2α2 +
2α3 + 3α4 + 2α5 + αβ, it follows that \mγ\ ^ 1, |m β | ^ 1. Therefore we
have mx = mβ = 0 and hence α e z/flί). q.e.d.

PROOF OF THEOREM 1.4. Let a19 a2 be two non-zero complex numbers
such that aja2 $ Q. We set X = aλ{Zai - ^Zαi) + α2(^_α6 - θZ_a) and
Γ = (Z_ai - θZ_ai) + (Zα6 - ΘZa&) and set i ϊ - [X, Y]. Then we have
Xemc, Yemc. Since ^ — θa19 ax + αβ, αx + 0α6, αβ — ^ α β ί zίU{0}, we
have i ϊ = 2v/zT{a1/(a1, ax) -(at + θax) - a2/(a6, aβ) «(aβ + θaβ)} e bc. Let a e A
satisfy (α, H) = 0. Since 2(α, α* + θat)/(ai9 at) e Z (i = 1, 6), the equality
(α, i ί ) = 0 implies (α, «! + θaj = (a9 aQ + θaβ) = 0. Then by Lemma 4.2,
we have α e A Π b = Δ%9 which implies ιcz(H) = 0 . (Note that α0 = {0} in
this case.) By Remark (1) at the end of §2, we have Δ%( — ) = 0 and
hence ic^H) = 0 . Therefore by Lemma 2.7 we obtain rank c io

c(iϊ) =
rank c (ad H)\mc = 2co(G/K). This together with Lemma 3.2 proves c(G/K) =
co(G/K). q.e.d.

5. Proof of Theorem 1.4. (CII and FII).

5.1. CII Sp(p + q)/Sp(p)xSp(q) (p^q^l). In the following argu-

ments we assume that (p9 q) Φ (1, 1). In the case {p, q) = (1, 1), G/K =
Sp(2)/Sp(l) x Sp(ΐ) is isomorphic to SO(5)/SO(4) and we will treat this
case in § 6.

Let 77 = {alf , ap+q) denote the set of simple roots of 2p(p + q)°
with respect to a border in t. Then the Satake diagram of G/K and
the restriction of θ to t are given as follows:

α l α2 α 3 alq 29+l p + q l p + q

• O O •«=• (p ̂  q + 1) ,
al a2 α 3 a2q-2 a2q-\ a2q

• O o «=O (p = q)
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θa2i = - ( α 2 ί _ ! + α2 ί + a2i+L) (1 ^ i ^ g - 1) ,

•(α2ff-i + α2 g + 2 Σ «fc + «,+,) (j> ^ g + 1) ,

Xi = (Xi (i = odd < 2g or i > 2g) .

Then the set Γ = {βl9 •--, βq} (s(G/K) = g) which we define in Appendix
1 is given by βt = a2i_, + 2 Σ K Γ 1 ah + αp+ff (1 ^ i ^ g - 1) and βq =
α2g-i + 2 Σfcί?,"1 αfc + «P+g if P ^ g + 1, βq = α2g-i + a2q if p = g. (In fact
in this case the set of simple roots {al9 , cxp+q} of 3J>(p + g)c and the
set of simple roots {Ύl9 , 7g} of the reduced root system Σ* are related
YίXΓ Ύ — (Λ /9.V/v 4- 9/Ύ 4-/Ύ W 1 <C i <i n "Π anfl Ύ — rv 4-9. Vp + Q I~1/v 4-

αp + g.) As is well known there exists a basis {λly , Xp+q) of t such that
(λ,, λy) = cδtj (c e iϊ\{0}) and α€ = λ t - λ i+1 ( l ^ i ^ p + g - l ) and ap+q =
2λp+g (Bourbaki [4]). By utilizing this basis, we have:

Δ = {±(λ, - λy) (1 ^ i < i ^ p + g), ±(λ, + λy) (1 ^ i ^ i ^ p + g)} ,

: = λ< (2g + 1 ^ i ^ p + g)

A = λ2ί_! + λ2ί (1 <: ΐ ^ g) .

Consequently J Π b = {±(λ2ί_ t — λ2<) (1 ^ i ^ g), ±(λ 2 g + i — λ2g+i) (1 ^ i <
j ^P - g), ± ( λ 2 g + i + λ2 g + i) (1 ^ ΐ ^ i ^ j) - g)}.

First we prepare two lemmas.

LEMMA 5.1. 4 ( — ) n b = {±α2 ί_! (1 ^ i ^ g)}.

PROOF. Since rank G = rank K, we have 4 - ^ Π ( d o + b) = Δ. Then
using Proposition 2.8 (2) and by the above table, we can easily obtain
4 ( - ) n ί > = {±(λ2 ι _1 - λ2<) (1 ^ i ^ g)}. q.e.d.

By changing the sign of Yβ. for suitable βie Γ (see Remark (2) at
the end of § 2), we have

LEMMA 5.2. {±a2ί (1 ^ i ^ q)} c 4 ( - ) i/ j> ^ g + 1 α^cί {±a2i (1 ^

i ^ g - I ) } c 4 ( - ) if p = q.

PROOF. (1) We first note that θa2ί = -(\M - λ2ί+2) (1 ^ ί <; g - 1)
and 0α2g = —(λ2g_! + λ2g+1). Hence we have θa2i±βj&Δ\J{0} in case
i + 1. Therefore combining this fact with Lemma 2.10, we have

( * )i Ad (g-2) Zθa2i = Ad (exp π Yβi) - Ad (exp π Yβi+1) Z,α2i

( * \ Ad (fif-2) - Z , α 2 g - Ad (exp π Yβg) Zθa,q = εa2qZa2q .



