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0. Introduction. In previous papers [12], [14] smooth actions of
special unitary (resp. symplectic) groups on a product of complex (resp.
quaternion) projective spaces have been studied. Here we shall study
smooth actions of symplectic group Sp(n) on certain product manifolds
and we shall prove the following.

THEOREM. Let X be a closed orientdble manifold on which Sp(ri)
acts smoothly and non-trivially. Suppose n^7.

(i) Suppose X ~ Pa{C) x Ph{C), 1 <: b ^ a < 2n, and a + b <: An - 3.
Then a = 2n — 1 and X is equivariantly diffeomorphic to P2π-i(C) X Y09

where Yo is a closed orientable manifold such that Yo ~ Pδ(C), and Sp(n)
acts naturally on P2n-i(C) &nd trivially on Yo.

(ii) Suppose X ~ Pa(H) x Ph(C), 1 ^ a ^ n - 1, 1 ^ b ^ 2n - 1, and
2a + b ^ An — 4. Then there are three cases:

(a) a = n — 1 and X is equivariantly diffeomorphic to Pn_λ(H) x Y19

where Y1 is a closed orientable manifold such that Yx ~ Pb(C), and Sp(n)
acts naturally on Pn_1(flΓ) and trivially on Ylf

(b) 6 = 2n — 1 and X is equivariantly diffeomorphic to P2n_ι{C) x Y2,
where Y2 is a closed orientable manifold such that Y2 ~ Pa(H), and Sp(n)
acts naturally on P2n^{C) and trivially on Y2,

(c) δ = 2w —1 and X is equivariantly diffeomorphic to (S4 n - 1 x Y3)/Sp(l),
where Y3 is a closed orientable Sp(ΐ) manifold such that F 3 ~ S2xPa(H),
Sp(ΐ) acts as right scalar multiplication on S*n~\ the unit sphere of Hn,
and Sp(n) acts naturally on S471"1 and trivially on Y3. In addition,
F ~ S° x Pa(C) and the induced homomorphism i*': H\YZ) -> H\F) is
trivial, where F denotes the fixed point set of the restricted U(l) action
on Y3. Conversely, if Yz satisfies the above conditions, then (S471"1 X F8)/
Sp(l) - P2n^(C) x Pa(H) for l ^ a ^ n - 2 .

Throughout this paper, let iϊ*( ) denote the singular cohomology
theory with rational coefficients. By X1 — X2 we mean H*(X^) = JT*(X2)
as graded algebras. Denote by Pn(C) and Pn(H) the complex (resp.
quaternion) projective %-space.
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1. Preliminary results. First we present the following two lemmas
which are proved by a standard method (cf. [6], [7], [11]). We shall give
an outline of the proof in the final section for completeness.

LEMMA 1.1. Suppose n^Ί. Let G be a closed connected proper
subgroup of Sp(n) such that dim Sp(n)/G < 8n. Then G coincides with
Sp(n — i)xK (i = 1, 2, 3) up to an inner automorphism of Sp(n), where
K is a closed connected subgroup of Sp(ί).

LEMMA 1.2. Suppose r ^ 5 and k < 8r. Then an orthogonal non-
trivial representation of Sp(r) of degree k is equivalent to {vr)R 0 θk~ir.
Here (vr)R: Sp(r) —> O(4r) is the canonical inclusion, and θt is the trivial
representation of degree t.

In the following, let X be a closed connected orientable manifold
with a non-trivial smooth Sp(n) action, and suppose n ^ 7 and dim X <
8n. Put

Fw = {xeX: Sp(n - i) c Sp(n)x c Sp(n - i) x Sp(i)} ,

Xw = Sp(n)Fw = {gx:geSp(n),xeF(i)} .

Here Sp(n)x denotes the isotropy group at x. Then, by Lemma 1.1, we
obtain X = X{0) U X{ί) U Xw U Xw.

PROPOSITION 1.3. // Xik) is non-empty, then Xw is empty for each
i ^ k + 2.

PROOF. This is proved essentially in [13], [14], but we give a proof
for completeness. Let us denote by F(Sp(n — j), Xw) the fixed point set
of the restricted Sp(n — j) action on Xw. It is easy to see that
F(Sp(n — j)f Xw) is empty for each j < i <; n — i. Suppose that X{k) is
non-empty and fix xe F{k). Let σ be the slice representation at x. Then
the restriction σ \ Sp(n — k) is trivial or equivalent to (vn_k)R φ θι by
Lemma 1.2. Anyhow, a principal isotropy group of the given action
contains Sp(n — k — 1), and hence F(Sp(n — k — 1), X{i)) is non-empty if
so is X[i)m q.e.d.

PROPOSITION 1.4. Suppose X= X{k) UX(fc+1). // Xιk) and X{k+1) are
non-empty, then the codimension of each connected component of F(k) in
X is equal to 4(fc + ΐ)(n — k).

PROOF. Fix xeF{k). Let σ and p denote the slice representation at
x and the isotropy representation of the orbit Sp(n)x, respectively. The
restriction σ\Sp(n — k) is equivalent to (vn_k)Rφθ8 by Lemma 1.2 and
the assumption that X{k+1) is non-empty. On the other hand, p\Sp(n — k)
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is equivalent to k(vn_k)R^θ* by considering adjoint representations.
Hence (σ®p)\Sp(n - k) is equivalent to (k + l)(vn-k)R®θ8+t. This shows
that the codimension of F(k) at x is equal to 4(fc + ΐ)(n — k). q.e.d.

COROLLARY 1.5. Suppose X = X{2) U Xw. Then either X(2) or X{3) is
empty.

REMARK, dim Sp(n)/Sp(n-k) x Sp(k) = Ak(n-k) and X(Sp(n)/Sp(n-k)x
Sp(k)) = nCk, where Z( ) denotes the Euler characteristic, and nCk denotes
the binomial coefficient.

