THE FUNCTIONAL EQUATION OF ZETA DISTRIBUTIONS ASSOCIATED WITH FORMALLY REAL JORDAN ALGEBRAS

Dedicated to Prof. M. Koecher on his sixtieth birthday

I. SATAKE AND J. FARAUT

(Received February 17, 1984)

The purpose of this paper is to give an explicit expression for the Fourier transform of the zeta distributions on a certain class of prehomogeneous spaces defined by Jordan algebras.

Let V be a formally real simple Jordan algebra over R. Let $\dim V = n$ and $\operatorname{rk} V = r$ (for definition, see 1.1). We fix a (positive definite) inner product on V defined by

$$\langle x, y \rangle = \frac{r}{n} \operatorname{tr}(T_{xy}) \quad (x, y \in V) ,$$

where T_x denotes the linear transformation of V defined by $T_x(y) = xy$. The "structure group" of V, $G = \operatorname{Str}(V)$ (see 1.2), is then self-adjoint with respect to $\langle \ \rangle$, and hence is a reductive algebraic group. It is well-known that the pair (G,V) is a (real) prehomogeneous vector space in the sense of Sato-Shintani [6], i.e. if one denotes by G_c and V_c the complexifications of G and V, respectively, G_c is transitive on the Zariski-open set

$$V_c^{\times} = \{x \in V_c \, | \, N(x) \neq 0\}$$

(see [5c]). Here N denotes the "reduced norm" of V, which is an absolutely irreducible homogeneous polynomial function on V of degree r, characterized by the property:

(2)
$$N(1)=1 \; , \qquad N(gx)=\det(g)^{r/{\scriptscriptstyle n}}N(x) \quad (g\in G^{\circ},\; x\in V) \; ,$$

where G° is the identity connected component of G.

The set of real invertible elements $V^{\times} = V \cap V_c^{\times}$ is decomposed into the disjoint union of r+1 (open) G° -orbits:

$$V^{ imes}=\coprod_{i=0}^r arOmega_i$$
 ,

where Ω_i is the set of elements of signature (r-i, i) ([5c]). In particular,

 Ω_0 , the G° -orbit of the unit element 1, is a self-dual homogeneous cone. The gamma function associated to Ω_0 is given by

$$\begin{array}{ll} \left(\; 3\; \right) & \qquad \Gamma_{\mathcal{Q}_0}(s) \, = \, \int_{\mathcal{Q}_0} e^{-\langle u, 1 \rangle} N(u)^{s-n/r} d(u) \\ \\ & = \, (2\pi)^{\frac{1}{2}(n-r)} \prod_{i=1}^r \Gamma\!\left(s \, - \, \frac{d}{2}(i \, - \, 1)\right) \ \, \left(\operatorname{Re} \, s \! > \! \frac{d}{2}(r \, - \, 1) \right) \, , \end{array}$$

where d(u) is the Euclidean volume element with respect to $\langle \ \rangle$ and d is a positive integer given by d = 2(n-r)/r(r-1).

Now, for $f \in \mathcal{S}(V)$ (the Schwartz space of V), we set

$$\Phi_i(f,s) = \int_{\Omega_i} f(u) |N(u)|^s d(u) \quad (0 \le i \le r) .$$

Then, it is known ([6]) that this integral is convergent for $\operatorname{Re} s > 0$, the analytic function $\Phi_i(f,s)$ has a meromorphic continuation with respect to s to the whole plane C, and the map $f \mapsto \Phi_i(f,s)$ is a tempered distribution on V, called a "zeta distribution". Moreover, denoting by \widehat{f} the Fourier transform of f, one has a functional equation of the following form

$$\varPhi_i\!\!\left(\hat{f}\!,\, s - \frac{n}{r}\right) = (2\pi)^{-rs} e\!\!\left(\frac{rs}{4}\right) \! \varGamma_{\mathcal{Q}_0}\!\!\left(s\right) \sum_{j=0}^r u_{ij}\!\!\left(s\right) \! \varPhi_j\!\!\left(f\!,\, -s\right) \, ,$$

where $u_{ij}(s)$ is a polynomial in e(-s/2) of degree at most r.

For the cases $V = \operatorname{Her}_r(C)$ and $\operatorname{Sym}_r(R)$, explicit expressions for $u_{ij}(s)$ were obtained by Sato-Shintani [6] and Shintani [7]. For the case r=2, the functional equations of the corresponding zeta functions were obtained by Siegel [8] (cf. also [2]). Other cases were treated by Muro [4] by using the micro-local analysis (cf. [10]). Here we will give a direct and unified way of computing the Fourier transform based on the theory of Jordan algebras, generalizing the method of [6], [7].

REMARK. In the notation of [6], our $u_{ij}(s)$ and $\Gamma_{\varOmega_0}(s)$ are equal to $(2\pi)^{-\frac{1}{2}(n-r)}u_{ij}(s)$ and $(2\pi)^{\frac{1}{2}(n-r)}\gamma\Big(s-\frac{n}{r}\Big)$, respectively. In our case, using the relation $N(\operatorname{grad})N(u)^s=b(s)N(u)^{s-1}$ $(u\in\varOmega_0)$ and (3), it is easy to see that the "b-function" is given by

$$b(s) = \prod_{i=1}^{r} \left(s + \frac{d}{2}(i-1) \right).$$

NOTATION. R_+ is the semi-group of positive real numbers. For $z \in C$, we set $e(z) = \exp(2\pi \sqrt{-1}z)$. For a linear transformation T of a (real) vector space V and $\alpha \in R$, we set $V(T, \alpha) = \{v \in V \mid Tv = \alpha v\}$. The real

linear subspace of V generated by a subset $\{v_1, \dots, v_m\}$ in V is denoted by $\{v_1, \dots, v_m\}_R$. When V is endowed with an inner product $\langle \ \rangle$, we write $S[v] = \langle v, Sv \rangle$ $(v \in V)$ for any symmetric linear transformation S. For a topological group G, G° stands for the identity connected component of G.

