REFLECTION GROUPS AND THE EIGENVALUE PROBLEMS OF VIBRATING MEMBRANES WITH MIXED BOUNDARY CONDITIONS

Hajime Urakawa

(Received March 18, 1983)

Introduction. Throughout this paper, (M, g) is an n-dimensional space form of constant curvature, that is, the Euclidean space \boldsymbol{R}^{n}, the standard sphere \boldsymbol{S}^{n} or the hyperbolic space \boldsymbol{H}^{n}. Let Δ be the (nonnegative) Laplacian of (M, g). Let Ω be a bounded domain in M with an appropriately regular boundary $\partial \Omega$. For an arbitrary fixed real number ρ, let us consider the following boundary value eigenvalue problem:

$$
\begin{cases}\Delta f=\lambda f & \text { in } \Omega, \\ f=0 & \text { on } \Gamma_{1}, \text { and } \\ \partial f / \partial n=\rho f & \text { a.e. } \Gamma_{2}, \text { i.e., where the exterior normal } n \text { of } \Gamma_{2} \text { is defined. }\end{cases}
$$

Here the boundary $\partial \Omega$ is a disjoint union of Γ_{1} and Γ_{2}. It is called (cf. [B, p. 91]) to be
(D) the fixed membrane problem if $\Gamma_{2}=\varnothing$,
(N) the free membrane problem if $\Gamma_{1}=\varnothing$, or
$\left(M_{\rho}\right)$ the membrane problem of mixed boundary conditions if $\Gamma_{1} \neq \varnothing$ and $\Gamma_{2} \neq \varnothing$.
It is well known that each problem has a discrete spectrum of the eigenvalues with finite multiplicity. We denote by $\operatorname{Spec}_{D}(\Omega)$, $\operatorname{Spec}_{N}(\Omega)$ and $\operatorname{Spec}_{\boldsymbol{m}_{\rho}}(\Omega)$, the spectra of the problems $(D),(N)$ and $\left(M_{\rho}\right)$, respectively.

One of the important problems of the spectra is to research how the spectra $\operatorname{Spec}_{D}(\Omega), \operatorname{Spec}_{N}(\Omega)$ or $\operatorname{Spec}_{w_{\rho}}(\Omega)$ reflect the shape of Ω. In his paper [K], M. Kac posed the following problem:

For two bounded domains $\Omega, \widetilde{\Omega}$ in $\boldsymbol{R}^{n}(n \geqq 2)$, assume that $\operatorname{Spec}_{D}(\Omega)=$ $\operatorname{Spec}_{D}(\widetilde{\Omega})$. Are the domains $\Omega, \widetilde{\Omega}$ congruent in \boldsymbol{R}^{n} ?
Here two domains $\Omega, \widetilde{\Omega}$ are congruent in the space form (M, g) if there exists an isometry Φ of (M, g) such that $\Phi(\Omega)=\widetilde{\Omega}$. Note that $\Omega, \widetilde{\Omega}$ are isometric with respect to the induced metrics from (M, g) if and only if they are congruent in (M, g) because of simple connectedness of M (cf. [K.N., p. 252]).

In the paper [U], we gave the following answer:
Theorem A (cf. [U, Theorem 4.4]). There exist two domains $\Omega, \widetilde{\Omega}$ in $\boldsymbol{R}^{n}(n \geqq 4)$ such that

$$
\operatorname{Spec}_{D}(\Omega)=\operatorname{Spec}_{D}(\widetilde{\Omega}) \quad \text { and } \quad \operatorname{Spec}_{N}(\Omega)=\operatorname{Spec}_{N}(\widetilde{\Omega}) \text {, }
$$

but Ω and $\widetilde{\Omega}$ are not congruent in \boldsymbol{R}^{n}.
Theorem B (cf. [U, Theorem 3.8] and Proposition 3.1, §3). There exist two domains $\Omega, \widetilde{\Omega}$ in $S^{n-1}(n \geqq 4)$ such that

$$
\operatorname{Spec}_{D}(\Omega)=\operatorname{Spec}_{D}(\widetilde{\Omega}) \quad \text { and } \quad \operatorname{Spec}_{N}(\Omega)=\operatorname{Spec}_{N}(\widetilde{\Omega}),
$$

