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In an old paper [1] Delaunay proved that the profile curve of a
surface of revolution with nonzero constant mean curvature in Euclidean
3-space can be described as the locus of a focus when a quadratic curve
is rolled along the axis of revolution. This result was restudied by
Kenmotsu [4] and Hsiang and Yu [3] for generalizations in various
directions. In the present paper we shall examine the problem in Lorentz-
Minkowski 3-space by studying spacelike surfaces of revolution.

In Lorentz-Minkowski 3-space the axis of revolution is either spacelike
or timelike or null. In the first two cases, we can prove the results of
the same kind as Delaunay's except that the nature of quadrics needs
special attention. In the third case, we can determine the profile curves
completely without giving a geometric interpretation. In any case, we
are interested in the surfaces up to congruence by a Lorentz trans-
formation.

In what follows, {x, y, z) is a Lorentz coordinate system for which
the metric of the space is dx2 + dy2 — dz2. Our starting point is the
lemma in [2], Section 1.

1. Surfaces of revolution with spacelike axis. Here we deal with
a surface of the form

(x(s), z(s)sh t, z(s)ch t) ,

where s is an arc-length parameter of the profile curve (x(s), z(s)) in the
#2-plane and z < 0. The principal curvatures of the surface are given
by x/z and x/z, where x = dx/ds, x = d2x/ds2

f etc.
Adopting the method in [3] we now discuss the rolling of a curve

in the #3-plane. Let f be a smooth curve in the #3-plane given by a
timelike vector-valued function

(1) x = r(θ)shθ, z = r{θ)chθ

We assume that r > 0 and that the tangent vector of Γ is always
spacelike, that is, r2 — r'2 > 0, where the prime denotes d/dθ. Let Ω
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be the locus of the origin when Γ is rolled along the cc-axis in such a
way that Ω appears below the #-axis. Then Ω is written as

(2) x = ξ — ξ0 — rshφ , z=—rchφ,

where φ — φ(θ) is determined by the fact that rshφ is equal to the
Lorentz inner product of the position vector (1) of Γ and the unit
tangent vector of Γ. Thus

skφ= -r'/^r2 - r'2 and chφ = r\Vγ

2 - r'2 .

It follows that the tangent vector (xr, zf) is perpendicular to the vector
(shφ, chφ): %'shφ — z'chφ = shφξ' + r' = 0. It is easily verified that Ω is
regular and hence spacelike if and only if the curvature of Γ is non-
vanishing. We henceforth assume this condition.

We choose an arc-length parameter s for Ω in such a way that
(xy z) = (chφ, shφ), where the dot denotes d/ds. Then we obtain

r = -thφ(l +rφ) , ξ = — ^ ( 1 + rφ)
chφ

and from {' = vV - r'2

(3 ) θ = (1 + rφ)/r .

Since £ > 0, we have 1 + rφ > 0 and hence the center of curvature of
Ω never lies on the x-axis.

Conversely, if Ω is a spacelike curve in the lower half-plane z < 0
whose center of curvature lies on the x-axis, then there exists a curve
Γ of the form (1) such that Ω is the locus of the origin when Γ is
rolled along the cc-axis. This can be verified as follows. Denote by
(chφ, shφ) the unit tangent vector of Ω and let (ξ, 0) be the intersection
of the normal line of Ω with the #-axis. Then Ω is written in the form
(2) with ξQ — 0. Return to the equation (3). The right hand side is
determined by Ω as a function of s and never vanishes by virtue of
the assumption on Ω. Thus the solution θ = θ(s) is a monotone function
of s and we obtain a function r = r(θ). It is easily seen that Ω is indeed
the locus of the origin when Γ as in (1) is rolled along the cc-axis.

Summarizing the discussions above, we obtain

LEMMA. Let Γ be a spacelike curve given in the form (1) and let
Ω be the locus of the origin when Γ is rolled along the x-axίs. If the
curvature of Γ never vanishes, then Ω is a spacelike curve for which
the center of curvature never lies on the x-axis. Conversely, such a
curve Ω is obtained as the locus of the origin for the rolling of a certain
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spacelike curve Γ, which is uniquely determined up to a Lorentz trans-
formation of the xz-plane.

Now let S be the surface of revolution with the profile curve Ω as
above. The principal curvatures are

x/z = φ and xjz = — 1/r .