1. Preliminaries on Jordan algebras (cf. [1], [5a], [5c]).

1.1. Let V be a formally real simple Jordan algebra of dimension n. We choose and fix a set of primitive idempotents $\{e_i \ (1 \le i \le r)\}$ such that

$$\sum_{i=1}^{r}e_{i}=1$$
 , $e_{i}e_{j}=\delta_{ij}e_{i}$;

the cardinality r is uniquely determined and is called the "rank" of V. The linear transformation T_{e_i} has eigen values 0, 1/2, 1, and one has $V(T_{e_i}, 1) = \{e_i\}_R$. We put

$$V_{ij} = egin{cases} V(T_{e_i},\,1) & ext{if} \quad i=j \; , \ V\Big(T_{e_i},\,rac{1}{2}\Big) \cap V\Big(T_{e_j},\,rac{1}{2}\Big) & ext{if} \quad i
eq j \; . \end{cases}$$

Then, dim V_{ij} $(i \neq j)$ are all equal, and one has the Peirce decomposition:

$$(7) V = \bigoplus_{i \leq i} V_{ij} .$$

Hence, putting $d = \dim V_{ij}$ $(i \neq j)$, one has

(8)
$$n = r + \frac{d}{2}r(r-1)$$
.

It follows that $\langle e_i, e_j \rangle = \delta_{ij}$.

1.2. Following Koecher, we use the notation

$$x \square y = T_{xy} + [T_x, T_y]$$
 for $x, y \in V$.

By definition, the structure group $G=\mathrm{Str}(V)$ is an algebraic group given by

$$G = \{ g \in GL(V) \mid g(x \square y)g^{-1} = (gx) \square ({}^tg^{-1}y) \ (x, y \in V) \} \ .$$

Then G is reductive, and it is known that

$$g = \text{Lie } G = \{x \square y \ (x, y \in V)\}_R$$

(see e.g. [5a]). Let $K = \operatorname{Aut}(V)$ be the automorphism group of the Jordan algebra V. Then one has $K^{\circ} = \{g \in G^{\circ} \mid {}^{t}g^{-1} = g\}$ and K° is a maximal compact subgroup of G° . Let $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ be the corresponding Cartan

decomposition. Then one has $\mathfrak{p} = \{T_x \ (x \in V)\}$, and

$$\mathfrak{a} = \{T_{e_i} \ (1 \leq i \leq r)\}_R$$

is a maximal (abelian) subalgebra in \mathfrak{p} . Thus r coincides with the (real) rank of \mathfrak{g} .

We put $\underline{V} = \sum_{i < j} V_{ij}$ and, for $x = \sum_{i < j} x_{ij}$ $(x_{ij} \in V_{ij})$, put

$$(\ 9\) \hspace{1cm} T_x^{\scriptscriptstyle (+)} = \sum\limits_{i < j} e_i \ \Box \ x_{ij} \ , \hspace{1cm} T_x^{\scriptscriptstyle (-)} = \sum\limits_{i < j} e_j \ \Box \ x_{ij} \ (=\ ^t T_x^{\scriptscriptstyle (+)}) \ .$$

Then

$$\mathfrak{n}'=\{T_x^{\scriptscriptstyle (+)}\ (x\in \underline{V})\}$$
 , $\mathfrak{n}=\{T_x^{\scriptscriptstyle (-)}\ (x\in \underline{V})\}$

are (mutually opposite) maximal nilpotent subalgebras of \mathfrak{g} normalized by \mathfrak{a} . Let A, N, N' denote the analytic subgroups of G corresponding to \mathfrak{a} , \mathfrak{n} , \mathfrak{n}' , respectively. Then one has Iwasawa decompositions $G^{\circ} = K^{\circ} \cdot AN = K^{\circ} \cdot AN'$.

1.3. Let $\mathscr E$ denote the set of all r-tuples consisting of ± 1 . For $\varepsilon = (\varepsilon_j) \in \mathscr E$, we denote the cardinality of $\{j | \varepsilon_j = -1\}$ by $n(\varepsilon)$ and set

$$\mathscr{E}_i = \{ \varepsilon \in \mathscr{E} \mid n(\varepsilon) = i \}$$
.

By definition, Ω_i is the G° -orbit of $-\sum_{j=1}^{i}e_j+\sum_{j=i+1}^{r}e_j$. For $\varepsilon=(\varepsilon_j)\in\mathscr{E}$, we denote by Ω_{ε} (resp. Ω'_{ε}) the AN-orbit (resp. AN'-orbit) of $\sum_{j=1}^{r}\varepsilon_je_j$. Clearly, one has Ω_{ε} , $\Omega'_{\varepsilon}\subset\Omega_i$ if $\varepsilon\in\mathscr{E}_i$.

LEMMA 1. (i) The Ω'_{ϵ} ($\epsilon \in \mathcal{E}$) are mutually disjoint and $\prod_{\epsilon \in \mathcal{E}_{\epsilon}} \Omega'_{\epsilon}$ is a Zariski-open subset in Ω_{ϵ} .

