ACTIONS OF SYMPLECTIC GROUPS ON CERTAIN MANIFOLDS

Aiko Nakanishi and Fuichi Uchida

(Received February 24, 1983)
0. Introduction. In previous papers [12], [14] smooth actions of special unitary (resp. symplectic) groups on a product of complex (resp. quaternion) projective spaces have been studied. Here we shall study smooth actions of symplectic group $\boldsymbol{S p}(n)$ on certain product manifolds and we shall prove the following.

Theorem. Let X be a closed orientable manifold on which $\boldsymbol{S p}(n)$ acts smoothly and non-trivially. Suppose $n \geqq 7$.
(i) Suppose $X \sim \boldsymbol{P}_{a}(\boldsymbol{C}) \times \boldsymbol{P}_{b}(\boldsymbol{C}), 1 \leqq b \leqq a<2 n$, and $a+b \leqq 4 n-3$. Then $a=2 n-1$ and X is equivariantly diffeomorphic to $\boldsymbol{P}_{2 n-1}(\boldsymbol{C}) \times Y_{0}$, where Y_{0} is a closed orientable manifold such that $Y_{0} \sim \boldsymbol{P}_{b}(\boldsymbol{C})$, and $\boldsymbol{S p}(n)$ acts naturally on $\boldsymbol{P}_{2 n-1}(\boldsymbol{C})$ and trivially on Y_{0}.
(ii) Suppose $X \sim \boldsymbol{P}_{a}(\boldsymbol{H}) \times \boldsymbol{P}_{b}(\boldsymbol{C}), 1 \leqq a \leqq n-1,1 \leqq b \leqq 2 n-1$, and $2 a+b \leqq 4 n-4$. Then there are three cases:
(a) $a=n-1$ and X is equivariantly diffeomorphic to $\boldsymbol{P}_{n-1}(\boldsymbol{H}) \times Y_{1}$, where Y_{1} is a closed orientable manifold such that $Y_{1} \sim \boldsymbol{P}_{b}(\boldsymbol{C})$, and $\boldsymbol{S} \boldsymbol{p}(n)$ acts naturally on $\boldsymbol{P}_{n-1}(\boldsymbol{H})$ and trivially on Y_{1},
(b) $b=2 n-1$ and X is equivariantly diffeomorphic to $\boldsymbol{P}_{2 n-1}(\boldsymbol{C}) \times Y_{2}$, where Y_{2} is a closed orientable manifold such that $Y_{2} \sim \boldsymbol{P}_{a}(\boldsymbol{H})$, and $\boldsymbol{S p}(n)$ acts naturally on $\boldsymbol{P}_{2 n-1}(\boldsymbol{C})$ and trivially on Y_{2},
(c) $b=2 n-1$ and X is equivariantly diffeomorphic to $\left(S^{4 n-1} \times Y_{3}\right) / \boldsymbol{S p}(1)$, where Y_{3} is a closed orientable $\boldsymbol{S p}(1)$ manifold such that $Y_{3} \sim S^{2} \times \boldsymbol{P}_{a}(\boldsymbol{H})$, $\boldsymbol{S p}(1)$ acts as right scalar multiplication on $S^{4 n-1}$, the unit sphere of \boldsymbol{H}^{n}, and $\boldsymbol{S p}(n)$ acts naturally on $S^{4 n-1}$ and trivially on Y_{3}. In addition, $F \sim S^{0} \times \boldsymbol{P}_{a}(\boldsymbol{C})$ and the induced homomorphism $i^{*}: H^{2}\left(Y_{3}\right) \rightarrow H^{2}(F)$ is trivial, where F denotes the fixed point set of the restricted $\boldsymbol{U}(1)$ action on Y_{3}. Conversely, if Y_{3} satisfies the above conditions, then $\left(S^{4 n-1} \times Y_{3}\right) /$ $\boldsymbol{S p}(1) \sim \boldsymbol{P}_{2 n-1}(\boldsymbol{C}) \times \boldsymbol{P}_{a}(\boldsymbol{H})$ for $1 \leqq a \leqq n-2$.

Throughout this paper, let $H^{*}()$ denote the singular cohomology theory with rational coefficients. By $X_{1} \sim X_{2}$ we mean $H^{*}\left(X_{1}\right) \cong H^{*}\left(X_{2}\right)$ as graded algebras. Denote by $\boldsymbol{P}_{n}(\boldsymbol{C})$ and $\boldsymbol{P}_{n}(\boldsymbol{H})$ the complex (resp. quaternion) projective n-space.

1. Preliminary results. First we present the following two lemmas which are proved by a standard method (cf. [6], [7], [11]). We shall give an outline of the proof in the final section for completeness.

Lemma 1.1. Suppose $n \geqq 7$. Let G be a closed connected proper subgroup of $\boldsymbol{S p}(n)$ such that $\operatorname{dim} \boldsymbol{S p}(n) / G<8 n$. Then G coincides with $\boldsymbol{S p}(n-i) \times K(i=1,2,3)$ up to an inner automorphism of $\boldsymbol{S p}(n)$, where K is a closed connected subgroup of $\boldsymbol{S p}(i)$.

Lemma 1.2. Suppose $r \geqq 5$ and $k<8 r$. Then an orthogonal nontrivial representation of $\boldsymbol{S p}(r)$ of degree k is equivalent to $\left(\nu_{r}\right)_{R} \oplus \theta^{k-4 r}$. Here $\left(\nu_{r}\right)_{R}: \boldsymbol{S p}(r) \rightarrow \boldsymbol{O}(4 r)$ is the canonical inclusion, and θ^{t} is the trivial representation of degree t.

In the following, let X be a closed connected orientable manifold with a non-trivial smooth $\boldsymbol{S p}(n)$ action, and suppose $n \geqq 7$ and $\operatorname{dim} X<$ $8 n$. Put

$$
\begin{aligned}
& F_{(i)}=\left\{x \in X: \boldsymbol{S} \boldsymbol{p}(n-i) \subset \boldsymbol{S} \boldsymbol{p}(n)_{x} \subset \boldsymbol{S} \boldsymbol{p}(n-i) \times \boldsymbol{S} \boldsymbol{p}(i)\right\}, \\
& X_{(i)}=\boldsymbol{S} \boldsymbol{p}(n) \boldsymbol{F}_{(i)}=\left\{g x: g \in \boldsymbol{S} \boldsymbol{p}(n), x \in F_{(i)}\right\} .
\end{aligned}
$$

Here $\boldsymbol{S p}(n)_{x}$ denotes the isotropy group at x. Then, by Lemma 1.1, we obtain $X=X_{(0)} \cup X_{(1)} \cup X_{(2)} \cup X_{(3)}$.

Proposition 1.3. If $X_{(k)}$ is non-empty, then $X_{(i)}$ is empty for each $i \geqq k+2$.

Proof. This is proved essentially in [13], [14], but we give a proof for completeness. Let us denote by $F\left(\boldsymbol{S p}(n-j), X_{(i)}\right)$ the fixed point set of the restricted $\boldsymbol{S} \boldsymbol{p}(n-j)$ action on $X_{(i)}$. It is easy to see that $F\left(\boldsymbol{S p}(n-j), X_{(i)}\right)$ is empty for each $j<i \leqq n-i$. Suppose that $X_{(k)}$ is non-empty and fix $x \in F_{(k))}$. Let σ be the slice representation at x. Then the restriction $\boldsymbol{\sigma} \mid \boldsymbol{S} \boldsymbol{p}(n-k)$ is trivial or equivalent to $\left(\nu_{n-k}\right)_{\boldsymbol{R}} \oplus \theta^{t}$ by Lemma 1.2. Anyhow, a principal isotropy group of the given action contains $\boldsymbol{S p}(n-k-1)$, and hence $\boldsymbol{F}\left(\boldsymbol{S p}(n-k-1), X_{(i)}\right)$ is non-empty if so is $X_{(i)}$.
q.e.d.

Proposition 1.4. Suppose $X=X_{(k)} \cup X_{(k+1)}$. If $X_{(k)}$ and $X_{(k+1)}$ are non-empty, then the codimension of each connected component of $F_{(k)}$ in X is equal to $4(k+1)(n-k)$.

Proof. Fix $x \in F_{(k)}$. Let σ and ρ denote the slice representation at x and the isotropy representation of the orbit $\boldsymbol{S p}(n) x$, respectively. The restriction $\sigma \mid \boldsymbol{S p}(n-k)$ is equivalent to $\left(\nu_{n-k}\right)_{\boldsymbol{R}} \oplus \theta^{s}$ by Lemma 1.2 and the assumption that $X_{(k+1)}$ is non-empty. On the other hand, $\rho \mid \boldsymbol{S p}(n-k)$
is equivalent to $k\left(\nu_{n-k}\right)_{R} \oplus \theta^{t}$ by considering adjoint representations. Hence $(\sigma \oplus \rho) \mid \boldsymbol{S p}(n-k)$ is equivalent to $(k+1)\left(\nu_{n-k}\right)_{R} \oplus \theta^{s+t}$. This shows that the codimension of $F_{(k)}$ at x is equal to $4(k+1)(n-k)$. q.e.d.

Corollary 1.5. Suppose $X=X_{(2)} \cup X_{(3)}$. Then either $X_{(2)}$ or $X_{(3)}$ is empty.

Remark. $\operatorname{dim} \boldsymbol{S p}(n) / \boldsymbol{S p}(n-k) \times \boldsymbol{S p}(k)=4 k(n-k)$ and $\chi(\boldsymbol{S p}(n) / \boldsymbol{S p}(n-k) \times$ $\boldsymbol{S p}(k))={ }_{n} C_{k}$, where $\chi()$ denotes the Euler characteristic, and ${ }_{n} C_{k}$ denotes the binomial coefficient.

