Tôhoku Math. Journ. 36 (1984), 175-183.

REFLECTION GROUPS AND THE EIGENVALUE PROBLEMS OF VIBRATING MEMBRANES WITH MIXED BOUNDARY CONDITIONS

HAJIME URAKAWA

(Received March 18, 1983)

Introduction. Throughout this paper, (M, g) is an *n*-dimensional space form of constant curvature, that is, the Euclidean space \mathbb{R}^n , the standard sphere \mathbb{S}^n or the hyperbolic space \mathbb{H}^n . Let Δ be the (non-negative) Laplacian of (M, g). Let Ω be a bounded domain in M with an appropriately regular boundary $\partial \Omega$. For an arbitrary fixed real number ρ , let us consider the following boundary value eigenvalue problem:

 $(\Delta f = \lambda f \quad \text{in } \Omega,$

$$f = 0$$
 on Γ_1 , and

 $\partial f/\partial n = \rho f$ a.e. Γ_2 , i.e., where the exterior normal n of Γ_2 is defined.

Here the boundary $\partial \Omega$ is a disjoint union of Γ_1 and Γ_2 . It is called (cf. [B, p. 91]) to be

(D) the fixed membrane problem if $\Gamma_2 = \emptyset$,

(N) the free membrane problem if $\Gamma_1 = \emptyset$, or

 (M_{ρ}) the membrane problem of mixed boundary conditions if $\Gamma_1 \neq \emptyset$ and $\Gamma_2 \neq \emptyset$.

It is well known that each problem has a discrete spectrum of the eigenvalues with finite multiplicity. We denote by $\operatorname{Spec}_{D}(\Omega)$, $\operatorname{Spec}_{N}(\Omega)$ and $\operatorname{Spec}_{M_{\rho}}(\Omega)$, the spectra of the problems (D), (N) and (M_{ρ}) , respectively.

One of the important problems of the spectra is to research how the spectra $\operatorname{Spec}_{D}(\Omega)$, $\operatorname{Spec}_{N}(\Omega)$ or $\operatorname{Spec}_{M_{\rho}}(\Omega)$ reflect the shape of Ω . In his paper [K], M. Kac posed the following problem:

For two bounded domains Ω , $\tilde{\Omega}$ in \mathbb{R}^n $(n \geq 2)$, assume that $\operatorname{Spec}_D(\Omega) = \operatorname{Spec}_D(\tilde{\Omega})$. Are the domains Ω , $\tilde{\Omega}$ congruent in \mathbb{R}^n ?

Here two domains Ω , $\tilde{\Omega}$ are congruent in the space form (M, g) if there exists an isometry Φ of (M, g) such that $\Phi(\Omega) = \tilde{\Omega}$. Note that Ω , $\tilde{\Omega}$ are isometric with respect to the induced metrics from (M, g) if and only if they are congruent in (M, g) because of simple connectedness of M (cf. [K.N., p. 252]).

H. URAKAWA

In the paper [U], we gave the following answer:

THEOREM A (cf. [U, Theorem 4.4]). There exist two domains $\Omega, \tilde{\Omega}$ in \mathbb{R}^n $(n \geq 4)$ such that

 $\operatorname{Spec}_{D}(\Omega) = \operatorname{Spec}_{D}(\widetilde{\Omega}) \quad and \quad \operatorname{Spec}_{N}(\Omega) = \operatorname{Spec}_{N}(\widetilde{\Omega}),$

but Ω and $\tilde{\Omega}$ are not congruent in \mathbb{R}^n .

THEOREM B (cf. [U, Theorem 3.8] and Proposition 3.1, §3). There exist two domains Ω , $\tilde{\Omega}$ in S^{n-1} $(n \ge 4)$ such that

$$\operatorname{Spec}_{D}(\Omega) = \operatorname{Spec}_{D}(\widetilde{\Omega}) \quad and \quad \operatorname{Spec}_{N}(\Omega) = \operatorname{Spec}_{N}(\widetilde{\Omega}),$$

but Ω and $\widetilde{\Omega}$ are not congruent in S^{n-1} .

