ON THE STARK-SHINTANI CONJECTURE AND CYCLOTOMIC Z_p -EXTENSIONS OF CLASS FIELDS OVER REAL QUADRATIC FIELDS II

JIN NAKAGAWA

(Received October 5, 1983)

Introduction. Let p be a prime number, and denote by Z_p the ring of p-adic integers. In our previous paper [9], we have constructed certain cyclotomic Z_p -extensions $M_{\infty} = \bigcup_{n\geq 0} M_n$ such that the Stark-Shintani invariants for M_n are units of M_n for each $n \geq 0$. In this paper, we study the image of these units in the completion of M_{∞} at a prime over p.

Let F be a real quadratic field embedded in the real number field R. Let M be a finite abelian extension of F in which exactly one of the two infinite primes of F, corresponding to the prescribed embedding of F into R, splits. Let \mathfrak{f} be the conductor of M/F. Denote by $H_F(\mathfrak{f})$ the group consisting of all narrow ray classes of F defined modulo \mathfrak{f} . Let G be the subgroup of $H_F(\mathfrak{f})$ corresponding to M by class field theory. Take a totally positive integer ν of F satisfying $\nu + 1 \in \mathfrak{f}$, and denote by the same letter ν the narrow ray class modulo \mathfrak{f} represented by the principal ideal (ν). For each $c \in H_F(\mathfrak{f})$, set $\zeta_F(s, c) = \sum N(\mathfrak{a})^{-s}$, where \mathfrak{a} runs over all integral ideals of F belonging to the ray class c. Then the Stark-Shintani ray class invariant $X_{\mathfrak{f}}(c)$ is defined by

(1) $X_{\rm f}(c) = \exp{(\zeta'_F(0, c) - \zeta'_F(0, c\nu))}$

(Stark [12], [13], Shintani [11]). Put $X_{i}(c, G) = \prod_{g \in G} X_{i}(cg)$.

CONJECTURE ([12], [13], [11]). For some positive rational integer m, $X_{\mathfrak{f}}(c, G)^m$ is a unit of M ($\forall c \in H_F(\mathfrak{f})/G$). Moreover, $\{X_{\mathfrak{f}}(c, G)^m\}^{\sigma(c_0)} = X_{\mathfrak{f}}(cc_0, G)^m$ ($\forall c, c_0 \in H_F(\mathfrak{f})/G$), where σ is the Artin isomorphism of $H_F(\mathfrak{f})/G$ onto the Galois group Gal (M/F).

Denote by M^+ the maximal totally real subfield of M. Then Shintani proved that the conjecture is true if M^+ is abelian over the rational number field Q ([11]). In our previous paper, we have studied the integer m in the conjecture when M^+ is abelian over Q, and we have constructed abelian extensions M of F with the following property (P) for an odd prime number p (cf. Theorem 1, Propositions 8, 9, 10 and 13 of [9]):

J. NAKAGAWA

(P) Let $M_{\infty} = \bigcup_{n \ge 0} M_n$ be the cyclotomic \mathbb{Z}_p -extension of M. Then $X_{\mathfrak{f}_n}(c, G_n)$ is a unit of M_n for each $c \in H_F(\mathfrak{f}_n)/G_n$, where \mathfrak{f}_n is the conductor of M_F/F and G_n is the subgroup of $H_F(\mathfrak{f}_n)$ corresponding to M_n ($\forall n \ge 0$). Moreover, $X_{\mathfrak{f}_n}(c, G_n)^{\sigma(c_0)} = \pm X_{\mathfrak{f}_n}(cc_0, G_n)$ ($\forall c, c_0 \in H_F(\mathfrak{f}_n)/G_n$).

In this paper, we assume that M has the property (P) for an odd prime number p with $p \nmid [M:F]$. Further we assume that the following condition (D) is satisfied:

(D) For any subfield M' of M/F with $M' \not\subset M^+$, any prime divisor p of f is a divisor of $\mathfrak{f}(M')$ or a divisor of p, where $\mathfrak{f}(M')$ is the conductor of M'/F. Moreover, if p is a prime divisor of p with $\mathfrak{p} \not\models \mathfrak{f}(M')$, then the decomposition field of \mathfrak{p} in M'/F is $(M')^+$.

For a number field k, denote by E(k), A(k) and h(k) the group of units of k, the ideal class group of k and the class number of k respectively. Put $E(M)^- = \{u \in E(M); N_{M/M^+}(u) = 1\}$. Denote by C(M) the subgroup of E(M) generated by -1 and $X_i(c, G)$ $(c \in H_F(\mathfrak{f})/G)$. Then we can show that C(M) is a subgroup of $E(M)^-$, and we can rewrite Arakawa's class number formula as follows (cf. [1], [9]):

(2)
$$h(M)/h(M^+) = [E(M)^-: C(M)] \times (a \text{ power of } 2).$$

Put $E_n^- = E(M_n)^-$, $C_n = C(M_n)$ and $h_n^- = h(M_n)/h(M_n^+)$ $(n \ge 0)$. If there is a prime divisor \mathfrak{p} of p with $\mathfrak{p} \nmid \mathfrak{f}$, then we replace C_0 by the subgroup generated by -1 and $X_{\mathfrak{f}}(c, G)^{2^e}$ $(c \in H_F(\mathfrak{f})/G)$, where e is the number of such prime divisors \mathfrak{p} of p. In §1, we shall prove the following theorem which is analogous to classical results on cyclotomic units and elliptic units.

THEOREM 1. Notation and assumption being as above, we have

(i)
$$h_n^- = [E_n^-: C_n] \times (a \text{ power of } 2) \quad (n \ge 0)$$

(ii)
$$N_{n,m}(C_m) = C_n \qquad (m \ge n \ge 0)$$
,

where $N_{n,m}$ is the norm map of M_m to M_n .

COROLLARY. Put $B_n = \{c \in A(M_n); N_{M_n/M_n}+(c) = 1, \text{ the order of } c \text{ is odd}\}$. If h_1^- is prime to p, then the natural homomorphism $B_n \to B_m$ is injective for any $m \ge n \ge 0$.

In §4, we shall study the image of C_n in the completion of M_{∞} at a prime over p by using a result of Coleman ([4]). §§2-3 are devoted to preparations for the arguments in §4. As a consequence of Theorem 1 of [9], Theorem 1 and the main result in §4 (Theorem 3), we obtain

THEOREM 2. Let p be an odd prime which splits in F (p = pp').

440

Take an integer α of F such that $\alpha > 0$, $\alpha' < 0$, $\alpha \in \mathfrak{p}$, $\alpha \notin \mathfrak{p}^2$ and $\alpha \notin \mathfrak{p}'$ (α' is the conjugate of α). Put $\alpha \alpha' = -\alpha p$, and assume that α is a quadratic residue modulo p and $T_{F/Q}(\alpha)$ is not. Let $M = F(\sqrt{\alpha})$ and let $X_i(1, G) = (x + y\sqrt{\alpha})/2$, where x and y are integers of F. If y is prime to \mathfrak{p} then h_n^- is prime to p for any $n \geq 0$.

REMARK. By (i) of Theorem 1, $\mathfrak{p} \not\downarrow (y)$ implies $p \not\downarrow h_0^-$. On the other hand, the general theory of \mathbb{Z}_p -extensions tells that $p \not\downarrow h_1^-$ implies $p \not\downarrow h_n^ (\forall n \ge 0)$. But in general, $p \not\downarrow h_0^-$ does not imply $p \not\downarrow h_0^-$ ($\forall n \ge 0$).

1. Proof of Theorem 1. In this section, we prove Theorem 1 and Corollary. First, we prove

LEMMA 1.1. C(M) is a subgroup of $E(M)^-$.