(ii) For each $\varepsilon \in \mathscr{C}$, the map

$$egin{aligned} m{R}_+^{m{r}}\! imes\!\underline{V}&\! o\Omega_{arepsilon}'\ (t_{\scriptscriptstyle 1},\;\cdots,\;t_{\scriptscriptstyle r})\! imes\!x&\mapsto (\exp\,T_x^{\scriptscriptstyle (+)})\!\!\left(\sum\limits_{\scriptstyle j=1}^{m{r}}t_{\scriptstyle j}\!arepsilon_{j}e_{\scriptstyle j}
ight)=v \end{aligned}$$

is a (bijective) homeomorphism.

For a proof, see [5c]. We have also an analogous lemma for Ω_{ϵ} . The correspondence in Lemma 1, (ii) is given explicitly as follows:

$$(10) \quad v \, = \, \sum_{i=1}^r \left(\varepsilon_i t_i \, + \, \frac{1}{4} \, \sum_{k>i} \varepsilon_k t_k \xi_{ik}(x)^2 \right) \! e_i \, + \, \frac{1}{2} \, \sum_{i < j} \left(\varepsilon_j t_j \xi_{ij}(x) \, + \, \sum_{k > j} \, \varepsilon_k t_k \xi_{ik}(x) \xi_{jk}(x) \right) \, ,$$

where, for $x = \sum_{i < j} x_{ij} \in \underline{V}$, we set

$$\xi_{ij}(x) = \sum_{\nu=1}^{j-i} \frac{1}{\nu!} \sum_{i < k_1 < \dots < k_{\nu-1} < j} x_{ik_1} x_{k_1 k_2} \cdots x_{k_{\nu-1} j} .$$

It follows that for the corresponding (Euclidean) volume elements one has

$$d(v) = 2^{r-n} \Big(\prod\limits_{j=1}^r t_j^{(j-1)d} dt_j\Big) \cdot d(x) \;.$$

Since $N(v) = \prod_{j=1}^r (t_j \varepsilon_j)$, the G-invariant volume element on V^{\times} is given by

$$|N(v)|^{-n/r}d(v) = 2^{r-n} \Big(\prod_{i=1}^r t_j^{(j-1)d-n/r} dt_j\Big) \cdot d(x) \ .$$

1.4. We set

$$V^{\scriptscriptstyle (k)} = \sum\limits_{i,j \leq k} \, V_{ij} \; , \qquad V_k = \sum\limits_{i < k} \, V_{ik} \; .$$

Then $V^{(k)}=V(T_{1^{(k)}},1)$ is a (simple) Jordan subalgebra with the unit element $1^{(k)}=\sum_{j=1}^k e_j$. We denote the reduced norm of $V^{(k)}$ by $N^{(k)}$. Note that the restriction of the "standard" inner product (1) to $V^{(k)}$ is that of $V^{(k)}$. It is known that $V^{(k)}V_{k+1} \subset V_{k+1}$ and the map

$$\rho_k(v): V^{(k)} \ni v \mapsto 2T_v | V_{k+1} \in \operatorname{End}(V_{k+1})$$

is a (unital) Jordan algebra representation of $V^{(k)}$. For $v \in V^{(k)}$, $x \in V_{k+1}$, we put

$$v[x] = \frac{1}{2} \rho_k(v)[x] = \langle x, vx \rangle$$
.

LEMMA 2. (i) For $v \in V^{(k)}$, one has

(12)
$$\det(\rho_k(v)) = N^{(k)}(v)^d.$$

(ii) For
$$v \in V$$
, $v = \sum_{i \leq j} v_{ij}$, we write

$$v_{ii} = \xi_i e_i$$
 , $v^{\scriptscriptstyle (k)} = \sum\limits_{i,j \leq k} v_{ij}$, $v_k = \sum\limits_{i < k} v_{ik}$.

If $v^{(k-1)}$ is invertible (i.e. if $N^{(k-1)}(v^{(k-1)}) \neq 0$), one has

$$N^{(k)}(v^{(k)}) = N^{(k-1)}(v^{(k-1)})(\xi_k - v^{(k-1)^{-1}}[v_k]) .$$

(For k=1, we make a convention that $v^{\scriptscriptstyle (0)}=1$, $v_{\scriptscriptstyle 1}=0$.)

PROOF. To prove (12), we may assume k=r-1. Then, for any $v\in V^{(r-1)}$, there exists $g\in K$ such that

$$ge_r = e_r$$
 , $gv = \sum\limits_{i=1}^{r-1} t_i e_i$ with $t_i \in R$

([5c]). Then g leaves V_r invariant, and one has

$$ho_{r-1}\!(v) = (g \,|\, V_r)^{-1}
ho_{r-1}\! \Big(\! \sum\limits_{i=1}^{r-1} t_i e_i \! \Big) \! (g \,|\, V_r)$$
 .

Hence

$$\det(\rho_{r-1}(v)) = \det\!\left(\rho_{r-1}\!\!\left(\textstyle\sum_{i=1}^{r-1} t_i e_i\right)\right) = \left(\textstyle\prod_{i=1}^{r-1} t_i\right)^{\!d} = N^{(r-1)}(v)^d \; \text{,}$$

which proves our assertion.