REMARK. If dimX<4?ι, then we see X = Xω. In addition, if
Hodd(X) = 0, then X is equivariantly diffeomorphic to P^H), Pn^{H) x S2

or P2n_1(C), where Sp(n) acts naturally on Pn_1(J3r), P2n^{C) and trivially
on S2. So we assume dim X ^ 4w, in the following sections.

2. Cohomological aspects. Throughout this section, suppose that X
is a closed orientable manifold with a non-trivial smooth Sp(n) action,
n ^ 7 and X = X(0) U X{1).

PROPOSITION 2.1. Suppose either X ~ Pa{C) x P6(C), l ^ & ^ α < 2 w ^
a + 6 ^ An - 3, or X ~ Pa(H) x Pb(C), l £ a £ n - l , l £ b £ 2 n - l ,

2n ^ 2a + b <> An — £. Then X{0) is empty.

PROOF. Suppose that X{0) is non-empty. Let ί7 be an invariant
closed tubular neighborhood of X{0) in X, and put E— X— intC7. Let
i:E->X be the inclusion. Then i*: H\X) —> H\E) is an isomorphism
for each £ ̂  4% — 2, because the codimension of each connected component
of X{0) is An by Lemma 1.2. Put Y = E f] Fω. Then 7 is a connected
compact orientable manifold with non-empty boundary 3 Y, and Sp(ΐ) acts
naturally on Y. There is a natural diffeomorphism E = (S^^x Y)/Sp(l).
By the Gysin sequence of the principal Sp(ϊ) bundle p: S471"1 x Y-+E,
we obtain an exact sequence:

0 -* H2k~\S'n~ι xY)^ H2k~\E) -> fί2fe(^) -^ H^S*"-1 x Y) -> 0 ,

where 2ft = dimΓ = dimX — (4w — 4). Hence we obtain rank iί2fc(F) -
rank H2k~\ Y) ^ 1, by the cohomology ring structure of X. Considering
the homology exact sequence of the pair (Y, d Y) and the Poincare-
Lefschetz duality, we obtain

rank H0(dY) ^ rank H0(Y) + rank H*-\Y) - rank H2\Y) ^ 0 .

Therefore dY is empty; this is a contradiction. q.e.d.

In the remaining of this section, we assume X — Xω — (S4n-1 x
Fa))/Sp(ΐ), where F{1) is a closed connected orientable manifold with a



84 A. NAKANISHI AND F. UCHIDA

natural Sp(l) action.
Here we describe certain situations which appear repeatedly in the

following. Let Y be a closed orientable Sp(ΐ) manifold such that £Γodd(Γ) =
0. Put M = S471"1 x Y, where Sp(T) acts as right scalar multiplication on
S4n~\ Let T be a closed toral subgroup of Sp(ΐ). Consider the following
commutative diagram:

M/T-^M/SpQ)

(D - 1)

where πlf π2 are projections of fiber bundles with Y as the fiber, and
pl9 q are projections of 2-sphere bundles. Since Hodd(Y) = 0, we can apply
the Leray-Hirsch theorem to the fibrations πl9 π2. In particular, we see
Hodd(M/Sp(l)) = 0. By the Gysin sequence of the principal Sp(ΐ) bundle
p: M-*M/Sp(ΐ), we obtain an exact sequence:

(A,) 0 -» H2i~\M) -> H2i'\M/Sp(l)) ^ H2i(M/Sp(l)) £ H

for each i, where μ is the multiplication by e(p), the Euler class.
We regard S°° as the inductive limit of S4*'1 on which T acts naturally.

Let F denote the fixed point set of the restricted T action on Y. Con-
sider the following commutative diagram:

ίP((S°° x Y)/T) — Hr(M/T)

(D - 2) I« Jίf
Hr((S~/T) x ί7) — Hr{P2n_λ{C) x i*7) ,

where i1? C, i, if are natural inclusions. Since Hodd{Y) = 0, we see that
(cf. [5])

(1) i* is injective, j * is surjective and ί* is surjective for r >
dimF.

On the other hand, j% is an isomorphism for r ^ An — 2, and hence
( 2 ) if is injective for r ^ 4n — 2.
2-A. Now we consider the case X ~ Pa(C) x Pb(C).

PROPOSITION 2.2. Suppose X~Pa{C)xPb(C)9 l<,b<La<2n^a + b<^
An - 3. Then a = 2n - 1 αwd JP(1) - S2 x P6(C).

PROOF. The cohomology ring is as follows.

H*(X) - Q[u, v]/(ua+\ vb+1); deg u = deg t; = 2 .
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We can express e(p) = an2 + βuv + Ύv2; a, β,Ύe Q, where p: S471"1 x Fa) ->
X is the principal Sp(l) bundle. By (AJ, we obtain H\Fω) = 0 and
hence H2k~ι(Fω) = 0 by the Poincare duality, where 2& = dim Fω =
2(α + δ — 2w + 2). Then by (AΛ) we obtain an exact sequence:

0 -> H2k~'{X) ϊ» H2k(X) £ H2\Fω) -> 0 .

By the ring structure of H*(X), we obtain

rank H2k~\X) = k - 1 ,

rank H2\X) = k + l (for ft ^ 6) and k (for A? = 6 + 1) .

Since F{1) is a closed connected orientable 2&-manifold, we obtain k =
6 + 1 and hence a = 2n — 1. Next, we shall show e(p) = an2, a Φ 0. By
definition, the S p(l) bundle p is a pull-back of the canonical principal
Sp(l) bundle over P^H), and hence e(p)n = 0. Thus we obtain aβ — 0,
by considering the term u2n~ιv in the expression of e{p)n. Suppose a = 0.
Then p*^2 7 1"1) Φ 0 by (Λ»-i)> and hence dim Fa) ^ An - 2. Thus we
obtain k = b + l = 2n — 1. By considering the term w V in the expres-
sion of e(p)n, we obtain β = 0, and hence β(j>) = TV2. Then p*^2 7 1"1^) ^ 0
by ( i j . On the other hand H^S*71-1 x F (1)) - 0, since H\Fω) = 0 and
dim F(1) = An — 2. This is a contradiction. Thus we obtain e(p) = au2 +
7t;2, a Φ 0. By considering the term u2n~2v2 in the expression of e(p)n,
we obtain α7 = 0. Therefore we obtain e(p) = α%2, α ^ 0, and hence
Fa) ~ S2 x P6(C), by (A,). q.e.d.

