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1. Introduction. Let 2 be a bounded domain of the Euclidean space

R* with appropriately regular boundary 02. We consider the classical
fixed vibrating membrane problem:

du =M uon 2 and w =0 on 0.

Here 4 is the standard Laplacian —>7.,0%0(x;)? of the Euclidean space

R*. Let A\, <N --- SN ¢ -+ 1 oo} be the eigenvalues of this problem
counted with their multiplicities.

G. Polya conjectured (cf. [8])
(1.1) N = C, Vol (2)~"k¥ for every &k,

which was proved by him in case of space-covering domains 2. That
is, an infinity of domains congruent to 2 cover the whole space R
without gaps and without overlapping except a set of measure zero.
Here the positive constant C, is 47°w;”", w, = n"*/I'(n/2) + 1) is the
volume of the unit ball and Vol () is the volume of 2. The conjecture
of Polya is closely related to H. Weyl’s asymptotic formula (cf. [10])

1.2) M~ C, Vol (2)"k¥ as k— oo,

which shows the sharpness of Pdlya’s bounds for higher eigenvalues.

E. H. Lieb [5] has showed that (1.1) is true when C, is replaced by
a smaller constant D;¥" where D;** = C,x0.2773 and D, = 0.1156. Re-
cently S. Y. Cheng and P. Li (ef. [11, p. 22]) showed

(1.3) A= A, Vol (2)"¥"k¥ for every k,

which is valid for general compact riemannian manifold with smooth
boundary. Here the constant A, is 2¢n7'e™¥", ¢ =¢" (n—2)/(2n—2))* and
¢’ is the Sobolev constant nw}" which satisfies the inequality Vol (62)" =
¢" Vol (2)~'. It should be noted that the constant A, is asymptotically
e 27'n7! as m — oo,

In this paper, we show the following:

THEOREM 1. For every eigenvalue N\, of the fixed vibrating membrane
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problem for a bounded domain 2 in the Euclidean space R", we have
(1.4) A = C, Vol (2)~¥"k¥6 ,(2)¥ ,

where the constant 0,(2) is the lattice packing demsity of 2 (cf. [9, p.
22] or §2).

Here we note some remarks for the constant §,(2) of the inequality
(1.4).

REMARK 1. For space-covering domains 2, §,(2) = 1. Theorem 1 can
be regarded as a natural generalization of Pdlya’s result.

REMARK 2. For convex bounded domains Q in R", it is known (cf.
[9, p. 10]) that

(1.5) 0.(2) =2 2(n!)’/(2n)! .
In particular, when n = 2,
(1.6) 0.(2)=3/4=0.75 (cf. [12]).

Since the right hand side of (1.5) is asymptotically 2(zn)"?4=" (cf. [9, p.
10]) as n — «, we have

a.7m 0,2 = 2n!)*(2n)!)"" ~ 1/16 = 0.0625 as 7 —> oo ,

which shows the sharpness of (1.4) for large mu.

REMARK 3. For a symmetrical (i.e.,—x€ 2 whenever £€ 2) convex
bounded domain £,

(1.8) 0,(Q) Z Lm)/2r,  L(m) = Zk .

When n = 3, for all symmetrical convex bounded domains 2 in R?,
1.9) 0,(2)”® = 0.4486 ,

which is sharper than the constant of Lieb in this case.

2. Lattice packing of bounded domain.

2.1. Following Rogers [9], we explain the lattice packing density
0,(Q) for a bounded domain Q in the Euclidean space R". If {a,, ---, a,}
is a basis of R", the set 4 = A(a,, -+, @,) of all vectors of the form

 omameZ 1=1,---,n)is called a lattice. Let {a,, a,, : -, @, @iy
---} be an enumeration of the points of 4. A system Z = Z,, consisting
of the translates 2 + a, = {x + a;; x€ 2} of a given bounded domain £
is called a lattice packing of 2 with lattice 4 when Q + a,N2 +a; = @
(¢ # 7). For such a lattice packing Z, put
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0(Z,C) =Vol(C)" 3 Vol(2+a),

(@+e)NC*x3
where C is a cube in R" with the edge length s(C). Define
0(Z) =limsupp(Z,C)< 1.
8(C)—oo

The lattice packing demsity 6,(2) (cf. [9, p. 24]) of Q is defined by
0,(Q) = sup o(Z),

the supremum being taken over all lattice packings Z of the set 9.