To prove (13), we may again assume k = r - 1. Then, in our notation, one has

$$v = v^{(r-1)} + v_r + \xi_r e_r$$

= $\exp(e_r \Box x)(v^{(r-1)} + \xi'_r e_r)$,

where

$$\left\{ \begin{array}{l} x = 2 \rho_{r-1}(v^{(r-1)})^{-1} v_r \; \text{,} \\ \xi_r' = \xi_r - v^{(r-1)^{-1}} [v_r] \end{array} \right.$$

(see [5c]). It follows that

$$egin{aligned} N(v) &= N(v^{(r-1)} + \xi_r' e_r) \ &= N^{(r-1)}(v^{(r-1)}) \xi_r' \ , \end{aligned}$$
 q.e.d.

We denote the projection map $v\mapsto v^{\scriptscriptstyle (k)}$ by $P_{\scriptscriptstyle k}$ and, when $P_{\scriptscriptstyle k-1}\!(v)=v^{\scriptscriptstyle (k-1)}$ is invertible, set

(14)
$$\begin{split} \chi_{\scriptscriptstyle k}(v) &= N^{\scriptscriptstyle (k)}(P_{\scriptscriptstyle k}(v))/N^{\scriptscriptstyle (k-1)}(P_{\scriptscriptstyle k-1}(v)) \\ &= \xi_{\scriptscriptstyle k} - v^{\scriptscriptstyle (k-1)^{-1}}[v_{\scriptscriptstyle k}] \; . \end{split}$$

(We set $\chi_1(v) = \xi_1$ for any v.) Then, when all $P_k(v) = v^{(k)}$ $(1 \le k \le r)$ are invertible, one has

$$N(v) = \prod_{k=1}^{r} \chi_k(v) .$$

Similarly, the projection map onto $V(T_{1^{(k)}}, 0)$ is denoted by P'_k , i.e. $P'_k(v) = \sum_{i,j \geq k+1} v_{ij}$. We denote the reduced norm of $P'_k(V) = V(T_{1^{(k)}}, 0)$ by $N^{(k)'}$ and, when $P'_k(v)$ is invertible, set

$$\chi'_{k}(v) = N^{(k-1)'}(P_{k-1}'(v))/N^{(k)'}(P'_{k}(v))$$
.

Then, in the notation of Lemma 1, (ii), it is clear that, for $v \in \Omega'_{\varepsilon}$, one has

$$P_{\it k}'(v) = \exp(T_{P_{\it k}'(x)}^{\scriptscriptstyle (+)})\!\!\left(\sum\limits_{i=k+1}^r t_i \! arepsilon_i e_i
ight)$$
 ,

whence follows that

$$N^{\scriptscriptstyle (k)}{}'(P_k'(v)) = \prod\limits_{i=k+1}^r \left(t_i arepsilon_i
ight) \quad ext{and} \quad \chi_k'(v) = t_k arepsilon_k \; .$$

Thus one has $v \in \Omega'_{\epsilon}$, if and only if all $P'_{k}(v)$ $(1 \le k \le r)$ are invertible and the sign of $\chi'_{k}(v)$ is ε_{k} ([5c]). One has also an analogous result for Ω_{ϵ} , P_{k} , and χ_{k} .

1.5. For $\sigma=(\sigma_k)\in C^r$, one defines the gamma function of r variables associated to Ω_0 by

$$arGamma_{arOmega_0}(\sigma) = \int_{arOmega_0} e^{-\langle u, 1
angle} igg(\prod_{k=1}^r \chi_k'(u)^{\sigma_k} igg) \! N(u)^{-n/r} d(u) \; .$$

Then, by changing variables as in Lemma 1, (ii), it can be shown that this integral is convergent for $\operatorname{Re}\sigma_k>\frac{d}{2}(r-k)$ and

(16)
$$\Gamma_{\mathcal{Q}_0}(\sigma) = (2\pi)^{\frac{1}{2}(n-r)} \prod_{k=1}^r \Gamma\left(\sigma_k - \frac{d}{2}(r-k)\right)$$

(cf. [3], [5b]). If we identify $s \in C$ with the r-tuple (s, s, \dots, s) , then (3) becomes a special case of (16).

2. Computation of the Fourier transforms.

2.1. In the following computation, f is a function in $\mathcal{S}(V)$ whose support is compact and contained in the union of the sets Ω_{ε} ($\varepsilon \in \mathcal{E}$). For $\sigma = (\sigma_k) \in C^r$ and $\varepsilon = (\varepsilon_k) \in \mathcal{E}$, we put

(17)
$$\Psi_{\varepsilon}(f,\sigma) = \int_{\Omega_{\varepsilon}} f(v) \prod_{k=1}^{r} |\chi_{k}(v)|^{\sigma_{k}} d(v),$$

$$(18) \qquad \qquad \varPsi'_{\varepsilon}(\widehat{f}, \sigma) = \int_{\varrho'_{\varepsilon}} \widehat{f}(v) \prod_{k=1}^{r} |\chi'_{k}(v)|^{\sigma_{k}} \ d(v) \quad \left(\operatorname{Re} \sigma_{k} > \frac{d}{2}(r-k) - \frac{n}{r}\right).$$

Then, if one identifies $s \in C$ with the r-tuple (s, \dots, s) , one has by Lemma 1, (i)

Hence, by computing the integral $\Psi'_{\epsilon}(\hat{f}, s - \frac{n}{r})$ and using Theorem 1 in [6], we will obtain the functional equation of the zeta distributions.