Now we consider the Sp(l) action on Fω ~ S2 x Pb(C). Let Γ be a
toral subgroup of Sp(ϊ). Denote by F the fixed point set of the restricted
T action on Fa). Since X(Fa)) Φ 0, we see that F is non-empty.

PROPOSITION 2.3. F ~ S° x Ph(C).

PROOF. Put Y = F{1) in the diagram (D - 1). Let ί e H\P2n^{C))
and we H\Pn_γ(H)) be the canonical generators such that g*(w) = ί2. By
definition, τr*(w) = e(p) = αtf. Put ux = p*(w), vλ = p*(v) and ίx = π*(t).
We can apply the Leray-Hirsch theorem to the bundles πlf π2 in the
diagram (D — 1), and we obtain

H*(M/T) = Q[tlf ul9 vΛKul", v\+\ t\ - auϊ) , a Φ 0 .

Consider the diagram (D — 2) for Γ = i ^ ( 1 ) . Let u2, v2 be elements of
H2((S°° x F{l))/T) such that j*(u2) = uλ and i*(v2) = ι;1. Let t be the
canonical generator of H2(S°°/T) = H\P2n_1(C)). Then we can express

ίZ(u2) = t X /0 + 1 X fL , i*(v2) = t X fir0 + 1 X 9i f

where fkf gk are elements of H2k(F) for k — 0, 1. Since
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= i*(auΐ) = i?(ίϊ) = #(ί 2 x 1) ,

we obtain /0

2 = or1 and /i = 0. Moreover we see that f0 is not constant,
and hence F is not connected. Since j*i*(vl+1) = 0, we obtain #0 = 0
and hence ί*(v2) = 1 x gx. Then H*(F) is generated by two elements f0

and g19 because i* is surjective for sufficiently large degree and H*((S°° x
F{1))/T) is generated by two elements uif v2 as a graded jff*(S°°/Γ)-algebra.
Let Fλ (resp. F2) be the union of connected components Fσ of F on which
fo\Fσ is positive (resp. negative). Then H*(F8) is generated by only one
element gλ \ F8 for s = 1, 2. Since i*^) = 1 x &, we obtain (^ | JF,)6+1 = 0,
and hence Fs ~ P6(C) for s = 1, 2, because X ^ ) + Z(F2) = %(F(1)) = 26.

q.e.d.

We need the following.

LEMMA 2.4. Lei S be a closed connected smooth Sp(l) manifold. Let
F be the fixed point set of the restricted T action on S, where T is a
closed toral subgroup of Sp(l). Suppose that codim F = 2 and F is not
connected. Then there is an equivariant diffeomorphism: S = Sp(ϊ)/T x
Flf where Fλ is a connected component of F.

PROOF. Since codim F = 2, T is the identity component of a principal
isotropy group (cf. [9]), and hence there is an equivariant diffeomorphism:

S - FQ = (SpiD/T x (F - FO))I(NT/T) ,

where Fo denotes the fixed point set of the Sp(ϊ) action and NT denotes
the normalizer of T. Since codim Fo > 2, S — Fo is connected and hence
the orbit space of the NT/T action on F — FQ is connected. Therefore
F has just two components and NT/T acts freely on F. In particular,
JP0 is empty and there is an equivariant diffeomorphism: F = NT/T x Fλ.
Hence we obtain the desired result. q.e.d.

By Proposition 2.3 and Lemma 2.4, there is an equivariant diffeo-
morphism: F(1) = Sp(l)/T x YOf where YQ is a connected component of F.
Thus we obtain an equivariant diffeomorphism:

X = X{1) = ( S 4 - 1 x F{1))/Sp(l) = P2n^(C) x Yo .

Consequently we obtain the following.

THEOREM 2.5. Let X be a closed orientable manifold with a non-
trivial smooth Sp(n) action. Suppose n ^ 7, X = X{0) U Xω and X ~
Pa(C)xPb(C), l^b^a<2n^a + b^4:n-S. Then a = 2n-l and X is
equivariantly diffeomorphic to P2n_i(C) x YOf where Yo is a closed orientable
manifold such that Yo — Pb(C).
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2-B. Next we consider the case X ~ Pa(H) x Pb(C).

PROPOSITION 2.6. Suppose X ~ Pa(H) x Ph{C), 1 <: α ^ w - 1,1 ^ δ <;
2n - 1, 2n ^ 2α + 6 ^ 4w - 4. Then either a = n -1 and Fω ~ P6(C),
or 6 = 2n - 1 αraZ F{1) ~ S2 x Pβ(JΪ).

PROOF. The cohomology ring is as follows.

H*(X) = Q[u, v]/(ua+1, vh+1) deg u = 4 , deg t; = 2 .

We can express e(p) = au + βv2; a, βs Q, where p: S4π-1 x F{1) —> X is the
principal Sp(l) bundle. By definition, the Sp(l) bundle p is a pull-back
of the canonical principal Sp(ί) bundle over Pn_x{H)f and hence e(p)n = 0.
Thus we obtain aβ — 0, by considering the term uav2n~2a in the expression
of e(p)n. On the other hand, we can prove e(p) Φ 0 by making use of
the exact sequence (A<). Moreover we see, from (A<), that if β — 0 then
α = w - 1 and F{1) - P6(C); if a = 0 then 6 = 2n - 1 and Fω - S2 x
P.(#). q.e.d.

