
T6hoku Math. Journ.
36(1984), 175-183.

REFLECTION GROUPS AND THE EIGENVALUE PROBLEMS
OF VIBRATING MEMBRANES WITH MIXED

BOUNDARY CONDITIONS

HAJIME URAKAWA

(Received March 18, 1983)

Introduction. Throughout this paper, (Af, g) is an ^-dimensional
space form of constant curvature, that is, the Euclidean space Rn, the
standard sphere Sn or the hyperbolic space Hn. Let A be the (non-
negative) Laplacian of (Af, g). Let Q be a bounded domain in Af with
an appropriately regular boundary dQ. For an arbitrary fixed real
number p, let us consider the following boundary value eigenvalue
problem:

Af = \f in Q,

/ = 0 on Tlf and

Kdf/dn = pf a.e. F2, i.e., where the exterior normal n of F2 is defined.

Here the boundary dQ is a disjoint union of F1 and F2. It is called (cf.
[B, p. 91]) to be

(D) the fixed membrane problem if F2 = 0 ,
(N) the free membrane problem if F1 — 0 , or
(Mp) the membrane problem of mixed boundary conditions if Fx ¥=• 0

and r 2 =£ 0 .
It is well known that each problem has a discrete spectrum of the
eigenvalues with finite multiplicity. We denote by Spec^OO), Spec^(i2)
and Spec^(i2), the spectra of the problems (D), (N) and (Af,), respectively.

One of the important problems of the spectra is to research how the
spectra Speci)(i2), Spec#(42) or Spec^ (i2) reflect the shape of Q. In his
paper [K], M. Kac posed the following problem:

For two bounded domains Q, Q in Rn {n ^ 2), assume that Specp(fi) =
Spec^CO). Are the domains Q,Q congruent in Rn1

Here two domains Q, Q are congruent in the space form (Af, g) if there
exists an isometry 0 of (Af, g) such that 0{Q) = Q. Note that Q, Q are
isometric with respect to the induced metrics from (Af, g) if and only if
they are congruent in (Af, g) because of simple connectedness of M (cf.
[K.N., p. 252]).
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In the paper [U], we gave the following answer:

THEOREM A (cf. [U, Theorem 4.4]). There exist two domains Q, Q
in Rn (n ^ 4) suck that

Specp (42) = Spec,, (42) and Spec^ (42) = Spec^ (Q) ,

but Q and Q are not congruent in Rn.

THEOREM B (cf. [U, Theorem 3.8] and Proposition 3.1, §3). There
exist two domains Q, Q in Sn~l (n ^ 4) such that

Spe^ (42) = Spec^ (Q) and Spec^ (42) = Spec^ (3) ,

but Q and Q are not congruent in Sn~\

In this paper, we give the following:

THEOREM C (cf. §2). Let (M, g) be an n-dimensional simply connected
space form of constant curvature. Assume that n ^ 4. Then there exist
two domains 42, Q in (M, g) and disjoint subsets Fu F2 (resp. Flf F2) of
dQ (resp. 342) such that

i2) = Spec^CG), Spec^(i2) = Spec^(fi) and

c ^ (Q) = SvecMp(Q) for each real number p ,

but Q and Q are not congruent in (Jkf, g). Here Spec^^ (Q) (resp. Specif^(i3))
are the spectra of the membrane problem (Mp) of the mixed boundary
conditions for Q, Fx and F2 (resp. Q, Fx and F2).

1. Preliminaries. Let (M, g) be an ^-dimensional simply connected
space form of constant curvature. Fix an origin o of M. Let exp:
T0M —> M be the exponential mapping of (M, g) from the tangent space
T0M of M a t o i n t o M. L e t Sn~l = {coe T0M; \\a)\\ = 1}, w h e r e | | - | | is

the norm of T0M induced from the Riemannian metric g on M. We
give the geodesic polar coordinate (r, co) e R+ x S71'1 around the origin o
of M by

ft) = co(p) = exp"1 (p) e S71'1 , and r = r(p) = dip, p) ,
r{p)

which is valid in M — {o} in case of M = Rn or Hn, or M — {o, o}, (o the
antipodal point of o in Sn) in case of M = Sn. Here d(p, q), p, qeM, is
the geodesic distance between p and q in (M, g). Let g0 be the Rieman-
nian metric on Si71"1 = {cos T0M; ||a)|| = 1} of constant curvature 1 induced
from the inner product g on TQM. I t is well known that the Riemannian
metric g can be expressed using the geodesic polar coordinate (r, co) as
follows:
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(1.1) g = dr* + (S

Here the function Sn(r) of r is

, if M=Rn,
Sn(r) - sin (r) , if M = Sn , or

sinh (r) , if M = Hn .