but Ω and $\widetilde{\Omega}$ are not congruent in \boldsymbol{S}^{n-1}.
In this paper, we give the following:
Theorem C (cf. §2). Let (M, g) be an n-dimensional simply connected space form of constant curvature. Assume that $n \geqq 4$. Then there exist two domains $\Omega, \widetilde{\Omega}$ in (M, g) and disjoint subsets Γ_{1}, Γ_{2} (resp. $\widetilde{\Gamma}_{1}, \widetilde{\Gamma}_{2}$) of $\partial \Omega$ (resp. $\partial \widetilde{\Omega})$ such that

$$
\begin{aligned}
& \operatorname{Spec}_{D}(\Omega)=\operatorname{Spec}_{D}(\widetilde{\Omega}), \operatorname{Spec}_{N}(\Omega)=\operatorname{Spec}_{N}(\widetilde{\Omega}) \text { and } \\
& \operatorname{Spec}_{\mu_{\rho}}(\Omega)=\operatorname{Spec}_{\mu_{\rho}}(\widetilde{\Omega}) \text { for each real number } \rho,
\end{aligned}
$$

but Ω and $\widetilde{\Omega}$ are not congruent in (M,g). Here $\operatorname{Spec}_{M_{\rho}}(\Omega)\left(\operatorname{resp} . \operatorname{Spec}_{M_{\rho}}(\widetilde{\Omega})\right.$) are the spectra of the membrane problem $\left(M_{\rho}\right)$ of the mixed boundary conditions for Ω, Γ_{1} and Γ_{2} (resp. $\widetilde{\Omega}, \widetilde{\Gamma}_{1}$ and $\widetilde{\Gamma}_{2}$).

1. Preliminaries. Let (M, g) be an n-dimensional simply connected space form of constant curvature. Fix an origin of M. Let exp: $T_{o} M \rightarrow M$ be the exponential mapping of (M, g) from the tangent space $T_{o} M$ of M at o into M. Let $S^{n-1}=\left\{\omega \in T_{o} M ;\|\omega\|=1\right\}$, where $\|\cdot\|$ is the norm of $T_{o} M$ induced from the Riemannian metric g on M. We give the geodesic polar coordinate $(r, \omega) \in \boldsymbol{R}^{+} \times \boldsymbol{S}^{n-1}$ around the origin o of M by

$$
\omega=\omega(p)=\frac{1}{r(p)} \exp ^{-1}(p) \in S^{n-1}, \quad \text { and } \quad r=r(p)=d(o, p)
$$

which is valid in $M-\{o\}$ in case of $M=\boldsymbol{R}^{n}$ or \boldsymbol{H}^{n}, or $M-\{0, \tilde{o}\}$, (\widetilde{o} the antipodal point of o in \boldsymbol{S}^{n}) in case of $M=\boldsymbol{S}^{n}$. Here $d(p, q), p, q \in M$, is the geodesic distance between p and q in (M, g). Let g_{0} be the Riemannian metric on $S^{n-1}=\left\{\omega \in T_{0} M ;\|\omega\|=1\right\}$ of constant curvature 1 induced from the inner product g on $T_{0} M$. It is well known that the Riemannian metric g can be expressed using the geodesic polar coordinate (r, ω) as follows:

$$
\begin{equation*}
g=d r^{2}+(\operatorname{Sn}(r))^{2} g_{0} \tag{1.1}
\end{equation*}
$$

Here the function $\operatorname{Sn}(r)$ of r is

$$
\operatorname{Sn}(r)= \begin{cases}\boldsymbol{r} & , \\ \text { if } \quad M=\boldsymbol{R}^{n}, \\ \sin (r), & \text { if } M=\boldsymbol{S}^{n}, \\ \sinh (r), & \text { if } \quad M=\boldsymbol{H}^{n} .\end{cases}
$$

Then the volume element $d v$ is

$$
\begin{equation*}
d v=(\operatorname{Sn}(r))^{n-1} d r d \omega \tag{1.2}
\end{equation*}
$$

where $d \omega$ is the volume element of $\left(S^{n-1}, g_{0}\right)$. The (non-negative) Laplacian $\Delta=-\sum_{i, j} g^{i j}\left(\partial^{2} / \partial x_{i} \partial x_{j}-\sum_{k} \Gamma_{i j}^{k} \partial / \partial x_{k}\right)$, can be expressed by

$$
\begin{equation*}
\Delta=-\partial^{2} / \partial r^{2}-(n-1) \operatorname{Ct}(r) \partial / \partial r+(\operatorname{Sn}(r))^{-2} \Delta_{s} \tag{1.3}
\end{equation*}
$$