Now we consider the Sp(l) action on F{1). Let T be a toral subgroup
of Sp(l). Denote by F the fixed point set of the restricted T action on
Fω. Since X(F{1)) Φ 0, we see that F is non-empty. We shall show the
following.

PROPOSITION 2.7. If a = n - 1 and Fa) - Pb(C), then the Sp(ΐ) action
on F{1) is trivial. If b = 2n - 1 and Fa) - S2 x Pβ(F), ίfce^ F ~ S° x
PJJB) or F ~ S° x Pa(C). Moreover the induced homomorphism i*: H2(F{1))->
H\F) is trivial.

PROOF. Put Y = Fω in the diagram (D - 1). Let t e HXP
and we fl"4(Pn_1(J5Γ)) be the canonical generators as before. Then π*(w) =
e(p) by definition. We see that e{p) = au, a Φ 0 or e(p) = /3v2, yβ ̂  0 in
Proposition 2.6.

Suppose first e(p) = au. Then α = n — 1 and JP(1) — P6(C). We can
prove M/T - P2n-1(C) x P6(C), 6 ^ 2^ - 2 by the Leray-Hirsch theorem,
and hence the T action on Fw ~ Ph(C) is trivial (cf. [12, Proposition
3.3]). Therefore the Sp(ΐ) action on F{1) is trivial.

Suppose next e{p) = βv2. Then b = 2n - 1 and ί7^ - S2 x Pβ(£Γ).
Put uγ = p*(u), vx = p*(v) and ίi = π?(ί). We can apply the Leray-Hirsch
theorem to the bundles πlf ττ2 in the diagram (D — 1), and we obtain

H*(M/T) = Q[tu ul9 vJKu^1, vl», t\ - βv\) , β Φ 0 .

Consider the diagram (D — 2) for 1Γ=-F(1). Let ^2,̂ 2 b© homogeneous
elements of JΪ*((SooxF(1))/Γ) such that j*(u2) = ux and i*(v2) = vlβ Let ί
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be the canonical generator of H\S°°/T) = ff2(P2n_1(C)). Then we can express

iί(u2) = t2 X /o + t X fL + 1 X /2 , i£(v2) = ί X ffo + 1 x & ,

where /fc, gk are elements of H2k(F). Since

#iϊ(/9tfϊ) - if(/3ι;!) - if(ίϊ) - i?(*2 x D ,

we obtain 0jj = β~ι and 0! = 0. Moreover we see that g0 is not constant,
and hence F is not connected. Since jΐH(u2

+1) = 0 and α + 1 <* w — 1,
we obtain /0 = 0 and hence i*(u2) = ίx/j. + 1 x /2. Let Fx (resp. JP2) be
the union of connected components Fσ of F on which 0O | Fσ is positive
(resp. negative). Then each element of H\(S°° x F8)/T) for A; > 4α + 2
is expressed as a polynomial of t x 1 and ί x (/x | ί7,) + 1 x (/21 ί7,) with
rational coefficients for s = 1, 2, because H*((S°° x Fω)/T) is generated
by two elements u2, v2 as a graded fZr*(S0O/Γ)-algebra and i* is surjective
for k > 4a + 2. In particular, if /x | ί7, ^ 0, then we can express

t4.-i x ( / i i irβ) = X C i ( t x ( / l IF8) + 1 x (/21 F.))^(ί x l)4α-2^ ,

for cy e Q. Then we obtain c0 = 0, cx = 1 and f2\F8= -c^f, \ F8)\ There-
fore

H*(F8) = Q[x8]/(xa

s

+1) degx8 = 2 or 4

because Λα+1 = 0 (fc = 1, 2) and Z(i\) + X(F2) = X(Fω) = 2a. If F8

for some s, then F ~ S° x Pa{H) by Lemma 2.4. Thus we obtain F ~
S° x Pα(£Γ) or F - S° x Pα(C). Finally we shall show that i*: iϊ 2(F ( 1 )) ->
H ? (F) is trivial for the case F ~ S° x Pa(C). Consider the following
commutative diagram:

where i, ix are natural inclusions and k0, kx are inclusions of typical fiber
of bundles over P2n_i(C). We see that kf{vλ) generates H2(F{1)) and
i*(Vl) = t x 0o, and hence i*k}(vύ = fto*(ί x 0O) = 0. Thus i*: H2(F(1))-+
H\F) is trivial. q.e.d.

Suppose F ~ S° x Pa(H). Then by Lemma 2.4, there is an equivariant
diffeomorphism: F{1) = Sp(ϊ)/T x Y2J where Y2 is a connected component
of F. Thus we obtain an equivariant diffeomorphism:

X = Xω = (S^1 x Fω)/Sp(l) = ^ ^ ( C ) x Γ2 .

Consequently we obtain the following.
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THEOREM 2.8. Let X be a closed orίentable manifold with a non-
trivial smooth Sp(n) action. Suppose n ^ 7, X = X(0) U Xa) and X ~
Pa(H) x Pb(C); 1 ^ a ^ n - 1, 1 ^ 6 ^ 2w - 1, 2n ^ 2α + b ^ 4w - 4. TΛew
£λβrβ are ίftree cases:

(a) α = w — 1 and X is equivariantly diffeomorphic to P^-^H) x Ylf

where Yx is a closed orientable manifold such that Yx ~ Pb(C),
(b) 6 = 2n — 1 and X is equivariantly diffeomorphic to P2n_i(C) x Yif

where Y2 is a closed orientable manifold such that Y2 ~ PJJB),
(c) 6 = 2n — 1 and X is equivariantly diffeomorphic to (S4n~x x

Yt)/Sp(l)9 where Y3 is a closed orientable Sp(l) manifold such that Y3 ~
S2 x Pa(H), F ~ S° x Pa(C) and i*: H\YZ) -> H\F) is trivial, where F
denotes the fixed point set of the restricted T action on Yz. Conversely,
if Yz satisfies the above conditions, then (S471"1 x Y^ISp(X)~P2n_1(C)xPa(H)
for a <* n — 2.