By a computation similar to that in the proof of Theorem 1 in [3], we
easily find that S has constant mean curvature H if and only if the
function r(θ) in (1) satisfies the differential equation

( 4 ) d2 log r/dθ2 = Ud log r/dθ)2 - 2rH

2rH

The general solution of (4) is

1/r = achθ + bshθ + c , r > 0 ,

where

2Hc = a2 -b2 -c2 .

When c — 0, the solutions r = ae±θ are null lines (namely, y ± a? = 0) so
we exclude them.

Thus a curve Γ gives rise to a surface of revolution with constant
mean curvature if and only if r is one of the following forms:

( i) r = 1/c with H = -c/2 (c =* 0)
(ii) 1/r = ±λcfo(0 + μ) + c with λ > 0, H = (λ2 - c2)/2c (c ^ 0)
(iii) 1/r = ±λs/z,(0 + //) + c with λ > 0, if = ~(c2 + λ2)/2c (c ^ 0)
(iv) 1/r = αe* + c or αe"6' + c with H = —c/2 (c =£ 0).

If two curves 7\ and ,Γ2 simply differ by a Lorentzian transformation
of the xz-plane fixing the origin, then the resulting curves Ω1 and Ω2

generate congruent surfaces of revolution. Thus in the list above, we
may assume μ = 0 in (ii) and (iii), consider only the + sign in (iii) and
one or the other (say, ae"θ + c) in (iv). We shall describe these curves
in Section 2.

Finally, we take up the case where the center of curvatue of the
profile curve Ω is always on the ίc-axis. If we write Ω in the form (2)
with ζ0 = 0, our present assumption means that 1 + rφ is identically 0.
On the other hand, constancy of the mean curvature H implies 1 — rφ =
— 2Hr. Obviously H Φ 0 and H = φ = —1/r. We now get (x, z) =
(ch(Hs + ψo), sh{Hs + φo)) and Ω is given by

(x, z) = (Xo + sh(Hs + φo)/H, ch(Hs + φo)/H) .

The resulting surface of revolution is congruent to the standard hyper-



430 J. HANO AND K. NOMIZU

boloid x2 + y2 - z2 = -1/H2, z > 0.

2. Quadrics in the Lorentz-Minkowski plane. In this section we
shall show that each of the curves Γ given by the polar equations (i)-
(iv) in Section 1 is part of a certain quadratic curve. The theory of
quadratic curves in the Lorentz-Minkowski plane is little known. We
only sketch the essence that is necessary for the understanding of the
geometric nature of these curves Γ.

Because of the reduction we already made, we consider the following
polar equations (I)-(IV).

(I) r = l/c, c > 0 .

This describes the spacelike curve x = shθ/c, z — chθ/c with timelike
position vectors. It is an analogue of a Euclidean circle, and the profile
curve resulting as the locus of the origin is the line z = —1/c. The
surface of revolution is an isometric imbedding of the Euclidean plane
given by (s, t) -> (s, —sht/c, —cht/c) with constant mean curvature c.

(II) 1/r = ±Xchθ + c with c >0 or c < 0 .

In order to classify all these curves, we let d = 1/λ > 0 and e =

λ / | c | > 0 .
We first consider the case where the polar equation is

( 5 ) 1/r = ch θ/d + l\ed with 0 < e < 1 .

This equation can be rewritten as r — e{d — rchθ), whose geometric
meaning is the following. Denote the origin (0, 0) by F and consider
the spacelike line L\z — d. Our equation shows that the curve Γ consists
of all points P = (rshθ,r ch θ) below the line L with the property that
the distance to F is e times the distance to the line L (which is, of
course, the norm of the vector PA, where A is a point on L such that
PA is perpendicular to L). Now by making a coordinate transformation,
we assume that F has coordinates (0, be) and the line L has equation
z = b/e, where b(l/e — e) — d. Then our curve is part of the hyperbola

(6) -x2/a2 + z2/b2 = 1 with a = bVl - e2 ,

subject to z > 0 (namely, the upper branch) and strictly between the
intersections G1 = ( — d, b/e) and G2 = {d, b/e) of the hyperbola with the line
L. The lines FGX and FG2 are actually null lines tangent to the hy-
perbola and Γ is spacelike. See Figure 1. We can say that (6) is the
standard equation of the hyperbola defined by a focus F and a directrix
L. Note the difference of the appearance of F and L relative to the
hyperbola in comparison with Euclidean geometry.



SURFACES OF REVOLUTION 431

The equation 1/r = ch θ/d - 1/ed describes part of the hyperbola (6)
subject to the restriction x < -d or x > d. These curves have timelike
tangent vectors.

The equation 1/r = —chθ/d + 1/ed describes the same curve as the
case 1/r = chθ/d + 1/ed, except that we must take FT = (rshθ, rchθ),
where F' = (0, -be). Depending on whether F or F' is used, the re-
sulting profile curves Ω and Ω' are, of course, different. See also Figure
1.

0<e<l

Γ withF

l/r=-chθ/d+l/ed

Γ withF'

FIGURE 1

If e > 1 or e = 1 in (5), we get spacelike curves which are part of
an ellipse or a parabola. The equation 1/r = chθ/d - 1/ed with e > 1
gives another spacelike curve Γ' and a timelike curve on the ellipse,
while 1/r = —chθ/d + 1/ed gives an empty set. The equation 1/r =
chθ/d — 1/d gives a timelike part on the parabola, and 1/r = —chθ/d + 1/d
gives an empty set. See Figures 2 and 3.

Next we consider the equation

(III) 1/r = sh θ/d ± 1/ed (no restriction on e > 0) .

Here we have to get a hyperbola

( 7 ) -x2/a2 + z2/b2 = 1 with b - αi/1 + e2

starting with a focus F = (-ae, 0) and a directrix L: x = a/e. Note that
jPis not on the z-axis in this case. We get a spacelike curve Γ for the
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FIGURE 2

l/r=chθ/d-l/ed

Γ'withF

l/r=chθ/d+l/ed

Γ withF

l/r=chθ/d+l/d

Γ withF

FIGURE 3

plus sign in (III) and a timelike curve for the minus sign. See Figure
4.

Finally, we examine

(IV) 1/r = ae~θ + c , c Φ 0 .

We have to consider three cases:

1/r = Ae'θ + B or Ae~θ - B or -Ae~θ + B , where A, B > 0 .

In the first case, r > 0 and r 2 — r'2 > 0 for all θ. Choose a > 0 and
A; > 0 such that B = 2/k and A = 2τ/ 2~α/fc2. Then we get

(2\/"2ae-β + 2&)r = A;2 hence 2i/ 2"αre' + r2 = (fc - r) 2 .

Since 1/r > 1/&, that is, Jc > r, we get
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e>0

l/r=shθ/d+l/de

Γ witfiF

FIGURE 4

k = λ/~2\/Ίϊare"-( 8 ) k = V 2 V 2 are~θ + r2 + r .

The geometric interpretation of (8) is the following. If P = (rshθ, rchθ),

then r = 11 OP 11 where 0 = (0, 0). Consider the point 0' = ( - i/Tα, - V7 2"α).

Then we find OT = (rshθ + l/~2~α, rchθ + l/ΊFα) and so ||O^P || =

Thus (8) means+ r2.V7 2 i /

(8')

The second case of (IV) leads to

(90 \\σp\\ - \\OP\\ = k.

If we use the null coordinate system {u, v} for which 0 = (α, 0) and
O' = ( — α, 0), then both (80 and (90 are part of a hyperbola (the upper
branch where u, v > 0)

(10) 8λ?2w; - 16αV = fc4

with asymptotes v = 0 and &2w = 2α2v. The equation 1/r = Ae~̂  + .B is
part of the hyperbola that is spacelike. See Figure 5, where the null
line OG is tangent to (10). The equation 1/r = Ae~θ — B is the comple-
ment (excluding the point G) which is a timelike curve.

Finally, it can be shown that the equation 1/r = — Ae~θ + B represents

the same curve as (90 except that the point Of is used as the origin,

that is, OT= (rshθ, rchθ).
The points O and O' are foci of the hyperbola (10).

REMARK. The equation (10), or more generally, an equation of the
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l/r=-ae-θ+c

Γ withO'

FIGURE 5

form

(11) 2Auv - Bv2 = C , A,B,CΦO

cannot be reduced to a standard form of a hyperbola (6) or (7) relative
to a Lorentz coordinate system. From the point of view of linear algebra,
this reflects the fact that the Lorentz-symmetric endomorphism repre-
sented by i Λ __ A relative to the null coordinate system has —A as
double eigenvalue with null eigenvector.

We can now summarize Sections 1 and 2 in the following theorem.

THEOREM 1. (a) Let Ω be a spacelike curve in the xz-plane such
that its center of curvature never lies on the x-axis. Then the surface
of revolution with Ω as profile curve for the rotation around the x-axis
has constant mean curvature if and only if Ω is the locus of a focus
of a quadric when its spacelike part Γ is rolled along the x-axis; the
precise determination of Γ is done as in Figures 1-5, except when Ω is
a line parallel to the x-axis (equation I).

(b) Let Ω be a spacelike curve in the xz-plane such that its center
of curvature always lies on the x-axis. Then the surface of revolution
with Ω as profile curve has constant mean curvature H if and only if
it is congruent to the standard hyperboloid x2 + y2 — z2 = — 1/iί2, z > 0.

3. Surfaces of revolution with timelike axis. A surface of revolu-
tion with the 2-axis as axis is written in the form (cc(s)cosί, x(s)sint, z(s)),
where s is an arc-length of the profile curve (x(s), z(s)) in the ##-plane.
We may assume x(s) > 0.
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This case is quite similar to that treated in Section 1. If the center
of curvature of the profile curve Ω never lies on the z-axis, then there
exists a timelike curve Γ with timelike position vectors (r(θ)sh θ, r(θ)ch θ)
and non-vanishing curvature such that Ω is the locus of the origin when
Γ is rolled along the 2-axis. Moreover, the function r{θ) satisfies the
same differential equation (4). The determination of (timelike) Γ is also
similar to Section 2.

If the center of curvature of Ω is always on the z-axis, then we
obtain the standard hyperboloid in the same way as Section 1.

4. Surfaces of revolution with null axis. A surface of revolution
with the axis x = 0, y = z, is given by

x = -«(/(«) - 9(8))

V = /GO - (/GO - Q(s))f/2

* = gW - (/GO - g(s))m ,

where s is an arc-length parameter of the profile curve Ω: y = /(β),
z = g(s) in the #2-plane. The curve Ω is spacelike, that is, f2 — g2 = 1.
The principal curvatures are given by f/g and — (/ — g)/(f — g), where
the former is the curvature of Ω. In fact, the unit tangent vector
(f,g) of Ω is written as ±(chφ,shφ) and the unit normal vector is
±(8hφ, ehφ). Since (/, g) is perpendicular to (/, g)9 we get (f\ g) = k(g, f)
defining the curvature k. Obviously, k=f/g = φ. The line (/, g) + r(g, f)
intersects the axis of revolution y = % at r = (/ — #)/(/ — #).

For our convenience, we use the null coordinates (u, v) such that
u = (y + s)/i/"2\tf = (-2/ + z)l\/Ύ. Then ΰ is written as u = (/+ g)/\/ΊΪ,
v = (—/+ ^)/l/2 , with t; > 0, and the unit tangent vector is of the
form (u, v) = (eφ/}/ 2, —e~φ/\/2) by choosing an arc-length parameter s
so that v < 0. From * = -e^/i/lΓ, it follows that φ = — i /t;. The
principal curvatures of the surface are expressed as —v/v and — v/v.

The surface has constant mean curvature H if and only if

vv = —2Hvv - v2 , v > 0 , tf<0.

As usual we put v = p and v — p dp/dv. The equation above becomes
an exact equation

vdp + (2vH + p)dv = 0

and hence

vp + jBfy2 = c

or equivalently
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v = (c — Hv2)/v .

Since (ώ, v) is a unit vector, we have — 2ύv — 1 and

du/dv = -v2β{c - fit;2)2 .

Integrating this, we obtain the profile curve as the graph of the function
u = u(v) as follows:

( i ) If H Φ 0 and c/H = α2 > 0, then

a

where & is an arbitrary constant.
(ii) If H Φ 0 and c/iϊ = -a2 < 0, then

α t;2 + α2

6) ,/

/

where 6 is an arbitrary constant.
(iii) If H Φ 0, and c = 0, then

u(v) = ( h 6) (6: arbitrary constant) .
2H2 \v /

(iv) If H = 0, then c cannot be 0 as v > 0 and ΐ < 0. In this case,
we have

u(v) = - | L + 6 .
6c2

In summary, we have

THEOREM 2. The profile curve of a surface of revolution with null
axis x = 0, t/ = z and of constant mean curvature H is given by

y = (u(v) - v)\V~2 , z = (u(v) +

where u = î (ι ) is o^e o/ £ftβ /o^r functions (i)-(iv) above. The only
complete surface of revolution of this type is generated by the profile
curve in case (i) and H Φ 0.
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