where $\left(g^{i j}\right)$ is the inverse of the matrix $\left(g_{i j}\right), g_{i j}=g\left(\partial / \partial x_{i}, \partial / \partial x_{j}\right),\left(x_{1}, \cdots, x_{n}\right)$ is a local coordinate, $\Gamma_{i j}^{k}$ are the Christoffel symbols, the function $\mathrm{Ct}(r)$ of r is

$$
\left\{\begin{array}{ll}
1 / \boldsymbol{r} & ,
\end{array} \text { if } M=\boldsymbol{R}^{n}, \quad \text { if } \quad M=\boldsymbol{S}^{n}, \quad\right. \text { or }
$$

and Δ_{S} is the (non-negative) Laplacian of ($\boldsymbol{S}^{n-1}, g_{0}$).
2. Reduction of Theorem \mathbf{C} to Theorem B. Throughout this paper, we consider the truncated cone D_{ε} in (M, g) as follows: For $0<\varepsilon<\varepsilon_{1}$ and a domain C_{1} in the unit sphere S^{n-1} of the tangent space $T_{o} M$, let $D_{\varepsilon}=\left\{\exp (r \omega) ; \varepsilon<r<\varepsilon_{1}, \omega \in C_{1}\right\}$, where the number ε_{1} is 1 if $M=\boldsymbol{R}^{n}, \boldsymbol{H}^{n}$ or $\pi / 2$ if $M=S^{n}$. Then the boundary ∂D_{ε} of D_{ε} in M is given by

$$
\partial D_{\varepsilon}=\exp \left(\varepsilon C_{1}\right) \cup \exp \left(\varepsilon_{1} C_{1}\right) \cup\left\{\exp (r \omega) ; \varepsilon \leqq r \leqq \varepsilon_{1}, \omega \in \partial C_{1}\right\}
$$

where ∂C_{1} is the boundary of C_{1} in \boldsymbol{S}^{n-1}. Put

$$
\begin{aligned}
& \Gamma_{1}=\left\{\exp (r \omega) ; \varepsilon \leqq r \leqq \varepsilon_{1}, \omega \in \partial C_{1}\right\}, \quad \text { and } \\
& \Gamma_{2}=\exp \left(\varepsilon C_{1}\right) \cup \exp \left(\varepsilon_{1} C_{1}\right) \quad(\text { cf. Figure 1) } .
\end{aligned}
$$

Let us consider the following problems for the truncated cones D_{ε} :

$$
\left.\begin{array}{l}
\text { (D) }\left\{\begin{array}{ll}
\Delta f=\lambda f & \text { in } D_{\varepsilon}, \\
f=0 & \text { on }
\end{array} \partial D_{\varepsilon},\right.
\end{array}\right\} \begin{array}{ll}
\Delta f=\lambda f & \text { in } D_{\varepsilon}, \\
\partial f / \partial \boldsymbol{n}=0 & \text { a.e. } \partial D_{\varepsilon},
\end{array}
$$

Figure 1. The domain D_{ε} and the boundary ∂D_{ε}.

$$
\left(M_{\rho}\right) \begin{cases}\Delta f=\lambda f & \text { in } \quad D_{\varepsilon} \\ f=0 & \text { on } \quad \Gamma_{1} \\ \partial f / \partial \boldsymbol{n}=\rho f & \text { a.e. } \quad \Gamma_{2},\end{cases}
$$

where $\partial / \partial n$ is the derivative with respect to the exterior normal unit vector of ∂D_{c}. Then we have the following:

Theorem 2.1. For $0<\varepsilon<\varepsilon_{1}$ and two domains C_{1}, \widetilde{C}_{1} in \mathbf{S}^{n-1}, define the truncated cones $D_{\varepsilon}, \widetilde{D}_{\varepsilon} b y$

$$
\begin{aligned}
& D_{\varepsilon}=\left\{\exp (r \omega) ; \varepsilon<r<\varepsilon_{1}, \omega \in C_{1}\right\}, \\
& \widetilde{D}_{\varepsilon}=\left\{\exp (r \omega) ; \varepsilon<r<\varepsilon_{1}, \omega \in \widetilde{C}_{1}\right\}, \quad \text { respectively. }
\end{aligned}
$$