PROOF. It remains to prove the final statement in the case (c). Let
Y be a closed orientable Sp(l) manifold such that Y - S2 x Pa(H), F ~
S° x Pa(C) and i*: H\Y) -> H\F) is trivial, where F denotes the fixed
point set of the restricted T action. We shall show (S471"1 x Y)/Sp(l) ~
fVi(C) x Pa{H) for a ^ n - 2. Put M = S471"1 x Y. Consider the following
commutative diagrams as before:

MIT -*UMISp{l) F * > Y

I1 Γ2 1° P 1

P,.-i(C) — * Pn-^H), P^iC) x F -^>M/T .

Let t G H\P2n_1(C)) and w e iϊ4(Pn_1(£ί)) be the canonical generators such
that q*(w) = ί2. Because TΓ̂  TΓ2 are projections of bundles with Y as
the fiber and Hodά(Y) = 0, we can apply the Leray-Hirsch theorem and
we see that there is an element uk e H2k(M/Sp(l)) for k = 1, 2 such that
H*(M/Sp(ΐ)) is freely generated by 1, u2, u\, , ^2

α, ulf u<w2, uxu\, , u^?
as an ijΓ*(Pn_1(£Γ))-module, and u\ = cπf(w) for some ceQ. Put vt =
p*(uk). Express if(vx) = t x g0 + 1 x g1 for some gάeH25(F). Then
& - fco*(ίx^o + lxffi) = i*fcf(i;i) = 0, because ΐ*: JEZ"2(Y) ->fT2(F) is trivial.
Hence ii*(vx) = t x g0 and c = ^ . We see that g0 is not constant and
c Φ 0, because if is injective for each degree ^ 4 ^ — 2 and vlf π*(t) are
linearly independent in H\MjT). Hence H*(M/Sp(ΐ)) is generated by
%!, u2 as a graded algebra. Express if(v2) = t2 x f0 + t x f + 1 x f2 for
some f3 eH2j(F). Let 2^ be a connected component of F and put w2 —
u2 - dπf(w), where d =fQ\F1. Then H*(M/Sp(ϊ)) is freely generated by
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u[w(; 0 <; i ^ 2n — 1, 0 <̂  j <̂  a as a graded module, and

By definition, ί?p?(w2) = t x /x + 1 x /2 on H*{P2n^{C) x FJ, a direct
summand of H*(P2n_x(C) x F). Since 2^ - Pα(C), we obtain ifpf(wζ+1) =
0 on H^iP^^C) x JP\) and hence

0 = Σ cy(ί x (/x I FJ + 1 x (/21 FMt2 x D β + W

Moreover we obtain fι\FιΦ 0, because /i | JF7! and /21 ί7! generate the
graded algebra ίί*(ί7

1) and Ft ~ Pa{C). Then we obtain cά = 0 for j =
0,1, , α inductively, and hence wt+1 = 0. On the other hand, u\n =
cnπί(wn) = 0. Hence we obtain

H*(M/Sp(X)) = Q[ui, w2]/(uln, wa

2

+1); deg u, - 2, deg w2 = 4 .

Therefore M/Sp(l) - P^.^C) x Pβ(F). q.e.d.

3. Cohomology of certain homogeneous spaces. Let ζ be a quaternion
&-plane bundle and ζc its complexification under the restriction of the
field. Its i-th symplectic Pontrjagin class et{ζ) is by definition [3, §9.6]

elQ = (-I)*c2<(ζc) ,

where c2ί(ζc) is the 2i-th Chern class. Denote by HP(ζ) the total space
of the associated protective space bundle. Let ζ be the canonical qua-
ternion line bundle over HP(ζ) and t = βi(ζ). It is known that there is
an isomorphism:

(3.1)

where B is the base space of the bundle ζ (cf. [4, §3]).
We now consider the cohomology of VnJG = Sp(n)/Sp(n — 2) x G

for certain closed connected subgroups G of Sp(2). Let ξ be the canonical
quaternion line bundle over Pn_γ(H) and ζ its orthogonal complement,
that is, ζ is a quaternion (n — l)-plane bundle over Pn_λ(H) such that its
total space is

E(ζ) = {(u, [v]) eHnx P^H): u 1 v) .

It is easy to see that flP(ζ) is naturally diffeomorphic to Vn>2/Sp(l) x
Sp(l). Since ξ φ ζ is a trivial bundle, we obtain ek(ζ) = (-l)fc0i(f)fc. By
definition, flP(ζ) is naturally identified with a subspace of Pn_1(iϊ) x
Pn-λ(H). Let i: £ΓP(ζ) -> Pn_x(£r) x Pn^{H) be the inclusion. Then ζ =
i*(<j x 1). Hence by (3.1) there is an isomorphism:
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(3.2) H*(VuJSpa) x Spd)) = QK v]/(i* , Σ

degw = degv = 4, by the identification u = i*(l x βi(£)), v = ΐ*(βi(f) x 1).
Let π: P2n_i(C) —> Pn_γ(H) be the natural projection defined by

(%!-. « :ttn:Vi: : vn) -> (uλ + jv,: : wn + i v j ,

where j is a quaternion such that j2 = — 1 and i s = s j for each complex
number z. Then π*(ξc) = V®V*> where η is the canonical complex line
bundle over P2n~i(C) and rf its dual line bundle. Moreover π^e^ζ) = c^ηf.
We see that the total space CP(ττ*(ζc)) of the complex protective space
bundle is naturally diffeomorphic to VnJT2 and there is a natural inclusion
V\ CP(π*(ζc)) —>ί>2n-i(C)x/>2n-i(C)» where T2 is the standard maximal torus
of Sp(2). Then we obtain an isomorphism (cf. [4, §3]):

(3.3) H\VJT2) = Q[x,

deg x = deg ?/ = 2, by the identification x = i'*(l x ^(77)), 2/ = i'*(ci(5?) x 1).
Let p:Vnt2/SpO) x .5(p(l) -> Vn§i/Sp(2) be the natural projection and f2

be the canonical quaternion 2-plane bundle over VntJSp(2).