Remark. If $\operatorname{dim} X<4 n$, then we see $X=X_{(1)}$. In addition, if $H^{\text {odd }}(X)=0$, then X is equivariantly diffeomorphic to $\boldsymbol{P}_{n-1}(\boldsymbol{H}), \boldsymbol{P}_{n-1}(\boldsymbol{H}) \times \boldsymbol{S}^{2}$ or $\boldsymbol{P}_{2 n-1}(\boldsymbol{C})$, where $\boldsymbol{S} \boldsymbol{p}(n)$ acts naturally on $\boldsymbol{P}_{n-1}(\boldsymbol{H}), \boldsymbol{P}_{2 n-1}(\boldsymbol{C})$ and trivially on S^{2}. So we assume $\operatorname{dim} X \geqq 4 n$, in the following sections.
2. Cohomological aspects. Throughout this section, suppose that X is a closed orientable manifold with a non-trivial smooth $\boldsymbol{S p}(n)$ action, $n \geqq 7$ and $X=X_{(0)} \cup X_{(1)}$.

Proposition 2.1. Suppose either $X \sim P_{a}(\boldsymbol{C}) \times P_{b}(\boldsymbol{C}), 1 \leqq b \leqq a<2 n \leqq$ $a+b \leqq 4 n-3$, or $\quad X \sim P_{a}(\boldsymbol{H}) \times P_{b}(\boldsymbol{C}), 1 \leqq a \leqq n-1,1 \leqq b \leqq 2 n-1$, $2 n \leqq 2 a+b \leqq 4 n-4$. Then $X_{(0)}$ is empty.

Proof. Suppose that $X_{(0)}$ is non-empty. Let U be an invariant closed tubular neighborhood of $X_{(0)}$ in X, and put $E=X-\operatorname{int} U$. Let $i: E \rightarrow X$ be the inclusion. Then $i^{*}: H^{t}(X) \rightarrow H^{t}(E)$ is an isomorphism for each $t \leqq 4 n-2$, because the codimension of each connected component of $X_{(0)}$ is $4 n$ by Lemma 1.2. Put $Y=E \cap F_{(1)}$. Then Y is a connected compact orientable manifold with non-empty boundary ∂Y, and $\boldsymbol{S p}(1)$ acts naturally on Y. There is a natural diffeomorphism $E=\left(S^{4 n-1} \times Y\right) / \boldsymbol{S p}(1)$. By the Gysin sequence of the principal $\boldsymbol{S p}(1)$ bundle $p: S^{4 n-1} \times Y \rightarrow E$, we obtain an exact sequence:

$$
0 \rightarrow H^{2 k-1}\left(S^{4 n-1} \times Y\right) \rightarrow H^{2 k-4}(E) \rightarrow H^{2 k}(E) \rightarrow H^{2 k}\left(S^{4 n-1} \times Y\right) \rightarrow 0
$$

where $2 k=\operatorname{dim} Y=\operatorname{dim} X-(4 n-4)$. Hence we obtain $\operatorname{rank} H^{2 k}(Y)-$ rank $H^{2 k-1}(Y) \geqq 1$, by the cohomology ring structure of X. Considering the homology exact sequence of the pair $(Y, \partial Y)$ and the PoincaréLefschetz duality, we obtain

$$
\operatorname{rank} H_{0}(\partial Y) \leqq \operatorname{rank} H_{0}(Y)+\operatorname{rank} H^{2 k-1}(Y)-\operatorname{rank} H^{2 k}(Y) \leqq 0
$$

Therefore ∂Y is empty; this is a contradiction.
q.e.d.

In the remaining of this section, we assume $X=X_{(1)}=\left(S^{4 n-1} \times\right.$ $\left.F_{(1)}\right) / \boldsymbol{S p}(1)$, where $F_{(1)}$ is a closed connected orientable manifold with a
natural $\boldsymbol{S p}(1)$ action.
Here we describe certain situations which appear repeatedly in the following. Let Y be a closed orientable $\boldsymbol{S p}(1)$ manifold such that $H^{\text {odd }}(Y)=$ 0 . Put $M=S^{4 n-1} \times Y$, where $\boldsymbol{S p}(1)$ acts as right scalar multiplication on $S^{4 n-1}$. Let T be a closed toral subgroup of $\boldsymbol{S p}(1)$. Consider the following commutative diagram:

where π_{1}, π_{2} are projections of fiber bundles with Y as the fiber, and p_{1}, q are projections of 2 -sphere bundles. Since $H^{\text {odd }}(Y)=0$, we can apply the Leray-Hirsch theorem to the fibrations π_{1}, π_{2}. In particular, we see $H^{\text {odd }}(M / \boldsymbol{S p}(1))=0$. By the Gysin sequence of the principal $\boldsymbol{S p}(1)$ bundle $p: M \rightarrow M / \boldsymbol{S p}(1)$, we obtain an exact sequence:

$$
\left(A_{i}\right) \quad 0 \rightarrow H^{2 i-1}(M) \rightarrow H^{2 i-4}(M / \mathbf{S p}(1)) \xrightarrow{\mu} H^{2 i}(M / \boldsymbol{S p}(1)) \xrightarrow{p^{*}} H^{2 i}(M) \rightarrow 0
$$

for each i, where μ is the multiplication by $e(p)$, the Euler class.
We regard S^{∞} as the inductive limit of $S^{4 N-1}$ on which T acts naturally. Let F denote the fixed point set of the restricted T action on Y. Consider the following commutative diagram:

where $i_{1}, i_{\infty}, j, j_{F}$ are natural inclusions. Since $H^{\text {odd }}(Y)=0$, we see that (cf. [5])
(1) i_{∞}^{*} is injective, j^{*} is surjective and i_{∞}^{*} is surjective for $r>$ $\operatorname{dim} Y$.

On the other hand, j_{F}^{*} is an isomorphism for $r \leqq 4 n-2$, and hence
(2) i_{1}^{*} is injective for $r \leqq 4 n-2$.

2 -A. Now we consider the case $X \sim \boldsymbol{P}_{a}(\boldsymbol{C}) \times \boldsymbol{P}_{b}(\boldsymbol{C})$.
Proposition 2.2. Suppose $X \sim \boldsymbol{P}_{a}(\boldsymbol{C}) \times \boldsymbol{P}_{b}(\boldsymbol{C}), 1 \leqq b \leqq a<2 n \leqq a+b \leqq$ $4 n-3$. Then $a=2 n-1$ and $F_{(1)} \sim S^{2} \times \boldsymbol{P}_{b}(C)$.

Proof. The cohomology ring is as follows.

$$
H^{*}(X)=\boldsymbol{Q}[u, v] /\left(u^{a+1}, v^{b+1}\right) ; \operatorname{deg} u=\operatorname{deg} v=2
$$

We can express $e(p)=\alpha u^{2}+\beta u v+\gamma v^{2} ; \alpha, \beta, \gamma \in \boldsymbol{Q}$, where $p: S^{4 n-1} \times F_{(1)} \rightarrow$ X is the principal $\boldsymbol{S p}(1)$ bundle. By $\left(A_{1}\right)$, we obtain $H^{1}\left(F_{(1)}\right)=0$ and hence $H^{2 k-1}\left(F_{(1)}\right)=0$ by the Poincaré duality, where $2 k=\operatorname{dim} F_{(1)}=$ $2(a+b-2 n+2)$. Then by $\left(A_{k}\right)$ we obtain an exact sequence:

$$
0 \rightarrow H^{2 k-4}(X) \xrightarrow{\mu} H^{2 k}(X) \xrightarrow{p^{*}} H^{2 k}\left(F_{(1)}\right) \rightarrow 0 .
$$

By the ring structure of $H^{*}(X)$, we obtain

$$
\begin{aligned}
& \operatorname{rank} H^{2 k-4}(X)=k-1 \\
& \operatorname{rank} H^{2 k}(X)=k+1 \text { (for } k \leqq b \text {) and } k(\text { for } k=b+1) .
\end{aligned}
$$

Since $F_{(1)}$ is a closed connected orientable $2 k$-manifold, we obtain $k=$ $b+1$ and hence $a=2 n-1$. Next, we shall show $e(p)=\alpha u^{2}, \alpha \neq 0$. By definition, the $\boldsymbol{S p}(1)$ bundle p is a pull-back of the canonical principal $\boldsymbol{S p}(1)$ bundle over $\boldsymbol{P}_{n-1}(\boldsymbol{H})$, and hence $e(p)^{n}=0$. Thus we obtain $\alpha \beta=0$, by considering the term $u^{2 n-1} v$ in the expression of $e(p)^{n}$. Suppose $\alpha=0$. Then $p^{*}\left(u^{2 n-1}\right) \neq 0$ by $\left(A_{2 n-1}\right)$, and hence $\operatorname{dim} F_{(1)} \geqq 4 n-2$. Thus we obtain $k=b+1=2 n-1$. By considering the term $u^{n} v^{n}$ in the expression of $e(p)^{n}$, we obtain $\beta=0$, and hence $e(p)=\gamma v^{2}$. Then $p^{*}\left(u^{2 n-1} v\right) \neq 0$ by $\left(A_{2 n}\right)$. On the other hand $H^{4 n}\left(S^{4 n-1} \times F_{(1)}\right)=0$, since $H^{1}\left(F_{(1)}\right)=0$ and $\operatorname{dim} F_{(1)}=4 n-2$. This is a contradiction. Thus we obtain $e(p)=\alpha u^{2}+$ $\gamma v^{2}, \alpha \neq 0$. By considering the term $u^{2 n-2} v^{2}$ in the expression of $e(p)^{n}$, we obtain $\alpha \gamma=0$. Therefore we obtain $e(p)=\alpha u^{2}, \alpha \neq 0$, and hence $F_{(1)} \sim S^{2} \times \boldsymbol{P}_{b}(\boldsymbol{C})$, by $\left(A_{i}\right)$.
q.e.d.

Now we consider the $\boldsymbol{S p}(1)$ action on $F_{(1)} \sim S^{2} \times \boldsymbol{P}_{b}(\boldsymbol{C})$. Let T be a toral subgroup of $\boldsymbol{S p}(1)$. Denote by F the fixed point set of the restricted T action on $F_{(1)}$. Since $\chi\left(F_{(1)}\right) \neq 0$, we see that F is non-empty.