PROOF. Put $\eta = X_i(c, G)$ and $\beta = T_{M/M^+}(\eta)$. It follows from (P) and (1) that $\eta^{\sigma(\nu)} = \pm \eta^{-1}$. Since $\sigma(\nu)$ is the generator of Gal (M/M^+) , this implies that $N_{M/M^+}(\eta) = \pm 1$. If $N_{M/M^+}(\eta) = -1$, $\eta = (\beta + \sqrt{\beta^2 + 4})/2$. Since $\beta \in M^+$, η is a totally real algebraic number of M. Hence $\eta \in M^+$. This contradicts to $N_{M/M^+}(\eta) = -1$. q.e.d.

Now we prove the equality (2). Let χ be a character of $H_F(f)/G$ with $\chi(\nu) = -1$. It follows from (1) that

(3)
$$L'_F(0, \chi) = \sum_{c \in H_F(\mathfrak{f})/\langle G, \nu \rangle} \chi(c) \log X_{\mathfrak{f}}(c, G) .$$

Denote by f_{χ} and $\tilde{\chi}$ the conductor of χ and the primitive character associated to χ respectively. Then we have

$$(4) L_F(s, \chi) = L_F(s, \tilde{\chi}) \prod_{\mathfrak{p} \mid \mathfrak{f}, \mathfrak{p} \nmid \mathfrak{f} \chi} (1 - \tilde{\chi}(\mathfrak{p}) N(\mathfrak{p})^{-s}) .$$

It follows from the functional equation of $L_F(s, \tilde{\chi})$ that $L_F(0, \tilde{\chi}) = 0$. Hence we obtain

$$(5) L'_F(0, \chi) = L'_F(0, \tilde{\chi}) \prod_{\mathfrak{p} \mid \mathfrak{f}, \mathfrak{p} \nmid \mathfrak{f} \chi} (1 - \tilde{\chi}(\mathfrak{p})) .$$

It is easy to see that $\tilde{\chi}(\mathfrak{p}) = \tilde{\chi}(\nu) = -1$ in (5) under the assumption (D). On the other hand, the analytic class number formula at s = 0 (cf. p. 200 of Stark [14]) tells us

(6)
$$h(M)/h(M^+) = (R(M^+)/R(M)) \prod_{\chi,\chi(\nu)=-1} L'_F(0, \tilde{\chi}),$$

where R(M) and $R(M^+)$ are regulators of M and M^+ respectively. The equality (2) follows from (3), (5), (6) and a slightly modified version of the Frobenius determinant formula.

PROOF OF THEOREM 1. Let $F_{\infty} = \bigcup_{n \ge 0} F_n$ be the cyclotomic Z_p -

extension of $F([F_n; F] = p^n)$. Since [M: F] is prime to p, $M_n = MF_n$ and any subfield of M_n/F is a composition of a subfield of M with a subfield of F_n . This implies that the condition (D) is satisfied for M_n . Hence the equality (2) is also valid for M_n . This proves the first half of Theorem 1. Let $m \ge n \ge 1$. Denote by $\mathfrak{P}(\mathfrak{f}_n)$ the set of prime divisors of \mathfrak{f}_n . Then $\mathfrak{P}(\mathfrak{f}_m) = \mathfrak{P}(\mathfrak{f}_n)$. Let $\varphi: H_F(\mathfrak{f}_m)/G_m \to H_F(\mathfrak{f}_n)/G_n$ be the natural surjective homomorphism, and let ν_n be the ν for \mathfrak{f}_n . For any character χ of $H_F(\mathfrak{f}_n)/G_n$ with $\chi(\nu_n) = -1$, put $\chi' = \chi \circ \varphi$. Then χ' is a character of $H_F(\mathfrak{f}_m)/G_m$ with $\chi'(\nu_m) = -1$. Since $\mathfrak{P}(\mathfrak{f}_m) = \mathfrak{P}(\mathfrak{f}_n)$, the equality (4) implies that $L_F(s, \chi) = L_F(s, \chi')$. Then it follows from (3) that

$$\sum_{\substack{c_0 \in H_F(\mathfrak{f}_m) \mid \langle G_n, \nu_n \rangle \\ = \sum_{c_0 \in H_F(\mathfrak{f}_m) \mid \langle G_n, \nu_n \rangle} \chi(c_0) \log X_{\mathfrak{f}_m}(c, G_m)} \sum_{c \in \varphi^{-1}(c_0)} \log X_{\mathfrak{f}_m}(c, G_m) X(c_0) \{\sum_{c \in \varphi^{-1}(c_0)} \log X_{\mathfrak{f}_m}(c, G_m)\} .$$

This implies that $X_{\mathfrak{f}_n}(c_0, G_n) = \prod_{c \in \varphi^{-1}(c_0)} X_{\mathfrak{f}_m}(c, G_m)$. Since $\sigma(\operatorname{Ker} \varphi) = \operatorname{Gal}(M_m/M_n)$, we obtain $X_{\mathfrak{f}_n}(\varphi(c), G_n) = \pm N_{n,m}(X_{\mathfrak{f}_m}(c, G_m))$. Hence $N_{n,m}(C_m) = C_n$. When n = 0, it follows from (5) that

$$egin{aligned} L_F'(0,\,\mathcal{X}') &= L_F'(0,\,\mathcal{X}) \prod_{\mathfrak{p} \mid \mathfrak{f}_m,\mathfrak{p} \mid \mathfrak{f}} \left(1 \,-\,\mathcal{X}(\mathfrak{p})
ight) \ &= L_F'(0,\,\mathcal{X}) imes 2^e \qquad (e = \sharp\{\mathfrak{p};\,\mathfrak{p} \mid p,\,\mathfrak{p}
eq \mathfrak{f}\}) \end{aligned}$$

The rest of the proof goes similarly to that of the case $n \ge 1$. This completes the proof of Theorem 1.

Put $\Gamma = \operatorname{Gal}(M_{\infty}/M)$ ($\cong \mathbb{Z}_{p}$). Take a topological generator γ of Γ and fix it. Put $\Gamma_n = \text{Gal}(M_{\infty}/M_n)$ and $\Delta = \text{Gal}(M_{\infty}/F_{\infty})$. Then $\text{Gal}(M_{\infty}/F) =$ $\Gamma \times \varDelta$ and \varDelta is naturally isomorphic to $\operatorname{Gal}(M/F)$. Put $\rho = (\sigma(\nu_n))_{n \ge 0} \in$ proj lim Gal (M_n/F) = Gal (M_∞/F) . Obviously $\rho \in \varDelta$, $\rho^2 = 1$ and $\rho \neq 1$. Put $r = [M^+: F]$, and let $\sigma_1, \dots, \sigma_r$ $(\in \Delta)$ be a complete set of representationtatives of $\Delta/\langle \rho \rangle$. Put $\eta_n = X_{i_n}(1, G_n)$. It follows from the assumption (P) that $X_{\mathfrak{f}_n}(c, G_n) = \pm X_{\mathfrak{f}_n}(1, G_n)^{\sigma(c)}$ for any $c \in H_F(\mathfrak{f}_n)/G_n$ and $X_{\mathfrak{f}_n}(c, G_n)^{\sigma(\nu_n)} =$ $X_{i_n}(c, G_n)^{-1}$. Hence C_n is generated by -1 and $\eta_n^{\sigma_i r^j}$ $(1 \leq i \leq r, 0 \leq j \leq r)$ $p^n - 1$). Furthermore, (i) of Theorem 1 implies that the units $\eta_n^{\sigma_i \gamma^j}$ $(1 \leq 1)$ $i \leq r, 0 \leq j \leq p^n - 1$) are multiplicatively independent. Denote by $Z[\Gamma_n/\Gamma_m]$ the group ring of Γ_n/Γ_m over the ring of rational integers Z Then $C_m/\pm 1$ is a free $Z[\Gamma_n/\Gamma_m]$ -module of rank rp^n $(m \ge n \ge 0).$ generated by $\eta_m^{\sigma_i\gamma^j}$ $(1 \leq i \leq r, \ 0 \leq j \leq p^n - 1).$ This implies that $H^k(\Gamma_n/\Gamma_m, C_m) = 0$ for any $k, m \ge n \ge 0$. Since Γ_n/Γ_m is a cyclic group of order p^{m-n} , $H^1(\Gamma_n/\Gamma_m, C_m) = 0$ implies that Ker $(N_{n,m}: C_m \to C_n) = (C_m)^{\omega_n}$, where $\omega_n = \gamma^{p^n} - 1$. Further, $H^0(\Gamma_n/\Gamma_m, C_m) = 0$ implies that $C_m \cap M_n =$ $N_{n,m}(C_m) = C_n$. In particular, the natural homomorphism $E_n^-/C_n \to E_m^-/C_m$