In this paper, we give the following:

THEOREM C (cf. §2). Let (M, g) be an n-dimensional simply connected space form of constant curvature. Assume that $n \ge 4$. Then there exist two domains $\Omega, \tilde{\Omega}$ in (M, g) and disjoint subsets Γ_1, Γ_2 (resp. $\tilde{\Gamma}_1, \tilde{\Gamma}_2$) of $\partial \Omega$ (resp. $\partial \tilde{\Omega}$) such that

$$\operatorname{Spec}_{D}(\Omega) = \operatorname{Spec}_{D}(\widetilde{\Omega}), \operatorname{Spec}_{N}(\Omega) = \operatorname{Spec}_{N}(\widetilde{\Omega}) \quad and$$

 $\operatorname{Spec}_{M_{\alpha}}(\Omega) = \operatorname{Spec}_{M_{\alpha}}(\widetilde{\Omega}) \quad for \ each \ real \ number \ \rho$,

but Ω and $\widetilde{\Omega}$ are not congruent in (M, g). Here $\operatorname{Spec}_{M_{\rho}}(\Omega)$ (resp. $\operatorname{Spec}_{M_{\rho}}(\widetilde{\Omega})$) are the spectra of the membrane problem (M_{ρ}) of the mixed boundary conditions for Ω , Γ_1 and Γ_2 (resp. $\widetilde{\Omega}$, $\widetilde{\Gamma}_1$ and $\widetilde{\Gamma}_2$).

1. Preliminaries. Let (M, g) be an *n*-dimensional simply connected space form of constant curvature. Fix an origin o of M. Let exp: $T_oM \to M$ be the exponential mapping of (M, g) from the tangent space T_oM of M at o into M. Let $S^{n-1} = \{\omega \in T_oM; \|\omega\| = 1\}$, where $\|\cdot\|$ is the norm of T_oM induced from the Riemannian metric g on M. We give the geodesic polar coordinate $(r, \omega) \in \mathbb{R}^+ \times S^{n-1}$ around the origin oof M by

$$\omega=\omega(p)=rac{1}{r(p)}\mathrm{exp}^{-1}(p)\,\mathrm{e}\,S^{n-1}$$
 , and $r=r(p)=d(o,\,p)$,

which is valid in $M - \{o\}$ in case of $M = \mathbb{R}^n$ or \mathbb{H}^n , or $M - \{o, \tilde{o}\}$, (\tilde{o} the antipodal point of o in \mathbb{S}^n) in case of $M = \mathbb{S}^n$. Here d(p, q), $p, q \in M$, is the geodesic distance between p and q in (M, g). Let g_0 be the Riemannian metric on $\mathbb{S}^{n-1} = \{\omega \in T_0M; \|\omega\| = 1\}$ of constant curvature 1 induced from the inner product g on T_0M . It is well known that the Riemannian metric g can be expressed using the geodesic polar coordinate (r, ω) as follows:

(1.1)
$$g = dr^2 + (\operatorname{Sn}(r))^2 g_0.$$

Here the function Sn(r) of r is

$$\mathrm{Sn}\left(r
ight)=egin{cases}r&, ext{ if }&M=oldsymbol{R}^{n}\ \mathrm{sin}\left(r
ight)\ ,& ext{ if }&M=oldsymbol{S}^{n}\ \mathrm{sinh}\left(r
ight)\ ,& ext{ if }&M=oldsymbol{H}^{n}\ . \end{cases}$$

Then the volume element dv is

$$(1.2) dv = (\operatorname{Sn}(r))^{n-1} dr \, d\omega$$

where $d\omega$ is the volume element of (S^{n-1}, g_0) . The (non-negative) Laplacian $\Delta = -\sum_{i,j} g^{ij} (\partial^2 / \partial x_i \partial x_j - \sum_k \Gamma^k_{ij} \partial / \partial x_k)$, can be expressed by