2.2. Translating a bounded domain 2 in R", we may assume the
origin o of R" belongs to 2. For a small positive constant &, put 2, =
{hxz; x€ 2}. Then

(2.1) Vol (24) = h" Vol (2) .

Let K be the open unit cube {xe R"; |x,| < 1/2 (i =1, -+-,n}in R*. For
a lattice packing Z,, of 2, with lattice 4 = Alay, -+, a,), let Q(h, 4)
be the union of 2, +a;, (i =1,2, ---) which are included in K (see
Figure 1).
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FIGURE 1. Lattice packing Z4,» of 2, and 2(h, A).

Let m(h, 4) be the number of 2, + a, (i =1,2, ---) being included
in K. For a small positive number &, define
m(h) = sup m(h, 4) ,
ZA,n

where the supremum is taken over all lattice packings Z;, of 2,. Then
it is clear that

2.2) lim m(h) = oo .

h—0

Moreover we have:
(2.3) lin}} sup sup Vol (2(k, 4)) = 6,(2),
- ZA,p
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where the supremum is taken over all lattice packings Z,, of 2,.
REMARK. It seems that the above inequality is in fact the equality.

Proor oF (2.3). By (2.1), the left hand side of (2.8) coincides with

lim sup sup Vol (l K)
r—0 z h

) Q+a;C(1/mK

Vol (2 + a,),

where Z varies over all lattice packings of 2 and (1/a)K = {(1/h)x; x € K}.
Then we have

sup Vol (_}1: K>_1 Vol (2 + a)) = Vol (% K>_1 S Vol (2 + b))

R+a;C(1/B)K 2+b;C(1/R) K

> Vol <%K>_l Vol (2 + b,) — h"{2ns([))<% + 2s(Q)>H} ,

2+b5;n /M K% @

for any lattice packing Z, of 2 with lattice 4" = A(b,, -+, b,). Here
s(Q) is the length of the edge of any fixed cube including 2. Therefore
the left hand side of (2.3) is not less than

. 1\ B
lim sup Vol <% K) S VoL@ +b) = ()

h—0

for any lattice packing Z, of Q2 with lattice 4’ = A(b,, ---,b,). Thus we

have (2.3).
Combining (2.1) and (2.3), we have immediately

(2.4) 1;,1331 m(h)h" = 6,(2) Vol (2)7* .

3. Proof of Theorem 1. Let 2 be any bounded domain in R*. We
preserve the notations and situations in §2.
For the k-th eigenvalue \,(2) of the fixed vibrating membrane

problem for 2, it is well-known that
(3.1) lim M(K)k™¥ = C,, and
k—oo

3.2) M(23) =h7N(2), B=1,2,---,

for every positive number h. Moreover for every lattice packing Z,,
of @, with lattice 4, we have

(3.3) Neman, 0n(K) = N(2,) for every k=1,2,---,
because of the inequalities

M, 1K) = Neman, 0 (2(Ry 4)) = Mi(25)
by [3, p. 408, Theorem 2]. Therefore we have
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3.3) Mimai(K) = M(25)

Then we obtain
M(Q) = Bn(2y)  (by (3.2))
Z MNimay(K)  (by (3.37)
= Niemny (K)(bm(R)) =" (km(h))* " h?

forall k=1,2, --- and » > 0. Letting h—0 on the right hand side of
the above inequality, we have

1m N (K)o ()™ (e ()R

_ { lim )»,m(,,,(K)(km(h))“”"} {nm m(h)”"h2}k2/"
h—0 h—0
> C. Vol ()", (@)™

by (2.2), (3.1) and (2.4). Thus we have Theorem 1.
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