is injective for any $m \ge n \ge 0$. Thus we have proved

PROPOSITION 1.2. (i) $H^{k}(\Gamma_{n}/\Gamma_{m}, C_{m}) = 0$, for any $k, m \geq n \geq 0$. (ii) $C_{m} \cap E_{n} = C_{n}$, hence the natural homomorphism $E_{n}^{-}/C_{n} \to E_{m}^{-}/C_{m}$ is injective for any $m \geq n \geq 0$.

(iii) $0 \to (C_m)^{\omega_n} \to C_m \xrightarrow[N_{n,m}]{} C_n \to 0$ (exact), for any $m \ge n \ge 0$.

To prove the corollary to Theorem 1, we need the following lemma.

LEMMA 1.3. Let B_n be as in the corollary. Then we have an injective homomorphism

$$\operatorname{Ker} (B_n \to B_m) \to \operatorname{Ker} (N_{n,m} : E_m^- \to E_n^-)/(E_m^- \cap (E_m)^{\omega_n})$$
,

for any $m \ge n \ge 0$.

PROOF. Let $c \in \operatorname{Ker} (B_n \to B_m)$. Take an ideal \mathfrak{a} of M_n in the class c. It is easy to see that \mathfrak{a} can be taken to satisfy $\mathfrak{a} = (\alpha)$ for some $\alpha \in M_m$ with $\alpha^{\rho} = \alpha^{-1}$. Then we put $\varepsilon = \alpha^{\omega_n}$. Since $\gamma_n = \gamma^{p^n}$ induces the identity map on M_n , $\mathfrak{a}^{\gamma_n} = \mathfrak{a}$, hence $(\alpha^{\gamma_n}) = (\alpha)$ as principal ideals of M_m . So $\varepsilon = \alpha^{\omega_n} = \alpha^{\gamma_{n-1}}$ is a unit of M_m . Since $\alpha^{\rho} = \alpha^{-1}$, $\varepsilon \in E_m^-$. On the other hand, $N_{n,m}(\varepsilon) = N_{n,m}(\alpha^{\omega_n}) = 1$. Hence we define a map $\operatorname{Ker} (B_n \to B_m) \to \operatorname{Ker} (N_{n,m}: E_m^- \to E_n^-)/(E_m^- \cap (E_m)^{\omega_n})$ by $c \mapsto \varepsilon \mod (E_m^- \cap (E_m)^{\omega_n})$. It is easy to check that this map is a well-defined injective homomorphism. q.e.d.

Now we prove the corollary to Theorem 1. Since [M: F] is prime to p, any prime of M lying over p is totally ramified in M_{∞}/M . Hence $p \nmid h_1^-$ implies $p \nmid h_n^-$ for all $n \geq 0$ by a well known fact in the theory of Z_p -extensions (cf. Theorem 6 of Iwasawa [6]). By (i) of Theorem 1, the order of the group E_n^-/C_n is prime to p. Since Γ_n/Γ_m is a cyclic group of order p^{m-n} , we have $H^k(\Gamma_n/\Gamma_m, E_m^-/C_m) = 0$. By (i) of Proposition 1.2, we have $H^k(\Gamma_n/\Gamma_m, C_m) = 0$. Hence we obtain $H^k(\Gamma_n/\Gamma_m, E_m^-) = 0$. Since $(E_m^-)^{\omega_n} \subset E_m^- \cap (E_m)^{\omega_n} \subset \text{Ker}(N_{n,m}: E_m^- \to E_n^-)$, and since $H^1(\Gamma_n/\Gamma_m, E_m^-) =$ $\text{Ker}(N_{n,m}: E_m^- \to E_n^-)/(E_m^-)^{\omega_n}$, we have $\text{Ker}(N_{n,m}: E_m^- \to E_n^-) = E_m^- \cap (E_m)^{\omega_n} =$ $(E_m^-)^{\omega_n}$. Hence $\text{Ker}(B_n \to B_m) = 0$ by Lemma 1.3. This completes the proof of the corollary.

REMARK 1.4. If the number of prime divisors of p in M is one, $p \nmid h_0^-$ implies $p \nmid h_n^-$ for all $n \ge 0$ (cf. Proposition 13.22 of Washington [15]).

2. A basis for the local units. In this section, we study the group of units of certain abelian extensions of the *p*-adic number field Q_p . The results in this section are slight generalizations of some facts mentioned in Chapter 7 of Lang [7].

Let p be an odd prime number and let d (>0) be a divisor of p-1. Let Φ be the unique unramified extension of Q_p of degree d. Put $\Phi_n =$ $\Phi(\zeta_n)$, where ζ_n is a primitive p^{n+1} -th root of unity in a fixed algebraic closure Ω of Φ . We choose $(\zeta_n)_{n\geq 0}$ to satisfy $\zeta_{n+1}^p = \zeta_n$ for any $n\geq 0$. Put $\Phi_{\infty} = \bigcup_{n \ge 0} \Phi_n$, $H = \operatorname{Gal}(\Phi_{\infty}/Q_p)$ and $\Gamma = \operatorname{Gal}(\Phi_{\infty}/\Phi_0)$. Since $[\Phi_0; Q_p]$ is prime to p, there is a finite subgroup \varDelta of H such that $H = \Gamma \times \varDelta$ and \varDelta is naturally isomorphic to Gal (Φ_0/Q_p) . Since \varDelta is an abelian group of exponent p-1, any character $\chi: \varDelta \to \Omega^{\times}$ is \mathbb{Z}_p^{\times} -valued. Denote by $\widehat{\mathcal{A}}$ the set of all Z_p^{\times} -valued characters of \varDelta . Let ϕ be the unique element of \varDelta such that $\phi | \mathbf{Q}_p(\zeta_0) = id$ and $\phi | \Phi$ is the Frobenius automorphism of Φ/\mathbf{Q}_p . Let τ be an element of \varDelta such that $\tau | \Phi = id$ and $\tau | Q_p(\zeta_0)$ is a generator of Gal $(\boldsymbol{Q}_{p}(\zeta_{0})/\boldsymbol{Q}_{p})$. Let κ : Gal $(\boldsymbol{\Phi}_{\infty}/\boldsymbol{\Phi}) = \Gamma \times \langle \tau \rangle \to \boldsymbol{Z}_{p}^{\times}$ be the canonical character (i.e. κ is characterized by $\zeta_n^g = \zeta_n^{\kappa(g)}$ for any $n \ge 0$ and any $g \in$ $\Gamma \times \langle \tau \rangle$). Then $\mu_{p-1} = \kappa(\tau)$ is a primitive (p-1)-th root of unity in \mathbb{Z}_p . Let μ_d be a fixed primitive d-th root of unity in \mathbb{Z}_p . Define $\chi_{i,j} \in \widehat{\mathcal{A}}$ by $\chi_{i,j}(\phi) = u_d^i, \ \chi_{i,j}(\tau) = \mu_{p-1}^j \ (i \in \mathbb{Z}/d\mathbb{Z}, \ j \in \mathbb{Z}/(p-1)\mathbb{Z}).$