126 Y. AGAOKA AND E. KANEDA

We now consider the equality (*)q. Since θa2q — βq $ Δ U {0} and 2{θa2q,
βq)Kβq, βg) = - 1 , we can prove by the same method as in Lemma 2.9 (1)
that Ad (exp (— π Yβg)) Zθa2q = — Ad (exp (π Yβq)) Zθa2q. Hence if we change
the sign of Yβq, then from the above equalities the sign of ea2q changes.
We fix the sign of Yβq such that εa2q = — 1. We next consider the equality
(*),__!. Since 2(θa2q_2, βq)/(βq9 βq) = 1, it follows that Ad (exp π Yβq) Θa2q_2 =
θa2q_2-βqeΔ (see Lemma 2.5). Hence Ad(expπYβq) Zθtt2q_2e g*β2g_2_v

Since Θa2q_2- βq- βq_aΔΌ{Q] and 2{θa2q_2 - βq9 βq^)/(βq_u βq_x) = - 1 ,
we have Ad (exp - π Yβq_λ) Ad (exp TΓ Γ^) ^«2α_2 = - Ad (exp π Yβq_λ) x
Ad (expπYβq)'Zθ(X2q_2. Hence replacing Yβq_x by —Yβq_1 if necessary, we
have sa2q_2 = — 1. Applying the above arguments to the equalities (*)i
(1 ^ i ^ (7 — 2) successively, we have ε«2ί = — 1 for i = 1, , g — 2.
Then by Lemma 2.6 we have ε_α2. = —1 (1 ^ i ^ q) and therefore {±α 2 i

(2) can be verified by a similar method and we omit the details, q.e.d.

In the following we assume that the sign of Yβ. (βt e Γ) is selected
such that the properties of this lemma is satisfied.

REMARK. In the case p — q, if α ^ e 4 ( — ), then it necessarily holds
that ±a2q£ 4 ( - ) . In fact since a2q = βq - alq_x and βq, α 2 M e 4 ( - ) , we
have by Lemma 2.6 eβSί = ε^_^_x - ε^ ε_,2g_1 = (-1) x (-1) = 1, imply-
ing that ±a2qe 4 ( + )

PROOF OF THEOREM 1.4. We first assume that q ^ 2. Let αly •••,
αff, &i, , δg_! be complex numbers that are linearly independent over Q.
We put X=Σ*Lι α ^ e - D ^ + Σ p ϊ *>&-***& Y=ΣiU Z{_λ)iβi+Σj"ί Z ^ y - ^
and ί ί = [ X , Γ]. Then we have X-Ad(^).XGm c , ? = A d ( ^ ) . F G m c

(Lemma 5.2) and i ϊ - Ad (g) H = [X, f ]. Since (-1)^/5, + ( - l ) ^ y β
4U{0} (i ^ i ) , (~l)^ 2 ί + ( - l y & e JU{0} and (-l)'α2 < + (-1V'"1^ g Δ U {0}
( i ^ Λ , we have H = 2\/-l{ΣU (-1)*-W(A, A ) Ά + Σj-i (-ϊ)%/(a2j,
a2d) a2j}etc = ac

0 + bc. Since J# — zί in this case, we have clearly
κ2(H) = 0 . Now we show that icJJK) = 0 . Let α e 4 ( —) satisfy the
equality (α, ff) = 0. Then since au , δ^j are linearly independent over
Q, we have (a, βt) = 0 (1 <: i ^ g) and (α, α2i) = 0 (1 ^ i ^ g — 1). From
the first part, it follows that αe Δ%{ — )Πb = {±α2i_i (1 ^ i ^ q)}9 i.e., α =
±α2 i_i for some i (1 ^ i ^ g). However it is impossible because (α2<-i>
α2<) Φ 0 or (α2ί_!, α2ί_2) Φ 0. Consequently we have K^H) = 0 . Therefore
by Lemma 2.7, we obtain rankc p

c(H) = dimG/iί — dimcKer (adH)|mc =
2co(G/K). This together with Lemma 3.2 proves that C(G/JBL) = co(G/K).

We next consider the case q = 1. In this case, we have by Lemma
5.2 α2e z/#( —) because p ^ 2. Let α, 6 be two non-zero complex numbers
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such that α/δ $ Q. We put X = aZβl + bZ_a2, Y = Z_H + Za2 and H =
[X,Y]. Then we have X = Ad (g) Xe mc, Ϋ= Ad(g)Ύemc and H =
Ad (g) H= [X, Ϋ]. Since a2 + A t AU{0}, we have i ϊ = 2ι/-l{a/(β19

/3i) /3i — 6/(α2, α2) α2}eαS + bc. Then by a similar method as above, we
can show that ic^H) = £2(iϊ) = 0 . Hence we have rankc p

c(H) =
dim G/K - dimcKer (adiϊ)|mc = 2co(G/K). Thus by Lemma 3.2 we have
c(G/K) = co(G/K). q.e.d.