(1.3)
$$\varDelta = -\partial^2/\partial r^2 - (n-1)\operatorname{Ct}{(r)}\partial/\partial r + (\operatorname{Sn}{(r)})^{-2}\varDelta_s$$
 ,

where (g^{ij}) is the inverse of the matrix (g_{ij}) , $g_{ij} = g(\partial/\partial x_i, \partial/\partial x_j)$, (x_1, \dots, x_n) is a local coordinate, Γ_{ij}^k are the Christoffel symbols, the function Ct(r) of r is

$$\begin{cases} 1/r & , ext{ if } M=oldsymbol{R}^n ext{ ,} \ \cot\left(r
ight) ext{ , ext{ if } } M=oldsymbol{S}^n ext{ , ext{ or }} \ \coth\left(r
ight) ext{ , ext{ if } } M=oldsymbol{H}^n ext{ ,} \end{cases}$$

and Δ_s is the (non-negative) Laplacian of (S^{n-1}, g_0) .

2. Reduction of Theorem C to Theorem B. Throughout this paper, we consider the truncated cone D_{ε} in (M, g) as follows: For $0 < \varepsilon < \varepsilon_1$ and a domain C_1 in the unit sphere S^{n-1} of the tangent space T_oM , let $D_{\varepsilon} = \{ \exp(r\omega); \varepsilon < r < \varepsilon_1, \omega \in C_1 \}$, where the number ε_1 is 1 if $M = \mathbb{R}^n$, \mathbb{H}^n or $\pi/2$ if $M = \mathbb{S}^n$. Then the boundary ∂D_{ε} of D_{ε} in M is given by

$$\partial D_{arepsilon} = \exp\left(arepsilon C_{1}
ight) \cup \exp\left(arepsilon_{1} C_{1}
ight) \cup \left\{\exp\left(r\omega
ight); \, arepsilon \leq r \leq arepsilon_{1}, \, \omega \in \partial C_{1}
ight\}$$
 ,

where ∂C_1 is the boundary of C_1 in S^{n-1} . Put

 $\Gamma_1 = \{ \exp(r\omega); \varepsilon \leq r \leq \varepsilon_1, \omega \in \partial C_1 \}$, and $\Gamma_2 = \exp(\varepsilon C_1) \cup \exp(\varepsilon_1 C_1)$ (cf. Figure 1).

Let us consider the following problems for the truncated cones D_{ϵ} :

$$(D)egin{cases} \Delta f = \lambda f & ext{in} \quad D_{\epsilon} \ , \ f = 0 & ext{on} \quad \partial D_{\epsilon} \ , \ (N)egin{cases} \Delta f = \lambda f & ext{in} \quad D_{\epsilon} \ , \ \partial f/\partial n = 0 & ext{a.e.} \quad \partial D_{\epsilon} \ , \end{cases}$$

177

FIGURE 1. The domain D_{ε} and the boundary ∂D_{ε} .

$$(M_
ho)egin{cases} \Delta f = \lambda f & ext{in} \quad D_arepsilon \ f = 0 & ext{on} \quad \Gamma_1 \ \partial f/\partial oldsymbol{n} =
ho f & ext{a.e.} \quad \Gamma_2 \ arepsilon \end{cases}$$

where $\partial/\partial n$ is the derivative with respect to the exterior normal unit vector of ∂D_{ϵ} . Then we have the following:

THEOREM 2.1. For $0 < \varepsilon < \varepsilon_1$ and two domains C_1 , \widetilde{C}_1 in S^{n-1} , define the truncated cones D_{ε} , $\widetilde{D}_{\varepsilon}$ by

(i) If $\operatorname{Spec}_{D}(C_{1}) = \operatorname{Spec}_{D}(\widetilde{C}_{1})$, then we have

 $\operatorname{Spec}_{\scriptscriptstyle D}(D_{\scriptscriptstyle \varepsilon}) = \operatorname{Spec}_{\scriptscriptstyle D}(\widetilde{D}_{\scriptscriptstyle \varepsilon}) \quad and \quad \operatorname{Spec}_{\scriptscriptstyle M_{\scriptscriptstyle D}}(D_{\scriptscriptstyle \varepsilon}) = \operatorname{Spec}_{\scriptscriptstyle M_{\scriptscriptstyle D}}(\widetilde{D}_{\scriptscriptstyle \varepsilon})$

for each real number ρ .