2.2. By Lemma 1 and (11), writing $v \in \Omega_{\varepsilon}'$ in the form $v = (\exp T_x^{(+)})(\sum t_k \varepsilon_k e_k)$, one has for $\operatorname{Re} \sigma_k > \frac{d}{2}(r-k)$

$$egin{aligned} \varPsi_{\epsilon}'\Big(\widehat{f},\,\sigma-rac{n}{r}\Big) &= \int_{arOlema_{\epsilon}'}\widehat{f}(v)\prod_{k=1}^{r}|\chi_{k}'(v)|^{\sigma_{k}}\,|N(v)|^{-n/r}d(v) \ &= 2^{r-n}\intigg[\int f(u)e\Big(\langle u,\,(\exp\,T_{x}^{(+)})\Big(\sum_{k=1}^{r}t_{k}arepsilon_{k}e_{k}\Big)
angle\Big)d(u)igg] \ & imes \prod_{k=1}^{r}\left(t_{k}^{\sigma_{k}+(k-1)d-n/r}dt_{k}
ight)d(x)\;, \end{aligned}$$

where the integral is taken over $t_k \in \mathbb{R}_+$ $(1 \le k \le r)$, $x \in \underline{V}$ and $u \in V$. We write

$$u = \sum_{k=1}^{r} \xi_{k} e_{k} + \sum_{k < l} u_{kl}$$
 , $\xi_{k} \in \mathbf{R}$, $u_{kl} \in V_{kl}$, $\xi_{kl}(x) = x'_{kl}$, $x' = \sum_{k < l} x'_{kl}$, $u_{k} = \sum_{i < k} u_{ik}$, $x'_{k} = \sum_{i < k} x'_{ik}$.

Then, by (10), one has $d(x) = d(x') = \prod_{k=1}^r d(x'_k)$. Also, one has

$$\langle u,v
angle = \sum\limits_{k=1}^r arepsilon_k t_k \Big(arxi_k \,+\, rac{1}{2} \langle u_{\it k}, x_{\it k}'
angle \,+\, rac{1}{4} P_{\it k-1}(u)[x_{\it k}'] \Big) \;.$$

Following the method in [6], we define $Q_k = Q_k(u, \delta, \varepsilon_k) \in \operatorname{End}(V_k)$ with $\delta > 0$ by

$$Q_k = \delta 1 - rac{\sqrt{-1}}{4} arepsilon_k
ho_{k-1}(P_{k-1}(u)) \quad (2 \leq k \leq r) \; .$$

Then one has

$$egin{aligned} \langle u,\,v
angle &=rac{\sqrt{-1}}{2}\lim_{\delta o 0}\left\{\delta\sum_{k=1}^r t_k(1+\langle x_k',x_k'
angle)-2\sqrt{-1}\langle u,v
angle
ight\} \ &=rac{\sqrt{-1}}{2}\lim_{\delta o 0}\sum_{k=1}^r t_k(\delta-2\sqrt{-1}arepsilon_karepsilon_k+Q_k[x_k']-\sqrt{-1}arepsilon_k\langle u_k,x_k'
angle) \ , \end{aligned}$$

where we make a convention that $Q_1=1$, $u_1=x_1^\prime=0$. Therefore, one obtains

$$egin{align} \varPsi_i'ig(\widehat{f},\,\sigma-rac{n}{r}ig) &= 2^{r-n}\lim_{\delta o 0}\int f(u)e\Big(rac{\sqrt{-1}}{2}\sum_{k=1}^r t_k(\delta-2\sqrt{-1}arepsilon_k\hat{arepsilon}_k+Q_k[x_k'] \ &-\sqrt{-1}arepsilon_k\langle u_k,\,x_k'
angle)\Big)\prod_{k=1}^r ig(t_k^{\sigma_{k}+(k-1)d-n/r}dt_k)d(x)d(u) \ &= 2^{r-n}\int_V f(u)\Big(\lim_{\delta o 0}\prod_{k=1}^r\int_0^\infty F_k(t_k,\,u,\,\delta)\,dt_k\Big)d(u) \;, \end{split}$$

where one puts

$$egin{aligned} F_k(t_k,\,u,\,\delta) &= e\Big(rac{\sqrt{-1}}{2}t_k\Big(\delta - 2\sqrt{-1}arepsilon_k\hat{arxilen}_k + rac{1}{4}Q_k^{-1}[u_k]\Big)\Big) \ &\qquad imes t_k^{\sigma_k + (k-1)d - n/r} \! \int_{V_k} e\Big(rac{\sqrt{-1}}{2}t_kQ_k\!\Big[x_k' - rac{\sqrt{-1}}{2}arepsilon_kQ_k^{-1}u_k\Big]\!\Big) \! d(x_k') \;. \end{aligned}$$

Since the last integral over V_k is equal to $\det(t_kQ_k)^{-1/2}$, one has

$$egin{aligned} \int_0^\infty &F_k(t_k,\,u,\,\delta)\,dt_k = \det(Q_k)^{-1/2} arGamma\Big(\sigma_k - rac{d}{2}(r-k)\Big) \ & imes \Big(\pi\Big(\delta - 2\,\sqrt{-1}\,arepsilon_k \xi_k + rac{1}{4}Q_k^{-1}[u_k]\Big)\Big)^{-\sigma_k + rac{d}{2}(r-k)} \end{aligned}$$

Now assume that $u \in \Omega_{\eta}$, $\eta = (\eta_k)$. Then, when δ tends to zero, one has by Lemma 2 and (14), (15).