Proposition 2.3. $\quad F \sim S^{0} \times \boldsymbol{P}_{b}(\boldsymbol{C})$.
Proof. Put $Y=F_{(1)}$ in the diagram $(D-1)$. Let $t \in H^{2}\left(\boldsymbol{P}_{2 n-1}(\boldsymbol{C})\right)$ and $w \in H^{4}\left(\boldsymbol{P}_{n-1}(\boldsymbol{H})\right)$ be the canonical generators such that $q^{*}(w)=t^{2}$. By definition, $\pi_{2}^{*}(w)=e(p)=\alpha u^{2}$. Put $u_{1}=p_{1}^{*}(u), v_{1}=p_{1}^{*}(v)$ and $t_{1}=\pi_{1}^{*}(t)$. We can apply the Leray-Hirsch theorem to the bundles π_{1}, π_{2} in the diagram ($D-1$), and we obtain

$$
H^{*}(M / T)=\boldsymbol{Q}\left[t_{1}, u_{1}, v_{1}\right] /\left(u_{1}^{2 n}, v_{1}^{b+1}, t_{1}^{2}-\alpha u_{1}^{2}\right), \quad \alpha \neq 0 .
$$

Consider the diagram $(D-2)$ for $Y=F_{(1)}$. Let u_{2}, v_{2} be elements of $H^{2}\left(\left(S^{\infty} \times F_{(1)}\right) / T\right)$ such that $j^{*}\left(u_{2}\right)=u_{1}$ and $j^{*}\left(v_{2}\right)=v_{1}$. Let t be the canonical generator of $H^{2}\left(S^{\infty} / T\right)=H^{2}\left(\boldsymbol{P}_{2 n-1}(\boldsymbol{C})\right)$. Then we can express

$$
i_{\infty}^{*}\left(u_{2}\right)=t \times f_{0}+1 \times f_{1}, \quad i_{\infty}^{*}\left(v_{2}\right)=t \times g_{0}+1 \times g_{1}
$$

where f_{k}, g_{k} are elements of $H^{2 k}(F)$ for $k=0,1$. Since

$$
j_{F}^{*} i_{\infty}^{*}\left(\alpha u_{2}^{2}\right)=i_{1}^{*}\left(\alpha u_{1}^{2}\right)=i_{1}^{*}\left(t_{1}^{2}\right)=j_{F}^{*}\left(t^{2} \times 1\right),
$$

we obtain $f_{0}^{2}=\alpha^{-1}$ and $f_{1}=0$. Moreover we see that f_{0} is not constant, and hence F is not connected. Since $j_{F}^{*} i_{\infty}^{*}\left(v_{2}^{b+1}\right)=0$, we obtain $g_{0}=0$ and hence $i_{\infty}^{*}\left(v_{2}\right)=1 \times g_{1}$. Then $H^{*}(F)$ is generated by two elements f_{0} and g_{1}, because i_{∞}^{*} is surjective for sufficiently large degree and $H^{*}\left(\left(S^{\infty} \times\right.\right.$ $\left.\left.F_{(1)}\right) / T\right)$ is generated by two elements u_{2}, v_{2} as a graded $H^{*}\left(S^{\infty} / T\right)$-algebra. Let F_{1} (resp. F_{2}) be the union of connected components F_{σ} of F on which $f_{0} \mid F_{\sigma}$ is positive (resp. negative). Then $H^{*}\left(F_{s}\right)$ is generated by only one element $g_{1} \mid F_{s}$ for $s=1$, 2. Since $i_{1}^{*}\left(v_{1}\right)=1 \times g_{1}$, we obtain $\left(g_{1} \mid F_{s}\right)^{b+1}=0$, and hence $F_{s} \sim \boldsymbol{P}_{b}(\boldsymbol{C})$ for $s=1$, 2, because $\chi\left(F_{1}\right)+\chi\left(F_{2}\right)=\chi\left(F_{(1)}\right)=2 b$.
q.e.d.

We need the following.
Lemma 2.4. Let S be a closed connected smooth $\boldsymbol{S p}(1)$ manifold. Let F be the fixed point set of the restricted T action on S, where T is a closed toral subgroup of $\boldsymbol{S p (1)}$. Suppose that $\operatorname{codim} F=2$ and F is not connected. Then there is an equivariant diffeomorphism: $\quad S=\boldsymbol{S} \boldsymbol{p}(1) / T \times$ F_{1}, where F_{1} is a connected component of F.

Proof. Since codim $F=2, T$ is the identity component of a principal isotropy group (cf. [9]), and hence there is an equivariant diffeomorphism:

$$
S-F_{0}=\left(S \boldsymbol{p}(1) / T \times\left(F-F_{0}\right)\right) /(N T / T),
$$

where F_{0} denotes the fixed point set of the $\boldsymbol{S} \boldsymbol{p}(1)$ action and $N T$ denotes the normalizer of T. Since codim $F_{0}>2, S-F_{0}$ is connected and hence the orbit space of the $N T / T$ action on $F-F_{0}$ is connected. Therefore F has just two components and $N T / T$ acts freely on F. In particular, F_{0} is empty and there is an equivariant diffeomorphism: $\quad F=N T / T \times F_{1}$. Hence we obtain the desired result.
q.e.d.

By Proposition 2.3 and Lemma 2.4, there is an equivariant diffeomorphism: $\quad F_{(1)}=\boldsymbol{S p}(1) / T \times Y_{0}$, where Y_{0} is a connected component of F. Thus we obtain an equivariant diffeomorphism:

$$
X=X_{(1)}=\left(S^{4 n-1} \times F_{(1)}\right) / \boldsymbol{S} \boldsymbol{p}(1)=\boldsymbol{P}_{2 n-1}(\boldsymbol{C}) \times Y_{0}
$$

Consequently we obtain the following.
Theorem 2.5. Let X be a closed orientable manifold with a nontrivial smooth $\boldsymbol{S p}(n)$ action. Suppose $n \geqq 7, X=X_{(0)} \cup X_{(1)}$ and $X \sim$ $\boldsymbol{P}_{a}(\boldsymbol{C}) \times \boldsymbol{P}_{b}(\boldsymbol{C}), 1 \leqq b \leqq a<2 n \leqq a+b \leqq 4 n-3$. Then $a=2 n-1$ and X is equivariantly diffeomorphic to $\boldsymbol{P}_{2 n-1}(\boldsymbol{C}) \times Y_{0}$, where Y_{0} is a closed orientable manifold such that $Y_{0} \sim \boldsymbol{P}_{b}(\boldsymbol{C})$.

2-B. Next we consider the case $X \sim \boldsymbol{P}_{a}(\boldsymbol{H}) \times \boldsymbol{P}_{b}(\boldsymbol{C})$.
Proposition 2.6. Suppose $X \sim \boldsymbol{P}_{a}(\boldsymbol{H}) \times \boldsymbol{P}_{b}(\boldsymbol{C}), 1 \leqq a \leqq n-1,1 \leqq b \leqq$ $2 n-1,2 n \leqq 2 a+b \leqq 4 n-4$. Then either $a=n-1$ and $F_{(1)} \sim \boldsymbol{P}_{b}(C)$, or $b=2 n-1$ and $F_{(1)} \sim S^{2} \times \boldsymbol{P}_{a}(\boldsymbol{H})$.

Proof. The cohomology ring is as follows.

$$
H^{*}(X)=\boldsymbol{Q}[u, v] /\left(u^{a+1}, v^{b+1}\right) ; \quad \operatorname{deg} u=4, \quad \operatorname{deg} v=2 .
$$

We can express $e(p)=\alpha u+\beta v^{2} ; \alpha, \beta \in \boldsymbol{Q}$, where $p: S^{4 n-1} \times F_{(1)} \rightarrow X$ is the principal $\boldsymbol{S p}(1)$ bundle. By definition, the $\boldsymbol{S p}(1)$ bundle p is a pull-back of the canonical principal $\boldsymbol{S p}(1)$ bundle over $\boldsymbol{P}_{n-1}(\boldsymbol{H})$, and hence $e(p)^{n}=0$. Thus we obtain $\alpha \beta=0$, by considering the term $u^{a} v^{2 n-2 a}$ in the expression of $e(p)^{n}$. On the other hand, we can prove $e(p) \neq 0$ by making use of the exact sequence $\left(A_{i}\right)$. Moreover we see, from $\left(A_{i}\right)$, that if $\beta=0$ then $a=n-1$ and $F_{(1)} \sim P_{b}(C)$; if $\alpha=0$ then $b=2 n-1$ and $F_{(1)} \sim S^{2} \times$ $\boldsymbol{P}_{a}(\boldsymbol{H})$.
q.e.d.

Now we consider the $\boldsymbol{S p}(1)$ action on $F_{(1)}$. Let T be a toral subgroup of $\boldsymbol{S} \boldsymbol{p}(1)$. Denote by F the fixed point set of the restricted T action on $F_{(1)}$. Since $\chi\left(F_{(1)}\right) \neq 0$, we see that F is non-empty. We shall show the following.

Proposition 2.7. If $a=n-1$ and $F_{(1)} \sim \boldsymbol{P}_{b}(\boldsymbol{C})$, then the $\boldsymbol{S p}(1)$ action on $F_{(1)}$ is trivial. If $b=2 n-1$ and $F_{(1)} \sim S^{2} \times \boldsymbol{P}_{a}(\boldsymbol{H})$, then $F \sim S^{0} \times$ $\boldsymbol{P}_{a}(\boldsymbol{H})$ or $F \sim S^{0} \times \boldsymbol{P}_{a}(\boldsymbol{C})$. Moreover the induced homomorphism $i^{*}: H^{2}\left(\boldsymbol{F}_{(1)}\right) \rightarrow$ $H^{2}(F)$ is trivial.

Proof. Put $Y=F_{(1)}$ in the diagram $(D-1)$. Let $t \in H^{2}\left(\boldsymbol{P}_{2 n-1}(\boldsymbol{C})\right)$ and $w \in H^{4}\left(\boldsymbol{P}_{n-1}(\boldsymbol{H})\right)$ be the canonical generators as before. Then $\pi_{2}^{*}(w)=$ $e(p)$ by definition. We see that $e(p)=\alpha u, \alpha \neq 0$ or $e(p)=\beta v^{2}, \beta \neq 0$ in Proposition 2.6.