(ii) If $\operatorname{Spec}_N(C_1) = \operatorname{Spec}_N(\widetilde{C}_1)$, then we have $\operatorname{Spec}_N(D_i) = \operatorname{Spec}_N(\widetilde{D}_i)$. Here $\operatorname{Spec}_D(C_1)$ (resp. $\operatorname{Spec}_N(C_1)$) stands for the spectrum of the fixed (resp. free) membrane problem of the Laplacian Δ_s for a domain C_1 in S^{n-1} .

Theorem C follows from Theorem 2.1 because of Theorem B. In fact, two truncated cones D_{ϵ} , \tilde{D}_{ϵ} are congruent in (M, g) if and only if C_1 , \tilde{C}_1 are congruent in (S^{n-1}, g_0) . Theorem 2.1 follows from Proposition 2.2, which is proved in §4.

PROPOSITION 2.2. For $0 < \varepsilon < \varepsilon_1$ and a domain C_1 in S^{n-1} , let D_{ε} be the truncated cone as in Theorem 2.1. Then we have the following:

(i) The spectra $\operatorname{Spec}_{D}(D_{\varepsilon})$ and $\operatorname{Spec}_{M_{\rho}}(D_{\varepsilon})$ depend only upon ε and $\operatorname{Spec}_{D}(C_{1})$.

(ii) The spectrum $\operatorname{Spec}_{N}(D_{\varepsilon})$ depends only upon ε and $\operatorname{Spec}_{N}(C_{1})$.

3. Case of spherical domains.

3.1. In this section, we generalize Theorem B, which is proved in

[U]. We preserve the notations as in [U].

Let (E, (,)) be the *n*-dimensional Euclidean space. Let (W, E) be a finite reflection group acting essentially on E (cf. [U] or [B.N]). We assume that (W, E) is a direct product of two reflection groups $(W_{(i)}, E_{(i)})$, i = 1, 2, that is, $W = W_{(1)} \times W_{(2)}$, $E = E_{(1)} \times E_{(2)}$, (direct product). Put $n_{(i)} = \dim E_{(i)}$, i = 1, 2. We choose and fix a chamber C of (W, E). Then it is given by $C = C_{(1)} \times C_{(2)}$, where $C_{(i)}$ is a chamber of $(W_{(i)}, E_{(i)})$. Let $\mathcal{M}_{(i)} = \{H_{(i)}^{i}; j = 1, \dots, n_{(i)}\}$ be the set of all walls $H_{(i)}^{j}$ of the chamber $C_{(i)}$, i = 1, 2. We consider the spherical domain $C_1 = C \cap S^{n-1}$, where $S^{n-1} = \{\omega \in E; \|\omega\| = 1\}, \|\omega\| = \sqrt{(\omega, \omega)}$. The boundary ∂C_1 of C_1 in S^{n-1} is $\partial C_1 = F_1 \cup F_2$. Here

$$egin{aligned} F_1 = (\overline{\partial C_{\scriptscriptstyle (1)} imes C_{\scriptscriptstyle (2)}}) \cap oldsymbol{S}^{n-1} & ext{(the closure in }oldsymbol{S}^{n-1}) & ext{and} \ F_2 = (C_{\scriptscriptstyle (1)} imes \partial C_{\scriptscriptstyle (2)}) \cap oldsymbol{S}^{n-1}$$
 ,

where $\partial C_{(i)}$ is the boundary of the chamber $C_{(i)}$ in $E_{(i)}$, i = 1, 2.

Let us consider the following membrane problem of mixed boundary conditions.