$$egin{aligned} \det(Q_k)^{-1/2} &= N^{(k)} \Big(\delta 1^{(k)} \, - \, rac{\sqrt{-1}}{4} \, arepsilon_k P_{k-1}(u) \Big)^{-d/2} \ &= \prod_{l=1}^{k-1} \Big(\delta \, - \, rac{\sqrt{-1}}{4} arepsilon_k \eta_l \, | \, m{\chi}_l(u) \, | \Big)^{-d/2} \ & o 4^{rac{d}{2}(k-1)} \Big(\prod_{l=1}^{k-1} e \Big(rac{d}{8} \, arepsilon_k \eta_l \Big) \Big) | \, N^{(k-1)} (P_{k-1}(u)) \, |^{-d/2} \end{aligned}$$

and

$$egin{aligned} \left(\delta - 2 \sqrt{-1} arepsilon_k arepsilon_k + rac{1}{4} Q_k^{-1} [u_k]
ight)^{-\sigma_k + rac{d}{2}(r-k)} \ & o 2^{-\sigma_k + rac{d}{2}(r-k)} e \Big(rac{1}{4} arepsilon_k \eta_k \Big(\sigma_k - rac{d}{2}(r-k) \Big) |\mathcal{X}_k(u)| \Big)^{-\sigma_k + rac{d}{2}(r-k)} \end{aligned}$$

By (15) one has

$$\prod_{k=1}^r (|\chi_k(u)|^{r-k} |N^{(k-1)}(P_{k-1}(u))|^{-1}) = 1$$
 .

Hence one has

$$egin{aligned} &\lim_{\delta o 0}\prod_{k=1}^r\int_0^\infty F_k(t_k,\,u,\,\delta)dt_k\ &=(8\pi)^{rac{d}{4}r\langle r-1
angle}u_{\epsilon\gamma}(\sigma)\prod_{k=1}^r\Bigl((2\pi)^{-\sigma_k}\,e\Bigl(rac{1}{4}\sigma_k\Bigr)iggl)igglarGamma_k-rac{d}{2}(r-k)\Bigr)|oldsymbol{\chi}_k(u)|^{-\sigma_k}\Bigr)\,, \end{aligned}$$

where one puts

$$(20) \qquad u_{\varepsilon\eta}(\sigma) = e\left(\frac{d}{8}\left(\sum_{l < k} \varepsilon_k \eta_l - \sum_{k=1}^r \varepsilon_k \eta_k (r-k)\right) + \frac{1}{4} \sum_{k=1}^r (\varepsilon_k \eta_k - 1) \sigma_k\right).$$

Thus one has by (16)

$$(21) \qquad \varPsi_{\epsilon}'\left(\hat{f}, \, \sigma \, - \, \frac{n}{r}\right) = (2\pi)^{-\sum \sigma_k} e\left(\frac{1}{4} \, \sum_{k=1}^r \, \sigma_k\right) \Gamma_{\varrho_0}(\sigma) \sum_{\eta \in \mathscr{C}} u_{\epsilon\eta}(\sigma) \varPsi_{\eta}(f, \, -\sigma) \; .$$

2.3. When $\sigma=s=(s,\,\cdots,\,s)$, it is clear that $\sum_{\epsilon\in\mathscr{E}_i}u_{\epsilon\eta}(s)$ depends only on the sign of η . Hence we set

(22)
$$u_{ij}(s) = \sum_{s \in \mathscr{C}_i} u_{\epsilon\eta}(s) \text{ for } \eta \in \mathscr{C}_j$$
.

Then one has

$$\Phi_i(\hat{f}, s - \frac{n}{r}) = \sum_{\epsilon \in \mathscr{E}_4} \Psi'_{\epsilon}(\hat{f}, s - \frac{n}{r})$$

$$\begin{split} &= (2\pi)^{-rs} e\Big(\frac{r}{4}s\Big) \varGamma_{\mathcal{Q}_0}(s) \sum_{j=0}^r \Big(u_{ij}(s) \sum_{\eta \in \mathscr{E}_j} \varPsi_{\eta}(f,\,-s)\Big) \\ &= (2\pi)^{-rs} e\Big(\frac{r}{4}s\Big) \varGamma_{\mathcal{Q}_0}(s) \sum_{j=0}^r u_{ij}(s) \varPhi_j(f,\,-s) \;. \end{split}$$

Thus we have shown that, if one defines $u_{ij}(s)$ by (20) and (22), the formula (5) holds for any function f in $\mathcal{S}(V)$ whose support is compact and contained in $\bigcup \Omega_{\epsilon}$. Hence, by Theorem 1 in [6], the same formula holds for all f in $\mathcal{S}(V)$.

Taking $\eta = (-1, \dots, -1, 1, \dots, 1)$ (-1 repeated j times), one has

$$\begin{array}{ll} (23) \qquad u_{ij}(s) = \sum\limits_{\varepsilon \in \mathscr{E}_i} e \bigg(\frac{d}{8} \Big(\sum\limits_{k=1}^{j} \varepsilon_k (r-2k+1) - \sum\limits_{k=j+1}^{r} \varepsilon_k (r-2k+2j+1) \Big) \\ \\ + \frac{1}{4} \Big(- \sum\limits_{k=1}^{j} \varepsilon_k + \sum\limits_{k=j+1}^{r} \varepsilon_k - r \Big) s \bigg) \, . \end{array}$$

Thus we have proved the following

THEOREM 1. Let V be a formally real simple Jordan algebra. Then the tempered distribution $f \mapsto \Phi_i(f, s)$ defined by (4) satisfies a system of functional equations

$$arPhi_i\!\!\left(\hat{f},\,s-rac{n}{r}
ight)=(2\pi)^{-rs}e\!\left(rac{r}{4}s
ight)\!arGamma_{\it 0}\!\!\left(s
ight)\!\sum\limits_{i=0}^{r}u_{ij}\!\!\left(s
ight)\!arPhi_{\it j}\!\!\left(f,\,-s
ight)\quad\! \left(0\leq i\leq r
ight)$$
 ,

where Γ_{Ω_0} and u_{ij} are given by (3) and (23).