5.2. FII FJSpiniβ). Let i7 = {alf a2, a3, α4} denote the set of simple
roots of f4 with respect to a #-order. Then the Satake diagram of
G/K = FJSpin(9) and the restriction of θ to t are given as follows:

«1 «2 α 3 «4

• • = > • o

ίt = -(« ! + 2α2 + 3α3 + α4) ,

, = at (i = 1, 2, 3) .
It can be easily checked that the set Γ = {/3j (s(G/K) = 1) which we
define in Appendix 1 is given by βt = 7χ = αx + 2α2 + 3α3 + 2α4. As is
well known there exists a basis {\, , λ4} of t such that (λf, λy) = cδtί

(c e R\{0}) and αx = λ2 — λ3, α2 = λ3 — λ4, α3 = λ4 and α4 = (l/2)(λi — λ2 -
λ3 — \ ) (Bourbaki [4]). By utilizing this basis, we have:

Δ = {±λ, (1 ^ i ^ 4), ±λ έ ± λ, (1 ^ i < j ^ 4),

(l/2)(±λ1 ± λ2 ± λ3 ± λ4)} ,

θ\ - -λ, , ^λ, = λ, (i = 2, 3, 4) .

We now prove

LEMMA 5.3. 4 ( - ) n b = {±α3, ±(α2 + α3), ±{aι + α2 + α3)}.

PROOF. We first note that β1 — λlβ Hence by Proposition 2.8, we
have J|( — )π6 = {±^2, ± λ 3, ± \ } This proves the lemma. q.e.d.

PROOF OF THEOREM 1.4. First note that θa, — & = (l/2)(-3λ1 -
λ2 - λ3 - λ4) ί JU{0} and 2(/?α4, βdKβi, A) = - l Hence replacing Γ^ by
— Yr

1̂ if necessary, we have α4e J#( —) (cf. Lemma 2.9 and Lemma 5.2).
Now let α, b be two non-zero complex numbers satisfying a/b ί Q. We
set X = α ^ x + δ^_α4, Γ = ^_^ + Za4 and i ϊ = [X, Y]. Then we have
X= Ad(g) Xemc, Ϋ= Ad(^).Fem c and H= Ad(g) H= [X, Ϋ]. By a
simple calculation we obtain H = 2i/ — 1 {a/(βlf βj βi — δ/(α4, α4) α4}.
(Note that α4 + & ί JU {0}.) Since rank G = rank if, we have κ2(H) = 0
in the same way as before. Now we show it^H) = 0 . Let α e J f ( - )
satisfy (α, ίZ") = 0. Then since α/6 g Q, we have (α, &) = (α, α4) = 0.



128 Y. AGAOKA AND E. KANEDA

From the equality (α, ft) = 0, it follows that ae Δ%( — )Γiί> = {±az,
±(α2 + α3), ±(«i + α2 + α3)}. But it is impossible because (a, α4) Φ 0 for
all α e 4 ( —)Πb. Hence we know that ic^H) = 0 . Therefore we have
rankclo

c(f?) = dimG/K- dimcKer (adJϊ)|mβ = 2co(G/K) (Lemma 2.7), proving
c(G/K) = co(G/K) (Lemma 3.2). q.e.d.

6. Real Grassmann manifolds SO(p + q)/SO(p) x SO(q) (p^q + 2^3,
q = odd).

6.1. In this section we determine the integers c(G/K) for real
Grassmann manifolds G\K = SO(p + q)/SO(p) x SO(q) (p ^ q + 2 ^ 3,
g = odd). (We have already determined the integers c(G/K) in the cases
q = even or p = #, g + 1 in § 3.) We first consider the upper bounds
for the integers c(G/K). We prove

LEMMA 6.1. Let G/K = SO(p + q)/SO(p)xSO(q) (p^q^l, q = odd).
Then it holds c(G/K) ̂  (1/2) min {pq, pq - (p - 2q)}.

PROOF. Let us denote by M(m, n) the space of all m x n real ma-
trices. Then we have

ϊ =

-q, p + q)\*X= -X}

Q °^j AeM(p, p), BeM(q, q), Ά = -A, *B = -B

Q

tχ ^ ) XeM(p,q)

and the linear isotropy representation p: I —> o(m) can be written as
follows:

A 0W 0 X\ _ / 0

l-'X Oj'yXA-B'X 0
A 0\ / 0

We write this equality in the form p(A, B)(X) — AX — XB, for sim-
plicity. Let X, Γe M(p, q) and define A(X, Y) e o(p) and B(X, Y) e o(q) by

0 X\ / 0 F

-*x o ' \-*γ o
IA{X, Y) 0

" I 0 B(X, Y))
i.e., A(X, Y) = -XΎ + Y'X and B(X, Y) = -'XY + *YX. We now
show that it holds dim Ker p(A(X, Y), B(X, Y))^p - 2q for every
X, YeM(p,q). In the following we fix X, YeM(p,q). Let U be the
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subspace of M(p, 1) consisting of all ueM(p, 1) satisfying ιXu = Ύu =
Oe Λf(g, 1). Then it is obvious that dim U Ξ> p — 2g. On the other hand,
since q = odd, there exists a non-zero v06 M(q, 1) such that *vO'B{Xf Y) — 0.
Then the linear map φ: M(p, 1) —> Λf(p, g) defined by #(%) = u *v0 for u e
Λf(p, 1) is clearly injective. Since A(X, Y)φ(u) = φ(u)B(X, Y) = 0 for each
we Z7, the image 0(Z7) is contained in Ker ρ(A(X, Y)f B(X, Y))f which
implies that dim Ker p(A(X9 Γ), £(X, Γ)) ^ dim U ^ p - 2q. Therefore
c(G/iΓ) ^ (l/2)(dim G/# - max {0, p - 2q}) = (1/2) min {pq, pq - (p - 2g)},
proving the lemma. q.e.d.