Suppose first $e(p)=\alpha u$. Then $a=n-1$ and $F_{(1)} \sim \boldsymbol{P}_{b}(\boldsymbol{C})$. We can prove $M / T \sim \boldsymbol{P}_{2 n-1}(\boldsymbol{C}) \times \boldsymbol{P}_{b}(\boldsymbol{C}), b \leqq 2 n-2$ by the Leray-Hirsch theorem, and hence the T action on $F_{(1)} \sim P_{b}(C)$ is trivial (cf. [12, Proposition 3.3]). Therefore the $\boldsymbol{S} \boldsymbol{p}(1)$ action on $F_{(1)}$ is trivial.

Suppose next $e(p)=\beta v^{2}$. Then $b=2 n-1$ and $F_{(1)} \sim S^{2} \times \boldsymbol{P}_{a}(\boldsymbol{H})$. Put $u_{1}=p_{1}^{*}(u), v_{1}=p_{1}^{*}(v)$ and $t_{1}=\pi_{1}^{*}(t)$. We can apply the Leray-Hirsch theorem to the bundles π_{1}, π_{2} in the diagram $(D-1)$, and we obtain

$$
H^{*}(M / T)=\boldsymbol{Q}\left[t_{1}, u_{1}, v_{1}\right] /\left(u_{1}^{a+1}, v_{1}^{2 n}, t_{1}^{2}-\beta v_{1}^{2}\right), \quad \beta \neq 0
$$

Consider the diagram $(D-2)$ for $Y=F_{(1)}$. Let u_{2}, v_{2} be homogeneous elements of $H^{*}\left(\left(S^{\infty} \times F_{(1)}\right) / T\right)$ such that $j^{*}\left(u_{2}\right)=u_{1}$ and $j^{*}\left(v_{2}\right)=v_{1}$. Let t
be the canonical generator of $H^{2}\left(S^{\infty} / T\right)=H^{2}\left(\boldsymbol{P}_{2 n-1}(\boldsymbol{C})\right)$. Then we can express

$$
i_{\infty}^{*}\left(u_{2}\right)=t^{2} \times f_{0}+t \times f_{1}+1 \times f_{2}, \quad i_{\infty}^{*}\left(v_{2}\right)=t \times g_{0}+1 \times g_{1}
$$

where f_{k}, g_{k} are elements of $H^{2 k}(F)$. Since

$$
j_{F}^{*} i_{\infty}^{*}\left(\beta v_{2}^{2}\right)=i_{1}^{*}\left(\beta v_{1}^{2}\right)=i_{1}^{*}\left(t_{1}^{2}\right)=j_{F}^{*}\left(t^{2} \times 1\right),
$$

we obtain $g_{0}^{2}=\beta^{-1}$ and $g_{1}=0$. Moreover we see that g_{0} is not constant, and hence F is not connected. Since $j_{F}^{*} i_{\infty}^{*}\left(u_{2}^{a+1}\right)=0$ and $a+1 \leqq n-1$, we obtain $f_{0}=0$ and hence $i_{\infty}^{*}\left(u_{2}\right)=t \times f_{1}+1 \times f_{2}$. Let F_{1} (resp. F_{2}) be the union of connected components F_{o} of F on which $g_{0} \mid F_{o}$ is positive (resp. negative). Then each element of $H^{k}\left(\left(S^{\infty} \times F_{s}\right) / T\right)$ for $k>4 a+2$ is expressed as a polynomial of $t \times 1$ and $t \times\left(f_{1} \mid F_{s}\right)+1 \times\left(f_{2} \mid F_{s}\right)$ with rational coefficients for $s=1,2$, because $H^{*}\left(\left(S^{\infty} \times F_{(1)}\right) / T\right)$ is generated by two elements u_{2}, v_{2} as a graded $H^{*}\left(S^{\infty} / T\right)$-algebra and i_{∞}^{*} is surjective for $k>4 a+2$. In particular, if $f_{1} \mid F_{s} \neq 0$, then we can express

$$
t^{4 a-1} \times\left(f_{1} \mid F_{s}\right)=\sum_{j} c_{j}\left(t \times\left(f_{1} \mid F_{s}\right)+1 \times\left(f_{2} \mid F_{s}\right)\right)^{j}(t \times 1)^{4 a-2 j}
$$

for $c_{j} \in \boldsymbol{Q}$. Then we obtain $c_{0}=0, c_{1}=1$ and $f_{2} \mid F_{s}=-c_{2}\left(f_{1} \mid F_{s}\right)^{2}$. Therefore

$$
H^{*}\left(\boldsymbol{F}_{s}\right)=\boldsymbol{Q}\left[x_{s}\right] /\left(x_{s}^{a+1}\right) ; \quad \operatorname{deg} x_{s}=2 \text { or } 4,
$$

because $f_{k}^{a+1}=0(k=1,2)$ and $\chi\left(F_{1}\right)+\chi\left(F_{2}\right)=\chi\left(F_{(1)}\right)=2 a$. If $F_{s} \sim \boldsymbol{P}_{a}(\boldsymbol{H})$ for some s, then $F \sim S^{0} \times \boldsymbol{P}_{a}(\boldsymbol{H})$ by Lemma 2.4. Thus we obtain $F \sim$ $S^{0} \times \boldsymbol{P}_{a}(\boldsymbol{H})$ or $F \sim S^{0} \times \boldsymbol{P}_{a}(\boldsymbol{C})$. Finally we shall show that $i^{*}: H^{2}\left(F_{(1)}\right) \rightarrow$ $H^{2}(F)$ is trivial for the case $F \sim S^{0} \times \boldsymbol{P}_{a}(\boldsymbol{C})$. Consider the following commutative diagram:

where i, i_{1} are natural inclusions and k_{0}, k_{1} are inclusions of typical fiber of bundles over $\boldsymbol{P}_{2 n-1}(\boldsymbol{C})$. We see that $k_{1}^{*}\left(v_{1}\right)$ generates $H^{2}\left(F_{(1)}\right)$ and $i_{1}^{*}\left(v_{1}\right)=t \times g_{0}$, and hence $i^{*} k_{1}^{*}\left(v_{1}\right)=k_{0}^{*}\left(t \times g_{0}\right)=0$. Thus $i^{*}: H^{2}\left(F_{(1)}\right) \rightarrow$ $H^{2}(F)$ is trivial.
q.e.d.

Suppose $F \sim S^{0} \times \boldsymbol{P}_{a}(\boldsymbol{H})$. Then by Lemma 2.4, there is an equivariant diffeomorphism: $\quad F_{(1)}=\boldsymbol{S p}(1) / T \times Y_{2}$, where Y_{2} is a connected component of F. Thus we obtain an equivariant diffeomorphism:

$$
X=X_{(1)}=\left(S^{4 n-1} \times F_{(1)}\right) / \boldsymbol{S p}(1)=\boldsymbol{P}_{2 n-1}(\boldsymbol{C}) \times Y_{2} .
$$

Consequently we obtain the following.

Theorem 2.8. Let X be a closed orientable manifold with a nontrivial smooth $\boldsymbol{S p}(n)$ action. Suppose $n \geqq 7, X=X_{(0)} \cup X_{(1)}$ and $X \sim$ $\boldsymbol{P}_{a}(\boldsymbol{H}) \times \boldsymbol{P}_{b}(\boldsymbol{C}) ; 1 \leqq a \leqq n-1,1 \leqq b \leqq 2 n-1,2 n \leqq 2 a+b \leqq 4 n-4$. Then there are three cases:
(a) $a=n-1$ and X is equivariantly diffeomorphic to $\boldsymbol{P}_{n-1}(\boldsymbol{H}) \times Y_{1}$, where Y_{1} is a closed orientable manifold such that $Y_{1} \sim \boldsymbol{P}_{b}(\boldsymbol{C})$,
(b) $\quad b=2 n-1$ and X is equivariantly diffeomorphic to $\boldsymbol{P}_{2 n-1}(\boldsymbol{C}) \times \boldsymbol{Y}_{2}$, where Y_{2} is a closed orientable manifold such that $Y_{2} \sim \boldsymbol{P}_{a}(\boldsymbol{H})$,
(c) $b=2 n-1$ and X is equivariantly diffeomorphic to ($S^{4 n-1} \times$ $\left.Y_{3}\right) / \boldsymbol{S p}(1)$, where Y_{3} is a closed orientable $\boldsymbol{S p}(1)$ manifold such that $Y_{3} \sim$ $S^{2} \times \boldsymbol{P}_{a}(\boldsymbol{H}), F \sim S^{0} \times \boldsymbol{P}_{a}(\boldsymbol{C})$ and $i^{*}: H^{2}\left(Y_{3}\right) \rightarrow H^{2}(F)$ is trivial, where F denotes the fixed point set of the restricted T action on Y_{3}. Conversely, if Y_{3} satisfies the above conditions, then $\left(S^{4 n-1} \times Y_{3}\right) / \boldsymbol{S p}(1) \sim \boldsymbol{P}_{2 n-1}(\boldsymbol{C}) \times \boldsymbol{P}_{a}(\boldsymbol{H})$ for $a \leqq n-2$.