(3.1)
$$\begin{cases} \mathcal{A}_{s}\Psi = \lambda\Psi & \text{in } C_{1}, \\ \Psi = 0 & \text{on } F_{1}, \text{ and} \\ \partial\Psi/\partial n = 0 & \text{a.e. } F_{2}, \text{ i.e., where the exterior normal } n \text{ of } F_{2} \\ & \text{in } S^{n-1} \text{ is defined} \end{cases}$$

in S^{n-1} is defined.

FIGUER 2. Membrane problem with free condition for the dotted set and fixed condition for the dark lined set.

H. URAKAWA

As an example, let $W = I_2(p) \times A_1$ (cf. [U]). We can choose a chamber *C* of *W* as the domain in Figure 2, F_1 is the dark lined set and F_2 is the dotted set.

3.2. The method of Bérard-Besson [B.B] is valid for the problem (3.1). We sketch briefly how to determine the spectrum $\operatorname{Spec}_{\mathfrak{M}_0}(C_1)$ of the membrane problem (3.1) of mixed boundary conditions.

Consider a C^{∞} function f on S^{n-1} satisfying the conditions

$$(3.3) w \cdot f = \varepsilon(w)f, \quad w \in W,$$

where $(w \cdot f)(x) = f(w^{-1}(x))$, $x \in S^{n-1}$, $w \in W$, and $\varepsilon(w)$, $w \in W$, is given by (2.4)

$$(3.4) \qquad \qquad \varepsilon(w) = \det w_1, \quad w = (w_1, w_2) \in W = W_{(1)} \times W_{(2)}$$

Then the restriction to C_1 of f satisfies (3.1). Furthermore the set of all restrictions to C_1 of C^{∞} eigenfunctions of Δ_s on S^{n-1} with the condition (3.3) is dense in the space $L^2(C_1)$ of all square integrable functions on C_1 with respect to the volume element $d\omega$ of (S^{n-1}, g_0) . Thus to determine the spectrum $\operatorname{Spec}_{M_0}(C_1)$ of (3.1), we have only to consider the set of all C^{∞} eigenfunctions of Δ_s on S^{n-1} with (3.3).

The set of the eigenvalues of Δ_s on S^{n-1} is $\{k(k+n-2); k=0, 1, 2, \cdots\}$ and the corresponding eigenfunctions are given by the restrictions to S^{n-1} of all harmonic polynomials in E. That is, for $k = 0, 1, 2, \cdots$, let $P_k(E)$ be the set of all homogeneous polynomials in E of degree k, $H_k(E) =$ $\{P \in P_k(E); \Delta P = 0\}$, where Δ is the Laplacian of the standard Euclidean space (E, g). Set

$$H_{k,W}(E) = \{P \in H_k(E); w \cdot P = \varepsilon(w)P \text{ for all } w \in W\},\$$

where $w \cdot P(x) = P(w^{-1}(x))$, $w \in W$, $x \in E$. Put $h_{k,W} = \dim H_{k,W}(E)$, k = 0, 1, 2, \cdots . Then the number k(k + n - 2) is really an eigenvalue of (3.1) with multiplicity $h_{k,W}$ if and only if $h_{k,W} \neq 0$.

To determine all $h_{k,w}$, $k = 0, 1, 2, \cdots$, consider the Poincaré series

$${F}_{\scriptscriptstyle W}(T) = \sum\limits_{k=0}^\infty h_{k,{\scriptscriptstyle W}} T^k$$
 ,

where T is an indeterminate. Using the invariant theory of finite reflection group (cf. [B.N]), the series $F_w(T)$ can be determined as

(3.5)
$$F_{W}(T) = (1 - T^{2})T^{d_{1}}/\prod_{j=1}^{n} (1 - T^{m_{j}+1}),$$

where $\{m_j\}_{j=1}^n$ is the set of all the exponents of the reflection group Wand d_i is the sum of all the exponents of the reflection group $W_{(i)}$.