REMARK. It can be shown that

$$(24) V \in x \mapsto \exp(e_x \square x_r) \cdots \exp(e_z \square x_z) \in N$$

is a bijection of \underline{V} onto N (cf. [3], [9]). One can give an alternate proof of Theorem 1 by using this parametrization instead of Lemma 1, (ii) and by proceeding by induction on r.

3. Properties of the matrix $U^{(r)}(x)$. In what follows, we put x = e(-s/2) and write $u_{ij}(x)$ for $u_{ij}(s)$. Then $u_{ij}(x)$ is a polynomial in x of degree at most r. We consider the matrix $U(x) = U^{(r)}(x) = (u_{ij}(x))$.

From (23) one has

$$\begin{split} u_{ij}(x) &= \sum_{\varepsilon \in \mathscr{E}_i} e\Big(\frac{d}{4}\Big(\sum_{k=1}^j \frac{1+\varepsilon_k}{2}(r-2k+1) - \sum_{k=j+1}^r \frac{1+\varepsilon_k}{2}(r-2k+2j+1)\Big) \\ &- \frac{s}{2}\Big(\sum_{k=1}^j \frac{1+\varepsilon_k}{2} + \sum_{k=j+1}^r \frac{1-\varepsilon_k}{2}\Big)\Big) \\ &= \sum_{\varepsilon \in \mathscr{E}_i} \Big(\prod_{k=1}^j ((-1)^{dk} \sqrt{-1}^{d(r+1)} x)^{\frac{1}{2}(1+\varepsilon_k)} \prod_{k=j+1}^r ((-1)^{d(k-j)} \sqrt{-1}^{-d(r+1)})^{\frac{1}{2}(1+\varepsilon_k)} x^{\frac{1}{2}(1-\varepsilon_k)}\Big) \;. \end{split}$$

Hence, putting $\zeta = \sqrt{-1}^{d(r+1)}$, one has

$$(25) \qquad \sum_{i=0}^r y^i u_{ij}(x) = \prod_{k=1}^j \left((-1)^{dk} \zeta x + y \right) \prod_{k=j+1}^r \left((-1)^{d(k-j)} \zeta^{-1} + xy \right) ,$$

which can also be written as

(25')
$$\sum_{i=0}^{r} y^{i} u_{ij}(x) = \zeta^{-(r-j)} P_{j}(\zeta x, y) P_{r-j}(1, \zeta xy) ,$$

where

$$P_{j}(x, y) = \prod_{k=1}^{j} ((-1)^{dk} x + y) = egin{cases} (x + y)^{j} & ext{for } d ext{ even,} \ (x + y)^{\left[rac{j}{2}
ight]} (y - x)^{j - \left[rac{j}{2}
ight]} & ext{for } d ext{ odd.} \end{cases}$$

First, we consider the case where d is even. We distinguish two cases:

Case (a): $d \equiv 0 \pmod{4}$ or $d \equiv 2 \pmod{4}$ and $r \pmod{4}$

Case (a'): $d \equiv 2 \pmod{4}$ and r even.

Then one has

$$\zeta = egin{cases} 1 & ext{in Case (a),} \ -1 & ext{in Case (a').} \end{cases}$$

THEOREM 2. Let ρ_r denote the symmetric tensor representation of GL_z of degree r+1. Then, when d is even, one has

$$U^{(r)}(x) = \begin{cases} \rho_r \binom{1}{x} & x \\ \rho_r \binom{1}{x} & 1 \end{pmatrix} & in \ \textit{Case} \ \ (a) \ , \\ \rho_r \binom{1}{-x} & -1 \end{pmatrix} & in \ \textit{Case} \ \ (a') \ . \end{cases}$$

PROOF. In Case (a), (25) can be written as

$$(1, y, \dots, y^r)U^{(r)}(x) = ((1 + xy)^r, (x + y)(1 + xy)^{r-1}, \dots, (x + y)^r)$$
.

For r=1, one has $U^{(1)}(x)=\begin{pmatrix} 1 & x \\ x & 1 \end{pmatrix}$. Hence one obtains (26). The proof for Case (a') is similar. (Note that in this case r is even.) q.e.d.

COROLLARY 1. When d is even, the matrix U(x) is diagonalizable.

In fact, one has

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & x \\ x & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 + x & 0 \\ 0 & 1 - x \end{pmatrix} ,$$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & x \\ -x & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 1 - x \\ 1 + x & 0 \end{pmatrix} .$$

Hence, putting $A^{(r)} = \rho_r \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, one has

This proves our assertion. In Case (a'), the eigen values of $U^{(r)}(x)$ are $(1-x^2)^{r/2}$ repeated r/2+1 times and $-(1-x^2)^{r/2}$ repeated r/2 times.

We note that the matrix $A^{(r)} = (a_{ij})$ is determined by the identity

(28)
$$(1 + y + z - yz)^r = \sum_{i,j=0}^r \binom{r}{j} a_{ij} y^i z^j.$$

COROLLARY 2. When d is even, $U^{(r)}(x)$ satisfies the functional equation

(29)
$$U^{(r)}(x)U^{(r)}\left(-\frac{\zeta}{x}\right) = \left(x - \frac{1}{x}\right)^r J^{(r)},$$

where

$$J^{\scriptscriptstyle(r)} =
ho_r \! \left(\! egin{pmatrix} 0 & 1 \ 1 & 0 \end{matrix} \!
ight) = \! \left(egin{matrix} 0 & & \ddots & 1 \ & & \ddots & & \ 1 & & & 0 \end{matrix} \!
ight).$$

This follows from the relation

$$egin{pmatrix} 1 & x \ \zeta x & \zeta \end{pmatrix} egin{pmatrix} 1 & -\zeta x^{-1} \ -x^{-1} & \zeta \end{pmatrix} = \zeta (x - x^{-1}) egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} \, .$$

((29) follows also from (5).)

The formulas (5) and (27) imply that, if one puts

$$arPhi_i'(f,s) = \sum\limits_{j=0}^r lpha_{ij}arPhi_j(f,s) \quad (0 \leqq i \leqq r)$$
 ,

then one has

$$\begin{split} (30) \qquad \varPhi_i'\!\!\left(\widehat{f},\,s-\frac{n}{r}\right) \\ &= (2\pi)^{-r} \varGamma_{\varrho_0}(s) \!\!\left(e\!\left(\frac{r}{2}s\right) + e\!\left(-\frac{r}{2}s\right)\right)^{r-i} \!\!\left(\left(\frac{r}{2}s\right) - e\!\left(-\frac{r}{2}s\right)\right)^i \\ &\times \begin{cases} \varPhi_i'(f,\,-s) & \text{in Case (a) ,} \\ \varPhi_{r-i}'(f,\,-s) & \text{in Case (a') .} \end{cases} \end{split}$$

Next, we consider the case where d is odd. According to the classification theory, we have the following two possibilities:

Case (b):
$$r=2$$
 and d odd $(n=2+d)$,
Case (c): r arbitrary and $d=1$ $\left(n=\frac{1}{2}r(r+1)\right)$.

In Case (b), one has by (25)

$$\sum y^i u_{ij}(x) = egin{cases} (-\zeta^{-_1} + xy)(\zeta^{-_1} + xy) = 1 + x^2y^2 & (j=0) \ , \ (-\zeta x + y)(-\zeta^{-_1} + xy) = x + \zeta(1-x^2)y + xy^2 & (j=1) \ , \ (-\zeta x + y)(\zeta x + y) = x^2 + y^2 & (j=2) \ , \end{cases}$$

where $\zeta = \sqrt{-1}^n$. Hence $U^{(2)}(x)$ is given by

$$U^{(2)}(x) = \left(egin{array}{ccc} 1 & x & x^2 \ 0 & \sqrt{-1}^n (1-x^2) & 0 \ x^2 & x & 1 \end{array}
ight).$$

Thus one see that $U^{(2)}(x)$ is again diagonalizable with simple eigen values $1 + x^2$, $1 - x^2$, $\sqrt{-1}^n (1 - x^2)$. This case was treated in [8].

The Case (c) is the one treated in [7]. The case r=2 is contained in Case (b), while the case r=1 may be included in Case (a), because for r=1 the number d is actually undetermined. Hence $U^{(r)}(x)$ is diagonalizable for r=1, 2. But, in general, it is not known whether $U^{(r)}(x)$ is diagonalizable or not.

It can be shown by (5) that, when d is odd, $U^{(r)}(x)$ satisfies the following functional equation

(32)
$$U^{(r)}(x)U^{(r)}(\zeta^{-1}x^{-1}) = (x + x^{-1})^{\left[\frac{r}{2}\right]}(x - x^{-1})^{r - \left[\frac{r}{2}\right]}J^{(r)}.$$

REFERENCES

[1] H. Braun and M. Koecher, Jordan-Algebren, Springer-Verlag, Berlin-Heidelberg-New York, 1966.

- [2] I. M. GELFAND AND G. E. SHILOV, Generalized Functions I, Academic Press, New York, 1964.
- [3] S. G. GINDIKIN, Analysis in homogeneous domains, Russian Math. Survays 19 (1964), 1-89.
- [4] M. Muro, Micro-local analysis and calculations of functional equations and residues of zeta functions associated with the vector spaces of quadratic forms, Preprint, 1982.
- [5a] I. Satake, Algebraic Structures of Symmetric Domains, Iwanami-Shoten and Princeton Univ. Press, 1980.
- [5b] I. Satake, Special values of zeta functions associated with self-dual cones, Manifolds and Lie Groups, Birkhäuser, Boston, 1981, 359-384.
- [5c] I. SATAKE, A formula in simple Jordan algebras, to appear in Tôhoku Math. J.
- [6] M. Sato and T. Shintani, On zeta functions associated with prehomogeneous vector spaces, Ann. of Math. 100 (1974), 131-170.
- [7] T. Shintani, On zeta-functions associated with the vector space of quadratic forms, J. Fac. Sci., Univ. Tokyo 22 (1975), 25-65.
- [8] C. L. SIEGEL, Über die Zetafunktionen indefiniter quadratischer Formen, Math. Z. 43 (1938), 682-708.
- [9] È. B. VINBERG, The theory of convex homogeneous cones, Trans. Moscow Math. Soc. 1963, 340-403.
- [10] M. KASHIWARA AND T. MIWA, Micro-local calculus and Fourier transforms of relative invariants of prehomogeneous vector spaces, Surikaiseki Kenkyusho Kokyuroku 238 (1974), 60-147 (in Japanese).

AND

MATHEMATICAL INSTITUTE TÔHOKU UNIVERSITY SENDAI 980, JAPAN DÉPARTEMENT DE MATHÉMATIQUE UNIVERSITÉ DE STRASBOURG 67084 STRASBOURG, FRANCE