Proof. It remains to prove the final statement in the case (c). Let Y be a closed orientable $\boldsymbol{S p}(1)$ manifold such that $Y \sim S^{2} \times \boldsymbol{P}_{a}(\boldsymbol{H}), F \sim$ $S^{0} \times \boldsymbol{P}_{a}(\boldsymbol{C})$ and $i^{*}: H^{2}(Y) \rightarrow H^{2}(F)$ is trivial, where F denotes the fixed point set of the restricted T action. We shall show ($\left.\boldsymbol{S}^{4 n-1} \times Y\right) / \boldsymbol{S p}(1) \sim$ $\boldsymbol{P}_{2 n-1}(\boldsymbol{C}) \times \boldsymbol{P}_{a}(\boldsymbol{H})$ for $a \leqq n-2$. Put $M=S^{4 n-1} \times Y$. Consider the following commutative diagrams as before:

Let $t \in H^{2}\left(\boldsymbol{P}_{2 n-1}(\boldsymbol{C})\right)$ and $w \in H^{4}\left(\boldsymbol{P}_{n-1}(\boldsymbol{H})\right)$ be the canonical generators such that $q^{*}(w)=t^{2}$. Because π_{1}, π_{2} are projections of bundles with Y as the fiber and $H^{\text {odd }}(Y)=0$, we can apply the Leray-Hirsch theorem and we see that there is an element $u_{k} \in H^{2 k}(M / \boldsymbol{S p}(1))$ for $k=1,2$ such that $H^{*}(M / \boldsymbol{S p}(1))$ is freely generated by $1, u_{2}, u_{2}^{2}, \cdots, u_{2}^{a}, u_{1}, u_{1} u_{2}, u_{1} u_{2}^{2}, \cdots, u_{1} u_{2}^{a}$ as an $H^{*}\left(\boldsymbol{P}_{n-1}(\boldsymbol{H})\right)$-module, and $u_{1}^{2}=c \pi_{2}^{*}(w)$ for some $c \in \boldsymbol{Q}$. Put $v_{k}=$ $p_{1}^{*}\left(u_{k}\right)$. Express $i_{1}^{*}\left(v_{1}\right)=t \times g_{0}+1 \times g_{1}$ for some $g_{j} \in H^{2 j}(F)$. Then $g_{1}=k_{0}^{*}\left(t \times g_{0}+1 \times g_{1}\right)=i^{*} k_{1}^{*}\left(v_{1}\right)=0$, because $i^{*}: H^{2}(Y) \rightarrow H^{2}(F)$ is trivial. Hence $i_{1}{ }^{*}\left(v_{1}\right)=t \times g_{0}$ and $c=g_{0}^{2}$. We see that g_{0} is not constant and $c \neq 0$, because i_{1}^{*} is injective for each degree $\leqq 4 n-2$ and $v_{1}, \pi_{1}^{*}(t)$ are linearly independent in $H^{2}(M / T)$. Hence $H^{*}(M / \boldsymbol{S p}(1))$ is generated by u_{1}, u_{2} as a graded algebra. Express $i_{1}^{*}\left(v_{2}\right)=t^{2} \times f_{0}+t \times f_{1}+1 \times f_{2}$ for some $f_{j} \in H^{2 j}(F)$. Let F_{1} be a connected component of F and put $w_{2}=$ $u_{2}-d \pi_{2}^{*}(w)$, where $d=f_{0} \mid F_{1}$. Then $H^{*}(M / \boldsymbol{S p}(1))$ is freely generated by
$u_{1}^{i} w_{2}^{j} ; 0 \leqq i \leqq 2 n-1,0 \leqq j \leqq a$ as a graded module, and

$$
w_{2}^{a+1}=\sum_{j=0}^{a} c_{j} w_{2}^{j} \pi_{2}^{*}\left(w^{a+1-j}\right), \quad c_{j} \in \boldsymbol{Q}
$$

By definition, $i_{1}^{*} p_{1}^{*}\left(w_{2}\right)=t \times f_{1}+1 \times f_{2}$ on $H^{*}\left(\boldsymbol{P}_{2 n-1}(\boldsymbol{C}) \times \boldsymbol{F}_{1}\right)$, a direct summand of $H^{*}\left(\boldsymbol{P}_{2 n-1}(\boldsymbol{C}) \times F\right)$. Since $F_{1} \sim \boldsymbol{P}_{a}(\boldsymbol{C})$, we obtain $i_{1}^{*} p_{1}^{*}\left(w_{2}^{a+1}\right)=$ 0 on $H^{*}\left(\boldsymbol{P}_{2 n-1}(\boldsymbol{C}) \times F_{1}\right)$ and hence

$$
0=\sum_{j=0}^{a} c_{j}\left(t \times\left(f_{1} \mid F_{1}\right)+1 \times\left(f_{2} \mid F_{1}\right)\right)^{j}\left(t^{2} \times 1\right)^{a+1-j}
$$

Moreover we obtain $f_{1} \mid F_{1} \neq 0$, because $f_{1} \mid F_{1}$ and $f_{2} \mid F_{1}$ generate the graded algebra $H^{*}\left(F_{1}\right)$ and $F_{1} \sim \boldsymbol{P}_{a}(\boldsymbol{C})$. Then we obtain $c_{j}=0$ for $j=$ $0,1, \cdots, a$ inductively, and hence $w_{2}^{a+1}=0$. On the other hand, $u_{1}^{2 n}=$ $c^{n} \pi_{2}^{*}\left(w^{n}\right)=0$. Hence we obtain

$$
H^{*}(M / \mathbf{S} \boldsymbol{p}(1))=\boldsymbol{Q}\left[u_{1}, w_{2}\right] /\left(u_{1}^{2 n}, w_{2}^{a+1}\right) ; \operatorname{deg} u_{1}=2, \operatorname{deg} w_{2}=4
$$

Therefore $M / \boldsymbol{S p}(1) \sim \boldsymbol{P}_{2 n-1}(\boldsymbol{C}) \times \boldsymbol{P}_{a}(\boldsymbol{H})$.
q.e.d.
3. Cohomology of certain homogeneous spaces. Let ζ be a quaternion k-plane bundle and ζ_{c} its complexification under the restriction of the field. Its i-th symplectic Pontrjagin class $e_{i}(\zeta)$ is by definition [3, §9.6]

$$
e_{i}(\zeta)=(-1)^{i} c_{2 i}\left(\zeta_{c}\right),
$$

where $c_{2 i}\left(\zeta_{c}\right)$ is the $2 i$-th Chern class. Denote by $\boldsymbol{H P}(\zeta)$ the total space of the associated projective space bundle. Let $\hat{\zeta}$ be the canonical quaternion line bundle over $\boldsymbol{H P}(\zeta)$ and $t=e_{1}(\hat{\zeta})$. It is known that there is an isomorphism:

$$
\begin{equation*}
H^{*}(\boldsymbol{H} P(\zeta))=H^{*}(B)[t] /\left(\sum_{i} e_{k-i}(\zeta) t^{i}\right) \tag{3.1}
\end{equation*}
$$

where B is the base space of the bundle ζ (cf. [4, §3]).
We now consider the cohomology of $V_{n, 2} / G=\boldsymbol{S p}(n) / \boldsymbol{S p}(n-2) \times G$ for certain closed connected subgroups G of $\boldsymbol{S p}(2)$. Let ξ be the canonical quaternion line bundle over $\boldsymbol{P}_{n-1}(\boldsymbol{H})$ and ζ its orthogonal complement, that is, ζ is a quaternion $(n-1)$-plane bundle over $\boldsymbol{P}_{n-1}(\boldsymbol{H})$ such that its total space is

$$
E(\zeta)=\left\{(u,[v]) \in \boldsymbol{H}^{n} \times \boldsymbol{P}_{n-1}(\boldsymbol{H}): u \perp v\right\} .
$$

It is easy to see that $\boldsymbol{H P}(\zeta)$ is naturally diffeomorphic to $V_{n, 2} / \boldsymbol{S p}(1) \times$ $\boldsymbol{S p}(1)$. Since $\xi \oplus \zeta$ is a trivial bundle, we obtain $e_{k}(\zeta)=(-1)^{k} e_{1}(\xi)^{k}$. By definition, $\boldsymbol{H P}(\zeta)$ is naturally identified with a subspace of $\boldsymbol{P}_{n-1}(\boldsymbol{H}) \times$ $\boldsymbol{P}_{n-1}(\boldsymbol{H})$. Let $i: \boldsymbol{H P}(\zeta) \rightarrow \boldsymbol{P}_{n-1}(\boldsymbol{H}) \times \boldsymbol{P}_{n-1}(\boldsymbol{H})$ be the inclusion. Then $\hat{\zeta}=$ $i^{*}(\xi \times 1)$. Hence by (3.1) there is an isomorphism:

$$
\begin{equation*}
H^{*}\left(V_{n, 2} / \mathbf{S p}(1) \times \boldsymbol{S p}(1)\right)=\boldsymbol{Q}[u, v] /\left(u^{n}, \sum_{i} u^{i} v^{n-1-i}\right) \tag{3.2}
\end{equation*}
$$

$\operatorname{deg} u=\operatorname{deg} v=4$, by the identification $u=i^{*}\left(1 \times e_{1}(\xi)\right), v=i^{*}\left(e_{1}(\xi) \times 1\right)$.
Let $\pi: \boldsymbol{P}_{2 n-1}(\boldsymbol{C}) \rightarrow \boldsymbol{P}_{n-1}(\boldsymbol{H})$ be the natural projection defined by

$$
\left(u_{1}: \cdots: u_{n}: v_{1}: \cdots: v_{n}\right) \rightarrow\left(u_{1}+j v_{1}: \cdots: u_{n}+j v_{n}\right),
$$

where j is a quaternion such that $j^{2}=-1$ and $j z=\bar{z} j$ for each complex number z. Then $\pi^{*}\left(\xi_{c}\right)=\eta \oplus \eta^{*}$, where η is the canonical complex line bundle over $\boldsymbol{P}_{2 n-1}(\boldsymbol{C})$ and η^{*} its dual line bundle. Moreover $\pi^{*} e_{1}(\xi)=c_{1}(\eta)^{2}$. We see that the total space $\boldsymbol{C P}\left(\pi^{*}\left(\zeta_{c}\right)\right)$ of the complex projective space bundle is naturally diffeomorphic to $V_{n, 2} / T^{2}$ and there is a natural inclusion $i^{\prime}: \boldsymbol{C P}\left(\pi^{*}\left(\zeta_{c}\right)\right) \rightarrow \boldsymbol{P}_{2 n-1}(\boldsymbol{C}) \times \boldsymbol{P}_{2 n-1}(\boldsymbol{C})$, where T^{2} is the standard maximal torus of $\boldsymbol{S p}(2)$. Then we obtain an isomorphism (cf. [4, §3]):

$$
\begin{equation*}
H^{*}\left(V_{n, 2} / T^{2}\right)=\boldsymbol{Q}[x, y] /\left(x^{2 n}, \sum_{i} x^{2 i} y^{2 n-2-2 i}\right), \tag{3.3}
\end{equation*}
$$

$\operatorname{deg} x=\operatorname{deg} y=2$, by the identification $x=i^{\prime *}\left(1 \times c_{1}(\eta)\right), y=i^{*}\left(c_{1}(\eta) \times 1\right)$.
Let $p: V_{n, 2} / \mathbf{S p}(1) \times \boldsymbol{S p}(1) \rightarrow V_{n, 2} / \boldsymbol{S p}(2)$ be the natural projection and ξ_{2} be the canonical quaternion 2-plane bundle over $V_{n, 2} / \boldsymbol{S p}(2)$.