180

Thus we have:

PROPOSITION 3.1. Let W, \tilde{W} be two finite reflection groups acting essentially on the same n-dimensional Euclidean space (E, (,)). Assume that $(W, E), (\tilde{W}, E)$ are decomposed as

$$W = W_{(1)} \times W_{(2)}, \ E = E_{(1)} \times E_{(2)}; \ \tilde{W} = \tilde{W}_{(1)} \times \tilde{W}_{(2)}, \ and \ E = \tilde{E}_{(1)} \times \tilde{E}_{(2)}.$$

Let $C = C_{(1)} \times C_{(2)}$, $\tilde{C} = \tilde{C}_{(1)} \times \tilde{C}_{(2)}$ be the chambers of W, \tilde{W} , respectively. Put $C_1 = C \cap S^{n-1}$, $\tilde{C}_1 = \tilde{C} \cap S^{n-1}$. Set $F_1 = \overline{(\partial C_{(1)} \times C_{(2)})} \cap S^{n-1}$, $F_2 = (C_{(1)} \times \partial C_{(2)}) \cap S^{n-1}$; $\tilde{F}_1 = \overline{(\partial \tilde{C}_{(1)} \times \tilde{C}_{(2)})} \cap S^{n-1}$ and $\tilde{F}_2 = (\tilde{C}_{(1)} \times \partial \tilde{C}_{(2)}) \cap S^{n-1}$. Let $\operatorname{Spec}_{\mathfrak{M}_0}(C_1)$ (resp. $\operatorname{Spec}_{\mathfrak{M}_0}(\tilde{C}_1)$) be the spectrum of the membrane problem (3.1) of mixed boundary conditions for (C_1, F_1, F_2) (resp. $(\tilde{C}_1, \tilde{F}_1, \tilde{F}_2)$).

(i) If the sets of all the exponents of W, \tilde{W} and the sums of all the exponents of $W_{(1)}$, $\tilde{W}_{(1)}$ coincide each other, then $\operatorname{Spec}_{M_0}(C_1) = \operatorname{Spec}_{M_0}(\tilde{C}_1)$.

(ii) The domains C_1 , \tilde{C}_1 are congruent in S^{n-1} if and only if the Coxeter graphs of W, \tilde{W} coincide.

EXAMPLE 1. Let $W_{\scriptscriptstyle (1)} = A_{\scriptscriptstyle 3}, W_{\scriptscriptstyle (2)} = A_{\scriptscriptstyle 1} \times G_{\scriptscriptstyle 2}; \ \widetilde{W}_{\scriptscriptstyle (1)} = G_{\scriptscriptstyle 2}, \ \widetilde{W}_{\scriptscriptstyle (2)} = A_{\scriptscriptstyle 2} \times B_{\scriptscriptstyle 2}.$ Then these exponents are

Thus the sets of all the exponents of $W_{(1)} \times W_{(2)}$ and $\tilde{W}_{(1)} \times \tilde{W}_{(2)}$, and the sums of all the exponents of $W_{(1)}, \tilde{W}_{(1)}$ coincide each other. But the Coxeter graphs of $W_{(1)} \times W_2$, $\tilde{W}_{(1)} \times \tilde{W}_{(2)}$ are different.

EXAMPLE 2. Let $W_{(1)} = A_3 \times A_1$, $\tilde{W}_{(1)} = A_2 \times B_2$. Then the sets of all the exponents of $W_{(1)}$ and $\tilde{W}_{(1)}$ coincide. For any reflection group W, let $W_{(2)} = \tilde{W}_{(2)} = W$. Then $W_{(1)} \times W_{(2)}$ and $\tilde{W}_{(1)} \times \tilde{W}_{(2)}$ give the examples which satisfy the assumptions of Proposition 3.1.

