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The primary purpose of this paper is to show that the corona theorem
with bounds is valid for finitely sheeted disks possibly with infinitely many
branch points where the bounds are dominated by universal constants de-
pending only on their sheet numbers. As a consequence the corona theorem
with bounds is valid for finite Riemann surfaces where the bounds are
dominated by universal constants depending only on their Euler charac-
teristics.

We start by fixing terminology before stating our main result
precisely. An w-tuple {/,-} of functions f19 •••,/„ in H°°(R) of the family
of bounded holomorphic functions on a Riemann surface R is referred to
as a corona datum of length n in N, the set of positive integers, and
of lower bound δ in the interval (0, 1), or simply of index (n, δ), if the
following two conditions are satisfied: max1^^n(sup i ί |/ i |) tί 1 and
infΛ(Σ?=i \fj\) ^ δ. An w-tuple {gό} of functions glf'",gn in H°°(R) is
said to be a corona solution of the datum {/,.} if Σ?=i/ i^ = l The
quantity C(R; n, δ) in (0, oo] given by

(1) C(R; n, δ) = sup(inf (max(sup Ifl̂ l)))
\fj) {9j} l^j^n R

will be referred to as the Gamelin constant of R of index (nf δ) in Nx
(0, 1) where the first supremum is taken with respect to corona data
{/,-} of index (n, δ) on R and the next infimum is taken with respect to
corona solutions {gό} of each fixed datum {/,-} under the usual convention
that inf {gj} = °o if there exist no corona solutions {gό} of the datum {/,}.
Since the quantity was first systematically considered for plane regions
by Gamelin [6], we attach the name to the quantity for the convenience
of references. We should mention that the quantity was also considered
for plane regions by Behrens [2].

We say that the corona theorem is valid on a Riemann surface R if
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there always exist corona solutions of any given corona datum on R. If
C(R; n, δ) < °° for any index (nf δ), then the corona theorem is valid, and
in this case, we say that the corona theorem with bounds is valid on R.
Thus the corona theorem with bounds implies the simple corona theorem.
The present study is motivated by the following

QUESTION. Does the validity of the simple corona theorem on a
Riemann surface R automatically imply that of the corona theorem with
bounds on RΊ

It seems to be very difficult to give a complet answer to the ques-
tion in general and in the present paper we will only discuss it for a
certain special class of Riemann surfaces. Consider two Riemann surfaces
R and R and an analytic mapping π of R onto R. We say that
(R, R, π), or simply R, is a covering surface of R. We also say that R
is represented as a covering surface (R, R, π). The surface R and the
map π are referred to as the base surface and the covering map of the
covering surface (R, R, π). We say that the covering surface (ft, R, π)
is unbounded (or unlimited) if for any curve C on R with its initial point
z and any z in π~\z) there exists a curve C on R with z its initial point
such that π(C) = C. Let z0 be in R and z0 in π~\zQ). We can always find
local parameters ζ and ζ about zQ and zQ respectively such that the local
expression of the covering map z = π(z) takes the form ζ = ζm. Here the
positive integer m does not depend on the choice of local parameters ζ
and ζ. If m > 1, then z0 is referred to as a branch point of order m — 1.
A branch point is isolated in R and hence the set of branch points in R
may be finite or countably infinite. For each z in R we let #(π~\z)) = °°
if the set π~\z) is infinite and ^(π~\z)) = n if the set π~\z) consists of
a finite n number of points where a branch point of order m — 1 is
counted as m points. When {R, R, π) is unbounded, we have

#(π-\z)) = sup JKTTΛC)) = ^eiVU{-}

for any z in R. If n e N, then we say that {ϊt, R, π) is n-sheeted or
more roughly finitely sheeted without referring to the specific n. We
stress that if we say (&, R, π) is finitely sheeted, then we apriori assume
its unboundedness. If, in particular, a Riemann surface R is represented
as a finitely sheeted covering surface (22, A, π) of the unit disk Δ\ \z\ < 1
in the complex plane C, then we say that R is a finitely sheeted disk
or an m-sheeted disk specifying the sheet number m. We will denote
by ^(m) (m e N) the class of Riemann surfaces R which are represented
as m-sheeted disks (R, Δ, π) so that the class of finitely sheeted disks is
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. The starting point of our discussion is the following:

THE COVERING CORONA THEOREM ([11]). The corona theorem is valid
for any finitely sheeted covering surface R if and only if the corona
theorem is valid for the base surface R.

This can be used to enlarge the class of surfaces for which the
corona theorem is valid. For example, since the corona theorem is valid
for Δ by the fundamental result of Carleson [4], the same is true of any
R in U«βjγ^(w0. The case for m = 2 of this is found in [9] which
seems to be the first nontrivial example of Riemann surfaces of infinite
genus for which the corona theorem is valid. We are interested in what
happens when the simple corona theorem is replaced by the corona
theorem with bounds in the above theorem. Suppose that C(R; n, δ) < oo.
Any corona datum {/,-} of index (n, δ) on R gives rise to a corona datum
{/y} of index (n, δ) on R determined by fό=fά°π (J = 1, , ri). For
any number t greater than C(R; n, δ) there exists a corona solution {gβ}
of the datum {/,-} such that sup^l^l <t (j — 1, , ri). Observe that
the w-tuple {g^ of functions in H°°(R) given by gά(z) = (1/m) Σ*weπ-Hz>9j(w)
is a corona solution of the datum {/,-} with sup^l^l < t (j = 1, , ri) so
that C(R; n, δ) is dominated by t: If (&, R, π) is finite covering surface,
then we have

(2 ) C(R; n, δ) ^ C(R; n, δ)

for any (n, δ) in JVx(0, 1). This means that if the corona theorem with
bounds is valid for a covering surface R, then the same is true for its
base surface R. The essential problem is whether the converse of this
is valid or not. We are able to answer only partly to this question as
follows which is the main result of this paper:

THE MAIN THEOREM. The corona theorem with bounds is valid for
any finitely sheeted disk where the bounds are dominated by a universal
constant depending only on the sheet number of the disk.

In other words, if the base surface is the unit disk A for which
what the fundamental work of Carleson [4] states is not the mere corona
theorem but the corona theorem with bounds (see also an extremely
simple proof by Gamelin [8]), then the above question is in the affirma-
tive. It is convenient to consider the quantity c(m; n, δ) given by

(3 ) c(m; n, δ) = sup C(R; n, δ)

for (m; n, δ) eNxNx(Q, 1). Then our main theorem is equivalent to the
assertion that c(m; n, δ) < oo. Hence the bound C(R; n, δ) for JB in
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is dominated by the constant c(m; n, δ) which depends only on the sheet
number m of R once (n, δ) is fixed. The proof of c(m; n, δ) < °o will be
given in no. 13 of Section 4. We will also clarify the dependence of
c(m; n, δ) on m in no. 14 in Section 4 as follows:

[c(m; n, δ) ^ c(m + l;n,δ)<<χ> (meN) ,
( 4 ) 1

(lim c(m; n, δ) = °o .
m—»oo

Many Riemann surfaces of infinite genus belong to the class ^(m)
but of course not every Riemann surface belongs to ^(m). An important
point with the class ^(m) is that every finite Riemann surface belongs
to <g*(m). Here a Riemann surface R is said to be finite if R is a sub-
surface of a closed Riemann surface so that it is of finite genus and the
relative boundary 3R of R consists of a finite number of disjoint non-
degenerate continua. For a finite Riemann surface R we denote by
g = g{R) and c = c(R) the genus of R and the number of components
of dRf respectively. The Euler characteristic X = X{R) of R is then
given by X{R) = -(2g(R) + c(R) - 2). We denote by J^(g, c) ((g, c) e
Z+xN, Z+ = iVU{0}) the class of finite Riemann surface R such that
g{R) = g and c(R) = c. By the Ahlfors theorem [1] we have

( 5 ) ^(gfc)d U

for every (g, c) in Z+xN so that a finite Riemann surface R of the
Euler characteristic X — X(R) is an at most (2 — Z)-sheeted disk. Similar
to (3) we define

( 6 ) f(g, c; n, δ) = sup C(R; n, δ)
Rejr(g,c)

By using (4) and (5) wi th X — — (2g + c — 2) we have

( 7 ) f(g, c; n, δ) ^ c(2 - X; n, δ) .

The above observation may be restated in the following

COROLLARY TO THE MAIN THEOREM. The corona theorem with bounds
is valid for any finite Riemann surface where the bounds are dominated
by a universal constant depending only on the Euler characteritic of
the surface.

More precisely the bound C(R; n, δ) for a finite Riemann surface R
is dominated by the constant c(2 — X(R); n, δ) depending only on the
Euler characteristic X(R) of R once (n, δ) is fixed. It is difficult to
determine to whom the validity of the simple corona theorem or the
corona theorem with bounds for finite Riemann surfaces owes. Instead
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we cite here some of papers related to the question: Stout [13], Forelli
[5], Gamelin [6], and [10], among others. What seems to be new here
with our corollary is the part that the bounds depend only on the Euler
characteristic which generalizes a result in the above cited paper of
Gamelin that asserts the sole dependance of the bounds for finitely con-
nected plane regions on their connectivity. Similar to (4) we also study
in nos. 9-12 in Section 3 the dependance of f(g, c; n, δ) on (g, c) and
establish the following:

j/(<7, c; n, δ) ^ f(g', c'; n, δ) (g^g',c^c')f

\\im f(g, c n, δ) = oo .

Whether \imc^ f(g, c; n, δ) is finite or not is an important open question
and nothing is known even for the case g — 0 except for that
limc_oo/(0, c; n, δ) < oo is equivalent to the validity of the corona theorem
for every plane regions (cf. [6]).

The paper is divided into four sections. In Section 1 consisting of
nos. 1-4 we will study elementary properties concerning Gamelin con-
stants. A Carleman type approximation method will be one of funda-
mental tools in this paper. For the sake of convenience and also com-
pleteness we derive it from the Mergelyan-Bishop theorem in Section 2
consisting of nos. 5-6. In Section 3 consisting of nos. 9-12 we will
discuss the Gamelin constants of finite Riemann surfaces. Proofs of our
main assertions in this paper will be given in nos. 13 and 14 of Section 4.

§ 1. Elementary properties of Gamelin constants.

1. In the definition of the Gamelin constant C(R) n, δ) we made the
restriction that δ is less than 1 in addition to its positivity. It is not
essential but this convention will make a certain statement concerning
C(R; n, δ) neater. It is clear from the definition that C(R; 1, δ) = 1/δ,
and hence C(R; n> δ) has its essential meaning only for n ^ 2. Suppose
C(R; nf δ) < oo. By a normal family argument we can show the existence
of a corona solution {gό} of a given corona datum {/J of index (n, δ)
such that max1^ ̂ n(supΛ|flfi|) = inf{Λi}(max1^.^n(supΛ|fei|)) where {hά} runs
over corona solutions of {/,}. Such a {g5} will be referred to as a
minimal solution of {/,.}. The infimum and the minimum of the set {C}
of real numbers C such that max1^i^7l(supi2|^i|) ^ C for all minimal solu-
tions {gs} are coincident. By the above observation C(R; n, δ) can also
be characterized as the smallest constant for which given corona datum

of index (n, δ) there exists a corona solution {g5} of {fd} with
ffyl) ^ C(R; n, δ). Here we understand that C(R;n,δ) = oo
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if there are no corona solutions. We have

( 9) l/δ£ C(R; n, δ) ^ C(R; n',δ') (n £n',δ^ d') .

In fact there is a corona datum {/,-} of index (n, δ) such that
infB Σ?=i \fj\ = δ otherwise we only have to replace {fβ} by {afό} with
a = δ/(infΛΣ?=i 1/yD Taking a minimal solution {#,} of {/y} we deduce
1 = \Άif,gj\ ^ ΣiU \fj\ Iffyl ^ C(Λ; n, S) Σ;=i IΛI Taking the infimum of
both sides we obtain 1 <; C(R; n, δ)δ. A datum {/,-} of length w can be
viewed as one of length nf (>ri) by adding n' — n constantly zero
functions. A datum of lower bound δ is of course of lower bound <?'
(<<5). Hence (9) is valid.

The dependance of C(R; n, δ) on R is very complicated. A closed
set K in R is said to be unremovable if H°°(R - K) = H°°(R) i.e. any /
in £Γ°°(ii! — K) can be continued to R so as to be in H°°(R). In this case
C(R — K; n, δ) = C(R; n, δ). Finite sets are trivially H^-removable.
Needless to say the Gamelin constant is conformally invariant, i.e.
C(φ(R); n, δ) = C(Rm, n, δ) if φ is a conformal mapping of R onto φ(R).

2. For any open Riemann surface R there always exists an exhaus-
tion {Rk}keN of R characterized by the following: each Rk is a relatively
compact subregion of R; RkaRk+1 (keN); \JkeNRk = R. We can more-
over assume that each Rk is a regular subregion and in this case {Rk}
is said to be a regular exhaustion. We denoted by ^(m) the family
of m-sheeted disks R, i.e. open Riemann surfaces R which are represented
as m-sheeted covering surface (R, Δy π) of the unit disk Δ\ \z\ < 1 in the
complex plane C. We also consider a subfamily <g*0(m) of ^(m) consisting
of finite Riemann surfaces R with analytic borders such that R are
represented as m-sheeted covering surfaces (β, A, π) of A whose sets of
branch points are finite.

If B e ^ m ) , then there always exists a ^Q(m)-exhaustion {Rk}keN of
R characterized by the following: {Rk}keN is a regular exhaustion of R;
each Rk belongs to ^0(m). To show the existence of a ^0(m)-exhaustion
{Rk} of R in ^(m), let (R9 Δ, π) be the representation of R as an m-
sheeted covering surface of Δ and {rk}keN be a strictly increasing sequence
in (0,1) such that there exist no branch points in π^iUkeΛl^l — rk}). Then
Rk = π~\{\z\ < rk}) (keN) give a required exhaustion since each Rk is
represented as an m-sheeted covering surface (Rk9 Δ, rk

ιπ) of Δ with the
finite set of branch points.

3. The Gamelin constant C(R; n, δ) is lower semicontinuous in the
following sense: for any t less than C(R; n, δ) and for any exhaustion
{Rk}ke* of R t h e r e e x i s t s a n NeN s u c h t h a t C(Rk; n,δ)>t(k^ N ) . I n
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connection with this it is convenient to introduce the following notion.
A corona datum {fά} of index (n, δ) on R is said to be t-effective (t <
C(R;n,δ)) on R if max1^y^n(supJ2|5ri|) > t where {gs} is a minimal solution
of {/y}. We denote by E(R; n, δ; t) the class of ^-effective corona data
{/y} of index (n, δ) on R. The ^-effectiveness is monotone in the following
sense: {/,-} is a corona datum of index (n, δ) on R and Rf is a subregion
of R, then the ^-effectiveness of {/,} on i2' implies that on R. The
above lower semicontinuity of C(R; n, δ) in R follows from the lower
semicontίnuity of the ineffectiveness in surfaces R in the following sense:
for any exhaustion {Rk}kBN of R there exists an NeN such that {/, }e
E(Rk; n, δ; t) (k^N). We prove this by contradiction. If {/y} $ E(Rk; n, δ; t)
for every k e N, then the minimal solution {gkj} of {/y} on Rk must satisfy
max^y^nίsup l̂flffcyl) ^ ί. Since {flffcy}fc (j = 1, , n) forms a normal family
we can choose a subsequence {&>(&)} of {k} such that {flrv(*,y}* converges to
a gjβH^iR) (j = lf « ,r&). Then { ĵ is a corona solution of {/y} on i?
and max1^i^n(supi2|ί/:? |) ^ ί, contradicting {/y} eE(R; n, δ; t). •

We have another kind of lower semicontinuity of the ί-effectiveness:
the t-effectiveness is lower semicontinuous in data {/y}. Namely, if
{fj}eE(R;n,δ;t) and {{fkj}]=1}keN is a sequence of corona data {fkj}]=i of
index (n, δ) on i? such that {fkj}keN converges to fά uniformly on each
compact subset of R (J = 1, , n), then there exists an NeN such that
{fkj}3- e E(R; n, δ; t) (k ^ N). The proof is again straightforward as above
by using the normal family argument.

4. We now state a technical fact about C(R; n, δ) which will be in
an essential use later. It is derived from the so to speak joint lower
semicontinuity of the ^-effectiveness in both of surfaces and data: for
any t less than C(R;n, δ) and any regular exhaustion {Rk}keN of R there
exists an Rk and a system {f19 ••-,/„} of functions fά holomorphic on Rk

with the following three properties:

(10) max(sup |/ , | )<l ,
lύύ^ Rk

(11) inf(± IΛl)
Rk \y=i /

(12)

Since C(R; n, δ) > t we can find a corona datum {/y} of index (n, δ)
on R such that {/,•} is ^-effective, i.e. {fj}eE{R'Jn,δ\t). By the lower
semicontinuity of the ί-effectiveness in R, {f5} e E(Rk; n, δ; t) for some Rk.
Needless to say fά (j = 1, , n) are holomorphic on Rk. Suppose fό = cύ

on Rk (j = 1, , p) with c5 a constant of modulus 1 and \fό\ < 1 on Rk
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U = p + 1, , n). Then {ηfιy , ηfp, fp+1, •••,/„} is again a corona
datum of index (n, δ) on Rk if the constant η is taken enough close to
1 in (0, 1). Here the assumption δe(0,1) is essential for the validity of
the above assertion. Moreover {ηf19 , τηfp9 fp+1, •••,/„} is ^-effective on
Rk if η is chosen further close to 1 in (0,1) by the lower semicontinuity
of ^-effectiveness in data. Thus we have chosen an Rk and a system
{fi> '">fn\ oΐ functions fs holomorphic on Rk with max^^ίsupaj/yl) < 1
and {/,-} e E(Rk; n, δ; t). Finally by taking a constant η > 1 enough close
to 1 we see that {ηfu , ηfn} is the required one on Rk. •

§ 2. An approximation lemma.

5. The discussion in this section will be developed based upon the
following Bishop generalization [3] of the Mergelyan approximation
theorem to the Riemann surface setting: Let K be a compact subset of
an open Riemann surface R such that there exist no relatively compact
components of R — K and / a continuous function on K holomorphic in
the interior of K. Then there exists a holomorphic function /, on R for
an arbitrary positive number ε such that sup^|/ε — f\ < ε.

6. Consider a sequence {Rm}meN of finite regular Riemann surfaces
Rm. We construct an ambient Riemann surface S containing Um6jv-Rm

as follows. First let Sm be a finite regular surface obtained from Rm by
attaching an annulus to each boundary component of Rm. Then S is
obtained by connecting, for each m ̂  1, at most km of the boundary
components of Sm to at most km of those of Sm+1 by means of km

rectangular strips smv (1 ^ v ̂  km). More precisely let smv be represented
as {amu ^ Re z ^ 6mv, 0 < Im z < 1}, and we denote by αm v (βmtt, resp.) the
part of smv corresponding to {Re z = amvf 0 < Imz < 1} ({Re z = δmv, 0 <
I m 2 < 1}, resp.). What we mean by connecting Sm to Sm+1 by means of
smu (1 ^ v 5̂  ΛJ is that parts of dSm (dSm+19 resp.) are identified with αw ι ;

(/3mv, resp.) (1 ^ v ̂  kj so that

= u(s.u(uβj).

Here we assume that SmΓ\Sm, = 0 {mΦmf) and sm i /flsm V — 0 ((m, v) ̂
(m', ι>')). We set sm = u ! j sm,. Let ίmy be a simple analytic arc that
starts from dRm, passes directly through the rectangle smu without
touching Rm\jRm+i, and terminates at 8Rm+1. We assume that tmv inter-
sects with dRm, 3Sm, dRm+1, dSm+1 only once each. We also assume that
tmM tm>»> = 0 ((m, v) Φ (m', v')). We set Tm = uί=i ίmv. It is also assumed
that ΓmΠ(U v β WΛ v) = 0 . Set



CORONA THEOREM 233

E=(Ό # J U ( U TJ
meN meN

which is a connected closed subset of S. We also consider

En = (\J Λ . ) u ( G Tm) (n = l,2, . . . )
\m=n / \m=n /

which are also connected closed subsets of S with Ex = £7. Then we
have the following (cf. e.g. Scheinberg [12])

APPROXIMATION LEMMA. For any continuous function f on E
holomorphic in the interior \JmQNRm of E and any sequence {εn} of
positive numbers εn there exists a holomorphic function F on S such
that suptfj/ - F\ < εn (n = 1, 2, •)-

7. To prove the above lemma we may assume that {εj is decreasing.
We put Xn = (Ul*i SJ U (U;;\ sj which is a subsurface of S and {Xn}
exhausts S. We also put

τm)\j(SΛnτn).

First let f = f\ Y1 and X[ be a slightly larger surface than X1 such that
Xt is normal in X[, i.e. X^Xl and Xί — Xλ has no compact components.
Then by the Bishop theorem there exists an F1 holomorphic on X[ and
hence on Σλ such that supF l |/ x — Ft\ < εJ4. We then define a continuous
function gt on Tx such that gι = ^ on ^Π-SΊ, flfi = / at T^Πdl^, and
s u p r j ^ — / | < εji. Using g1 we define a continuous function /2 on Xx U Γ2
such that /2 = JF7! on Xlf f2 = ^ in Γx, and /2 = / on J B 2 U ( S 2 Π Γ2). Let
X2 be a slightly larger surface than X2 such that Z 2 is normal in X[. By
the Bishop theorem there exists a function F2 holomorphic on X[ and
hence on X2 such that

sup |/2 - F2\ < ε2/42 .

By repeating the same process we construct sequences {fn}neN, {Qn}n^m
and {Fn}neN of functions as follows. Suppose /„ •••,/„ and Flf •• , F n

have been constructed. Define gn on Tn such that gn = F n on Γ n Π l n ,
gn=f *X Tnf)dRn+1, and supΓJβrn - / | < en/4n. Using gn we define a
continuous function fn+1 on Xn U Yn+1 such that / n + 1 = Fn on Xn, / n + 1 = gn

on ΓTC, and fn+1=f on β n + 1 U(S n + 1 Π Γn+1). Then define a function i^n+1

holomorphic on Xn+1 as before such that

sup |/n + 1 - F n + 1 | < εn+1/An+1 .

By the construction {Fn} converges to a holomorphic function F on S and

sup, 1 / - F | < 8 ^ 3 . 4 — ^ ε w . D
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8. We insert here a simple remark which will be used later. Let
Av = (αvl, , αvn) (v = 1, 2) be two points in Cn satisfying m a x ^ ^ j α j ^ a
and Σ?=il«pil ^ b (v = 1, 2). We maintain that there exists a continuous
curve Z = Z(t) = &(«), , sn(t)) (0 ^ ί ^ 1) in Cn such that Z(0) = A19

Z(l) = A2, πiax1^J <;n(supo^f^1|^ (ί)l) ^ #> and info^^1(Σi=iki(*)l) ^ b. Actually
we can construct such a curve explicitly as follows. Let arg avj = θvj

(y = 1, 2; j = 1, , w) under the convention arg 0 = 0 and

'(1 - 3ί)αiy + 3αί exp(ϊ0iy) (0 ^ ί ^ 1/3) ,

^.(ί) = • a exp(i((2 - 3ί)0i/ + (3ί - l)θ2j)) (1/3 ^ t ^ 2/3) ,

(3ί - 2)α2i + 3α(l - t)exv(iθ2j) (2/3 ^ ί ^ 1)

for j = 1, , n. Then it is easily checked that Z = Z(t) = (^(ί), , «n(ί))
is the required curve. •

§ 3. Finite Riemann surfaces.

9. We now give a proof for (8). We denoted by ^(g, c) the class
of finite Riemann surfaces R of genus g ^ 0 and of c(^l) boundary
components, and by f(g, c; n, δ) the supremum of C(R; n, δ) as R runs over
J?~(g9 c). We will prove that f(g, c; n, δ) ^ f(g', c'; n, δ) (g^g\cSc'). We
first prove that f(g, c;n,δ)<^ f(g, c — l;n,δ). Take an arbitrary positive
number t less than f(g, c; n, δ) so that there is an R in J^~(g9 c) with
C(R; n, 3) > t. Fix an arbitrary point p in R and set R' = R — {p}.
Observe that C(R'\ n, δ) = C(R; n, δ) > t. Let {Rk}keN be a regular ex-
haustion of Rf where we can assume that Rke^(g9 c + 1) (keN). By
the lower semicontinuity of C(R; n9 3) (cf. no. 3) we can find an Rk such
that C(Rk; n9 δ) > t. Hence f(g, c + 1; n, δ) > t, proving f(g, c; n, δ) ^
f(g, c + l n, 3).

10. We next prove that f (gf c; n, 3) ^ f(g + 1, c; n, 3). Let t be an
arbitrary positive number less than f(g, c n, 3) so that there is an R' in
_^~(#, c) with C(Rr) n, 8) > t. By no. 4, we can find a regular subregion
R of R! such that R e ^{g, c) and a system {f19 •••,/«} of functions /y
holomorphic on R such that (10), (11), and (12) are satisfied. Let S' be
a finite regular surface obtained from R by attaching an annulus to each
boundary component of R. Let Br be obtained from a torus by removing
a closed parametric disk and B by removing slightly larger closed con-
centric parametric disk so that B* — B is an annulus. Finally let S be
obtained by connecting one arbitrary fixed boundary component of S' to
the boundary component of Br by means of a rectangular strip s as in
no. 6. Let 7 be a simple analytic arc that starts from an arbitrary fixed
point a of 3ϋJ, passes directly through the rectangle s without touching
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R{JB, and terminates at dB. We define functions φ5eC(R\jΊl)B) by
φs\R=fs and φό\Ί\JB = ^(α) (i = 1, , n). By the Bishop theorem there
exist holomorphic functions Fs on S approximating f5 on R U 7 U JB (j =
1, ••-,%) such that (10), (11), and (12) are satisfied for {FJ on R. Take
a sufficiently small neighborhood T7of R\jy\jB such that We^(g + 1, c)
and {jP} eE(W; n, δ; t). Hence C(W; n, δ) > t and then f(g + 1, c; ny 3) > t,
proving f(g, c; n, δ) tίf(g + 1, c; n, δ). We have thus proved the inequality
in (8).

11. We will now show that there exists a finite regular surface R —
R(δ, η, c) such that C(R; 2, δ) > η and the number c(R) of boundary
components of R is c for any (δ, η, c) in (0, l)x(0, oo)xiV. We have no
explicit information about the genus g(R) of R but possibly very large
for large η.

We only have to show the existence of R(δ, η, 1). In fact, if c > 1,
then remove c — 1 points pί9 , pc_! from i?(<5,)?, 1) and let W be the
resulting surface. Observe that C(W; 2, δ) = C(-β(δ, J?, 1); 2, δ) > η. Take
a regular exhaustion {Wk} of PΓ where we can assume c(Wk) = c. By
the lower semicontinuity of C(R; 2, δ) in R there exists an Wk with
C(T7Λ; 2, δ) > )?. We can then take an iJ(δ, 77, c) as Wfc.

To construct an R(δ, rjr 1) we take a finite regular surface W =
W(δ, -η) such that C(W; 2, δ) > η (Gamelin [7, pp. 47-49]). If c{W) = 1,
then W is the required one. Suppose that c(W) > 1. As in no. 10 by
replacing W with its regular subregion if necessary, we can assume the
existence of two holomorphic functions fx and f2 on W such that
max^y^ίsup^l/yl) < 1, inf^d/J + |/2|) > δ, and {flff2} is 57-effective on W.
First let S' be a finite regular surface obtained from W by attaching
an annulus to each boundary component of W. Then we construct an S
by connecting two boundary component of S' by means of a rectangular
strip s. Let 7 be a simple analytic arc that start from a point in dW,
passes directly through the rectangle s without touching S', and terminates
at a point in dW. We define two functions φάeC{W{jΊ) (j = 1, 2) such
that φά = /,. on W, max^^2(sup,?Url^i) < 1, and inf.d^J + |?>2|) > δ. Here
we have used the result in no. 8. By the Bishop theorem there exist
holomorphic functions Fx and F2 on S approximating φ1 and φ2 on W[}Ί
respectively such that max1^i^2(sup^ur|ί

7

i|) < 1, i n f ^ d F J + |JP2|) > δ, and
{Flf F2} is ^-effective on W. Take a sufficiently small regular neighborhood
Wi of WUΎ such that {Fl9 Fι}(zE(Wι; 2, δ; η). Then c(Wi) = c(ΪΓ)-l and
C(WΊ; 2, δ) > Ύ). Repeating this process we can reduce c(W) to 1. •

12. We complete the proof for (8) by showing lim^ /ίff, c; n, δ) = °°
for any (c,n,δ)eNxNx (0, 1). