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Introduction. Let p be a prime number, and denote by Zp the ring
of p-adic integers. In our previous paper [9], we have constructed
certain cyclotomic Z^-extensions M«, = \Jn^0Mn such that the Stark-
Shintani invariants for Mn are units of Mn for each n Ξ> 0. In this
paper, we study the image of these units in the completion of ΛL, at a
prime over p.

Let F be a real quadratic field embedded in the real number field
R. Let M be a finite abelian extension of F in which exactly one of
the two infinite primes of F, corresponding to the prescribed embedding
of F into R, splits. Let f be the conductor of M/F. Denote by HF(\)
the group consisting of all narrow ray classes of F defined modulo f.
Let G be the subgroup of JEΓp(f) corresponding to M by class field theory.
Take a totally positive integer v of F satisfying v + 16 f, and denote
by the same letter v the narrow ray class modulo f represented by the
principal ideal 0). For each ceHF(\), set ζF(s, c) = Σ N(a)~8, where a
runs over all integral ideals of F belonging to the ray class c. Then
the Stark-Shintani ray class invariant Xf(c) is defined by

(1) Xf(c) = exp (ζ'F(0, c) - ζ;(0, cv))

(Stark [12], [13], Shintani [11]). Put Xf(c, G) = Ug&GX,{cg).

CONJECTURE ([12], [13], [11]). For some positive rational integer m,
Xf(c, G)m is a unit of M (?c e Hr(!f)/G). Moreover, {Xf(c, G)m}σ(Co) = Xf(cc0, G)m

(vc, COG jEΓp(f)/G), where σ is the Artin isomorphism of HF(\)jG onto the
Galois group Gal (M/F).

Denote by M+ the maximal totally real subfield of M. Then Shintani
proved that the conjecture is true if M+ is abelian over the rational
number field Q ([11]). In our previous paper, we have studied the integer
m in the conjecture when M+ is abelian over Q, and we have constructed
abelian extensions M of F with the following property (P) for an odd
prime number p (cf. Theorem 1, Propositions 8, 9, 10 and 13 of [9]):
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(P) Let Moo = U^o Mn be the cyclotomic Z^-extension of M. Then
Xin(cf Gn) is a unit of Mn for each c e HF(\n)/Gn, where fn is the conductor
of MF/F and Gn is the subgroup of HF{\n) corresponding to Mn (yn ^ 0).
Moreover, X f > , Gn)°^ = ±XJcc 0, <?») (vc, coeHF(L)/Gn).

In this paper, we assume that ikf has the property (P) for an odd
prime number p with p)f[M: F], Further we assume that the following
condition (D) is satisfied:

(D) For any subfield Mf of M/F with Mr ς£ M+, any prime divisor
p of f is a divisor of f(ikf') or a divisor of p, where f(AΓ) is the con-
ductor of M'/F. Moreover, if p is a prime divisor of p with £|f(M'),
then the decomposition field of p in M'/F is (M')+.

For a number field fc, denote by 2£(fc), A{k) and Λ(Λ) the group of
units of k, the ideal class group of k and the class number of k respec-
tively. Put E(M)~ = {ueE(M);NM/M+(u) = 1}. Denote by C(M) the
subgroup of E(M) generated by —1 and Xf(c, G) (ceHFtf)/G). Then we
can show that G(M) is a subgroup of E(M)~, and we can rewrite Ara-
kawa's class number formula as follows (cf. [1], [9]):

(2) h(M)/h(M+) = [E(M)~: C{M)} x (a power of 2) .

Put E- = E(Mn)-, Cn - C(Mn) and h~ = h(Mn)/h(Mϊ) {n ^ 0). If there
is a prime divisor p of p with p \ f, then we replace Co by the subgroup
generated by —1 and Xf(c, G)2β (ce HFtf)/G), where e is the number of
such prime divisors p oί p. In §1, we shall prove the following theorem
which is analogous to classical results on cyclotomic units and elliptic
units.

THEOREM 1. Notation and assumption being as above, we have

( i ) h~ = [E~: Cn] x (a power of 2) (n ^ 0) ,

(ii) Nn,m(CJ = Cn (m^n^O),

where Nn>m is the norm map of Mm to Mn.

COROLLARY. Put Bn = {ce A(Mn); NMn/Mn+(c) = 1, the order of c is
odd}. If K is prime to p, then the natural homomorphism Bn —• Bm is
injective for any m ^ n ^ 0.

In §4, we shall study the image of Cn in the completion of M^ at
a prime over p by using a result of Coleman ([4]). §§2-3 are devoted
to preparations for the arguments in §4. As a consequence of Theorem 1
of [9], Theorem 1 and the main result in §4 (Theorem 3), we obtain

THEOREM 2. Let p be an odd prime which splits in F (p = Jφ').
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Take an integer a of F such that a > 0, a! < 0, a e p, a$p2 and aίp'
(a! is the conjugate of a). Put aa! = — ap, and assume that a is a
quadratic residue modulo p and TF/Q(a) is not. Let M = F(λ/a) and let
-XΓf(l, G) = (x + yV a )/2, where x and y are integers of F. If y is prime
to p then h~ is prime to p for any n^O.

REMARK. By (i) of Theorem 1, p)({y) implies pJfhϊ. On the other
hand, the general theory of Z^-extensions tells that p \ hr implies p\h~

^ 0). But in general, pJfK does not imply p\h^ (?n :> o).

1. Proof of Theorem 1. In this section, we prove Theorem 1 and
Corollary. First, we prove

LEMMA 1.1. C{M) is a subgroup of E{M)~.

PROOF. Put η = Xf(c, G) and β = TM/M+(η). It follows from (P) and
(1) that τ]σ{v) = ±ψ\ Since σ(v) is the generator of Gal (M/M+), this
implies that NM/M+(y) = ± 1 . If NM/M+{η) = - 1 , η = (β + i//32 + 4)/2.
Since βeM+, η is a totally real algebraic number of M. Hence ηeM+.
This contradicts to NM/M+(ή) — — 1. q.e.d.

Now we prove the equality (2). Let X be a character of HF(\)jG
with X(v) — — 1. It follows from (1) that

(3) L'F(0,X)= Σ
l

Denote by fz and X the conductor of X and the primitive character
associated to X respectively. Then we have

(4) LF(8, X) = LF(s, X) Π (1 - X(P)N(p)-°) .
p\UPtfχ

It follows from the functional equation of LF(s, X) that LF(0, X) = 0.
Hence we obtain

(5) L'AO, X) = L'F(0, X) Π (1-X(t>)).
P l f . p l f χ

It is easy to see that χ(p) = χ(ι>) — — 1 in (5) under the assumption (D).
On the other hand, the analytic class number formula at s = 0 (cf. p.
200 of Stark [14]) tells us

(6) h(M)/KM+) = (R(M+)/R(M)) Π LF(0, X) ,

where R(M) and R(M+) are regulators of M and M+ respectively. The
equality (2) follows from (3), (5), (6) and a slightly modified version of
the Frobenius determinant formula.

PROOF OF THEOREM 1. Let Foo = \Jn±0Fn be the cyclotomic Zp-



442 J. NAKAGAWA

extension of F ([Fn: F] = pn). Since [M: F] is prime to p, Mn = MFn

and any subfield of MJF is a composition of a sub field of M with
a subfield of Fn. This implies that the condition (D) is satisfied for
Mn. Hence the equality (2) is also valid for Mn. This proves the
first half of Theorem 1. Let m^n^l. Denote by Sβ(fn) the set of
prime divisors of fn. Then 5β(fJ - ψJ. Let φ: HF(U/Gm- HF(L)/Gn

be the natural surjective homomorphism, and let vn be the v for fn.
For any character 1 of HF(fn)/Gn with l(vn) = - 1 , put Z' = Z ° φ. Then
r is a character of HF(L)/Gm with X'(vJ = - 1 . Since 5β(fJ = 5β(fn),
the equality (4) implies that LF(s9 1) = L^(s, Z') Then it follows from
(3) that

Σ Z(c0) log Xu(c0, GJ = Σ Z'(e) log XJc, G J
/ < G > H{\)l<fiy

X(co){ Σ ,

This implies that Xfw(c0, Gn) = ILe?>-i<β0> ^fm(c, G J . Since σ(Ker 9?) =
Gal (MJMn), we obtain Xfπ(^(c), GJ - ±iVπ,m(Xfm(c, G J ) . Hence
Nn,m(CJ = Cn. When w = 0, it follows from (5) that

7^(0, Γ) - L'F(0,1) Π (1-Z(W)

The rest of the proof goes similarly to that of the case n}£l. This
completes the proof of Theorem 1.

Put Γ = Gal (MJM) ( = ZP). Take a topological generator 7 of Γ
and fix it. Put Γn - Gal (M^M*) and J = Gal (MJFJ). Then Gal (K»/F) =
Γ x Δ and J is naturally isomorphic to GsΛ(M/F). Put p — (σ(vn))n^oe
proj lim Gal (MJF) = Gal (ikf./ί7). Obviously p e J , <o2 = 1 and p Φ 1.
Put r = [M+: F], and let σ19 , (Tr (e J) be a complete set of represen-
tatives of Λ/(ρ). Put ??„ = Xfn(l, GJ. It follows from the assumption
(P) that X<n(c, GJ = ± X J 1 , GJσ(c) for any c e HFtfn)/Gn and X]n(c, Gny^ =
Xfw(c, GJ-1. Hence Cn is generated by - 1 and Tf«* (1 ^ i ^ r, 0 ^ j ^
pn — 1). Furthermore, (i) of Theorem 1 implies that the units ησ

n

iγJ (1 <;
i ^ r, 0 ^ i ^ pn — 1) are multiplicatively independent. Denote by
Z[ΓnIΓm] the group ring of ΓJΓm over the ring of rational integers Z
(m^n^O). Then Cw/±1 is a free Z[ΓJΓJ-module of rank rpn

generated by ησjrj (1 ^ ΐ ^ r, 0 <: j ^ pn — 1). This implies that
Hk(ΓJΓm, Cm) = 0 for any k, m^n^O. Since / y r * is a cyclic group
of order p-», H\ΓJΓm, Cm) = 0 implies that Ker (iVn,m: Cm - CJ - (Cm)ω-,
where ωn = 7pn - 1. Further, H°(ΓJΓm, CJ = 0 implies that Cmf]Mn =
Nn m (CJ = Cn. In particular, the natural homomorphism E~/Cn -> JS'm/C',,,
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is injective for any m ^ n ^ 0. Thus we have proved

PROPOSITION 1.2. ( i ) Hk(ΓJΓm, CJ = 0, for any ft, m ^ n ^ 0.
(ii) Cm Π En = Cn, hence the natural homomorphism E~/Cn -> E~/Cm

is injective for any m ^ n ^ 0.
(iii) 0 -> (Cm)ω* -> CTO — > Cw -^ 0 (ezαcί), /or any m^n^O.

To prove the corollary to Theorem 1, we need the following lemma.

LEMMA 1.3. Let Bn be as in the corollary. Then we have an injec-
tive homomorphism

Ker (Bn -> Bm) -* Ker (Nn,Λ: E~ - E~)I{E~ n (JE7J" ) ,

/or any m ^ ?̂  ̂  0.

PROOF. Let ce Ker (Bn —> Bm). Take an ideal α of Λfn in the class c.
It is easy to see that α can be taken to satisfy α = (a) for some a e Λίm

with ap = a~\ Then we put ε = aWn. Since Ύn = 7pn induces the identity
map on Mn, arn = α, hence (arn) = (a) as principal ideals of Mm. So

e _ aωn _ arn-i j s a u n j ^ of Mm. Since αp = or1, εeE~. On the other
hand, JVn,w(e) = iVn,w(α

ω-) - 1. Hence we define a map Ker (Bn -> β j ->
Ker (ΛΓn,m: JE7; -> #-)/(#; Π (^w)ω-) by C M S mod (E~ Π (£/w)ω%). It is easy
to check that this map is a well-defined injective homomorphism. q.e.d.

Now we prove the corollary to Theorem 1. Since [M: F] is prime
to p, any prime of M lying over p is totally ramified in M^M. Hence
p X hr implies p\h~ for all n ^ 0 by a well known fact in the theory
of Zp-extensions (cf. Theorem 6 of Iwasawa [6]). By (i) of Theorem 1,
the order of the group E~/Cn is prime to p. Since ΓJΓm is a cyclic
group of order pm~n, we have Hk(ΓJΓm, E'/CJ = 0. By (i) of Proposi-
tion 1.2, we have Hk(ΓJΓm, Cm) = 0. Hence we obtain H\ΓJΓm, E~) = 0.
Since (Eϊr*<zEϊΓi(Em)"*aKeτ(Nntm: E--+E'), and since H\ΓJΓm, E~) =
Ker (Nn>m: E~ — E-)l{E~y*, we have Ker (Nn>m: E~ -> E~) =E~Π (#Jω« =
(E~)ω*. Hence Ker (Bn -> J5J = 0 by Lemma 1.3. This completes the
proof of the corollary.

REMARK 1.4. If the number of prime divisors of p in M is one,
p)(K implies pJfhΰ for all n^0 (cf. Proposition 13.22 of Washington
[15]).

2. A basis for the local units. In this section, we study the group
of units of certain abelian extensions of the p-adic number field Qp. The
results in this section are slight generalizations of some facts mentioned
in Chapter 7 of Lang [7].
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Let p be an odd prime number and let d (>0) be a divisor of p — 1.
Let Φ be the unique unramified extension of Qp of degree d. Put Φn =
Φ(ζJ, where ζra is a primitive p?ι+1-th root of unity in a fixed algebraic
closure Ω of Φ. We choose (ζn)nϊ>0 to satisfy ζ£+1 = ζn for any w ^ 0.
Put Φw = U»*oΦ», # = Gal (ΦJQ,) and Γ = Gal (Φo./Φ0). Since [Φo: QJ is
prime to p, there is a finite subgroup Δ of H such that H = Γ x Δ and
J is naturally isomorphic to Gal (ΦQ/QP). Since Δ is an abelian group of
exponent p — 1, any character X: J —> Ωx is Zjf-valued. Denote by / t h e
set of all Zp

x-valued characters of Δ. Let ^ be the unique element of
Δ such that φ\Qp(ζ0) — id and φ\Φ is the Frobenius automorphism of Φ/Qp.
Let τ be an element of Δ such that τ | Φ — id and τ | Qp(ζ0) is a generator
of Gal(Qp(ζ0)/β,). Let /c: Gal (Φ^/Φ) = Γ x <τ> -> Zp

x be the canonical
character (i.e. /c is characterized by ζg

n = ζ£(fir) for any n ^ 0 and any # e
Γ x <τ». Then μp_x — tc(τ) is a primitive (p — l)-th root of unity in Zp.
Let μd be a fixed primitive d-th root of unity in Z p . Define Z i f ί 6 / by
Z*,i(Λ = «i, Zi,yW = A4-1 (ieZ/dZ, jeZ/(p - 1)Z).

For any Z2,[J]-module Λ, put A(X) = e(X)A, where e{l) = (l/# J)
Σ,eJ X'\g)g (e Z,[J]). Then A(X) = {aeA;ga = X(g)a for any g e J}, and

Let JO and on be the ring of integers of Φ and Φn respectively (n*zθ).
Let t> and pn be the maximal ideal of o and on respectively. Put πn =
ζn — 1 (n*zθ). Then p — po and J)n = πnon. Denote by V the group of
(pd — l)-th roots of unity in Φ. Put Un = {ueon;u = lmodί)n}. Denote
by Nn>m the norm map of Φm to Φn (m ^ n ^ 0), and put UΌo = proj lim Ϊ7n

(the limit is taken with respect to Nn,m). Then Uoo is a compact ZP[H]-
module and UΌo = φ * C/«,(Z). Let /ί be the ring of formal power series
in an indeterminate T with coefficients in Zp: A — ZP[[Γ]]. Let Ύ be a
fixed topological generator of Γ ( = ZP). Obviously, CT̂ X) = proj lim Un(X)
and C7Όo(Z) is a compact Γ-module, hence a compact Λ-module (the action
of T is given by (1 + T)u = ur for any ueU^iX)). The Λ-module
structure of UΌdX) is given by the following proposition which can be
proved by the same arguments as in Chapter 7 of [7].

PROPOSITION 2.1. For any Xe Δ with X Φ XQfQ, the natural projection
C/Όo(Z) —> Un(X) induces an isomorphism U^{X)jωnU^(X) ^ Un(X), where
α)n = (1 + Tyn — 1 in ^ 0). IfXΦ Xo,o, XOtl, then we have a Λ-isomorphism
E7Όo(Z) s Λ.

Let Z ^ Zo,o, Zo.i We are going to construct a basis for Z7oo(%) over
A. Take an element λ of 7 with λ ^ 1, and put b = λ — 1. Then 6 is
a unit of o and δ* = λ* — 1 = Xp — 1, because φ\φ is the Frobenius auto-
morphism of Φ. For any unit x of o, denote by α)(#) the unique element
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of V such that ω(x) = αmodt>. Put vn = ω{bγφ~n{bφ~n - πn). Obviously
vn e Un9 and it is easy to check Nn,m(vm) = vn for any m ^ n ^ 0. Hence
v = (vn)n*o is an element of [/«,. Now we claim that we can choose Xe V
such that veix) = (u£ίx))n*o is a basis for £/«,(%) over A. To prove this,
we define homomorphisms ψk: o0

x —> o/p (1 ^ k ^ p — 2) as follows:
Let D = (1 + T)(d/dT). For each %eo0

x, take a power series / (T)e
o[[Γ]] such that /(ττ0) = u. Put ψ^O) = Z> fclog/(Γ)|Γ=0mod:p. This does
not depend on a choice of f(T). Hence ψk is a well-defined homomorphism.

Note that U0(X) is a free Zp-module of rank one. If X = Xitj, 1 ^
j ^ ί> — 2, then we can check ψvOo(x)) ^ 0 for some λ e 7 b y the same
argument as in §3, Chapter 7 of [7]. If X = %<>0, we can check ^ ( y ^ ) m
0 mod )̂ for some λ similarly, where δp_i is the Coates-Wiles homomorphism
defined in the next section. Then vlω generates UO(X)/UO(X)P, hence
generates UQ(X) over Zp by Nakayama's lemma. By Proposition 2.1 and
Nakayama's lemma, this implies that ve{%) is a basis for U^X) over Λ.
Hence we obtain

PROPOSITION 2.2. Let Xe Δ, X Φ Z0>0, XOtl. Then veω = (ve

n

ω)n^0 is a
basis for U^X) over A for a suitable choice of Xe V (depending on X).

3. Logarithmic derivatives. We use the same notation as in the
previous section. First, we recall the following result of Coleman ([4]).

PROPOSITION 3.1. Let u = (un)e CL. Then there is a unique power
series fu(T) e o[[T]] such that

fί~niπn) - un for all n ^ 0

{for RT) = Σ>amTm (ameo), f*~n(T) - ΣαίΓ w Γ ).

Let u = (un)e UΌo, and let fu(T) be the power series associated to u
by Proposition 3.1. Let D = (1 + T)(d/dT). For each integer k ^ 1, we
define the Coates-Wiles homomorphism δk: U^—^o by

(7) δk(u) = D

Put T = e* - 1 = Σ ^ i (Zm/ml). Then (dT/dZ) = ez = 1 + T and
D = (d/dZ)9 hence

( 8) δk(u) = ( A ) * logfu(ez - l)U=o

It is easy to see that the map δk has the following properties (cf.
§13.7 of [15]).
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PROPOSITION 3.2. The map δk: U^—>o is a continuous Zp-homomor-
phism satisfying

( i ) δk(u') = ιc{g)kδk{u) for vgeΓ x <τ>, *ue U^
(ii) δk{uφ) = δk(u)φ for *ue C/Όo.

Jw particular, if ue UM(Xiti) with j φ kmoά{p — 1), then δk(u) — 0.
Further, δk(h(T)u) = h(φ)k - l)δk(u) for vh(T)eΛ, *ue U*.

Let 1 = Xi>3 , (i, i) ^ (0, 0), (0, 1) (0 ^ i ^ d - 1, 1 ^ i ^ p - 1). Let
^e(x) be the basis for E7oo(%) over A constructed in §2. If k & j mod (p — 1),
then <5A(i;

e(x)) — 0 by Proposition 3.2. So we assume k = ^'mod(p — 1),
Λ ^ 1. By Proposition 3.2, we have

( 9 ) δk{v*™) = -jj Σ Σ KM^WY
#4 8=0 t = l

y

Let I I be a p-adic valuation of Φ. Let Q be the set of power
series Σπέo^ϊ7 7 1 in Φ[[T]] such that |αnw!| -* 0 as n^ ©o. Let C be the
set of continuous functions from j?p to Φ. Then Q and C are Banach
algebras over Φ with norms sup|αn%!| and max8eZ |/(s)|, respectively.
To calculate δk(v), we need the following two facts on a slight generali-
zation of Leopoldt's Γ-transform (see §1 of Lichtenbaum [8]).

LEMMA 3.3. For each jeZ/(p — 1)Z, there is a unique bounded
linear map Γά: Q —> C such that

ez - 1 ) U ik ^ 0, k = j mod (p - 1)) ,

where h(T) = h(T) - j r 1 Σf=ί Λ(Cί(l + T) - 1) (heQ).

LEMMA 3.4. For any heo[[T]], Γά(h) is an Iwasawa function i.e.
there is a power series geo[[T]] such that

We return to the calculation of δk(v). We recall that v = (vn), vn =
ω(b)-φ~n(bφ'n - πn), b = λ - 1 for some λe V, \φl. Then the power
series associated to v is given by

fv(T) = ω(b)~\b - T) .

Put h(T) = (1 + T)f[{T)lfv{T) = (1 + Γ)/(l + Γ - λ). Then Sfc(ι;) =
'hie* - 1)U=O, and £(Γ) - (1 + Γ)/(l + Γ - λ) - p-1 Σ U ζί(l +

Γ)/(ζί(l + Γ) - λ). Taking the logarithmic derivatives of Xp - Xp =
Π S 1 (CSX - λ)f we obtain
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- λ') = Σ ζt/(ζiX - λ) , where X = 1 + T .

Hence h(T) = Λ(T) - ft*((l + T)" - 1), and

Replacing v by v*' in the above equality, we obtain

(10) δk(υ)*' - Vk-λhW+1 = (-^T^'ie2 - 1)U=O

(12) (1 - μίp"-^^) = d-1 Σ μiitΓJΛh*t)(k - 1) .
ί0

(0 ^ s ^ d - 1) .

By Lemma 3.3, the right side of (10) is Γ^W^k - 1). If k ^ 2, then
we can solve the liner equations (10) with respect to dk(v)φ8:

(li) δk(vys = (i - p**-1')-1 sV '^/W^'Xfc - i)
ί=0

(0 ^ β ^ d - 1) .

It follows from (9) and (11) that

Σ
ί=0

If k — 1, then i = l and i ^ O m o d d . It is easy to check that the
equality (12) is also valid for k = 1. Since h**eo[[T]],-Γ^h**) is an
Iwasawa function by Lemma 3.4. Hence there is a power series aχ(T)e
o[[T]] such that

(13) (1 - μW-'mv'™) = aMΎ)"-1 - 1)

for any k ^ 1, k = j mod (p — 1) .

Put 6χ(Γ) - α x ^ T ) " ^ + Γ) - 1), then δz(Γ)eo[[Γ]] and 6χ(/c(7)fc - 1) =
αχ(Λ:(7)&-1 — 1). It follows from the proof of Proposition 2.2 that
δj(ve{χ))modp = ψv« χ ) ) Φ 0. This implies that bχ(T) is a unit in o[[T]].
Note jt£j = X(φ). Thus we have proved

PROPOSITION 3.5. Let 1 = Xij9 X Φ XOtO, XOtl, and let veiχ) be the basis
for UΌoiX) over A constructed in $2. Then there is a unit power series
bχ(T) in o[[T]] such that

(1 - X(Φ)pk-1)δk(v^)) = bχ(φ)k - 1)

for any k Ξ> 1, k = j mod (p — 1).

4. The closure of the Stark-Shintani units. Let F be a real
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quadratic field embedded in R, and let p be an odd prime number which
splits in F (p = ptf). Further assume p ^ lmodδ. Take an integer a
of F such that a > 0, a' < 0, aep, a£p2 and aίp'. Put aa! = - α p ,
and assume that a is a quadratic residue modulo p and TF/Q(a) is not.
Put M = -P(l/α"), -tf - F(\/p*a), where p* = (-l) ( p-1 ) / 2p. Then it is easy
to see that p ramifies in M and remains prime in N, and p' ramifies in
N and remains prime in M. Put Mo = MQ(ζo)

+ (ζ0 is a primitive p-th
root of unity). Then Mo satisfies the condition (D). Further, Mo has
the property (P) by the results of [9] (see Theorem 1, Proposition 10 and
Remark after Proposition 13 of [9]). Hence we can apply Theorem 1 to
the cyclotomic Z^-extension M*, = U»*o Mn of Mo.

Let fn be the conductor of MJF and let Gn be the subgroup of
fff (fn) corresponding to Mn. Put ηn = -X"ffl(l, Gn). We have seen in the
proof of Theorem 1 that

(14) N n t U ( η m ) = ±Vn f o r a n y m ^ n ^ O .

Put Kn = Λf(ζw)f and put JKΌo = U^o Kn. Since Qd/p*") is contained
in Q(ζ0), iV is contained in Ko. Since t> is totally ramified in F(ζn) and
remains prime in N, there is a unique prime pn of ifn = NF(ζn) lying
over p. Since p splits in F, the completion of F at £ is identified with
Qp. Let Φ be the completion of N at p, and let Φn be the completion of
Kn at pn. Then Φ is the unramified extension of Qp of degree 2 and Φn =
Φ(ζJ. Hence we are in the situation of §§2-3 with d = 2. So we use
the same notation as in §§2-3 without further comment. Note that
Gal (Koo/F) is naturally isomorphic to H = Gal (Φoo/Qp).

We can view the unit X^n{c, Gn) of Mn as a unit of Φn by the in-
clusions MnczKnaΦn. Put ξn = η£-\ Then ξn = lmodί)n. Let ίfn be
the subgroup of E{Mn)~ generated by (ξnγ

Sτt (0 ^ s ^ pn - lt 1 ^ t ^
(p — l)/2). Then ^ n is a subgroup of Un. Let ^ n be the closure of ^ n

in Ϊ7n. Since <^?

n is stable under the action of H, &n is a Z^iϊJ-module.
Hence we have a decomposition ^ n = 0 χ ^ n (Z). It follows from the
definition of τ and 0 that ^|Mn is the generator of Gal (MJMi) and
(τφ){p~1)/2 induces the identity mapping on Mn. Hence (ξn)

φ = f"1 and

( f j(^)(P-D 2 = ^ T h i g i m p l i e s t h a t <pn(χtJ) = ι for i = 0 or i £

(p - l)/2 mod 2.

LEMMA 4.1. Lei X = X1Jf j = (p — l)/2 mod 2. Γfoe^ ίΛβ elements

ξnχ)γS (0 ^ s ^ pn — 1) of &JX) are multiplicatίvely independent over Zp.

PROOF. Put r = (p - l)/2. We have observed that ^ = φ y ^n(XUJ),
where j runs over the r integers satisfying l^j^2r, j = r mod2.
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Since (ξr

n

8τt)e{χ) = (ft(z)rf)z(rt>, ^ ( Z ) is generated by ξ nw (0 ̂  s ^ pn - 1)
over Zp and the Zp-rank of 9Pn(%) is at most pn. So it suffices to show
that the Zp-rank of <^n equals to rpn. But fΓΓ* (0 <; 8 ̂  pn - 1, 1 ̂  £ ̂  r)
are independent units of Mn by Theorem 1. Hence they are multiplica-
tively independent over Zv by a theorem of Brumer ([2]). Then the Zp-
rank of ^n is rpn. q.e.d.

Let ^oo = proj lim ^n (with respect to JVnfJ. Then ^ is a compact
H-module. For each Z, ^ ( Z ) = proj lim #.(Z) and #oo(Z) is a compact
Γ-module, hence a compact Λ-module. Note that ξ = (ξn)n^0 is an element
of ^oo by (14). Our purpose is to relate the Λ-module structure of
U»(X)I&JJL) to the values of δk at ξ.

LEMMA 4.2. <SfΌo(Z) = ̂  ('} for any Ze J.

This lemma is proved by the same argument as in p. 314 of [15].
Now we are ready to prove the following proposition.

PROPOSITION 4.3. Let Z be as in Lemma 4.1.
( i ) The natural projection &JX) —><g7

n(Z) induces an isomorphism
^00(Z)/α>n<ϊfco(Z) - <gfTO(Z) for any n^O.

(ii) A = &J$) by f(T)^f(T)t*\
(iii) (E7Όo(Z)/̂ oo(Z))(n) ~ Un{l)l^n{l) for any n^O, where A{n) = A/ωnA

for any compact A-module A.

PROOF. It follows from (14) that the natural projection ^ ( Z ) —•
<ĝ (Z) is surjective. Obviously ω^JX) is contained in the kernel. Let
u = (uj be in the kernel. Hence un = 1. By Lemma 4.2, u = f(T)ξe{χ)

for some f(T)eA. Then f(T)ξe

n

{χ) = un = 1 and ωnξ
e

n

{χ) = 1. By Lemma
4.1, this implies that /(Γ) = 0 mod ωnΛ. Hence u e ωn<&J$). This proves
the first statement. The second statement follows immediately from
Proposition 2.1 and Lemma 4.2. The natural projection Z7oo(Z) -> Z7n(Z) is
surjective and its kernel is ωJJJ$) by Proposition 2.1. Further it maps
#Όo(Z) onto &JX) by (i). Hence the natural homomorphism Z7TO(Z) ->
UnQC)/<i^n(X) is surjective and its kernel is ω7lC7Oo(Z)#O0(Z). This proves
the third statement. q.e.d.

The following theorem is the main result of this section.

THEOREM 3. Let Z = Xlti9 1 ̂  j ^ p - 1, j = (p - l)/2 mod 2. T&ew
ίfcere are ί^o power series fx(T)eA, gχ(T)eo[[T]] with the following
properties:

( i ) E7Όo(Z)/#co(Z) = A/fx(T)A as Λ-modules.
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( i i ) (1 + pk-ι)δk(ξ) = gχ(φ)k - 1) for any k^l, k = j m o d (p - 1).
( i i i ) fχ(T)o[[T]] = gχ(T)o[[T]].

PROOF. Let ve{χ) be the basis for U^iX) over A in §2. Since ^ ( Z ) =
Aζ w c U^OC) = ^ e ( z ) , there is a power series fχ(T)eΛ such that £e(χ) =
fχ(T)ve{χ). Then UJJL)I^JJL) ~ A/fz(T)Λ as ^-modules. Let &Z(Γ) be the
unit power series in Proposition 3.5, and put gχ(T) = bχ(T)fχ(T). Since
£> = f1 and Z(#) - - 1 , Proposition 3.2 implies that dk(ξ) = dk(ξe{χ)) for
fc ̂  1, fc ΞΞ jmoά(p — 1) (cf. (9)). Then it follows from Propositions 3.2
and 3.5 that

for any k ^ 1, & Ξ= ̂ 'mod (p — 1). q.e.d.

We may view the above theorem as a weak analogue of a result of
Iwasawa on cyclotomic units and a result of Coates-Wiles on elliptic
units. It is known that the values of δk at the limit of cyclotomic units
(resp. elliptic units) are essentially the values of the corresponding L-
function at integers and the p-adic analytic function Zp s s h-> gχ(/c(Ύ)8 — 1)
is essentially the p-adic L-function of Kubota-Leopoldt (resp. the p-adic
L-function associated to an elliptic curve) (cf. [3], [5]).

COROLLARY. Let p = 3 mod 4. Put h~ = h(Mn)/h(Mi)f % = ^0(l> Go).
If ψjiVo) ^ 0 for any odd integer j with 1 ^ j ^ p — 1, then hΰ is prime
to p for any n ^ 0.

PROOF. Since <^(|)mod:p = ψj(ξ0) = (p2 — l)ψs(rj0)9 ψj(η0) Φ 0 implies
δjiξ) ^Ξ o mod p. Hence gχ(T) and fχ(T) are unit power series and
t/Όo(Z)/̂ o(Z) is trivial for X = Z l f i, 1 ^ j ^ (p - 1), i Ξ= 1 mod 2 by
Theorem 3. Then it follows from (iii) of Proposition 4.3 that Un(XltJ) =
^w(Zlfy) for odd j with 1 ^ j £ (p - 1). Since ^n = φ i O d d ^ (Zlfi) and
the Zp-rank of ^TO equals to the Z-rank of E{Mn)~ ( = pn(p - l)/2), this
implies that [U(ilfn)~: ^ J is prime to p. Hence hή is prime to p by
Theorem 1. q.e.d.

REMARK. The above corollary gives a sufficient condition for p\h~
(yn ^ 0) in terms of certain congruences which can be calculated by
knowing a special unit Ύ]o of Mo.

Now we prove Theorem 2 stated in the introduction. Note that the
assumption on M and p in Theorem 2 is the same as in the beginning of
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this section except that we need not assume p & 1 mod 8 in Theorem
2. We keep the notations Φn, Un, 7, φ, τ and Xitί as before. But in
this time, let Mo = M and let ikL = |J^o Mn be the cyclotomic Zp-ex-
tension of M. Then [Mn: F] = 2pn and Mn c MQ(ζn)

+ a Φn. Further the
condition (D) is trivial since M/F is a quadratic extension, and M has
the property (P) by Theorem 1 of [9]. Hence we can define ηn1 ξn, <^n

and Ό̂o similarly. Then it follows from the definition of φ (resp. τ)
that φ\Mn (resp. τ\Mn) is the generator of Gal (MJMi). Hence £ί =
ξl = ξ-1. This implies that # n = ^ΛKr) and ^ = ίPoo(Xi,r) for r =
(p — l)/2. Then we can prove that the same statements as in Theorem
3 and its corollary also hold for this case. So it suffices to show that
ψΛVo) =5* 0 under the assumption of Theorem 2. Put η0 = (x + yV α~)/2 (&
and ?/ are integers of J?7). Then x ^ 0 mod :p, since ^0 is a unit of F and
α is a prime element of Fp (Fp is the completion of F at £ and Fp is
identified with Qp). Since the ramification index for Φ0/Fp is (p — 1)
( = 2r) and Mcilί(fo)cΦ 0, there is a unit ^ of Φo such that V a = πju,
π0 = ζ0 - 1. Write w = ^(ττ0), βr(Γ) = α0 + α.Γ + e o[[T]]. Then α0 is
a unit of o. Put f(T) = (l/2)(a? + yTrg(T)). Then /(T)e o[[T]] and
% = /fro). Recall that Z> = (1 + T)(d/dT). Then

Trg(T)

Tro[[T]] .

Since Dr~\Tk)\τ^ - 0 if Λ ̂  r and D ^ X Γ ^ 1 ) ! ^ = (r - 1)1, we obtain

ψr(Vo) = Dr(logf(T))\τ=0moάp

= r! a<β~xy mod £ .

Since r ! α,̂ ""1 is a unit of o, ψr(η0) ^ 0 is equivalent to y 3= 0 mod p. This
completes the proof of Theorem 2.

We conclude this paper by giving an example of Theorem 2.

EXAMPLE. Let_i^ = Q(i/TΓ). Put ε = (3 + i/ΊΓ)/2. Let p = 11 and
let a = ( — 1 + 3i/ΊΓ)/2. Then p splits in F and αα' = — p. Hence the
assumption of Theorem 2 is satisfied. Let M- F{\/~a). Then it was
shown in pp. 191-192 of [10] that

Xf(l, G) = (e + l/άΓ)/2 .

Hence 111 Λ,~ for any n ^ 0 by Theorem 2. This is also an example of
the corollary to Theorem 1.
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