(i) If $\operatorname{Spec}_{D}\left(C_{1}\right)=\operatorname{Spec}_{D}\left(\widetilde{C}_{1}\right)$, then we have

$$
\operatorname{Spec}_{D}\left(D_{\varepsilon}\right)=\operatorname{Spec}_{D}\left(\widetilde{D}_{\varepsilon}\right) \quad \text { and } \quad \operatorname{Spec}_{M_{\rho}}\left(D_{\varepsilon}\right)=\operatorname{Spec}_{\mu_{\rho}}\left(\widetilde{D}_{\varepsilon}\right)
$$

for each real number ρ.
(ii) If $\operatorname{Spec}_{N}\left(C_{1}\right)=\operatorname{Spec}_{N}\left(\widetilde{C}_{1}\right)$, then we have $\operatorname{Spec}_{N}\left(D_{\varepsilon}\right)=\operatorname{Spec}_{N}\left(\widetilde{D}_{\varepsilon}\right)$. Here $\operatorname{Spec}_{D}\left(C_{1}\right)\left(\right.$ resp. $\left.\operatorname{Spec}_{N}\left(C_{1}\right)\right)$ stands for the spectrum of the fixed (resp. free) membrane problem of the Laplacian Δ_{S} for a domain C_{1} in \mathbf{S}^{n-1}.

Theorem C follows from Theorem 2.1 because of Theorem B. In fact, two truncated cones $D_{c}, \widetilde{D}_{\varepsilon}$ are congruent in (M, g) if and only if C_{1}, \widetilde{C}_{1} are congruent in ($\boldsymbol{S}^{n-1}, g_{0}$). Theorem 2.1 follows from Proposition 2.2, which is proved in $\S 4$.

Proposition 2.2. For $0<\varepsilon<\varepsilon_{1}$ and a domain C_{1} in S^{n-1}, let D_{ε} be the truncated cone as in Theorem 2.1. Then we have the following:
(i) The spectra $\operatorname{Spec}_{D}\left(D_{\varepsilon}\right)$ and $\operatorname{Spec}_{M_{\rho}}\left(D_{\varepsilon}\right)$ depend only upon ε and $\operatorname{Spec}_{D}\left(C_{1}\right)$.
(ii) The spectrum $\operatorname{Spec}_{N}\left(D_{\varepsilon}\right)$ depends only upon ε and $\operatorname{Spec}_{N}\left(C_{1}\right)$.
3. Case of spherical domains.
3.1. In this section, we generalize Theorem B, which is proved in
[U]. We preserve the notations as in [U].
Let $(E,()$,$) be the n$-dimensional Euclidean space. Let (W, E) be a finite reflection group acting essentially on E (cf. [U] or [B.N]). We assume that (W, E) is a direct product of two reflection groups ($W_{(i)}, E_{(i)}$), $i=1,2$, that is, $W=W_{(1)} \times W_{(2)}, E=E_{(1)} \times E_{(2)}$, (direct product). Put $n_{(i)}=\operatorname{dim} E_{(i)}, i=1,2$. We choose and fix a chamber C of (W, E). Then it is given by $C=C_{(1)} \times C_{(2)}$, where $C_{(i)}$ is a chamber of ($W_{(i)}, E_{(i)}$). Let $\mathscr{M}_{(i)}=\left\{H_{(i)}^{j} ; j=1, \cdots, n_{(i)}\right\}$ be the set of all walls $H_{(i)}^{j}$ of the chamber $C_{(i)}, i=1,2$. We consider the spherical domain $C_{1}=C \cap S^{n-1}$, where $\boldsymbol{S}^{n-1}=\{\omega \in E ;\|\omega\|=1\},\|\omega\|=\sqrt{(\omega, \omega)}$. The boundary ∂C_{1} of C_{1} in S^{n-1} is $\partial C_{1}=F_{1} \cup F_{2}$. Here

$$
\begin{aligned}
& F_{1}=\left(\overline{\left.\partial C_{(1)} \times C_{(2)}\right) \cap S^{n-1}} \quad \text { (the closure in } \boldsymbol{S}^{n-1}\right) \text { and } \\
& F_{2}=\left(C_{(1)} \times \partial C_{(2)}\right) \cap S^{n-1}
\end{aligned}
$$

where $\partial C_{(i)}$ is the boundary of the chamber $C_{(i)}$ in $E_{(i)}, i=1,2$.
Let us consider the following membrane problem of mixed boundary conditions.

$$
\begin{cases}\Delta_{S} \Psi=\lambda \Psi & \text { in } C_{1}, \tag{3.1}\\ \Psi=0 & \text { on } F_{1}, \text { and } \\ \partial \Psi / \partial n=0 & \text { a.e. } F_{2}, \text { i.e., where the exterior normal } n \text { of } F_{2} \\ \text { in } S^{n-1} \text { is defined. }\end{cases}
$$

Figuer 2. Membrane problem with free condition for the dotted set and fixed condition for the dark lined set.

As an example, let $W=I_{2}(p) \times A_{1}$ (cf. [U]). We can choose a chamber C of W as the domain in Figure 2, F_{1} is the dark lined set and F_{2} is the dotted set.
3.2. The method of Bérard-Besson [B.B] is valid for the problem (3.1). We sketch briefly how to determine the spectrum $\operatorname{Spec}_{M_{0}}\left(C_{1}\right)$ of the membrane problem (3.1) of mixed boundary conditions.

Consider a C^{∞} function f on S^{n-1} satisfying the conditions

$$
\begin{align*}
\Delta_{s} f & =\lambda f \quad \text { in } \quad S^{n-1}, \quad \text { and } \tag{3.2}\\
w \cdot f & =\varepsilon(w) f, \quad w \in W, \tag{3.3}
\end{align*}
$$

where $(w \cdot f)(x)=f\left(w^{-1}(x)\right), x \in S^{n-1}, w \in W$, and $\varepsilon(w), w \in W$, is given by

$$
\begin{equation*}
\varepsilon(w)=\operatorname{det} w_{1}, \quad w=\left(w_{1}, w_{2}\right) \in W=W_{(1)} \times W_{(2)} \tag{3.4}
\end{equation*}
$$

Then the restriction to C_{1} of f satisfies (3.1). Furthermore the set of all restrictions to C_{1} of C^{∞} eigenfunctions of Δ_{S} on S^{n-1} with the condition (3.3) is dense in the space $L^{2}\left(C_{1}\right)$ of all square integrable functions on C_{1} with respect to the volume element $d \omega$ of $\left(\boldsymbol{S}^{n-1}, g_{0}\right)$. Thus to determine the spectrum $\operatorname{Spec}_{M_{0}}\left(C_{1}\right)$ of (3.1), we have only to consider the set of all C^{∞} eigenfunctions of Δ_{S} on S^{n-1} with (3.3).

The set of the eigenvalues of Δ_{S} on S^{n-1} is $\{k(k+n-2) ; k=0,1,2, \cdots\}$ and the corresponding eigenfunctions are given by the restrictions to \boldsymbol{S}^{n-1} of all harmonic polynomials in E. That is, for $k=0,1,2, \cdots$, let $P_{k}(E)$ be the set of all homogeneous polynomials in E of degree $k, H_{k}(E)=$ $\left\{P \in P_{k}(E) ; \Delta P=0\right\}$, where Δ is the Laplacian of the standard Euclidean space (E, g). Set

$$
H_{k, W}(E)=\left\{P \in H_{k}(E) ; w \cdot P=\varepsilon(w) P \quad \text { for all } \quad w \in W\right\}
$$

where $w \cdot P(x)=P\left(w^{-1}(x)\right), w \in W, x \in E$. Put $h_{k, W}=\operatorname{dim} H_{k, W}(E), k=0$, $1,2, \cdots$. Then the number $k(k+n-2)$ is really an eigenvalue of (3.1) with multiplicity $h_{k, w}$ if and only if $h_{k, W} \neq 0$.

To determine all $h_{k, W}, k=0,1,2, \cdots$, consider the Poincaré series

$$
F_{W}(T)=\sum_{k=0}^{\infty} h_{k, W} T^{k}
$$

where T is an indeterminate. Using the invariant theory of finite reflection group (cf. [B.N]), the series $F_{W}(T)$ can be determined as

$$
\begin{equation*}
F_{W}(T)=\left(1-T^{2}\right) T^{d_{1}} / \prod_{j=1}^{n}\left(1-T^{m_{j}+1}\right) \tag{3.5}
\end{equation*}
$$

where $\left\{m_{j}\right\}_{j=1}^{n}$ is the set of all the exponents of the reflection group W and d_{1} is the sum of all the exponents of the reflection group $W_{(1)}$.

Thus we have:
Proposition 3.1. Let W, \widetilde{W} be two finite reflection groups acting essentially on the same n-dimensional Euclidean space (E, (,)). Assume that $(W, E),(\widetilde{W}, E)$ are decomposed as

$$
W=W_{(1)} \times W_{(2)}, E=E_{(1)} \times E_{(2)} ; \quad \widetilde{W}=\widetilde{W}_{(1)} \times \widetilde{W}_{(2)}, \quad \text { and } \quad E=\widetilde{E}_{(1)} \times \widetilde{E}_{(2)}
$$

Let $C=C_{(1)} \times C_{(2)}, \widetilde{C}=\widetilde{C}_{(1)} \times \widetilde{C}_{(2)}$ be the chambers of W, \widetilde{W}, respectively. Put $C_{1}=C \cap \boldsymbol{S}^{n-1}, \widetilde{C}_{1}=\widetilde{C} \cap \boldsymbol{S}^{n-1} . \quad$ Set $F_{1}=\overline{\left(\partial C_{(1)} \times C_{(2)}\right) \cap \boldsymbol{S}^{n-1}}, F_{2}=\left(C_{(1)} \times \partial C_{(2)}\right) \cap \boldsymbol{S}^{n-1} ;$ $\widetilde{F}_{1}=\left(\overline{\left.\partial \widetilde{C}_{(1)} \times \widetilde{C}_{(2)}\right) \cap \boldsymbol{S}^{n-1}}\right.$ and $\widetilde{F}_{2}=\left(\widetilde{C}_{(1)} \times \partial \widetilde{C}_{(2)}\right) \cap \boldsymbol{S}^{n-1}$. Let $\operatorname{Spec}_{\mu_{0}}\left(C_{1}\right)$ (resp. $\operatorname{Spec}_{m_{0}}\left(\widetilde{C}_{1}\right)$) be the spectrum of the membrane problem (3.1) of mixed boundary conditions for (C_{1}, F_{1}, F_{2}) (resp. $\left(\widetilde{C}_{1}, \widetilde{F}_{1}, \widetilde{F}_{2}\right)$).
(i) If the sets of all the exponents of W, \tilde{W} and the sums of all the exponents of $W_{(1)}, \widetilde{W}_{(1)}$ coincide each other, then $\operatorname{Spec}_{M_{0}}\left(C_{1}\right)=\operatorname{Spec}_{\mu_{0}}\left(\widetilde{C}_{1}\right)$.
(ii) The domains C_{1}, \widetilde{C}_{1} are congruent in S^{n-1} if and only if the Coxeter graphs of W, \widetilde{W} coincide.

ExAMPLE 1. Let $W_{(1)}=A_{3}, W_{(2)}=A_{1} \times G_{2} ; \widetilde{W}_{(1)}=G_{2}, \widetilde{W}_{(2)}=A_{2} \times B_{2}$. Then these exponents are

$$
\begin{array}{ll}
W_{(1)}: 1,2,3, & W_{(2)}: 1,1,5, \\
\widetilde{W}_{(1)}: 1,5, & \widetilde{W}_{(2)}: 1,2,1,3 .
\end{array}
$$

Thus the sets of all the exponents of $W_{(1)} \times W_{(2)}$ and $\widetilde{W}_{(1)} \times \widetilde{W}_{(2)}$, and the sums of all the exponents of $W_{(1)}, \tilde{W}_{(1)}$ coincide each other. But the Coxeter graphs of $W_{(1)} \times W_{2}, \widetilde{W}_{(1)} \times \widetilde{W}_{(2)}$ are different.

Example 2. Let $W_{(1)}=A_{3} \times A_{1}, \widetilde{W}_{(1)}=A_{2} \times B_{2}$. Then the sets of all the exponents of $W_{(1)}$ and $\widetilde{W}_{(1)}$ coincide. For any reflection group W, let $W_{(2)}=\widetilde{W}_{(2)}=W$. Then $W_{(1)} \times W_{(2)}$ and $\widetilde{W}_{(1)} \times \widetilde{W}_{(2)}$ give the examples which satisfy the assumptions of Proposition 3.1.
4. Proof of Proposition 2.2. Proposition 2.2 can be proved in the similar manner as Theorem 4.3 in [U].

Let $\operatorname{Spec}_{D}\left(C_{1}\right)=\left\{\lambda_{1} \leqq \lambda_{2} \leqq \cdots\right\}$ be the spectrum of the fixed membrane problem for the domain C_{1} in S^{n-1}, and $\left\{\Psi_{i}\right\}_{i=1}^{\infty}$ the complete basis of $L^{2}\left(C_{1}, d \omega\right)$ such that

$$
\begin{cases}\Delta_{S} \Psi_{i}=\lambda_{i} \Psi_{i} & \text { in } \quad C_{1}, \tag{4.1}\\ \Psi_{i}=0 & \text { on } \partial C_{1} .\end{cases}
$$

Here $L^{2}\left(C_{1}, d \omega\right)$ is the space of all square integrable functions on C_{1} with respect to the volume element $d \omega$ on \boldsymbol{S}^{n-1}. For each λ_{i} in $\operatorname{Spec}_{D}\left(C_{1}\right)$, let $L_{\lambda_{i}}$ be the differential operator on the open interval $\left(\varepsilon, \varepsilon_{1}\right)$ defined by

$$
\begin{equation*}
L_{\lambda_{i}}=-d^{2} / d r^{2}-(n-1) \operatorname{Ct}(r) d / d r+\lambda_{i} \operatorname{Sn}(r)^{-2} \tag{4.2}
\end{equation*}
$$

Note that the differential equation in $\left(\varepsilon, \varepsilon_{1}\right)$

$$
\begin{equation*}
L_{\lambda_{i}} \Phi=\mu \Phi \tag{4.3}
\end{equation*}
$$

is equivalent to the differential equation of Sturm-Liouville type:

$$
\begin{equation*}
\frac{d}{d r}\left(\operatorname{Sn}(r)^{n-1} \frac{d \Phi}{d r}\right)-\lambda_{i} \operatorname{Sn}(r)^{n-3} \Phi+\mu \operatorname{Sn}(r)^{n-1} \Phi=0 \tag{4.4}
\end{equation*}
$$

Then we have:
Lemma 4.1. For arbitrary fixed constants $0 \leqq \alpha<\pi, 0<\beta \leqq \pi$, let us consider the boundary value problem (4.4) with the boundary conditions

$$
\left\{\begin{array}{l}
(\sin \alpha) \operatorname{Sn}(\varepsilon)^{n-1} \Phi^{\prime}(\varepsilon)-(\cos \alpha) \Phi(\varepsilon)=0, \tag{4.5}\\
(\sin \beta) \operatorname{Sn}\left(\varepsilon_{1}\right)^{n-1} \Phi^{\prime}\left(\varepsilon_{1}\right)-(\cos \beta) \Phi\left(\varepsilon_{1}\right)=0 .
\end{array}\right.
$$

Let $\left\{\mu_{j}^{\lambda_{i}}\right\}_{j=1}^{\infty}$ be the spectra of the boundary value problem (4.4) and (4.5), $\Phi_{j}^{\lambda_{i}}, j=1,2, \cdots$, an eigenfunction on $\left(\varepsilon, \varepsilon_{1}\right)$ with the eigenvalue $\mu_{j}^{\lambda_{i}}$. Then $\left\{\Phi_{j}^{\lambda_{i}}\right\}_{j=1}^{\infty}$ is a complete basis of the space $L_{2}^{2}\left(\varepsilon, \varepsilon_{1}\right)$ of all square integrable functions on $\left(\varepsilon, \varepsilon_{1}\right)$ with respect to the volume element $\operatorname{Sn}(r)^{n-1} d r$.

Proof. See [P, p. 508] or [Y, p. 109, Theorem 1].
Now for the complete basis $\left\{\Psi_{i}\right\}_{i=1}^{\infty}$ of $L^{2}\left(C_{1}, d \omega\right)$ satisfying (4.1), and the eigenfunctions $\Phi_{j}^{\lambda_{i}}, j=1,2, \cdots$, of (4.4) and (4.5) on ($\varepsilon, \varepsilon_{1}$) with the eigenvalues $\mu_{j}^{\lambda_{i}}$, define C^{∞} functions $\Phi_{j}^{\lambda_{i}} \otimes \Psi_{i}$ on D_{ε} by

$$
\Phi_{j}^{\lambda_{i}} \otimes \Psi_{i}(\exp (r \omega))=\Phi_{j}^{\lambda_{i}}(r) \Psi_{i}(\omega), \quad r \in\left(\varepsilon, \varepsilon_{1}\right), \omega \in C_{1} .
$$

Then the functions $\Phi_{j}^{\lambda_{i}} \otimes \Psi_{i}$ on D_{ε} satisfy, by (1.3),

$$
\Delta\left(\Phi_{j}^{\lambda_{i}} \otimes \Psi_{i}\right)=L_{\lambda_{i}} \Phi_{j}^{\lambda_{i}} \otimes \Psi_{i}=\mu_{j}^{\lambda_{i}} \Phi_{j}^{\lambda_{i}} \otimes \Psi_{i} \quad \text { in } \quad D_{\varepsilon},
$$

and the following boundary conditions:

$$
\left\{\begin{array}{l}
\Phi_{j}^{\lambda_{i}} \otimes \Psi_{i}=0 \quad \text { on }\left\{\exp (r \omega) ; \varepsilon<r<\varepsilon_{1}, \omega \in \partial C_{1}\right\} \\
(\sin \alpha) \operatorname{Sn}(\varepsilon)^{n-1} \frac{\partial}{\partial n}\left(\Phi_{j}^{\lambda_{i}} \otimes \Psi_{i}\right)-(\cos \alpha) \Phi_{j}^{\lambda_{i}} \otimes \Psi_{i}=0, \quad \text { on } \exp \left(\varepsilon C_{1}\right), \quad \text { and } \\
(\sin \beta) \operatorname{Sn}\left(\varepsilon_{1}\right)^{n-1} \frac{\partial}{\partial n}\left(\Phi_{j}^{\lambda_{i}} \otimes \Psi_{i}\right)-(\cos \beta) \Phi_{j}^{\lambda_{i}} \otimes \Psi_{i}=0, \quad \text { on } \exp \left(\varepsilon_{1} C_{1}\right)
\end{array}\right.
$$

Moreover we have:

Lemma 4.2. $\quad\left\{\Phi_{j}^{\lambda_{i}} \otimes \Psi_{i} ; i, j=1,2, \cdots\right\}$ is a complete basis of $L^{2}\left(D_{\varepsilon}\right)$. Here $L^{2}\left(D_{\varepsilon}\right)$ is the space of all square integrable functions on D_{ε} with respect to the volume element $d v$ of (M, g) (see 1.2)).

Proof. It can be proved by the same way as Lemma 4.2 in [U], due to Lemma 4.1.

Due to Lemma 4.2, if we choose $\alpha=0$ and $\beta=\pi$ (resp. $\rho=$ $\operatorname{Sn}(\varepsilon)^{1-n} \cot \alpha=\operatorname{Sn}\left(\varepsilon_{1}\right)^{1-n} \cot \beta$, as in Lemma 4.1, then the set $\left\{\mu_{j}^{\lambda_{i}} ; i\right.$, $j=1,2, \cdots\}$ gives the spectra $\operatorname{Spec}_{D}\left(D_{\varepsilon}\right)\left(\right.$ resp. $\left.\operatorname{Spec}_{\boldsymbol{m}_{\rho}}\left(D_{\varepsilon}\right)\right)$. Thus we prove (i) of Proposition 2.2. We can prove (ii) in the similar manner as (i) making use of Lemma 4.1 for $\alpha=\beta=\pi / 2$.

References

[B] C. Bandle, Isoperimetric Inequalities and Applications, Pitman, Boston, London, Melbourne, 1980.
[B.B] P. Berard and G. Besson, Spectres et groupes cristallographiques, II: domaines sphérique, Ann. Inst. Fourier, Grenoble, 30 (3) (1980), 237-248.
[B.N] N. Bourbaki, Groupes et algebres de Lie, Chapitres 4 à 6, Hermann, Paris, 1968.
[K] M. Kac, Can one hear the shape of a drum?, Amer. Math. Monthly 73 (1966), 1-23.
[K.N] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, I, Interscience Publ., New York, London, Sydney, 1963.
[P] H. Prüfer, Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Functionnen, Math. Ann. 95 (1926), 499-518.
[U] H. Urakawa, Bounded domains which are isospectral but not congruent, Ann. scient. Êcol. Norm. Sup. 15 (3) (1982), 441-456.
[Y] K. Yosida, Method of Solving Differential Equations (in Japanese), 2nd ed., Iwanami, Tokyo, 1978.

Department of Mathematics
College of General Education
Tôhoku University
Kawauchi, Sendai 980
Japan