6.2. BI, II SO(p + q)/SO(p) x SO(g) ( ί ) ^ g + 3 ^ 4 , p = even, q =
odd).

Let 77 = {«!, « ,αn} (w = (l/2)(p + g — 1)) be the set of simple roots
of o(p + q)c with respect to a 0-order. Then the Satake diagram of G/K
and the restriction of θ to t are given as follows:

«ι «2 aq aq+ί an—l an

o o— —o •— —•==»•
ία« = - α , (1 ^ t ^ ί - 1),

( 71

«ί + 2 Σ ί

zff+< = α g + < (1 ^ i ύ n - q) .

The set Γ = {βu —-fβq} (s(G/K) = g) which we define in Appendix 1 is
given by βt = α ι w (1 ^ i ^ (l/2)(g - 1)), A = ati-L + 2Σϊ-«α* ((l/2)(g -
l) + l ^ i ^ g — 1) and /3g = Σfc=g#&• ( I n fact the set of simple roots
{Vit m"fΎq) °f the reduced root system Σ* and the set {α^ •••,«„} are
related by 7 { = α* (1 ^ i ^ q — 1) and 7g = Σ£=g α4.)

As is well known there exists a basis {Xlf , λ j of t such that

Utilizing this basis, we have:

A = {±(λ t - λ, ) (1 ^ i < j ^ w), ±(λ, + Xά) (1 ^ i < j ^ w),

zfĉ i (1 = i = w)} >
ΘXi = —Xi (1 ^ i 5* g) , ^λ4 = λ t (g + 1 ^ i 5* w) ,

•A = \

Consequently we have α = α0 = Σ?=i Λ/9* = Σ?=i Λλ*, b = Σ?=g+i
Moreover since rank G = rank K, we have Δ% = Δ.

LEMMA 6.2. 4 ( - ) n b = {±Σfc=<7+i«fc (1 ^ i ^ w - g)}.
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PROOF. By Proposition 2.8, we easily have 4 ( — )n& = { ± V M (1 ̂
i ^ n — q)}. This implies the lemma. q.e.d.

We now put ξt = ΣΛtΪT1 ak (= λ2< - \+ί)e Δ% for 1 <; i <: m, where

m = min {(l/2)(g - 1), n - q). Then we have ζt ± ζs £ Δ U {0} (i =£ j),

θξi = - ( Σ ^ 1 α* + 2 Σ Ϊ U - H «*) ( = -(λ 2 < + V , ) ) (1 ̂  i ^ m).

By changing the sign of Yβj for suitable βt e Γ (see Remark (2) at
the end of § 2), we have

LEMMA 6.3. {±ξί (1 ̂  i ^ m)} c 4 ( - ) .

PROOF. For simplicity, we put ϊ — (l/2)(g — 1) + i for 1 ̂  i ̂
( l / 2 ) ( g - l ) . Then it is easy to see that ζi±βs, θζ, ± βsί JU{0} if
j Φ i,ϊ and hence Ad(eχ ptYβj) Zθu = ̂ f . for j ^ i, ί. Therefore com-
bining with Lemma 2.10, we have

Ad (g~2) 0 ^ - Ad (exp π Yβi) Ad (exp π Yβl) ZHi = eξiZθξί (1 ̂  i ̂  m) .

Since 2(6^, ^-^/(A, A) = - 1 for 1 ̂  i ̂  m, it follows from Lemma 2.5
that Ad (exp π Yβϊ) ^ = 0£< + /3i and hence Ad (exp π F^-) Zθξ. e gθξi+β^
On the other hand, since 2(0£, + /%, ̂ <)/(/3<, /8<) = 1 and θζt + βι + βt ί
z/U{0}, it follows from Lemma 2.9(1) that Ad (exp -πYβt)'Zθu+β- =
— Ad (exp7rYr

i9.) Z^.+i8?. Hence replacing F^. by — F^. if necessary, we
have εξ. = — 1 . Therefore by Lemma 2.6 we have ± < J i e J t ( - ) . q.e.d.

In the following we fix the sign of Yβ. such that ± £ y e J t( —) for
ΐ = 1, '"9m.

PROOF OF THEOREM 1.4. Let au , α ^ ^ D , 6^ , δ(i/2)(9-i), c, du ,
ώm be complex numbers that are linearly independent over Q. We put

(1/2) (g-l) m

-X" = Σ (aiZ(-i)iβi + biZ^i+iβ.) + c^ f f + ̂  djZ^j^ ,

(l'2)(flf-l)

— Σ (Z^^i+iβ. + z^iβj) + z_+• ί-i

and i ϊ = [ X , F]. Then we have X = Ad(^) Z e m% F - A d ( ^ ) Fem c

(Lemma 6.3) and ̂  = Ad (flr) JBΓ = [X, F], By a simple calculation we
obtain

Γ(l/2)(g-l)