For any $\mathbb{Z}_p[\Delta]$ -module A, put $A(\mathfrak{X}) = e(\mathfrak{X})A$, where $e(\mathfrak{X}) = (1/\# \Delta)$ $\sum_{g \in \mathcal{A}} \mathfrak{X}^{-1}(g)g \ (\in \mathbb{Z}_p[\Delta])$. Then $A(\mathfrak{X}) = \{a \in A; ga = \mathfrak{X}(g)a \text{ for any } g \in \Delta\}$, and $A = \bigoplus_{\mathfrak{X} \in \mathcal{A}} A(\mathfrak{X})$.

Let \mathfrak{o} and \mathfrak{o}_n be the ring of integers of \mathfrak{O} and \mathfrak{O}_n respectively $(n \geq 0)$. Let \mathfrak{p} and \mathfrak{p}_n be the maximal ideal of \mathfrak{o} and \mathfrak{o}_n respectively. Put $\pi_n = \zeta_n - 1$ $(n \geq 0)$. Then $\mathfrak{p} = p\mathfrak{o}$ and $\mathfrak{p}_n = \pi_n \mathfrak{o}_n$. Denote by V the group of $(p^d - 1)$ -th roots of unity in \mathfrak{O} . Put $U_n = \{u \in \mathfrak{o}_n; u \equiv 1 \mod \mathfrak{p}_n\}$. Denote by $N_{n,m}$ the norm map of \mathfrak{O}_m to \mathfrak{O}_n $(m \geq n \geq 0)$, and put $U_\infty = \operatorname{proj} \lim U_n$ (the limit is taken with respect to $N_{n,m}$). Then U_∞ is a compact $Z_p[H]$ -module and $U_\infty = \bigoplus_{\chi} U_\infty(\chi)$. Let Λ be the ring of formal power series in an indeterminate T with coefficients in $Z_p: \Lambda = Z_p[[T]]$. Let γ be a fixed topological generator of $\Gamma (\cong Z_p)$. Obviously, $U_\infty(\chi) = \operatorname{proj} \lim U_n(\chi)$ and $U_\infty(\chi)$ is a compact Γ -module, hence a compact Λ -module (the action of T is given by $(1 + T)u = u^{\gamma}$ for any $u \in U_\infty(\chi)$). The Λ -module structure of $U_\infty(\chi)$ is given by the following proposition which can be proved by the same arguments as in Chapter 7 of [7].

PROPOSITION 2.1. For any $\chi \in \widehat{\Delta}$ with $\chi \neq \chi_{0,0}$, the natural projection $U_{\infty}(\chi) \to U_n(\chi)$ induces an isomorphism $U_{\infty}(\chi)/\omega_n U_{\infty}(\chi) \simeq U_n(\chi)$, where $\omega_n = (1 + T)^{p^n} - 1$ $(n \ge 0)$. If $\chi \neq \chi_{0,0}, \chi_{0,1}$, then we have a Λ -isomorphism $U_{\infty}(\chi) \simeq \Lambda$.

Let $\chi \neq \chi_{0,0}, \chi_{0,1}$. We are going to construct a basis for $U_{\infty}(\chi)$ over Λ . Take an element λ of V with $\lambda \neq 1$, and put $b = \lambda - 1$. Then b is a unit of o and $b^{\phi} = \lambda^{\phi} - 1 = \lambda^{p} - 1$, because $\phi|_{\phi}$ is the Frobenius automorphism of Φ . For any unit x of o, denote by $\omega(x)$ the unique element

of V such that $\omega(x) \equiv x \mod \mathfrak{p}$. Put $v_n = \omega(b)^{-\phi^{-n}}(b^{\phi^{-n}} - \pi_n)$. Obviously $v_n \in U_n$, and it is easy to check $N_{n,m}(v_m) = v_n$ for any $m \ge n \ge 0$. Hence $v = (v_n)_{n\ge 0}$ is an element of U_{∞} . Now we claim that we can choose $\lambda \in V$ such that $v^{e(\chi)} = (v_n^{e(\chi)})_{n\ge 0}$ is a basis for $U_{\infty}(\chi)$ over Λ . To prove this, we define homomorphisms $\psi_k \colon \mathfrak{o}_0^{\times} \to \mathfrak{o}/\mathfrak{p}$ $(1 \le k \le p - 2)$ as follows:

Let D = (1 + T)(d/dT). For each $u \in \mathfrak{o}_0^{\times}$, take a power series $f(T) \in \mathfrak{o}[[T]]$ such that $f(\pi_0) = u$. Put $\psi_k(u) = D^k \log f(T)|_{T=0} \mod \mathfrak{p}$. This does not depend on a choice of f(T). Hence ψ_k is a well-defined homomorphism.

Note that $U_0(\mathfrak{X})$ is a free Z_p -module of rank one. If $\mathfrak{X} = \mathfrak{X}_{i,j}$, $1 \leq j \leq p-2$, then we can check $\psi_j(v_0^{\mathfrak{e}(\mathfrak{X})}) \neq 0$ for some $\lambda \in V$ by the same argument as in §3, Chapter 7 of [7]. If $\mathfrak{X} = \mathfrak{X}_{i,0}$, we can check $\delta_{p-1}(v^{\mathfrak{e}(\mathfrak{X})}) \not\equiv 0 \mod \mathfrak{p}$ for some λ similarly, where δ_{p-1} is the Coates-Wiles homomorphism defined in the next section. Then $v_0^{\mathfrak{e}(\mathfrak{X})}$ generates $U_0(\mathfrak{X})/U_0(\mathfrak{X})^p$, hence generates $U_0(\mathfrak{X})$ over Z_p by Nakayama's lemma. By Proposition 2.1 and Nakayama's lemma, this implies that $v^{\mathfrak{e}(\mathfrak{X})}$ is a basis for $U_{\infty}(\mathfrak{X})$ over Λ . Hence we obtain

PROPOSITION 2.2. Let $\chi \in \widehat{\mathcal{A}}$, $\chi \neq \chi_{0,0}$, $\chi_{0,1}$. Then $v^{e(\chi)} = (v_n^{e(\chi)})_{n \ge 0}$ is a basis for $U_{\infty}(\chi)$ over Λ for a suitable choice of $\lambda \in V$ (depending on χ).

3. Logarithmic derivatives. We use the same notation as in the previous section. First, we recall the following result of Coleman ([4]).

PROPOSITION 3.1. Let $u = (u_n) \in U_{\infty}$. Then there is a unique power series $f_u(T) \in \mathfrak{o}[[T]]$ such that

$$\begin{split} f_u^{\phi^{-n}}(\pi_n) &= u_n \quad \text{for all} \quad n \ge 0\\ (\text{for } f(T) &= \sum a_m T^m \ (a_m \in \mathfrak{o}), \ f^{\phi^{-n}}(T) &= \sum a_m^{\phi^{-n}} T^m). \end{split}$$

Let $u = (u_n) \in U_{\infty}$, and let $f_u(T)$ be the power series associated to u by Proposition 3.1. Let D = (1 + T)(d/dT). For each integer $k \ge 1$, we define the Coates-Wiles homomorphism δ_k : $U_{\infty} \to \mathfrak{o}$ by

(7)
$$\delta_k(u) = D^k \log f_u(T)|_{T=0}$$

= $D^{k-1}((1 + T)f'_u(T)/f_u(T))|_{T=0}$.