Lemma 3.4. The graded algebra $H^{*}\left(V_{n, 2} / \boldsymbol{S p}(2)\right)$ is generated by $e_{1}\left(\xi_{2}\right)$, $e_{2}\left(\xi_{2}\right)$. The algebra is isomorphic to the subalgebra of $\boldsymbol{Q}[u, v] /\left(u^{n}, \sum_{i} u^{i} v^{n-1-i}\right)$, consisting of symmetric polynomials.

Proof. Since the fibration p is a 4 -sphere bundle and $H^{\text {odd }}\left(V_{n, 2} /\right.$ $\boldsymbol{S p}(2))=0 \quad$ (cf. $\quad[2, \S 26])$, the homomorphism $p^{*}: H^{*}\left(V_{n, 2} / \boldsymbol{S p}(2)\right) \rightarrow$ $H^{*}\left(V_{n, 2} / \boldsymbol{S p}(1) \times \boldsymbol{S} \boldsymbol{p}(1)\right)$ is injective. Since $p^{*}\left(\xi_{2}\right)=i^{*}(\xi \times \xi)$, we obtain

$$
\begin{aligned}
& p^{*} e_{1}\left(\xi_{2}\right)=i^{*} e_{1}(\xi \times \xi)=u+v, \\
& p^{*} e_{2}\left(\xi_{2}\right)=i^{*} e_{2}(\xi \times \xi)=u v .
\end{aligned}
$$

Then the desired result is obtained by the Leray-Hirsch theorem.
q.e.d.

Let $p_{1}: V_{n, 2} / T^{2} \rightarrow V_{n, 2} / \boldsymbol{U}(2)$ be the natural projection and η_{2} be the canonical complex 2 -plane bundle over $V_{n, 2} / \boldsymbol{U}(2)$. Then we obtain the following by the same argument as above.

Lemma 3.5. The graded algebra $H^{*}\left(V_{n, 2} / \boldsymbol{U}(2)\right)$ is generated by $c_{1}\left(\eta_{2}\right)$, $c_{2}\left(\eta_{2}\right)$. The algebra is isomorphic to the subalgebra of $\boldsymbol{Q}[x, y] /\left(x^{2 n}\right.$, $\left.\sum_{i} x^{2 i} y^{2 n-2-2 i}\right)$, consisting of symmetric polynomials.

Lemma 3.6. The graded algebra $H^{*}\left(V_{n, 2} / \boldsymbol{U}(1) \times \boldsymbol{S} \boldsymbol{p}(1)\right)$ is isomorphic to the subalgebra of $\boldsymbol{Q}[x, y] /\left(x^{2 n}, \sum_{i} x^{2 i} y^{2 n-2-2 i}\right)$, generated by x^{2}, y.

Proof. Consider the natural mappings

$$
V_{n, 2} / \boldsymbol{T}^{2} \xrightarrow{p_{2}} V_{n, 2} / \boldsymbol{U}(\mathbf{1}) \times \boldsymbol{S} \boldsymbol{p}(1) \xrightarrow{i_{2}} \boldsymbol{P}_{2 n-1}(\boldsymbol{C}) \times \boldsymbol{P}_{n-1}(\boldsymbol{H}) .
$$

We see that i_{2}^{*} is surjective and p_{2}^{*} is injective. On the other hand, there are the following equations

$$
p_{2}^{*} i_{2}^{*}\left(1 \times e_{1}(\xi)\right)=x^{2}, \quad p_{2}^{*} i_{2}^{*}\left(c_{1}(\eta) \times 1\right)=y
$$

Thus we obtain the desired result.
q.e.d.

Here we state the following for later use.
Proposition 3.7. Let G be one of $T^{2}, \boldsymbol{U}(2)$ and $\boldsymbol{U}(1) \times \boldsymbol{S p}(1)$. Let w_{1}, w_{2} be any non-zero homogeneous elements of $H^{*}\left(V_{n, 2} / G\right)$ such that $\operatorname{deg} w_{k}=2 k$. Then $w_{1}^{2 n-1}$ and w_{2}^{n-1} are non-zero elements.

Proof. For $G=T^{2}$, we obtain the result from (3.3). For $G=\boldsymbol{U}(2)$ or $\boldsymbol{U}(1) \times \boldsymbol{S} \boldsymbol{p}(1)$, we obtain the result from Lemmas 3.5 , 3.6 and the result for $G=T^{2}$.
q.e.d.
4. Finish of the proof. Throughout this section, suppose that $n \geqq 7$ and X is a closed orientable manifold with a non-trivial smooth $\boldsymbol{S p}(n)$ action, and $X \sim \boldsymbol{P}_{a}(\boldsymbol{C}) \times \boldsymbol{P}_{b}(\boldsymbol{C})$ for some a, b such that

$$
1 \leqq b \leqq a<2 n \leqq a+b \leqq 4 n-3
$$

or $X \sim \boldsymbol{P}_{c}(\boldsymbol{H}) \times \boldsymbol{P}_{d}(\boldsymbol{C})$ for some c, d such that

$$
1 \leqq c \leqq n-1,1 \leqq d \leqq 2 n-1 \quad \text { and } \quad 2 n \leqq 2 c+d \leqq 4 n-4
$$

We shall show that $X_{(2)}$ and $X_{(3)}$ are empty sets.
Proposition 4.1. $X \neq X_{(k)} ; k=2,3$.
Proof. Suppose $X=X_{(k)}$. Then there is an equivariant diffeomorphism: $X=\left(\boldsymbol{S p}(n) / \boldsymbol{S p}(n-k) \times F_{(k)}\right) / \boldsymbol{S p}(k)$. In particular, we obtain $\chi(X)={ }_{n} C_{k} \chi\left(F_{(k)}\right)$. Looking at the Euler characteristic of X, we see that $k \neq 3$. Thus only the following possibilities remain:
(a) $\operatorname{dim} F_{(2)}=8, \chi\left(F_{(2)}\right)=8 ;(a, b)=(2 n-1,2 n-3)$,
(b) $\operatorname{dim} F_{(2)}=6, \chi\left(F_{(2)}\right)=4 ;(c, d)=(n-1,2 n-3),(n-2,2 n-1)$,
(c) $\operatorname{dim} F_{(2)} \leqq 4$.

If $\operatorname{dim} F_{(2)} \leqq 4$, then $X=V_{n, 2} / \boldsymbol{S p}(1) \times \boldsymbol{S p}(1)$ or $X=V_{n, 2} / \boldsymbol{S p}(2) \times F_{(2)}$, and hence the case (c) does not happen by (3.2) and Lemma 3.4. In the cases (a), (b) if the $\boldsymbol{S} \boldsymbol{p}(2)$ action on $F_{(2)}$ is transitive, then $X=V_{n, 2} / T^{2}, V_{n, 2} / \boldsymbol{U}(2)$ or $V_{n, 2} / \boldsymbol{U}(1) \times \boldsymbol{S} \boldsymbol{p}(1)$, and hence such cases do not happen by Proposition 3.7.

Consider the case (a). Since $\chi\left(F_{(2)}\right) \neq 0$ and the $\boldsymbol{S p}(2)$ action on $F_{(2)}$ is non-transitive, the restricted G action on $F_{(2)}$ has a fixed point, and
hence the natural projection $\pi_{1}:\left(V_{n, 2} \times F_{(2)}\right) / G \rightarrow V_{n, 2} / G$ has a cross-section s, where $G=\boldsymbol{U}(2)$ or $\boldsymbol{U}(1) \times \boldsymbol{S} \boldsymbol{p}(1)$. Consider the following commutative diagram:

where π_{1}, π_{2}, p, q are natural projections. We can express

$$
\pi_{2}^{*} e_{1}\left(\xi_{2}\right)=\alpha x^{2}+\beta x y+\gamma y^{2} ; x, y \in H^{2}(X), \alpha, \beta, \gamma \in \boldsymbol{Q} .
$$

Moreover we can express $s^{*} q^{*} x=\mu t, s^{*} q^{*} y=\nu t(\mu, \nu \in \boldsymbol{Q})$ for some non-zero element $t \in H^{2}\left(V_{n, 2} / G\right)$ because $\operatorname{rank} H^{2}\left(V_{n, 2} / G\right)=1$ by Lemmas 3.5, 3.6. Hence we obtain

$$
p^{*} e_{1}\left(\xi_{2}\right)=s^{*} \pi_{1}^{*} p^{*} e_{1}\left(\xi_{2}\right)=s^{*} q^{*} \pi_{2}^{*} e_{1}\left(\xi_{2}\right)=\delta t^{2},
$$

where $\delta=\alpha \mu^{2}+\beta \mu \nu+\gamma \nu^{2}$. Let $i: \boldsymbol{S p}(2) / G \rightarrow V_{n, 2} / G$ be the natural inclusion. Then $i^{*} t \neq 0$ and $i^{*} p^{*} e_{1}\left(\xi_{2}\right)=0$, and hence $\delta=0$, because $\boldsymbol{S p}(2) / G \sim \boldsymbol{P}_{3}(\boldsymbol{C})$. Thus we obtain $p^{*} e_{1}\left(\xi_{2}\right)=0$; this is a contradiction to the fact that p^{*} is injective. Therefore, the case (a) does not happen.

Consider the case (b). Since the $\boldsymbol{S p}(2)$ action on $F_{(2)}$ is non-transitive, the identity component of an isotropy group is conjugate to $\boldsymbol{S p}(1) \times \boldsymbol{S p}(1)$ or $\boldsymbol{S} \boldsymbol{p}(2)$. If the $\boldsymbol{S} \boldsymbol{p}(2)$ action on $F_{(2)}$ is trivial, then $X=V_{n, 2} / \boldsymbol{S p}(2) \times F_{(2)}$ and hence such a case does not happen by Lemma 3.4.

Suppose first that the $\boldsymbol{S} \boldsymbol{p}(2)$ action on $F_{(2)}$ has no fixed point. Denote by F the fixed point set of the restricted $\boldsymbol{S p}(1) \times \boldsymbol{S p}(1)$ action on $F_{(2)}$. Then we see that F is a closed orientable surface with $\chi(F)=4$ and F has at most two components. Therefore, $X=\left(V_{n, 2} / \boldsymbol{S p}(1) \times \boldsymbol{S p}(1)\right) \times \boldsymbol{S}^{2}$, and hence such a case does not happen by (3.2).

Suppose next that the $\boldsymbol{S p}(2)$ action on $F_{(2)}$ has a fixed point. Then we see that the fixed point set of the $\boldsymbol{S p}(2)$ action is one-dimensional by considering the isotropy representations. Let U be its closed invariant tubular neighborhood and denote by F^{\prime} the fixed point set of the restricted $\boldsymbol{S p}(1) \times \boldsymbol{S p}(1)$ action on $F_{(2)}-\operatorname{int} U$. Then we see that F^{\prime} is a compact orientable surface with $\chi\left(F^{\prime}\right)=4, F^{\prime}$ has at most two components and each component of F^{\prime} has a non-empty boundary. Such a case does not happen, because $\chi \leqq 1$ for each compact connected orientable surface with non-empty boundary.

Proposition 4.2. If $X_{(1)}$ is non-empty, then $X_{(2)}$ is empty.
Proof. Suppose that both $X_{(1)}$ and $X_{(2)}$ are non-empty. Then $X=$
$X_{(1)} \cup X_{(2)}$ and codim $F_{(1)}=8 n-8$, by Propositions 1.3, 1.4. Since $\operatorname{dim} X \leqq$ $8 n-6$, we obtain $\operatorname{dim} F_{(1)}=0$ or 2 .

Suppose first that the $\boldsymbol{S p}(1)$ action on $F_{(1)}$ is non-trivial. Then $\operatorname{dim} F_{(1)}=2$ and $X \sim \boldsymbol{P}_{2 n-1}(\boldsymbol{C}) \times \boldsymbol{P}_{2 n-2}(\boldsymbol{C})$. Considering the slice representation at a point of $F_{(1)}$, we see that the $\boldsymbol{S p}(n)$ action on X has a codimension one orbit, and hence X is a union of closed invariant tubular neighborhoods of just two non-principal orbits (cf. [10]). Calculating the Euler characteristics, we see that two non-principal orbits are $\boldsymbol{P}_{2 n-1}(\boldsymbol{C})$ and $V_{n, 2} / T^{2}$. Since codim $\boldsymbol{P}_{2 n-1}(\boldsymbol{C})=4 n-4$ in X, the inclusion $i: V_{n, 2} / T^{2} \rightarrow$ X induces an isomorphism $i^{*}: H^{2}(X) \rightarrow H^{2}\left(V_{n, 2} / T^{2}\right)$, and hence $x^{2 n-1} \neq 0$ for each non-zero element $x \in H^{2}(X)$ by Proposition 3.7. This is a contradiction.

Suppose next that the $\boldsymbol{S p}(1)$ action on $F_{(1)}$ is trivial. Considering the slice representation at a point of $F_{(1)}$, we see that the codimension of the principal orbit is equal to $1+\operatorname{dim} F_{(1)}$, for the $\boldsymbol{S p}(n)$ action on X. There are just two cases:
(d) $\operatorname{dim} F_{(1)}=0 ;(a, b)=(2 n-1,2 n-3)$ or $(2 n-2,2 n-2)$,

$$
(c, d)=(n-1,2 n-2)
$$

(e) $\operatorname{dim} F_{(1)}=2 ;(a, b)=(2 n-1,2 n-2)$.

Consider the case (d). The $\boldsymbol{S p}(n)$ action has a codimension one orbit. Calculating the Euler characteristics, we see that two non-principal orbits are $\boldsymbol{P}_{n-1}(\boldsymbol{H})$ and $V_{n, 2} / G$, where $G=\boldsymbol{U}(2)$ or $\boldsymbol{U}(1) \times \boldsymbol{S} \boldsymbol{p}(1)$, and the possibility remains only when $X \sim \boldsymbol{P}_{n-1}(\boldsymbol{H}) \times \boldsymbol{P}_{2 n-2}(\boldsymbol{C})$. \quad Since codim $\boldsymbol{P}_{n-1}(\boldsymbol{H})=4 n-4$ in X, the inclusion $i: V_{n, 2} / G \rightarrow X$ induces an isomorphism $i^{*}: H^{2}(X) \rightarrow$ $H^{2}\left(V_{n, 2} / G\right)$, and hence $x^{2 n-1} \neq 0$ for each non-zero element $x \in H^{2}(X)$ by Proposition 3.7. This is a contradiction.

Consider the case (e). The isotropy group is $\boldsymbol{S p}(n-1) \times \boldsymbol{S p}(1)$ at each point of $F_{(1)}$. Considering the slice representation at a point of $F_{(1)}$, we see that the principal isotropy group is $\boldsymbol{S} \boldsymbol{p}(n-2) \times K$, where K is a closed connected 3 -dimensional subgroup of $\boldsymbol{S p}(2)$. Denote by G the identity component of the normalizer of K in $\boldsymbol{S p}(2)$. Then G is conjugate to $\boldsymbol{U}(2)$ or $\boldsymbol{U}(1) \times \boldsymbol{S} \boldsymbol{p}(1)$. Suppose that the restricted G action on $F_{(2)}$ has a fixed point. Then the natural projection of $\left(V_{n, 2} \times F_{(2)}\right) / G$ to $V_{n, 2} / G$ has a cross-section. Since the inclusion $i: X_{(2)} \rightarrow X$ induces an isomorphism $i^{*}: H^{k}(X) \rightarrow H^{k}\left(X_{(2)}\right)$ for $k \leqq 4 n-6$, we obtain a contradiction by the same way as in the proof of Proposition 4.1. Therefore the $\boldsymbol{S} \boldsymbol{p}(n)$ action on $X_{(2)}$ has no singular orbit. Denote by T^{n} the standard maximal torus of $\boldsymbol{S p}(n)$. Since $X_{(1)}=\boldsymbol{P}_{n-1}(\boldsymbol{H}) \times F_{(1)}$ and the restricted T^{n} action on $X_{(2)}$ has no fixed point, we see that the fixed point set of the restricted T^{n} action on X is diffeomorphic to n copies of $F_{(1)}$, and hence $\chi\left(F_{(1)}\right)=\chi(X) / n=4 n-2$. Let U be a closed invariant tubular neigh-
borhood of $X_{(1)}$ in X. Put $E=X-\operatorname{int} U$, and $E_{(2)}=E \cap F_{(2)}$. Then E is an equivariant deformation retract of $X_{(2)}$, and $E_{(2)}$ is a compact connected orientable 10-manifold. Moreover the $\boldsymbol{S p}(n)$ action on $\partial E=\partial U$ has only one isotropy type $\boldsymbol{S p}(n-2) \times K$, and its orbit space is diffeomorphic to $F_{(1)}$. We shall evaluate the number of connected components of ∂E. Let $\boldsymbol{S} \boldsymbol{p}(1)$ be standardly embedded in $\boldsymbol{S p}(2)$. Considering the Gysin sequences for sphere bundles

$$
\begin{aligned}
& \boldsymbol{S p}(2) / \boldsymbol{S p}(1) \rightarrow\left(V_{n, 2} \times \boldsymbol{E}_{(2)}\right) / \mathbf{S p}(1) \rightarrow \boldsymbol{E}, \\
& \boldsymbol{S} \boldsymbol{p}(1) \rightarrow V_{n, 2} \times E_{(2)} \rightarrow\left(V_{n, 2} \times E_{(2)}\right) / \boldsymbol{S} \boldsymbol{p}(1),
\end{aligned}
$$

we obtain $\operatorname{rank} H^{9}\left(\left(V_{n, 2} \times E_{(2)}\right) / \boldsymbol{S p}(1)\right) \leqq 2$, rank $H^{\mathrm{B}}\left(\left(V_{n, 2} \times E_{(2)}\right) / \boldsymbol{S p}(1)\right) \leqq 4$, and hence $\operatorname{rank} H^{9}\left(V_{n, 2} \times E_{(2)}\right) \leqq 6$. Thus we obtain $\operatorname{rank} H^{0}\left(\partial E_{(2)}\right) \leqq 7$, by the cohomology exact sequence of the pair ($\left.E_{(2)}, \partial E_{(2)}\right)$ and the PoincaréLefschetz duality for $E_{(2)}$. Therefore the number of connected components of ∂E is at most seven, and hence the number of components of the closed surface $F_{(1)}$ is at most seven. This is a contradiction to $\chi\left(F_{(1)}\right)=$ $4 n-2$.
q.e.d.

Here we complete the proof of the main theorem stated in Introduction, by combining Theorems 2.5, 2.8 and Propositions 4.1, 4.2, in view of Section 1.
5. Proof of Lemmas. We shall give an outline of the proof of Lemmas 1.1, 1.2. The method used here is essentially due to Dynkin [6] (cf. [11, §7]).

Proof of Lemma 1.1. Let G be a closed connected subgroup of $\boldsymbol{S p}(n)$, and suppose $\operatorname{dim} \boldsymbol{S} \boldsymbol{p}(n) / G<8 n$. Notice that the inclusion $i: G \rightarrow$ $\boldsymbol{S p}(n)$ gives a symplectic representation of G.

Suppose first that the representation i is reducible, that is, there is a positive integer k such that $k \leqq n / 2$ and G is contained in $\boldsymbol{S p}(n-k) \times$ $\boldsymbol{S p}(\boldsymbol{k})$ up to an inner automorphism of $\boldsymbol{S p}(n)$. Then

$$
2 k n \leqq 4 k(n-k) \leqq \operatorname{dim} \boldsymbol{S} \boldsymbol{p}(n) / G<8 n
$$

Hence we obtain $k \leqq 3$. Let p_{1} (resp. p_{2}) be the natural projection of $\boldsymbol{S p}(n-k) \times \boldsymbol{S p}(k)$ onto $\boldsymbol{S p}(n-k)($ resp. $\boldsymbol{S p}(k))$. We obtain $\operatorname{dim} \boldsymbol{S p}(n-k) /$ $p_{1}(G)<8 n-4 k(n-k)$, because
$\operatorname{dim} \boldsymbol{S p}(n-k) / p_{1}(G) \leqq \operatorname{dim}(\boldsymbol{S p}(n-k) \times \boldsymbol{S} \boldsymbol{p}(k)) / G<8 n-4 k(n-k)$.
Sublemma. Suppose $p_{1}(G)=\boldsymbol{S p}(n-k)$ and $2 k<n$. Then $G=$ $\boldsymbol{S p}(n-k) \times K$ for some closed subgroup K of $\boldsymbol{S p}(k)$.