ί ί = 2.V -1[ g ( - lΆaΛβi, βt) • βt - bj(β;, βΐ) • βι\ + el(βt, βq) • βq

because βt ± β^AU{0} (i Φ j), (-1)% + (-1)'+1&, (-l)i+1/35 + ( -
/S, ± fi $ ΔU {0} and | i ± | i ί J U { 0 } (i ̂  i). Since 4 = Λ, we have
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0. We now determine the set ιcx(H). Let aeJ$( —) satisfy
(α, H) = 0. Then since au - -, dm are linearly independent over Q, we
have (α, βt) = 0 (1 ^ ΐ ^ g) and (α, &) = 0 (1 ^ j ^ m). From the first
part we have α e 4 ( - ) n b = {±Σϊ=<H-i«fc (1 ^ i ^ w - 9)} = { ± V H (1 ^
i ^ w — 9)}. Consequently from the second part we have (a, \+i) = 0
(1 <; i <^ m). Hence we have α = ±λ f f + m + i for some i = 1, , w — q — m.
This shows that ic^H) = {±Σfc=9+m+z α* (1 ^ i ^ n ~ q — m)}. In particu-
lar we have ijfic^H) = 2(w — q — m). Therefore rankc ί>

c(^) = dim G/K —
dimc Ker (ad H)\mc — pq — 2(w — q — m) = min {̂ 9, pq — (p — 2q)} (Lemma
2.7). This together with Lemma 6.1 proves that c(G/K) = (1/2) min {pq,
pq - (p - 2q)}. q.e.d.

6 . 3 . D I , I I S O ( p + q ) / S O ( p ) x S O ( q ) ( p ^ q + 2 ^ S , p = o d d , q -

odd). Let 77 = [au , αn} (n = (l/2)(p + q)) denote the set of simple
roots of o(p + q)c with respect to a 0-order. Then the Satake diagram
of G/K and the restriction of θ to t are given as follows:

( i ) n^q + 2

o- -o o •— —•

Qcii = —cti {i < g) , θoίi = <Xi (ί > g) ,
/ n-2

0αg = - αg + 2 Σ α* + αn-i + <

(ii) n = g + 1

o o— —c

ίi = ~α, (ΐ < g) ,

«ff+l

The set Γ = {βlf , /3g_i} (s(G/K) = q — 1 in this case) which we define
in Appendix 1 is given by βt = a2M (1 ^ i ύ (l/2)(g - 1)), /9(1/2)(,_1)+t =
«2i-i + 2 Σϊ=« α* + α»-i + α» (1 ^ i ^ (l/2)(g - 1)). (In fact the set of
simple roots {7i, , Ύq) of the reduced root system Σ* and the set
{«i, ••-,«„} are related by 7̂  = at (1 ^ ΐ ^ g — 1) and τ g = Σfc=?α* +
( l ^ ) ^ ^ + αj.)

As is well known there exists a basis {λ2, , λΛ} of t such that
(λ,, λy) = cδ^ (c 6 R\{0}) and α i = λ, — λ<+1 (1 ^ i ^ π - 1) and an = λn - 1 +
λn. Utilizing this basis, we have:
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Δ = {±(λ, - λy) (1 ̂  i < j ^ n), ±(λ 4 + λy) (1 ̂  i < j ^ w)} ,

'0λ, = - λ , (1 ̂  i ^ q) , 0λg+ί - λg+i (l£i£n-q) ,

• βt = λ2ί_x - λ2< (1 ̂  i ^ (l/2)(g - 1)) ,

Ai/a (,-«+, = **<-i + λ2ί (1 ̂  i ^ (l/2)(β - 1)) .

Consequently we have α0 = Σ?=ϊ ΛA = Σ?=ϊ Λλo αx = iίλ9 and b =
Σΐ~i R\+ί- Then we can easily show the following

LEMMA 6.4. (1) J+\J# = {\ ± \ + i (1 ̂  i ^ w - g)}.
( 2 ) 4 ( - ) n b = 0 .

Now let us set ^ = Σίi ίΓ 1 ^* ( = ̂  2i — V H ) f ° r 1 ^ i ^ m, where
m = min{(l/2)(g — 1), n — q}. Then we can easily verify that ξt ± ζjφ
Δϋ{0) (i Φ i), ft6 4 (1 ̂  ί ^ m) and θξt = - ( Σ ί l ί Γ ' α * + 2Σϊ=ϊ+iα* +
αn_! + αn) = — λ2i — Xq+i (1 ̂  i ^ m). Moreover we have 0ft ± /3y ί Δ U {0}
(i ^ h ϊ), θξt + A + β-a Δ U {0} (1 ̂ _ί ̂  m) and 2(0ft, /3y)/(/3y, β3) = ̂  - δ ϊ y

(1 ^ i ^ m, 1 ^ j ^ g - 1), where i = (l/2)(g - l) + i (1 ̂  i ^ (l/2)(β -1)) .
Then by a similar method developed in the proof of Lemma 6.3, we may
assume that ± f t e Δ%( — ) (1 ̂  i ^ m).