Put $T = e^z - 1 = \sum_{m \ge 1} (Z^m/m!)$. Then $(dT/dZ) = e^z = 1 + T$ and D = (d/dZ), hence

$$(8) \qquad \qquad \delta_k(u) = \left(\frac{d}{dZ}\right)^k \log f_u(e^z - 1)|_{z=0} \ .$$

It is easy to see that the map δ_k has the following properties (cf. §13.7 of [15]).

PROPOSITION 3.2. The map $\delta_k: U_{\infty} \to \mathfrak{o}$ is a continuous \mathbb{Z}_p -homomorphism satisfying

(i) $\delta_k(u^g) = \kappa(g)^k \delta_k(u)$ for $\forall g \in \Gamma \times \langle \tau \rangle$, $\forall u \in U_{\infty}$,

(ii) $\delta_k(u^{\phi}) = \delta_k(u)^{\phi}$ for $\forall u \in U_{\infty}$.

In particular, if $u \in U_{\infty}(\mathcal{X}_{i,j})$ with $j \not\equiv k \mod (p-1)$, then $\delta_k(u) = 0$. Further, $\delta_k(h(T)u) = h(\kappa(\gamma)^k - 1)\delta_k(u)$ for $\forall h(T) \in A$, $\forall u \in U_{\infty}$.

Let $\chi = \chi_{i,j}$, $(i, j) \neq (0, 0)$, (0, 1) $(0 \leq i \leq d-1, 1 \leq j \leq p-1)$. Let $v^{e(\chi)}$ be the basis for $U_{\infty}(\chi)$ over Λ constructed in §2. If $k \neq j \mod (p-1)$, then $\delta_k(v^{e(\chi)}) = 0$ by Proposition 3.2. So we assume $k \equiv j \mod (p-1)$, $k \geq 1$. By Proposition 3.2, we have

$$(9) \qquad \qquad \delta_k(v^{s(\chi)}) = \frac{1}{\#\mathcal{I}} \sum_{s=0}^{d-1} \sum_{t=1}^{p-1} \chi_{i,j}^{-1}(\phi^s \tau^t) \kappa(\tau^t)^k \delta_k(v)^{\phi^s} \\ = d^{-1} \sum_{s=0}^{d-1} \mu_d^{-is} \delta_k(v)^{\phi^s} .$$

Let | | be a *p*-adic valuation of \mathcal{P} . Let Q be the set of power series $\sum_{n\geq 0} a_n T^n$ in $\mathcal{P}[[T]]$ such that $|a_n n!| \to 0$ as $n \to \infty$. Let C be the set of continuous functions from \mathbb{Z}_p to \mathcal{P} . Then Q and C are Banach algebras over \mathcal{P} with norms $\sup |a_n n!|$ and $\max_{s \in \mathbb{Z}_p} |f(s)|$, respectively. To calculate $\delta_k(v)$, we need the following two facts on a slight generalization of Leopoldt's Γ -transform (see §1 of Lichtenbaum [8]).

LEMMA 3.3. For each $j \in \mathbb{Z}/(p-1)\mathbb{Z}$, there is a unique bounded linear map $\Gamma_j: Q \to C$ such that

$$arGamma_j(h)(k) = \Big(rac{d}{dZ}\Big)^k \widetilde{h}(e^z-1)ert_{z=0} \qquad (k \geqq 0, \, k \equiv j ext{ mod } (p-1)) \;,$$

where $\tilde{h}(T) = h(T) - p^{-1} \sum_{i=0}^{p-1} h(\zeta_0^i(1+T) - 1) \ (h \in Q).$

LEMMA 3.4. For any $h \in \mathfrak{o}[[T]]$, $\Gamma_j(h)$ is an Iwasawa function i.e. there is a power series $g \in \mathfrak{o}[[T]]$ such that

$$\Gamma_j(h)(s) = g(\kappa(\gamma)^s - 1) \qquad (\forall s \in \mathbb{Z}_p) \ .$$

We return to the calculation of $\delta_k(v)$. We recall that $v = (v_n)$, $v_n = \omega(b)^{-\phi^{-n}}(b^{\phi^{-n}} - \pi_n)$, $b = \lambda - 1$ for some $\lambda \in V$, $\lambda \neq 1$. Then the power series associated to v is given by

$$f_{v}(T) = \omega(b)^{-1}(b - T)$$
.

Put $h(T) = (1+T)f'_{*}(T)/f_{*}(T) = (1+T)/(1+T-\lambda)$. Then $\delta_{k}(v) = (d/dZ)^{k-1}h(e^{Z}-1)|_{Z=0}$, and $\tilde{h}(T) = (1+T)/(1+T-\lambda) - p^{-1}\sum_{i=0}^{p-1}\zeta_{0}^{i}(1+T)/(\zeta_{0}^{i}(1+T)-\lambda)$. Taking the logarithmic derivatives of $X^{p} - \lambda^{p} = \prod_{i=0}^{p-1} (\zeta_{0}^{i}X - \lambda)$, we obtain

446

$$pX^{p-1}/(X^p-\lambda^p)=\sum\limits_{i=0}^{p-1}\zeta_0^i/(\zeta_0^iX-\lambda)$$
 , where $X=1+T$.

Hence $\widetilde{h}(T) = h(T) - h^{\phi}((1 + T)^p - 1)$, and

$$egin{aligned} & \Big(rac{d}{dZ}\Big)^{k-1} \widetilde{h}(e^{z}-1)|_{z=0} = \Big(rac{d}{dZ}\Big)^{k-1} \{h(e^{z}-1)-h^{\phi}(e^{pZ}-1)\}|_{Z=0} \ & = \delta_{k}(v)-p^{k-1}\delta_{k}(v)^{\phi} \;. \end{aligned}$$

Replacing v by v^{ϕ^s} in the above equality, we obtain

(10)
$$\delta_k(v)^{\phi^s} - p^{k-1}\delta_k(v)^{\phi^{s+1}} = \left(\frac{d}{dZ}\right)^{k-1} \widetilde{h}^{\phi^s}(e^Z - 1)|_{Z=0}$$

 $(0 \le s \le d - 1) \; .$

By Lemma 3.3, the right side of (10) is $\Gamma_{j-1}(h^{\phi^s})(k-1)$. If $k \ge 2$, then we can solve the liner equations (10) with respect to $\delta_k(v)^{\phi^s}$:

(11)
$$\delta_{k}(v)^{\phi^{s}} = (1 - p^{d(k-1)})^{-1} \sum_{t=0}^{d-1} p^{t(k-1)} \Gamma_{j-1}(h^{\phi^{s+t}})(k-1)$$
$$(0 \le s \le d-1) .$$

It follows from (9) and (11) that

(12)
$$(1 - \mu_d^i p^{k-1}) \delta_k(v^{e(\chi)}) = d^{-1} \sum_{t=0}^{d-1} \mu_d^{-it} \Gamma_{j-1}(h^{\phi^t})(k-1) .$$

If k = 1, then j = 1 and $i \not\equiv 0 \mod d$. It is easy to check that the equality (12) is also valid for k = 1. Since $h^{\phi^t} \in \mathfrak{o}[[T]]$, $\Gamma_{j-1}(h^{\phi^t})$ is an Iwasawa function by Lemma 3.4. Hence there is a power series $a_{\chi}(T) \in \mathfrak{o}[[T]]$ such that

(13)
$$(1 - \mu_d^i p^{k-1}) \delta_k(v^{\epsilon(\chi)}) = a_{\chi}(\kappa(\gamma)^{k-1} - 1)$$

for any $k \ge 1, \ k \equiv j \mod (p-1)$.

Put $b_{\chi}(T) = a_{\chi}(\kappa(\gamma)^{-1}(1+T)-1)$, then $b_{\chi}(T) \in \mathfrak{o}[[T]]$ and $b_{\chi}(\kappa(\gamma)^{k}-1) = a_{\chi}(\kappa(\gamma)^{k-1}-1)$. It follows from the proof of Proposition 2.2 that $\delta_{j}(v^{\mathfrak{e}(\chi)}) \mod \mathfrak{p} = \psi_{j}(v^{\mathfrak{e}(\chi)}_{\mathfrak{o}}) \neq 0$. This implies that $b_{\chi}(T)$ is a unit in $\mathfrak{o}[[T]]$. Note $\mu_{a}^{i} = \chi(\phi)$. Thus we have proved

PROPOSITION 3.5. Let $\chi = \chi_{i,j}, \ \chi \neq \chi_{0,0}, \ \chi_{0,1}$, and let $v^{e(\chi)}$ be the basis for $U_{\infty}(\chi)$ over Λ constructed in §2. Then there is a unit power series $b_{\chi}(T)$ in o[[T]] such that

$$(1 - \chi(\phi)p^{k-1})\delta_k(v^{e(\chi)}) = b_{\chi}(\kappa(\gamma)^k - 1)$$

for any $k \ge 1$, $k \equiv j \mod (p-1)$.

4. The closure of the Stark-Shintani units. Let F be a real

J. NAKAGAWA

quadratic field embedded in R, and let p be an odd prime number which splits in $F(p = \mathfrak{p}\mathfrak{p}')$. Further assume $p \not\equiv 1 \mod 8$. Take an integer α of F such that $\alpha > 0$, $\alpha' < 0$, $\alpha \in \mathfrak{p}$, $\alpha \notin \mathfrak{p}^2$ and $\alpha \notin \mathfrak{p}'$. Put $\alpha \alpha' = -\alpha p$, and assume that α is a quadratic residue modulo p and $T_{F/Q}(\alpha)$ is not. Put $M = F(\sqrt{\alpha})$, $N = F(\sqrt{p^*\alpha})$, where $p^* = (-1)^{(p-1)/2}p$. Then it is easy to see that \mathfrak{p} ramifies in M and remains prime in N, and \mathfrak{p}' ramifies in N and remains prime in M. Put $M_0 = MQ(\zeta_0)^+$ (ζ_0 is a primitive p-th root of unity). Then M_0 satisfies the condition (D). Further, M_0 has the property (P) by the results of [9] (see Theorem 1, Proposition 10 and Remark after Proposition 13 of [9]). Hence we can apply Theorem 1 to the cyclotomic \mathbb{Z}_p -extension $M_{\infty} = \bigcup_{n\geq 0} M_n$ of M_0 .

Let \mathfrak{f}_n be the conductor of M_n/F and let G_n be the subgroup of $H_F(\mathfrak{f}_n)$ corresponding to M_n . Put $\eta_n = X_{\mathfrak{f}_n}(1, G_n)$. We have seen in the proof of Theorem 1 that

(14)
$$N_{n,m}(\eta_m) = \pm \eta_n$$
 for any $m \ge n \ge 0$.

Put $K_n = M(\zeta_n)$, and put $K_{\infty} = \bigcup_{n \ge 0} K_n$. Since $Q(\sqrt{p^*})$ is contained in $Q(\zeta_0)$, N is contained in K_0 . Since \mathfrak{p} is totally ramified in $F(\zeta_n)$ and remains prime in N, there is a unique prime \mathfrak{p}_n of $K_n = NF(\zeta_n)$ lying over \mathfrak{p} . Since p splits in F, the completion of F at \mathfrak{p} is identified with Q_p . Let Φ be the completion of N at \mathfrak{p} , and let Φ_n be the completion of K_n at \mathfrak{p}_n . Then Φ is the unramified extension of Q_p of degree 2 and $\Phi_n = \Phi(\zeta_n)$. Hence we are in the situation of §§2-3 with d = 2. So we use the same notation as in §§2-3 without further comment. Note that $\operatorname{Gal}(K_{\infty}/F)$ is naturally isomorphic to $H = \operatorname{Gal}(\Phi_{\infty}/Q_p)$.

We can view the unit $X_{i_n}(c, G_n)$ of M_n as a unit of Φ_n by the inclusions $M_n \subset K_n \subset \Phi_n$. Put $\xi_n = \eta_n^{p^{2-1}}$. Then $\xi_n \equiv 1 \mod \mathfrak{p}_n$. Let \mathscr{C}_n be the subgroup of $E(M_n)^-$ generated by $(\xi_n)^{j^{s_\tau t}}$ $(0 \leq s \leq p^n - 1, 1 \leq t \leq (p-1)/2)$. Then \mathscr{C}_n is a subgroup of U_n . Let $\widetilde{\mathscr{C}}_n$ be the closure of \mathscr{C}_n in U_n . Since \mathscr{C}_n is stable under the action of H, $\widetilde{\mathscr{C}}_n$ is a $\mathbb{Z}_p[H]$ -module. Hence we have a decomposition $\widetilde{\mathscr{C}}_n = \bigoplus_{\chi} \widetilde{\mathscr{C}}_n(\chi)$. It follows from the definition of τ and ϕ that $\phi|M_n$ is the generator of $\operatorname{Gal}(M_n/M_n^+)$ and $(\tau\phi)^{(p-1)/2}$ induces the identity mapping on M_n . Hence $(\xi_n)^{\phi} = \xi_n^{-1}$ and $(\xi_n)^{(\tau\phi)(p-1)/2} = \xi_n$. This implies that $\widetilde{\mathscr{C}}_n(\chi_{i,j}) = 1$ for i = 0 or $j \not\equiv (p-1)/2 \mod 2$.

LEMMA 4.1. Let $\chi = \chi_{1,j}$, $j \equiv (p-1)/2 \mod 2$. Then the elements $\xi_n^{e(\chi)\gamma^s}$ $(0 \leq s \leq p^n - 1)$ of $\overline{\mathscr{C}}_n(\chi)$ are multiplicatively independent over \mathbb{Z}_p .

PROOF. Put r = (p-1)/2. We have observed that $\overline{\mathscr{C}}_n = \bigoplus_j \overline{\mathscr{C}}_n(\chi_{1,j})$, where j runs over the r integers satisfying $1 \leq j \leq 2r$, $j \equiv r \mod 2$.

Since $(\xi_n^{r^s\tau^t})^{e(\chi)} = (\xi_n^{e(\chi)\gamma^s})^{\chi(\tau^t)}$, $\overline{\mathscr{C}}_n(\chi)$ is generated by $\xi_n^{e(\chi)\gamma^s}$ $(0 \leq s \leq p^n - 1)$ over \mathbb{Z}_p and the \mathbb{Z}_p -rank of $\overline{\mathscr{C}}_n(\chi)$ is at most p^n . So it suffices to show that the \mathbb{Z}_p -rank of $\overline{\mathscr{C}}_n$ equals to rp^n . But $\xi_n^{r^s\tau^t}$ $(0 \leq s \leq p^n - 1, 1 \leq t \leq r)$ are independent units of M_n by Theorem 1. Hence they are multiplicatively independent over \mathbb{Z}_p by a theorem of Brumer ([2]). Then the \mathbb{Z}_p rank of $\overline{\mathscr{C}}_n$ is rp^n . q.e.d.

Let $\overline{\mathscr{C}}_{\infty} = \operatorname{proj} \lim \overline{\mathscr{C}}_n$ (with respect to $N_{n,m}$). Then $\overline{\mathscr{C}}_{\infty}$ is a compact *H*-module. For each χ , $\overline{\mathscr{C}}_{\infty}(\chi) = \operatorname{proj} \lim \overline{\mathscr{C}}_n(\chi)$ and $\overline{\mathscr{C}}_{\infty}(\chi)$ is a compact Γ -module, hence a compact Λ -module. Note that $\xi = (\xi_n)_{n\geq 0}$ is an element of $\overline{\mathscr{C}}_{\infty}$ by (14). Our purpose is to relate the Λ -module structure of $U_{\infty}(\chi)/\overline{\mathscr{C}}_{\infty}(\chi)$ to the values of δ_k at ξ .

LEMMA 4.2. $\overline{\mathscr{C}}_{\infty}(\chi) = \Lambda \xi^{e(\chi)}$ for any $\chi \in \widehat{\varDelta}$.

This lemma is proved by the same argument as in p. 314 of [15]. Now we are ready to prove the following proposition.

PROPOSITION 4.3. Let χ be as in Lemma 4.1.

(i) The natural projection $\overline{\mathscr{C}}_{\infty}(\chi) \to \overline{\mathscr{C}}_{n}(\chi)$ induces an isomorphism $\overline{\mathscr{C}}_{\infty}(\chi)/\omega_{n}\overline{\mathscr{C}}_{\infty}(\chi) \cong \overline{\mathscr{C}}_{n}(\chi)$ for any $n \ge 0$.

(ii) $\Lambda \cong \overline{\mathscr{C}}_{\infty}(\mathfrak{X}) \ by \ f(T) \mapsto f(T)\xi^{e(\chi)}.$

(iii) $(U_{\infty}(\chi)/\overline{\mathscr{C}}_{\infty}(\chi))^{(n)} \cong U_n(\chi)/\overline{\mathscr{C}}_n(\chi)$ for any $n \ge 0$, where $A^{(n)} = A/\omega_n A$ for any compact Λ -module A.

PROOF. It follows from (14) that the natural projection $\overline{\mathscr{C}}_{\infty}(\chi) \to \overline{\mathscr{C}}_{n}(\chi)$ is surjective. Obviously $\omega_{n}\overline{\mathscr{C}}_{\infty}(\chi)$ is contained in the kernel. Let $u = (u_{m})$ be in the kernel. Hence $u_{n} = 1$. By Lemma 4.2, $u = f(T)\xi^{e(\chi)}$ for some $f(T) \in \Lambda$. Then $f(T)\xi^{e(\chi)}_{n} = u_{n} = 1$ and $\omega_{n}\xi^{e(\chi)}_{n} = 1$. By Lemma 4.1, this implies that $f(T) \equiv 0 \mod \omega_{n}\Lambda$. Hence $u \in \omega_{n}\overline{\mathscr{C}}_{\infty}(\chi)$. This proves the first statement. The second statement follows immediately from Proposition 2.1 and Lemma 4.2. The natural projection $U_{\infty}(\chi) \to U_{n}(\chi)$ is surjective and its kernel is $\omega_{n}U_{\infty}(\chi)$ by Proposition 2.1. Further it maps $\overline{\mathscr{C}}_{\infty}(\chi)$ onto $\overline{\mathscr{C}}_{n}(\chi)$ by (i). Hence the natural homomorphism $U_{\infty}(\chi) \to U_{n}(\chi) \to U_{n}(\chi)/\overline{\mathscr{C}}_{n}(\chi)$ is surjective and its kernel is $\omega_{n}U_{\infty}(\chi)$. This proves the third statement.

The following theorem is the main result of this section.

THEOREM 3. Let $\chi = \chi_{1,j}$, $1 \leq j \leq p-1$, $j \equiv (p-1)/2 \mod 2$. Then there are two power series $f_{\chi}(T) \in \Lambda$, $g_{\chi}(T) \in \mathfrak{o}[[T]]$ with the following properties:

(i) $U_{\infty}(\chi)/\overline{\mathscr{C}}_{\infty}(\chi) \cong \Lambda/f_{\chi}(T)\Lambda$ as Λ -modules.

(ii) $(1 + p^{k-1})\delta_k(\xi) = g_{\chi}(\kappa(\gamma)^k - 1)$ for any $k \ge 1$, $k \equiv j \mod (p - 1)$. (iii) $f_{\chi}(T)\mathfrak{o}[[T]] = g_{\chi}(T)\mathfrak{o}[[T]]$.

PROOF. Let $v^{e(\chi)}$ be the basis for $U_{\infty}(\chi)$ over Λ in §2. Since $\overline{\mathscr{G}}_{\infty}(\chi) = \Lambda \xi^{e(\chi)} \subset U_{\infty}(\chi) = \Lambda v^{e(\chi)}$, there is a power series $f_{\chi}(T) \in \Lambda$ such that $\xi^{e(\chi)} = f_{\chi}(T)v^{e(\chi)}$. Then $U_{\infty}(\chi)/\overline{\mathscr{G}}_{\infty}(\chi) \cong \Lambda/f_{\chi}(T)\Lambda$ as Λ -modules. Let $b_{\chi}(T)$ be the unit power series in Proposition 3.5, and put $g_{\chi}(T) = b_{\chi}(T)f_{\chi}(T)$. Since $\xi^{\phi} = \xi^{-1}$ and $\chi(\phi) = -1$, Proposition 3.2 implies that $\delta_k(\xi) = \delta_k(\xi^{e(\chi)})$ for $k \ge 1, \ k \equiv j \mod (p-1)$ (cf. (9)). Then it follows from Propositions 3.2 and 3.5 that

$$egin{aligned} &(1+p^{k-1})\delta_k(\xi)=(1+p^{k-1})f_\chi(\pmb\kappa(\gamma)^k-1)\delta_k(v^{e(\chi)})\ &=f_\chi(\pmb\kappa(\gamma)^k-1)b_\chi(\pmb\kappa(\gamma)^k-1)\ &=g_\chi(\pmb\kappa(\gamma)^k-1) \end{aligned}$$

q.e.d.

for any $k \ge 1$, $k \equiv j \mod (p-1)$.

We may view the above theorem as a weak analogue of a result of Iwasawa on cyclotomic units and a result of Coates-Wiles on elliptic units. It is known that the values of δ_k at the limit of cyclotomic units (resp. elliptic units) are essentially the values of the corresponding *L*function at integers and the *p*-adic analytic function $\mathbb{Z}_p \ni s \mapsto g_{\chi}(\kappa(\gamma)^s - 1)$ is essentially the *p*-adic *L*-function of Kubota-Leopoldt (resp. the *p*-adic *L*-function associated to an elliptic curve) (cf. [3], [5]).

COROLLARY. Let $p \equiv 3 \mod 4$. Put $h_n^- = h(M_n)/h(M_n^+)$, $\eta_0 = X_{\mathfrak{f}_0}(1, G_0)$. If $\psi_j(\eta_0) \neq 0$ for any odd integer j with $1 \leq j \leq p-1$, then h_n^- is prime to p for any $n \geq 0$.

PROOF. Since $\delta_j(\xi) \mod \mathfrak{p} = \psi_j(\xi_0) = (p^2 - 1)\psi_j(\eta_0), \quad \psi_j(\eta_0) \neq 0$ implies $\delta_j(\xi) \not\equiv 0 \mod \mathfrak{p}$. Hence $g_{\chi}(T)$ and $f_{\chi}(T)$ are unit power series and $U_{\infty}(\chi)/\overline{\mathscr{C}}_{\infty}(\chi)$ is trivial for $\chi = \chi_{1,j}, \quad 1 \leq j \leq (p-1), \quad j \equiv 1 \mod 2$ by Theorem 3. Then it follows from (iii) of Proposition 4.3 that $U_n(\chi_{1,j}) = \overline{\mathscr{C}}_n(\chi_{1,j})$ for odd j with $1 \leq j \leq (p-1)$. Since $\overline{\mathscr{C}}_n = \bigoplus_{j \text{ odd}} \overline{\mathscr{C}}_n(\chi_{1,j})$ and the Z_p -rank of $\overline{\mathscr{C}}_n$ equals to the Z-rank of $E(M_n)^- (=p^n(p-1)/2)$, this implies that $[E(M_n)^-: \mathscr{C}_n]$ is prime to p. Hence h_n^- is prime to p by Theorem 1.

REMARK. The above corollary gives a sufficient condition for $p \neq h_n^ (\forall n \ge 0)$ in terms of certain congruences which can be calculated by knowing a special unit η_0 of M_0 .

Now we prove Theorem 2 stated in the introduction. Note that the assumption on M and p in Theorem 2 is the same as in the beginning of

450

this section except that we need not assume $p \not\equiv 1 \mod 8$ in Theorem 2. We keep the notations Φ_n , U_n , γ , ϕ , τ and $\chi_{i,j}$ as before. But in this time, let $M_0 = M$ and let $M_{\infty} = \bigcup_{n \ge 0} M_n$ be the cyclotomic Z_p -extension of M. Then $[M_n: F] = 2p^n$ and $M_n \subset MQ(\zeta_n)^+ \subset \Phi_n$. Further the condition (D) is trivial since M/F is a quadratic extension, and M has the property (P) by Theorem 1 of [9]. Hence we can define η_n , ξ_n , $\overline{\mathscr{C}}_n$ and $\overline{\mathscr{C}}_{\infty}$ similarly. Then it follows from the definition of ϕ (resp. τ) that $\phi | M_n$ (resp. $\tau | M_n$) is the generator of Gal (M_n/M_n^+) . Hence $\xi_n^{*} =$ $\xi_n^r = \xi_n^{-1}$. This implies that $\overline{\mathscr{C}}_n = \overline{\mathscr{C}}_n(\chi_{1,r})$ and $\overline{\mathscr{C}}_\infty = \overline{\mathscr{C}}_\infty(\chi_{1,r})$ for r =(p-1)/2. Then we can prove that the same statements as in Theorem 3 and its corollary also hold for this case. So it suffices to show that $\psi_r(\eta_0) \neq 0$ under the assumption of Theorem 2. Put $\eta_0 = (x + y\sqrt{\alpha})/2 (x + y\sqrt{\alpha})/2$ and y are integers of F). Then $x \not\equiv 0 \mod \mathfrak{p}$, since η_0 is a unit of F and α is a prime element of $F_{\mathfrak{p}}$ ($F_{\mathfrak{p}}$ is the completion of F at \mathfrak{p} and $F_{\mathfrak{p}}$ is identified with Q_p). Since the ramification index for Φ_0/F_p is (p-1)(=2r) and $M \subset M(\xi_0) \subset \Phi_0$, there is a unit u of Φ_0 such that $\sqrt{\alpha} = \pi_0^r u$, $\pi_0 = \zeta_0 - 1$. Write $u = g(\pi_0)$, $g(T) = a_0 + a_1T + \cdots \in \mathfrak{o}[[T]]$. Then a_0 is a unit of \mathfrak{o} . Put $f(T) = (1/2)(x + yT^rg(T))$. Then $f(T) \in \mathfrak{o}[[T]]$ and $\eta_0 = f(\pi_0)$. Recall that D = (1 + T)(d/dT). Then

$$egin{aligned} D(\log f(T)) &= rac{(1\,+\,T)(ryT^{r-1}g(T)\,+\,yT^rg'(T))}{x\,+\,yT^rg(T)} \ &\equiv \,ra_{\scriptscriptstyle 0}x^{-1}yT^{r-1}\,\mathrm{mod}\,\,T^r\mathfrak{o}[[T]] \;. \end{aligned}$$

Since $D^{r-1}(T^k)|_{T=0} = 0$ if $k \ge r$ and $D^{r-1}(T^{r-1})|_{T=0} = (r-1)!$, we obtain

$$egin{aligned} \psi_r(\eta_0) &= D^r(\log f(T))|_{T=0} \ \mathrm{mod} \ \mathfrak{p} \ &= r! \ a_0 x^{-1} y \ \mathrm{mod} \ \mathfrak{p} \ . \end{aligned}$$

Since $r! a_0 x^{-1}$ is a unit of \mathfrak{o} , $\psi_r(\eta_0) \neq 0$ is equivalent to $y \not\equiv 0 \mod \mathfrak{p}$. This completes the proof of Theorem 2.

We conclude this paper by giving an example of Theorem 2.

EXAMPLE. Let $F = Q(\sqrt{5})$. Put $\varepsilon = (3 + \sqrt{5})/2$. Let p = 11 and let $\alpha = (-1 + 3\sqrt{5})/2$. Then p splits in F and $\alpha \alpha' = -p$. Hence the assumption of Theorem 2 is satisfied. Let $M = F(\sqrt{\alpha})$. Then it was shown in pp. 191-192 of [10] that

$$X_{\mathfrak{f}}(1,\,G)=(arepsilon+
u\,\overline{lpha}\,)/2$$
 .

Hence $11 \nmid h_n^-$ for any $n \ge 0$ by Theorem 2. This is also an example of the corollary to Theorem 1.

J. NAKAGAWA

References

- [1] T. ARAKAWA, On the Stark-Shintani conjecture and certain relative class numbers, to appear.
- [2] A. BRUMER, On the units of algebraic number fields, Mathematika, 14 (1967), 121-124.
- [3] J. COATES AND A. WILES, On p-adic L-functions and elliptic units, J. Austral. Math. Soc., Ser. A, 26 (1978), 1-25.
- [4] R. F. COLEMAN, Division values in local fields, Invent. Math. 53 (1979), 91-116.
- [5] K. IWASAWA, On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, 16 (1964), 42-82.
- [6] K. IWASAWA, On Z_l -extensions of algebraic number fields, Ann. of Math. 98 (1973), 246-326.
- [7] S. LANG, Cyclotomic Fields, Springer-Verlag, New York, 1978.
- [8] S. LICHTENBAUM, On p-adic L-functions associated to elliptic curves, Invent. Math. 56 (1980), 19-55.
- [9] J. NAKAGAWA, On the Stark-Shintani conjecture and cyclotomic Z_p -extensions of class fields over real quadratic fields, to appear in J. Math. Soc. Japan.
- [10] T. SHINTANI, On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ. Tokyo, Sec. IA, 24 (1977), 167-199.
- [11] T. SHINTANI, On certain ray class invariants of real quadratic fields, J. Math. Soc. Japan, 30 (1978), 139-167.
- [12] H. M. STARK, L-functions at s = 1. III. Totally real fields and Hilbert's twelfth problem, Advances in Math. 22 (1976), 64-84.
- [13] H. M. STARK, Class fields for real quadratic fields and L-series at s = 1, Proc. Durham Conf., pp. 355-374, Academic Press, New York, 1977.
- [14] H. M. STARK, L-functions at s = 1. IV. First derivatives at s = 0, Advances in Math. 35 (1980), 197-235.
- [15] L. C. WASHINGTON, Introduction to Cyclotomic Fields, Springer-Verlag, New York, 1982.

Mathematical Institute Tôhoku University Sendai 980 Japan