4. Proof of Proposition 2.2. Proposition 2.2 can be proved in the similar manner as Theorem 4.3 in [U].

Let $\operatorname{Spec}_{D}(C_{1}) = \{\lambda_{1} \leq \lambda_{2} \leq \cdots\}$ be the spectrum of the fixed membrane problem for the domain C_{1} in S^{n-1} , and $\{\Psi_{i}\}_{i=1}^{\infty}$ the complete basis of $L^{2}(C_{1}, d\omega)$ such that

(4.1)
$$\begin{cases} \mathcal{A}_{S} \Psi_{i} = \lambda_{i} \Psi_{i} & \text{in } C_{i}, \\ \Psi_{i} = 0 & \text{on } \partial C_{i}. \end{cases}$$

Here $L^2(C_1, d\omega)$ is the space of all square integrable functions on C_1 with respect to the volume element $d\omega$ on S^{n-1} . For each λ_i in $\operatorname{Spec}_D(C_1)$, let L_{λ_i} be the differential operator on the open interval $(\varepsilon, \varepsilon_1)$ defined by H. URAKAWA

(4.2)
$$L_{\lambda_i} = -d^2/dr^2 - (n-1)\operatorname{Ct}(r)d/dr + \lambda_i \operatorname{Sn}(r)^{-2}$$
.

Note that the differential equation in $(\varepsilon, \varepsilon_1)$

$$(4.3) L_{\lambda_i} \Phi = \mu \Phi$$

is equivalent to the differential equation of Sturm-Liouville type:

(4.4)
$$\frac{d}{dr}\left(\operatorname{Sn}\left(r\right)^{n-1}\frac{d\varPhi}{dr}\right) - \lambda_{i}\operatorname{Sn}\left(r\right)^{n-3}\varPhi + \mu\operatorname{Sn}\left(r\right)^{n-1}\varPhi = 0.$$

Then we have:

LEMMA 4.1. For arbitrary fixed constants $0 \leq \alpha < \pi$, $0 < \beta \leq \pi$, let us consider the boundary value problem (4.4) with the boundary conditions

(4.5)
$$\begin{cases} (\sin \alpha) \operatorname{Sn}(\varepsilon)^{n-1} \Phi'(\varepsilon) - (\cos \alpha) \Phi(\varepsilon) = 0 ,\\ (\sin \beta) \operatorname{Sn}(\varepsilon_{1})^{n-1} \Phi'(\varepsilon_{1}) - (\cos \beta) \Phi(\varepsilon_{1}) = 0 \end{cases}$$

Let $\{\mu_j^{\lambda_i}\}_{j=1}^{\infty}$ be the spectra of the boundary value problem (4.4) and (4.5), $\Phi_j^{\lambda_i}$, $j = 1, 2, \cdots$, an eigenfunction on $(\varepsilon, \varepsilon_1)$ with the eigenvalue $\mu_j^{\lambda_i}$. Then $\{\Phi_j^{\lambda_i}\}_{j=1}^{\infty}$ is a complete basis of the space $L_2^2(\varepsilon, \varepsilon_1)$ of all square integrable functions on $(\varepsilon, \varepsilon_1)$ with respect to the volume element $\operatorname{Sn}(r)^{n-1}dr$.

PROOF. See [P, p. 508] or [Y, p. 109, Theorem 1].

Now for the complete basis $\{\Psi_i\}_{i=1}^{\infty}$ of $L^2(C_i, d\omega)$ satisfying (4.1), and the eigenfunctions $\Phi_{j^i}^{\lambda_i}$, $j = 1, 2, \cdots$, of (4.4) and (4.5) on $(\varepsilon, \varepsilon_i)$ with the eigenvalues $\mu_{j^i}^{\lambda_i}$, define C^{∞} functions $\Phi_{j^i}^{\lambda_i} \otimes \Psi_i$ on D_{ε} by

$$\Phi_{j}^{\lambda_{i}} \otimes \Psi_{i}(\exp{(r\omega)}) = \Phi_{j}^{\lambda_{i}}(r)\Psi_{i}(\omega) , \quad r \in (\varepsilon, \varepsilon_{1}), \ \omega \in C_{1} .$$