PROOF OF THEOREM 1.4. (a) The case n - q ^ (l/2)(g - 1), (i.e.,
p ^ 2q — 1). In this case we have m = n — q. Let al9 , α^)^.!),
δi, , &(i/2)(g_i), Ci, * ,c m be complex numbers that are linearly inde-
pendent over Q. We set

(1/2) (7-1) m

X = Σ (βiZi-Diβi + δi^ί-Dί + Mϊ) + Σ GjZ{-l)Uj 9

(1/2) (g-1) m

and set jff = [X, Γ] . Then we have X = Ad(^) Xeτnc, ? = Ad( ί/)Tem c

( ± f t e J f ( —)) and Jϊ = Ad (flr) J ϊ = [X, Ϋ], By a simple calculation we
obtain

, Γ ( l / 2 ) ( 7 l )

H = 2i/ - 1 [ Σ (- iy{aj(βt, β<) • βt - bj

because βt ± ββ£ JU{0} (i Φ j), (-l)'/3< + ( - l ) i + 1 f t ί JU{0}, (-l) ί + 1/% +
(~l) i + 1 ί i ί Δ U {0} and ft ± ξ, ί Δ U {0} (i ^ i).

We now determine the sets ^ ( i ϊ ) and ιc2(H). Let α e J satisfy
(a, H) = 0. Then since al9 -—,cm are linearly independent over Q, we
have (α, β%) = 0 (1 ̂  i ^ g - 1) and (α, f, ) = 0 (1 ̂  j ^ m). From the
first part we obtain (α, λΛ) = 0 (1 ̂  i ^ q — 1) and hence a e Δ Π (αx + b) c
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Σ?=g R^i Consequently from the second part we have (a, \+i) = 0 (1 ^
i ^ m = n — q). Thus we have a e RXg. But it is impossible because
A n RXq = 0 . Hence we have ic^H) = κ2(H) = 0 . Therefore rankc p\H) =
dim G/if - rank G + rank K = pq - (l/2)(p + g) + (l/2)(p + gθ - 1 = j>? - 1
(Lemma 2.7). This together with Lemma 6.1 implies that c(G/K) =
(l/2)(p? - 1) in the case p ^ 2q - 1.

(b) The case n - q> (l/2)(g - 1), (i.e., p > 2g - 1). In this case
we have m = (l/2)(g - 1) < w - q. We set ?? = Σ*=J α* + α« (= \ + K)
Then we have 57 e Δ+\Δ% and 37 ± ξif θη ± η, θη ± ζif η ± βif θη ± βt ί Δ U {0}.
Let ax, , αd/a)^.!,, 61, , b(l/2){q_1)f d, , cm, d be complex numbers that
are linearly independent over Q. We set

(1/2) (q-1) m

(1/2) (g-l) m

F = Σ (Z(-i)i+1βi + ^(-i)^?) + ^1 ^<-i)''+1fj + C -̂3? ~ ^^-7) >

and fl" = [X, Y]. Then we have X = Ad(g) Xe mc, Ϋ = Ad(g)-Ye mc and
ft = Ad (flr) JSΓ = [X, Γ] . (Note that Ad (g) Z±η = Z±η and Ad (g) θZ±η =
^ ± 9 . ) By a simple calculation, we obtain

(1/2) (0-1)

H = 2i/ - 1 Σ ( - maΛβu βt) • A - δt/(/3ί, /3i) βι}
i

We now determine the sets K^H) and κ2(H). Let aeΔ satisfy (α,
β") = 0. Then since alf , d are linearly independent over Q, we have
(α, A) = 0 (1 ^ i ^ g - 1), (α, &) = 0 (1 ^ i <* m) and (α, ^ + θη) = 0.
From the first part we have (α, \) = 0 (1 ^ i ^ g — 1) and hence α e
ΔPϊ (αx + b) c Σ ? = g Λλi. Consequently from the second and the third parts
we obtain (α, λ5+ί) = 0 ( l ^ i ^ m = (l/2)(? - 1)) and (α, λn) = 0. (Note
that η + θη = \ + Xn — \ + \n = 2Xn.) Hence we have α e R\ +
Σ?=ί+i-B\+i Therefore if α e 4 ( - ) c J n ( α 0 + b), we have α e 4 ( - ) n b .
But it is impossible because Δ$( — )Πb = 0 (see Lemma 6.4). This shows
that fc^H) = 0 . Now we assume that α e J + \ 4 Then by Lemma 6.4,
we know that a = \ ± λg + ί for some i (m + l ^ ΐ ^ ^ — g — 1). Thus
we have ιc2(H) = {\ ± \+ί (m + 1 ^ i <L n — q — 1)} and hence %ιc2(H) =
2(n — q — m — 1) = p — 2q — 1. Therefore we have rank c p c (5) =
dim G/K - rank G + rank K - #/c2(H) = pq - (l/2)(p + ff) + (l/2)(p + ff) -
1 — (p — 2# — 1) = pq — (p — 2q). This together with Lemma 6.1 proves
that c(G/K) = (l/2){pϊ - (p - 2^)} in the case p > 2g — 1. q.e.d.

Thus the proof of Theorem 1.4 is completely finished.
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Appendix 1. In this appendix we give the proof of Proposition 2.2.
We retain the notations used in § 2.

Let ae A. By a we mean the α-component of a with respect to the
decomposition t = a + b. Clearly we have a = 0 if and only if ae Δf)b.
We denote by Σ the set of all a (ae Δ\b). The elements of Σ sue called
restricted roots of G/K. In general Σ does not form a reduced root
system, but it is known that the subset Σ* of Σ defined by Σ* = { |e
Σ\2ψ£Σ) forms a reduced root system. Moreover since G/K is irreducible,
Σ* forms an irreducible reduced root system. Therefore Σ* is isomorphic
to a root system of some complex simple Lie algebra whose rank equals
I = rank G/K.

For each ψeΣ, let us set Δ(ψ) = {aeΔ\b\ά = ψ). We call the car-
dinality m(ψ) = §Δ(ψ) the multiplicity of ψ.

We first prove

LEMMA. LetψeΣ. Then:
(1) ψe A if and only if m(ψ) is odd.
(2) If 2ψeΣ, then 2ψeΔ.
(3) Let ψ'eΣ satisfy |ψ' | = \ψ\. Then m(ψ') = m(f).
(4) Assume that ψe A. Then it holds m(ψ) > 1 if and only if

a ± ψe A for some a e A Π b.

PROOF. The proofs of the assertions (1) and (2) can be found in
Helgason [9], Chap. X, Exercises. We now prove the assertions (3) and (4).

(3 ) Let Ko (resp. Kό) be the centralizer (resp. normalizer) of α in K
and let ϊ0 be the Lie algebra of Ko. Since the Weyl group Kό/K0 of the
pair (G, K) acts transitively on each subset Σ of the same length, there
exists an element kλe Kό such that ψ' = Ad (Jc^-ψ (see Helgason [9]). On
the other hand, since b and Aά(kί)-b are maximal abelian subalgebra of
ϊ0, there exists an element koe Ko such that Ad (kQ) b = Ad (fcj b. Put
k = K1-k1. Then we have ψ' = Ad (k)-ψ and Ad(k) t = t. Therefore
we have Ad(k) Δ = A and hence Δ(ψ') = Ad (k) Δ(<f). This implies

(4) First we assume that m(ψ) > 1. Let βe Δ(ψ)\{ψ} and put a =
β — ψ. Then we have α e zί Π b, because (β, ψθ = (α/r, α/r) > 0 and a = β —
ψ — ψ — ψ = o. Since a — ψ = θ(a + ψθ = 0/3€ A, we have a ±ψe A.
Conversely if we assume that a ± ψ e A for some a e A Π b, then we have
m(ψθ > 1 because ^ ± ά = ψ. q.e.d.

In a natural way a linear order in a is induced from the 0-order in
t. We denote by Σi the set of positive restricted roots in Σ*. As usual
we say that an element in ΣX is simple if and only if it cannot be written
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as a sum of any two elements of Σ*. Hereafter we denote by
/7# = [yu . . f 7,} (I = rank G/K) the set of all simple restricted roots of

For each irreducible Riemannian symmetric space G/K of compact
type with G simple we exhibit, in table 1, the rank of G/K, the integer
s(G/K), the Dynkin diagram of Π* = {ylf •• ,7f} and the multiplicities
m(7,) (7,8/7,,) (cf. Helgason [9] Chap. X, pp. 532-534).

We note that in case Λf * = (?/# is a compact simple Lie group, i.e.,
i n c a s e G = M* x M * , i f = {{x, x)eG\xe M*} a n d θ(x, y) = (y, x)9 x,ye M*f

we have s(G/K) = rank G/K - rank G + rank If - rank M * - 2 rank Af * +
rank M* = 0.

We now define a subset Γo = {βu , /38o} of ^ ί ( c o) according to
the type of 21* (Z = rank Σ*) (see Table 2).

In view of the list of non-zero roots contained in each irreducible
reduced root system Σ* (see Bourbaki [4]), we can directly verify that

TABLE 2
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75 76 7γ
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lEs] n
o — o — 9 — o — o — o — o

7*1 73 I 7δ 76 77 78
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o — o=>o — o 4
7i 72 73 74

o<=o 2

n 72
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βt±βj$Σ*\J{0} (i Φ j). We can also check that all βte Γo have the
same length in every case except for [J5J (I = odd), [G2]. We note that
in the case Σ* is of type [J5Z] (I = odd) it holds | & | = - . = | β^ \ =

1 ^ 2 IAI-

PROOF OF PROPOSITION 2.2. We assume that s(G/K) > 0 in the fol-
lowing, i.e., G/K is not a compact simple Lie group, AH, DIInor EIV
(see Table 1).

(1°) The case where G/K is not of type DI (q = odd). In this case
G/if has the following properties:

( i ) /9,eJ+;
(ii) ft±ft£ΛU{0} ( i ^ i ) ;
(iii) #Γ0 = 8(G/K).

Hence if we put Γ = Γo, the conditions (1) and (2) of Proposition 2.2 are
satisfied. Now we prove the above properties.

Proof of (i). First suppose that Σ* is not of type [Bι\ (I = odd),
[G2]. Since all βte ΓQ have the same length, we have m(βL) = = m(β8Q)
(Lemma (3)). On the other hand, we know that there exists some β{e Γo

such that fte 77*, i.e., βi = Ύ3 for some j (1 <; j <£ I). Viewing Table 1,
we know that m(/3*) is odd for such a ft. Hence m(βi) is odd for every
βte Γo, implying βi£ A+ (Lemma (1), (3)). Next we consider the case
where Σ* is of type [J5Z] (I = odd) or [G2], In the case [J5J (I = odd),
we have \β,\ = - - - = 1/3̂ 1 = \/Ίΐ\βι\ and βί = Ύ1eΠt9 βι = ΎιeΠ^.
From Table 1, we know that both m(/3i) and m(/30 are odd. Hence m(/3*)
is odd for every βieΓ0. This means βieΔ+. In the case [G2] (this case
occurs if and only if G/K is of type G), we have m(70 = m(72) = 1 and
hence m(/3θ = m(̂ S2) = 1, which implies βlf β2e Λ+.