LEMMA 3.4. The graded algebra H*(Vnt2/Sp(2)) is generated by e^2)9

^fe)- The algebra is isomorphic to the subalgebra of Q[u, v]/(un, Σ ί w<ι;n~1"ί)»
consisting of symmetric polynomials.

PROOF. Since the fibration p is a 4-sphere bundle and Hodd(Vn>2l
Sp(2)) = 0 (cf. [2, § 26]), the homomorphism p*: H*(VnJSp(2)) -U
H*(VntJSpO) x 5Jp(l)) is injective. Since p*(£2) = i*(^ x f), we obtain

Then the desired result is obtained by the Leray-Hirsch theorem.
q.e.d.

Let PxiVnJT2 ->Vn>2IU(2) be the natural projection and η2 be the
canonical complex 2-plane bundle over Vn>2/U(2). Then we obtain the
following by the same argument as above.

LEMMA 3.5. The graded algebra H*(VΛt2/U(2)) is generated by c^fy),
CziVz)- The algebra is isomorphic to the subalgebra of Q[x, y]/(x2n,
Σ i x2iy2n~2~2ί), consisting of symmetric polynomials.

LEMMA 3.6. The graded algebra H*(Vn>2/U(l) x Sp(l)) is isomorphic

to the subalgebra of Q[x, y]l(x2n, Σji%2ίy2n~2~2i), generated by x2, y.
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PROOF. Consider the natural mappings

^ x flfp(l) i ^ i C ) x Pn_x{H) .

We see that i* is surjective and p2* is injective. On the other hand,
there are the following equations

P.*i»*(l x *(£)) = *2 , pfiffaty xί) = y.

Thus we obtain the desired result. q.e.d.

Here we state the following for later use.

PROPOSITION 3.7. Let G be one of T\ U(2) and U(l) x Sp(ΐ). Let
wl9 w2 be any non-zero homogeneous elements of if* (VnJG) such that
deg wk = 2k. Then wl71'1 and wl~x are non-zero elements.

PROOF. For G = T\ we obtain the result from (3.3). For G = (7(2)
or 17(1) x Sp(l), we obtain the result from Lemmas 3.5, 3.6 and the
result for G = T\ ' q.e.d.

4. Finish of the proof. Throughout this section, suppose that
n ^ 7 and X is a closed orientable manifold with a non-trivial smooth
Sp(ri) action, and X ~ Pa(C) x Pb(C) for some α, 6 such that

1 ^ 6 ^ α < 2 w ^ α + & ^ 4 w - 3 ,

o r l - PC(H) x Pd(C) for some c, d such that

l ^ c ^ n - l f l S d ^ 2 n - l and 2n ^ 2c + d ^ An - i .

We shall show that X(2) and Xw are empty sets.

PROPOSITION 4.1. X Φ X{k); k = 2, 3.

PROOF. Suppose X=JΓ(Jfc). Then there is an equivariant diffeo-
morphism: X = (Sp(n)/Sp(n — k)xF{k))/Sp(k). In particular, we obtain
%(-3Γ) = nCkX(F[k)). Looking at the Euler characteristic of X, we see that
k Φ 3. Thus only the following possibilities remain:

(a) dim F ( 2 ) = 8, Z(F(8)) = 8; (α, 6) - (2n - 1, 2n - 3),
(b) dim F{2) = 6, χ(F(2)) = 4; (c, d) = (n - 1, 2^ - 3), (n -2,2n- 1),
(c) d imi^ ( 2 ) ^4.

If dimjP(2) ^ 4, then X = Vn,JSp(l) x 5p(l) or X = VnιJSp{2) x F ( 2 ), and
hence the case (c) does not happen by (3.2) and Lemma 3.4. In the cases
(a), (b) if the Sp(2) action on F{2) is transitive, then X= VntJT\ VnJU(2)
or VΛtJU(ΐ)xSp(l), and hence such cases do not happen by Proposition 3.7.

Consider the case (a). Since χ(F{2)) Φ 0 and the Sp(2) action on F{2)

is non-transitive, the restricted G action on F{2) has a fixed point, and
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hence the natural projection π,: (Vn>2 x F{2))/G -+VntJG has a cross-section
s, where G = J7(2) or J7(l) x Sp(ΐ). Consider the following commutative
diagram:

(Vn>2 x F{2))/G - ίU VJG

\q | *
X = (Vnt2 x F{2))/Sp(2) -^-> Vnt2/Sp(2) ,

where πlf π2, p, q are natural projections. We can express

πfetfa) = ax2 + βxy + Ύy2; x,ye H\X), a, β, 7 e Q .

Moreover we can express s*q*x = μt, s*q*y = vt (μf veQ) for some non-zero
element teH\Vnt2/G) because rankH\Vn>2/G) = 1 by Lemmas 3.5,3.6.
Hence we obtain

where δ = aμ2 + βμv + Ίv2. Let i: Sp{2)/G —> VnJG be the natural inclusion.
Then ί*t Φ 0 and i*p*ex(ζ2) = 0, and hence δ = 0, because Sp(2)/G - P8(C).
Thus we obtain p*e1(ξ2) = 0; this is a contradiction to the fact that p*
is injective. Therefore, the case (a) does not happen.

Consider the case (b). Since the Sp(2) action on F{2) is non-transitive,
the identity component of an isotropy group is conjugate to Sp(ΐ) x Sp(ΐ)
or Sp(2). If the Sp(2) action on F& is trivial, then X = Vnt2/Sp(2) x F{2)

and hence such a case does not happen by Lemma 3.4.
Suppose first that the Sp(2) action on F{2) has no fixed point. Denote

by F the fixed point set of the restricted Sp(ί) x Sp(l) action on F{2).
Then we see that F is a closed orientable surface with X(F) = 4 and F
has at most two components. Therefore, X= (Vnf2/Sp(l) x Sp(l)) x S2,
and hence such a case does not happen by (3.2).

Suppose next that the Sp(2) action on F{2) has a fixed point. Then
we see that the fixed point set of the Sp(2) action is one-dimensional by
considering the isotropy representations. Let U be its closed invariant
tubular neighborhood and denote by F' the fixed point set of the re-
stricted Sp(ΐ) x Sp(l) action on F{2) — intU. Then we see that F' is a
compact orientable surface with X(Ff) = 4, F' has at most two components
and each component of Ff has a non-empty boundary. Such a case does
not happen, because X <; 1 for each compact connected orientable surface
with non-empty boundary. q.e.d.

PROPOSITION 4.2. // X{1) is non-empty, then X{2) is empty.

PROOF. Suppose that both X{1) and X{2) are non-empty. Then X =
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X{1) U X{2) and codim Fa) = 8n — 8, by Propositions 1.3, 1.4. Since dimX<;
Sn — 6, we obtain dimi*^ = 0 or 2.

Suppose first that the Sp(l) action on F{1) is non-trivial. Then
dim.P(1) = 2 and X ~ P2n-i(C) x P2n_2(C). Considering the slice represen-
tation at a point of F(1), we see that the Sp(ri) action on X has a codi-
mension one orbit, and hence X is a union of closed invariant tubular
neighborhoods of just two non-principal orbits (cf. [10]). Calculating the
Euler characteristics, we see that two non-principal orbits are P2n_i(C)
and Vn>2/T2. Since codimP27λ_1(C) = An - 4 in X, the inclusion i:VnJT2->
X induces an isomorphism i*: H2(X)-+H2(Vn,2/T2), and hence x2n~ιΦθ for
each non-zero element x e H\X) by Proposition 3.7. This is a contradiction.

Suppose next that the Sp(ΐ) action on F{1) is trivial. Considering
the slice representation at a point of F{1), we see that the codimension
of the principal orbit is equal to 1 + dim 2 ^ , for the Sp(n) action on X.
There are just two cases:

(d) dim F{1) = 0; (α, 6) = (2n - 1, 2n - 3) or (2n - 2, 2n - 2),
(c, d) = (n~ 1, 2n - 2),

(e) dim Fw = 2; (α, b) = (2n -l,2n-2).
Consider the case (d). The Sp(n) action has a codimension one orbit.

Calculating the Euler characteristics, we see that two non-principal orbits
are P^H) and VnJGf where G = U(2) or U(l) x Sp(l), and the possibility
remains only when X — Pn_x(H) x P2n-2(C). Since codim Pn^(H) = in — 4
in X, the inclusion i:VntJG-+X induces an isomorphism ί*: H\X) —>
H\Vn)2jG), and hence x2n~ι Φ 0 for each non-zero element xeH2(X) by
Proposition 3.7. This is a contradiction.

Consider the case (e). The isotropy group is Sp(n — 1) x Sp(ϊ) at
each point of Fa). Considering the slice representation at a point of
Fll)9 we see that the principal isotropy group is Sp(n — 2) x K, where
K is a closed connected 3-dimensional subgroup of Sp(2). Denote by G
the identity component of the normalizer of K in Sp(2). Then G is
conjugate to U(2) or U(ϊ) x Sp(l). Suppose that the restricted G action
on F(2) has a fixed point. Then the natural projection of (VUf2 x F(2))/G
t° Vn,JG has a cross-section. Since the inclusion i: X{2) —> X induces an
isomorphism i*: Hk(X) —> Hk(Xm) for A; ̂  4^ — 6, we obtain a contradiction
by the same way as in the proof of Proposition 4.1. Therefore the Sp(n)
action on X{2) has no singular orbit. Denote by Tn the standard maximal
torus of Sp(ri). Since Xw = Pn^{H) x F(1) and the restricted Tn action
on Xi2) has no fixed point, we see that the fixed point set of the re-
stricted Tn action on X is diffeomorphic to n copies of F{1), and hence
X(F{1)) — X(X)/n = An — 2. Let U be a closed invariant tubular neigh-
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borhood of Xa) in X. Put E = X - intU, and El2) = En Fw. Then E
is an equivariant deformation retract of Xm, and E(2) is a compact
connected orientable 10-manifold. Moreover the Spin) action on dE = dU
has only one isotropy type Spin — 2)xK, and its orbit space is diffeo-
morphic to Fa). We shall evaluate the number of connected components
of dE. Let Sp(l) be standardly embedded in Sp(2). Considering the
Gysin sequences for sphere bundles

Sp(2)/Sp(X) -+(Vn>2 x E{i))/Sp(ΐ) -> E ,

Sp(l)->Vn,2 x E{2) -> (Vn,2 x E{2))/Sp(l) ,

we obtain rank iP((Fn,2 x El2))/Sp(l)) ^ 2, rank tfβ(( 7n,2 x E{2))/Sp(l)) ^ 4,
and hence rank IΓβ( Vn,2 x E{2)) ^ 6. Thus we obtain rank H\dE{2)) ^ 7,
by the cohomology exact sequence of the pair (El2), dEm) and the Poincare-
Lefschetz duality for E{2). Therefore the number of connected components
of 3E is at most seven, and hence the number of components of the
closed surface F{1) is at most seven. This is a contradiction to X(FW) =
An — 2. q.e.d.

Here we complete the proof of the main theorem stated in Intro-
duction, by combining Theorems 2.5, 2.8 and Propositions 4.1, 4.2, in view
of Section 1.

5. Proof of Lemmas. We shall give an outline of the proof of
Lemmas 1.1, 1.2. The method used here is essentially due to Dynkin [6]
(cf. [11, g 7]).

PROOF OF LEMMA 1.1. Let G be a closed connected subgroup of
Sp(n), and suppose dim Sp(ri)/G < 8n. Notice that the inclusion i: G —>
Sp(n) gives a symplectic representation of G.

Suppose first that the representation i is reducible, that is, there is
a positive integer k such that k ^ n/2 and G is contained in Sp(n — k) x
Sp(k) up to an inner automorphism of Sp(n). Then

2kn ^ Ak(n - k) ^ dim Sp(n)/G < 8n .

Hence we obtain k ^ 3. Let pλ (resp. p2) be the natural projection of
Sp(n — k)xSp(k) onto Spin — k) (resp. Sp(k)). We obtain dimSpin — k)/
p^G) < Sn — Ak(n — h), because

dim Spin - ty/p^G) ^ dimiSpin - k) x Sp(k))/G < Sn - Akin - k) .

SUBLEMMA. Suppose j)i(G) = Spin — k) and 2k < n. Then G —
Spin — k) x K for some dosed subgroup K of Sp{k).

PROOF. Let Gf be the kernel of the homomorphism p2\G. Then
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Pi(G') is a positive dimensional normal subgroup of Sp(n — k) = Pι(G)f

and hence Pi(G') = Sp(n — k), because Sp(n — k) is simple. Therefore
G — Sp(n — k) x K for some closed subgroup K of Sp(k). q.e.d.

We can assume that the inclusion ix: p±(G) —> Sp(n — A) is irreducible.
Here we assume that the representation ί: G —» Sp(n) is irreducible and
dim Sζp(w)/G < 8w (i.e. dimG > 2n2 — 7w) for n Ξ> 4. In addition, suppose
dim Sp(n)/G < 32 for w = 6, dim Sp(n)/G < 16 for n = 5 and dim Sp(n)/G < 8
for w = 4. We shall show that G = Sp(n) under the above condition.
This is the final step of the proof of Lemma 1.1.

Denote by ic: G —> U(2ri) the complexification of the quaternion re-
presentation i. If ic is reducible, then

2n2 -In < dim G ^ dimZ7(^) = n2 ,

and hence n ^ 6. But dim Sp(6)/U(β) = 42 > 32, dim Sp(JS)/U(5) - 30 > 16
and dim5p(4)/ί/(4) = 20 > 8. Therefore ic is irreducible. Since ic{G) is
contained in SU(2n)f we see that G is semi-simple.

Suppose that G is not simple. There are closed normal subgroups
Hl9 H2 of G and irreducible representations rj:Hj-+U(nj) such that the
tensor product rx (x) r2 is equivalent to icpf where n = ^i^2, ŵ  ^ 2 and
p: ίZi x H2-+G is a covering projection. Since ic has a quaternion
structure,, we can assume that (cf. [1, Proposition 3.56]) rx has a real
form and r2 has a quaternion structure. In particular,

dim G = dim H, + dim iί 2 ^ dim O(τO + dim Sp(nJ2) < n\\2 + nξ .

Then we obtain n ^ 3. This is a contradiction. Therefore G is simple.
Put r = rank G, and denote by G* the universal covering group of

G. Denote by Llf -- ,Lr the fundamental weights of G*. Then there
is a one-to-one correspondence between complex irreducible represen-
tation of G* and sequences (al9 , αr) of non-negative integers such that

ajjx + μ arLr is the highest weight of a corresponding representation
(cf. [6, Theorems 0.8, 0.9]; [8, §21.2]). Denote by d^a^ + ••• + arLr)
the degree of the complex irreducible representation of G* with the
highest weight α ^ + + arLr. The degree can be computed by
WeyPs dimension formula (cf. [6, Theorem 0.24, (0.148)-(0.155)]; [8, §24.3]).
Notice that if α* ̂  α for i = 1, 2, , r, then d{a1L1 + + arLr) ^
cίίαJLjL + + αI.Lr) and the equality holds only if at = a\ for i =
1,2, - . . f r .

If G is an exceptional Lie group, then G* has no complex irreducible
representation of degree 2n for each n such that dim G > 2n2 — In.
Therefore G is a classical Lie group.
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Suppose G* = SU(r + 1), r ^ 1. Then dimG = r2 + 2r, and r =
rank G <̂  rank Sp(n) = w. Hence we obtain w <̂  8 by the inequality

2w2 -7n <r2 + 2r ^n2 + 2n .

The possibilities remain only when (n, r) = (8, 8), (7, 7), (6, 6), (6, 5), (5, 5),
(5, 4), (4, 4), (4, 3) or (4, 2). We see that there is no possibility, by the
value dim Sp(n)/SU(n) for n <J 6 and the fact that SU(r + 1) has no
complex irreducible representation of degree 2r for each r ^ 4.

Suppose G* = Spίn(r), r ^ 5. Since dimG < dimSp(w), we obtain
(2n - 3)(2w - 4) - 12 < r{r - 1)< 2w(2w + 1). Thus we obtain r = 2w - 3,
2n — 2, 2^ — 1 or 2w. By WeyΓs formula, we see that Spin(2n — 1) for
n ^ 5, Spin(2n — 3) and Spin(2n — 2) have no complex irreducible re-
presentation of degree 2n, Spin{2n) has only one complex irreducible
representation pξn of degree 2n for w ^ 5, Spin(S) has just three
complex irreducible representations pj, Δ$ and Ĵ " of degree 8, and
Spin(7) has only one complex irreducible representation ΔΊ of degree 8.
But p%n, Δt, Δϊ and ΔΊ have real forms, and hence they have no quaternion
structure.

Suppose G* = Sp(r)f 3 <L r < n. Then we obtain r = n — 2 or n — 1.
But Sp(r) has no complex irreducible representation of degrees 2r + 2
and 2r + 4.

This completes the proof of Lemma 1.1.

PROOF OF LEMMA 1.2. By WeyΓs formula, we see that there is no
complex irreducible representation of Sp(r) of degree < 8r except for
the natural inclusion (vr)c' Sp(r) —>U(2r). This fact assures the desired
result. q.e.d.
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