Then the volume element dv is

(1.2) dv = (Sn (rW-'drdco ,

where do) is the volume element of (Sn~\ g0). The (non-negative) Laplacian
A = - S i , i f " ( 3 2 W ^ i - ^kTijd/dXk), can be expressed by

(1.3) A = -32/dr2 - (n - l)Ct (r)3/3r + (Sn(r))"2J5 ,

where (gr*O is the inverse of the matrix (giS), gtj = g(d/dxif d/dXj), (xlf •••,»„)
is a local coordinate, F\$ are the Christoffel symbols, the function Ct(r)
of r is

1/r , if M=Rn,

• cot (r) , if M = Sn , or

coth (r) , if M= Hn ,

and 4? is the (non-negative) Laplacian of (Sn~\ g0).

2. Reduction of Theorem C to Theorem B. Throughout this paper,
we consider the truncated cone De in (M, g) as follows: For 0 < e < e±

and a domain d in the unit sphere S71"1 of the tangent space T0M, let
D£ = {exp(ro>); £<r<£!, cos CJ, where the number ex is 1 if Jfcf = iJn, ZTn

or 7r/2 if M = 571. Then the boundary 8De of De in M is given by

3De = exp (ed) U exp (Sxd) U {exp (ro>); £ ̂  r ^ ŝ  oo e 3CJ ,

where 3d is the boundary of d in S71"1. Put

rx = {exp (ro>); £ ̂  r ^ elf a) € 3d} > and
T2 = exp(£d) U exp fed) (cf. Figure 1).

Let us consider the following problems for the truncated cones D£:

(Af = Xf in A ,
{D)\f=0 on dDt,

(Af=Xf in A ,
\df/dn = 0 a.e. dDe ,
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0

FIGURE 1. The domain De and the boundary dDe.

Af = Xf in A f
(Hf,)'/=O on A ,

df/dn = jO/ a.e. JT2 >
where d/3n is the derivative with respect to the exterior normal unit
vector of dDe. Then we have the following:

THEOREM 2.1. For 0 < e < et and two domains Clf d in S71'1, define
the truncated cones A, A by

A = {exp(ro>); Kr<£i ,o)eC1},
A = {exp (rco); e < r < eu Q) e Cj] , respectively.

(i) 1/ Spec2?(d) = SpecjD(d)> tfeew we have

Spec,, (A) = Spec,, (£>,) a îd Spec^ ̂  (A) = Spec^^ (A)
/or eacfc real number p.

(ii) 1/ Spec^d) = Spec^d), then we have Spec^(A) = Spec^CA)-
fliere Spec^d) (reap. SpeciNr(d)) stands for the spectrum of the fixed (resp.
free) membrane problem of the Laplacian As for a domain d in Sn~\

Theorem C follows from Theorem 2.1 because of Theorem B. In
fact, two truncated cones A, A are congruent in (M, g) if and only if
d, d are congruent in (Sn~\ g0). Theorem 2.1 follows from Proposition
2.2, which is proved in §4.

PROPOSITION 2.2. For 0<e<£! and a domain d in Sn~\ let A be
the truncated cone as in Theorem 2.1. Then we have the following:

(i) The spectra Spec^(A) and Spec^(A) depend only upon e and
Speca(d).

(ii) The spectrum Spec^(A) depends only upon e and

3. Case of spherical domains.
3.1. In this section, we generalize Theorem B, which is proved in
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[U]. We preserve the notations as in [U].
Let (E, ( , )) be the ^-dimensional Euclidean space. Let (W, E) be

a finite reflection group acting essentially on E (cf. [U] or [B.N]). We
assume that (W, E) is a direct product of two reflection groups (W{i), E{i)),
i = l,2, that is, W =W{1) x T7(2), E = E{1) x E{2), (direct product). Put
n{i) = dimEWf i = 1, 2. We choose and fix a chamber C of (W, E). Then
it is given by C = Ca) x C(2), where C«> is a chamber of (W(i)f Ew). Let
^ . } = {Hj

{i); j = l, • • •, ^(Oj be the set of all walls Hft) of the chamber
C(i), i = l,2. We consider the spherical domain C1 = Cr\Sn~1

9 where
S»-i = {a) e # ; || a) || = 1}, || a) || = l/(o>, a)). The boundary 3 d of d in S71"1

is 3 d = 1^11 JP2- Here

(the closure in S71""1) and

= (C{1)xdC{2))f]Sn

where 3C(i) is the boundary of the chamber C(i) in ^ ( i ) f i = 1, 2.
Let us consider the following membrane problem of mixed boundary

conditions.

(3.1)

*AaW = XW in d ,

W = 0 on F n and

W/dn = 0 a.e. F2, i.e., where the exterior normal n of F2

in 571"1 is defined.

FIGUER 2. Membrane problem with free condition for the dotted
set and fixed condition for the dark lined set.
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As an example, let W = I2(p) x Al (cf. [U]). We can choose a chamber
C of W as the domain in Figure 2, JP\ is the dark lined set and F2 is the
dotted set.

3.2. The method of Berard-Besson [B.B] is valid for the problem
(3.1). We sketch briefly how to determine the spectrum Spec^^CJ of
the membrane problem (3.1) of mixed boundary conditions.

Consider a C°° function / on Sn~l satisfying the conditions

(3.2) Asf = Xf in S71'1 , and

(3.3) w-f=s(w)f, weW,

where (w-f)(x) = f(w~\x))9 xeSn~\ weW, and e(w), weW, is given by

(3.4) e(w) = det w1 , w = (wlf w2) e W = W{1) x W(i) .

Then the restriction to C1 of / satisfies (3.1). Furthermore the set of
all restrictions to d of C°° eigenfunctions of As on S71"1 with the condition
(3.3) is dense in the space L2(CX) of all square integrable functions on Cx

with respect to the volume element da) of (Sn~~\ g0). Thus to determine
the spectrum Spec^ (d) of (3.1), we have only to consider the set of all
C°° eigenfunctions of As on Sn~l with (3.3).

The set of the eigenvalues of As on Sn~l is {k(k + n — 2); k = 0,1, 2, • • •}
and the corresponding eigenfunctions are given by the restrictions to Sn~l

of all harmonic polynomials in E. That is, for k = 0, 1, 2, • • •, let Pfc(-E)
be the set of all homogeneous polynomials in E of degree k, Hk(E) —
{PePk(E); AP = 0}, where A is the Laplacian of the standard Euclidean
space (E, g). Set

HkfW(E) = {Pe Hk(E); w P = e(w)P for all w e W) ,

where w-P(x) = P(w'\x))9 weW,xeE. Put hktW = dimHkfW(E), k = 0,
1, 2, • • •. Then the number &(& + n — 2) is really an eigenvalue of (3.1)
with multiplicity hktW if and only if hkfW =£ 0.

To determine all fefc>Wr, A; = 0, 1, 2, • • •, consider the Poincare series

where T is an indeterminate. Using the invariant theory of finite re-
flection group (cf. [B.N]), the series FW(T) can be determined as

(3.5) FW{T) = {1- T2)Tdi/fl (1 - Tm*+1) ,
3 = 1

where {mj-^ is the set of all the exponents of the reflection group W
and dx is the sum of all the exponents of the reflection group W(1).
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Thus we have:

PROPOSITION 3.1. Let W, W be two finite reflection groups acting
essentially on the same n-dimensional Euclidean space (E, ( , )). Assume
that (W, E), (W, E) are decomposed as

W = W{1) x Ww, E = Ea) x Ew; W = Wa) x W(2) , and E = #(1) x Bw .

C=C{1)xC{2), C=Ca)xC{2) be the chambers of W, W, respectively. Put
C C 1 . Set F1 = (

F1 = (3C(1) x C(2))nSn-1 and F2 = (C(1) x dC{2))nSn-\ Let Spec^CJ (resp.
Spec^ (CJ) 6e £/&e spectrum of the membrane problem (3.1) 0/ mixed
boundary conditions for (d, i*\, F2) (resp. (d, Fx, F2)).

(i) / / £/ie se£s 0/ aW £fte exponents of W, W and the sums of all the
exponents of W{1), W{1) coincide each other, then Spec^CO = Spec^CJ.

(ii) The domains Cu Cx are congruent in Sn~l if and only if the
Coxeter graphs of W, W coincide.

EXAMPLE 1. Let Wa) = ASf W& = A1 x G2; W{1) = G2, W{2) = A2 x B2.

Then these exponents are

T7 (1):l,2,3, W{2): 1,1,5,
W{1): 1, 5 , W{2): 1, 2, 1, 3 .

Thus the sets of all the exponents of W(1)xW(2) and W{1) x W{2), and the
sums of all the exponents of W[1)f W{1) coincide each other. But the
Coxeter graphs of W{1) x W2, W{1) x W{2) are different.

EXAMPLE 2. Let W{1) = A3 x Alf Wa) = A2x B2. Then the sets of
all the exponents of W{1) and W{1) coincide. For any reflection group W,
let W{2) = W{2) = W. Then W{1) x W{2) and Ww x W{2) give the examples
which satisfy the assumptions of Proposition 3.1.

4. Proof of Proposition 2.2. Proposition 2.2 can be proved in the
similar manner as Theorem 4.3 in [U].

Let SpeCp (CO = {\ <; X2 g • • •} be the spectrum of the fixed membrane
problem for the domain Cx in Sn~\ and {FJ°°=i the complete basis of
L\CU doo) such that

Wi = \^i in Clf

t = 0 on dC, .

Here L\CU dco) is the space of all square integrable functions on Cx with
respect to the volume element dco on S71'1. For each \t in SpecZ)(C1), let
Lh be the differential operator on the open interval (s, ej defined by
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(4.2) Lh = -d2/dr2 - (n - l)Ct (r)d/dr + ^Sn(r)"2 .

Note that the differential equation in (e, ej

(4.3) L;.<2> = j«0

is equivalent to the differential equation of Sturm-Liouville type:

(4.4) -r-fSn ( r )^ 1 -^-) - \ Sn (r)*"30 + JKI Sn {r)n-x0 = 0 .

Then we have:

LEMMA 4.1. For arbitrary fixed constants 0 <̂  a < TT, 0 < /3 ̂  %> let us
consider the boundary value problem (4.4) with the boundary conditions

j(sin a) Sn (e)—^'® - (cos a)«(e) = 0 ,

l ( i 3 ) S ( ) w - W ( ) ( s ^ f o ) = 0 .

i 6e tfce spectra of the boundary value problem (4.4) and (4.5),
i = 1, 2, • • •, an eigenfunction on (e, ej witfc tfee eigenvalue fify. Then
?=i ^ a complete basis of the space Ll(e, ej of all square integrable

functions on (e, ej w^fe respect to the volume element Sn (rY^dr.

PROOF. See [P, p. 508] or [Y, p. 109, Theorem 1].

Now for the complete basis {Wt)™=l of L\Clt doo) satisfying (4.1), and
the eigenfunctions 0]\ j = 1, 2, • • •, of (4.4) and (4.5) on (e, ej with the
eigenvalues fi]% define C00 functions 0)* 0 ¥t on D£ by

) , r e (s, sx), ft) 6 d .

Then the functions 0 ^ ® ? ^ on D£ satisfy, by (1.3),

and the following boundary conditions:

(Ofy ® Wi = 0 on {exp (ro>); e < r < ex, ft) 6

(sin a) Sn ( e ) " - 1 - ^ - ^ ® W%) - (cos a)(Pj* ® ¥i = 0 , on exp (eCJ , and
dn

(sin /3) Sn (sj71"1—(#J* ® ?"<) - (cos /3 )^ ® ^ = 0 , on exp (e^) .
dn

Moreover we have:

LEMMA 4.2. {$)* (g) Vt; i, j = 1, 2, • • •} is a complete basis of L\Dt).
Here L\D£) is the space of all square integrable functions on De with
respect to the volume element dv of (M, g) (see 1.2)).
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PROOF. I t can be proved by the same way as Lemma 4.2 in [U],
due to Lemma 4.1.

Due to Lemma 4.2, if we choose a = 0 and @ = TZ (resp. p =
Sn (e)1""1 cot a = Sn(s1)

1~wcot/3), as in Lemma 4.1, then the set {$*; i,
j = lf2, •••} gives the spectra SpeQD(D,) (resp. Spec* (Z),)). Thus we
prove (i) of Proposition 2.2. We can prove (ii) in the similar manner
as (i) making use of Lemma 4.1 for a = j3 — rc/2.
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