Proof of (ii). Suppose that βt + βjG A for some βif βjG Γo (i Φ j).
Since βt + βs <£ Σ* and βt + ft 6 Σ, we have 2(/3< + ft) e J . Then by
Lemma (2) we obtain 2(βt + ft) e A. This contradicts the assumption
βi + βj& A. Hence βt + ft g J U {0}. Similarly we can show that ft — ft ί
J U {0}. Thus we have ft ± ft ί J U {0} for i ^ j .

Proof of (iii). Assume that G/K is not of type AI (n ^ 2) nor 2?/.
Then from Table 1 we have s(G/K) — rank G/if. Moreover in these cases
we know that Σ* is not of type [A,] (i ^ 2), [2?J (ί = odd) nor [E6].
Therefore we have s0 = I, i.e., #Γ0 = rank G/K, which implies #Γ0 =
β(G/X). For the space AI (n ^ 2) we have #Γ0 = [(Λ + l)/2] = s(G/ίΓ)
and in the case oΐ El we have #Γ0 = 4 = s(G/K).

Thus the proofs of (i), (ii) and (iii) are completed.
(2°) The case where G/K is of type DI (q = odd). We have

s(G/K) = rank G/K — 1 = q — 1 and J * is of type [Bq] in the case p ^
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q + 2 and is of type [Dq] in the case p = q. Thus if we put Γ = Γ0\{βq}
in the case p ^ q + 2 and put Γ = Γo in the case p = qy the set Γ has
the properties (1) and (2) of Proposition 2.2. This can be easily verified
by a similar argument as above. The details are left to the reader, q.e.d.

REMARK. The set Γ selected in the above proof possesses the fol-
lowing properties:

(a) If G/K is of type DI (q = odd, q ̂  q + 2), then it holds
(α, βt) = 0 for each a e Δ(βq) and βt e Γ.

(b) If G/K is not of type BI,II (q = odd, p ^ q + 3), CJ/nor FΠ,
then it holds m(β%) = 1 for each βt e Γ. Hence in these cases we have
a ± βt$ Δ for each aeΔΠb a n d - ^ e Γ (Lemma (4)). For the spaces
BI,II (q = odd, p ^ g + 3), CII and F// we have m(βq) = p - q,
wiβq) = 3 and m(/βi) = 7, respectively. Therefore for these spaces we
have a ± βte A for some ae JΠb and some βte Γ (Lemma (4)).

The proofs of these facts are easy (see Tables 1 and 2). The
property (b) implies that the space G/K which is not isomorphic to any
of the spaces listed in (2°) of Proposition 3.4 satisfies the condition (2)
of Proposition 3.3.

Appendix 2. As an application of the modified Gauss equation (Lemma
1.1), we show here a theorem concerning global conformal immersions.

THEOREM (cf. Moore [20], Kobayashi and Nomizu [15]). Let (M, g) be
a compact n-dimensίonal Rίemannίan manifold with non-positive sec-
tional curvature. Then (M, g) cannot be conformally immersed into the
(2n — 2)-dimensional Euclidean space R2n~2.

PROOF. Suppose that there exists a conformal immersion of (Λf, g)
into R2n~2. Let S2n~2 be the hypersphere in R2n~ι centered at the origin
of R271-1 with radius 1. Since R2n~2 is conformally equivalent to S2n~2

minus a point, there exists a conformal immersion f of (M9 g) into R2n~λ

whose image is contained in S2n~2. Then we have (ff f) — 1, <Vf, Vf> =
e2pg, where p is a function on M. Since M is compact, p attains its
minimum value at some point pe M. Then at p we have a = W f and
β = e

2p(yVρ) ^ 0. We now prove that it holds a(W, W) Φ 0 for any
non-zero vector We TPM. In fact by the equality (f, f) = 1 we have
(VwVwf, f) = -(Vwf, Vwf) = -e2f)g(W, W) Φ 0, meaning that a(W,W) =
VwVwf Φ 0. Let TPM

C and T^MC denote the complexifications of TPM
and T^My respectively. Then a can be naturally extended to a T^MC-
valued complex symmetric bilinear form on TPM

C, denoted by the same
letter α. Since dim TPM — dim TPM — 1, there exists a non-zero vector
Ze TPM

C such that a(Z, Z) = 0. Writing Z = X + V^l Y (X, Ye TPM),
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we have a(X, X) = a(Y, Y) and a(X, Y) = 0. By the fact proved above
we know that X and Y are linearly independent and a(X, X) Φ 0. We
now set k = g(X, Y)/g(X, X) and set Y, = Y - kX. Then we have
g(X, Yd = 0, a(Yί9 Yd = (1 + W)a(X, X) and a(Xf Yd = -ka{X, X).
Therefore by Lemma 1.1, we obtain

0 ^ -e">g(R(X, Yt)X, Yd

= <α(X, X), a{Yu Yd) - <a(X, Yd, a(Ylf X)) + β(X, X)g(Yl9 Yd

+ g(X, X)β(Yl9 Yd - β(X, YMYu X) - g{X, YMY» X)
= (1 + k*)(a(X, X\ a(X, X)} - k\a(X, X), a(X, X))

, X)g(Yu Yd + g(X, X)β(Yu Yd

, X\ a(X, X)) + β(X, X)g(Ylf Yd + g{X, X)β(Yl9 Yd > 0 .

This is a contradiction. q.e.d.
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