Then the functions $\Phi_{j}^{\lambda_{i}} \otimes \Psi_{i}$ on D_{ϵ} satisfy, by (1.3),

$$\varDelta(\varPhi_{j}^{\lambda_{i}}\otimes \varPsi_{i})=L_{\lambda_{i}}\varPhi_{j}^{\lambda_{i}}\otimes \varPsi_{i}=\mu_{j}^{\lambda_{i}}\varPhi_{j}^{\lambda_{i}}\otimes \varPsi_{i}$$
 in D_{i} ,

and the following boundary conditions:

$$\begin{cases} \Phi_{j^{i}}^{\lambda_{i}}\otimes \Psi_{i}=0 & \text{on } \{\exp\left(r\omega\right); \, \varepsilon < r < \varepsilon_{1}, \, \omega \in \partial C_{1} \}, \\ (\sin\alpha)\operatorname{Sn}\left(\varepsilon\right)^{n-1}\frac{\partial}{\partial \boldsymbol{n}}\left(\Phi_{j^{i}}^{\lambda_{i}}\otimes \Psi_{i}\right)-(\cos\alpha)\Phi_{j^{i}}^{\lambda_{i}}\otimes \Psi_{i}=0, & \text{on } \exp\left(\varepsilon C_{1}\right), \text{ and} \\ (\sin\beta)\operatorname{Sn}\left(\varepsilon_{1}\right)^{n-1}\frac{\partial}{\partial \boldsymbol{n}}\left(\Phi_{j^{i}}^{\lambda_{i}}\otimes \Psi_{i}\right)-(\cos\beta)\Phi_{j^{i}}^{\lambda_{i}}\otimes \Psi_{i}=0, & \text{on } \exp\left(\varepsilon_{1}C_{1}\right). \end{cases}$$

Moreover we have:

LEMMA 4.2. $\{\Phi_{j^i}^{i} \otimes \Psi_i; i, j = 1, 2, \cdots\}$ is a complete basis of $L^2(D_{\epsilon})$. Here $L^2(D_{\epsilon})$ is the space of all square integrable functions on D_{ϵ} with respect to the volume element dv of (M, g) (see 1.2)).

182

PROOF. It can be proved by the same way as Lemma 4.2 in [U], due to Lemma 4.1.

Due to Lemma 4.2, if we choose $\alpha = 0$ and $\beta = \pi$ (resp. $\rho = \operatorname{Sn}(\varepsilon)^{1-n} \cot \alpha = \operatorname{Sn}(\varepsilon_1)^{1-n} \cot \beta$), as in Lemma 4.1, then the set $\{\mu_j^{\lambda_i}; i, j = 1, 2, \cdots\}$ gives the spectra $\operatorname{Spec}_D(D_{\varepsilon})$ (resp. $\operatorname{Spec}_{M_{\rho}}(D_{\varepsilon})$). Thus we prove (i) of Proposition 2.2. We can prove (ii) in the similar manner as (i) making use of Lemma 4.1 for $\alpha = \beta = \pi/2$.

References

- [B] C. BANDLE, Isoperimetric Inequalities and Applications, Pitman, Boston, London, Melbourne, 1980.
- [B.B] P. BÉRARD AND G. BESSON, Spectres et groupes cristallographiques, II: domaines sphérique, Ann. Inst. Fourier, Grenoble, 30 (3) (1980), 237-248.
- [B.N] N. BOURBAKI, Groupes et algebres de Lie, Chapitres 4 à 6, Hermann, Paris, 1968.
- [K] M. KAC, Can one hear the shape of a drum?, Amer. Math. Monthly 73 (1966), 1-23.
- [K.N] S. KOBAYASHI AND K. NOMIZU, Foundations of Differential Geometry, I, Interscience Publ., New York, London, Sydney, 1963.
- [P] H. PRÜFER, Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Functionnen, Math. Ann. 95 (1926), 499-518.
- [U] H. URAKAWA, Bounded domains which are isospectral but not congruent, Ann. scient. Écol. Norm. Sup. 15 (3) (1982), 441-456.
- [Y] K. YOSIDA, Method of Solving Differential Equations (in Japanese), 2nd ed., Iwanami, Tokyo, 1978.

DEPARTMENT OF MATHEMATICS College of General Education Tôhoku University Kawauchi, Sendai 980 Japan