Proof. Let G^{\prime} be the kernel of the homomorphism $p_{2} \mid G$. Then
$p_{1}\left(G^{\prime}\right)$ is a positive dimensional normal subgroup of $\boldsymbol{S p}(n-k)=p_{1}(G)$, and hence $p_{1}\left(G^{\prime}\right)=\boldsymbol{S p}(n-k)$, because $\boldsymbol{S p}(n-k)$ is simple. Therefore $G=\boldsymbol{S p}(n-k) \times K$ for some closed subgroup K of $\boldsymbol{S p}(k)$. q.e.d.

We can assume that the inclusion $i_{1}: p_{1}(G) \rightarrow \boldsymbol{S} \boldsymbol{p}(n-k)$ is irreducible. Here we assume that the representation $i: G \rightarrow \boldsymbol{S p}(n)$ is irreducible and $\operatorname{dim} \boldsymbol{S p}(n) / G<8 n$ (i.e. $\operatorname{dim} G>2 n^{2}-7 n$) for $n \geqq 4$. In addition, suppose $\operatorname{dim} \boldsymbol{S p}(n) / G<32$ for $n=6, \operatorname{dim} \boldsymbol{S p}(n) / G<16$ for $n=5$ and $\operatorname{dim} \boldsymbol{S p}(n) / G<8$ for $n=4$. We shall show that $G=\boldsymbol{S} \boldsymbol{p}(n)$ under the above condition. This is the final step of the proof of Lemma 1.1.

Denote by $i_{c}: G \rightarrow U(2 n)$ the complexification of the quaternion representation i. If i_{c} is reducible, then

$$
2 n^{2}-7 n<\operatorname{dim} G \leqq \operatorname{dim} U(n)=n^{2},
$$

and hence $n \leqq 6$. But $\operatorname{dim} \boldsymbol{S} \boldsymbol{p}(6) / \boldsymbol{U}(6)=42>32$, $\operatorname{dim} \boldsymbol{S p}(5) / \boldsymbol{U}(5)=30>16$ and $\operatorname{dim} \boldsymbol{S p}(4) / \boldsymbol{U}(4)=20>8$. Therefore $i_{\boldsymbol{c}}$ is irreducible. Since $i_{\boldsymbol{C}}(G)$ is contained in $\boldsymbol{S} \boldsymbol{U}(2 n)$, we see that G is semi-simple.

Suppose that G is not simple. There are closed normal subgroups H_{1}, H_{2} of G and irreducible representations $r_{j}: H_{j} \rightarrow \boldsymbol{U}\left(n_{j}\right)$ such that the tensor product $r_{1} \otimes r_{2}$ is equivalent to $i_{c} p$, where $n=n_{1} n_{2}, n_{j} \geqq 2$ and $p: H_{1} \times H_{2} \rightarrow G$ is a covering projection. Since i_{c} has a quaternion structure, we can assume that (cf. [1, Proposition 3.56]) r_{1} has a real form and r_{2} has a quaternion structure. In particular,

$$
\operatorname{dim} G=\operatorname{dim} H_{1}+\operatorname{dim} H_{2} \leqq \operatorname{dim} \boldsymbol{O}\left(n_{1}\right)+\operatorname{dim} \boldsymbol{S} \boldsymbol{p}\left(n_{2} / 2\right)<n_{1}^{2} / 2+n_{2}^{2}
$$

Then we obtain $n \leqq 3$. This is a contradiction. Therefore G is simple.
Put $r=\operatorname{rank} G$, and denote by G^{*} the universal covering group of G. Denote by L_{1}, \cdots, L_{r} the fundamental weights of G^{*}. Then there is a one-to-one correspondence between complex irreducible representation of G^{*} and sequences (a_{1}, \cdots, a_{r}) of non-negative integers such that $a_{1} L_{1}+\cdots+a_{r} L_{r}$ is the highest weight of a corresponding representation (cf. [6, Theorems 0.8, 0.9]; [8, §21.2]). Denote by $d\left(a_{1} L_{1}+\cdots+a_{r} L_{r}\right)$ the degree of the complex irreducible representation of G^{*} with the highest weight $a_{1} L_{1}+\cdots+a_{r} L_{r}$. The degree can be computed by Weyl's dimension formula (cf. [6, Theorem 0.24, (0.148)-(0.155)]; [8, § 24.3]). Notice that if $a_{i} \geqq a_{i}^{\prime}$ for $i=1,2, \cdots, r$, then $d\left(a_{1} L_{1}+\cdots+a_{r} L_{r}\right) \geqq$ $d\left(a_{1}^{\prime} L_{1}+\cdots+a_{r}^{\prime} L_{r}\right)$ and the equality holds only if $a_{i}=a_{i}^{\prime}$ for $i=$ $1,2, \cdots, r$.

If G is an exceptional Lie group, then G^{*} has no complex irreducible representation of degree $2 n$ for each n such that $\operatorname{dim} G>2 n^{2}-7 n$. Therefore G is a classical Lie group.

Suppose $G^{*}=\boldsymbol{S} \boldsymbol{U}(r+1), r \geqq 1$. Then $\operatorname{dim} G=r^{2}+2 r$, and $r=$ $\operatorname{rank} G \leqq \operatorname{rank} \boldsymbol{S p}(n)=n$. Hence we obtain $n \leqq 8$ by the inequality

$$
2 n^{2}-7 n<r^{2}+2 r \leqq n^{2}+2 n
$$

The possibilities remain only when $(n, r)=(8,8),(7,7),(6,6),(6,5),(5,5)$, $(5,4),(4,4),(4,3)$ or $(4,2)$. We see that there is no possibility, by the value $\operatorname{dim} \boldsymbol{S p}(n) / \boldsymbol{S} \boldsymbol{U}(n)$ for $n \leqq 6$ and the fact that $\boldsymbol{S} \boldsymbol{U}(r+1)$ has no complex irreducible representation of degree $2 r$ for each $r \geqq 4$.

Suppose $G^{*}=\boldsymbol{\operatorname { S p i n }}(r), r \geqq 5$. Since $\operatorname{dim} G<\operatorname{dim} \boldsymbol{\operatorname { S p }}(n)$, we obtain $(2 n-3)(2 n-4)-12<r(r-1)<2 n(2 n+1)$. Thus we obtain $r=2 n-3$, $2 n-2,2 n-1$ or $2 n$. By Weyl's formula, we see that $\operatorname{Spin}(2 n-1)$ for $n \geqq 5$, $\boldsymbol{S p i n}(2 n-3)$ and $\boldsymbol{\operatorname { S p i n }}(2 n-2)$ have no complex irreducible representation of degree $2 n, \boldsymbol{\operatorname { S p i n }}(2 n)$ has only one complex irreducible representation $\rho_{2 n}^{c}$ of degree $2 n$ for $n \geqq 5, \operatorname{Spin}(8)$ has just three complex irreducible representations $\rho_{8}^{c}, \Delta_{8}^{+}$and Δ_{8}^{-}of degree 8 , and $\operatorname{Spin}(7)$ has only one complex irreducible representation Δ_{7} of degree 8. But $\rho_{2 n}^{c}, \Delta_{8}^{+}, \Delta_{8}^{-}$and Δ_{7} have real forms, and hence they have no quaternion structure.

Suppose $G^{*}=\boldsymbol{S p}(r), 3 \leqq r<n$. Then we obtain $r=n-2$ or $n-1$. But $\boldsymbol{S p}(r)$ has no complex irreducible representation of degrees $2 r+2$ and $2 r+4$.

This completes the proof of Lemma 1.1.
Proof of Lemma 1.2. By Weyl's formula, we see that there is no complex irreducible representation of $\boldsymbol{S p}(r)$ of degree $<8 r$ except for the natural inclusion $\left(\nu_{r}\right)_{c}: \boldsymbol{S p}(r) \rightarrow \boldsymbol{U}(2 r)$. This fact assures the desired result.
q.e.d.

References

[1] J. F. Adams, Lectures on Lie groups, Math. Lecture Note Ser. Benjamin, New York, 1969.
[2] A. Borel, Sur la cohomologie des espaces fibres principaux et des espaces homogenes de Lie compacts, Ann. of Math. 57 (1953), 115-207.
[3] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538.
[4] R. Вотт, Lectures on $K(X)$, Math. Lecture Note Ser. Benjamin, New York, 1969.
[5] G. E. Bredon, The cohomology ring structure of a fixed point set, Ann. of Math. 80 (1964), 524-537.
[6] E. B. Dynkin, The maximal subgroups of the classical groups, Translations of Amer. Math. Soc. 6 (1957), 245-378.
[7] W. C. Hsiang and W. Y. Hsiang, Differentiable actions of compact connected classical groups I, Amer. J. Math. 89 (1967), 705-786.
[8] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Math. Springer-Verlag, Berlin-Heidelberg-New York, 1972.
[9] F. Uchida, Compact transformation groups and fixed point sets of restricted action to maximal torus, Osaka J. Math. 12 (1975), 597-606.
[10] F. Uchida, Classification of compact transformation groups on cohomology complex projective spaces with codimension one orbits, Japan. J. Math. 3 (1977), 141-189.
[11] F. Uchida, Real analytic $\boldsymbol{S L}(n, \boldsymbol{R})$ actions on spheres, Tôhoku Math. J. 33 (1981), 145-175.
[12] F. Uchida, Actions of special unitary groups on a product of complex projective spaces, Osaka J. Math. to appear.
[13] F. Uchida, On the non-existence of smooth actions of complex symplectic group on cohomology quaternion projective spaces, Hokkido Math. J. to appear.
[14] F. Uchida, Actions of symplectic groups on a product of quaternion projective spaces, to appear.

Department of Mathematics and Department of Mathematics
International Christian University
Mitaka, Tokyo 181
Japan
Faculty of Science
Yamagata University
Yamagata 990
Japan

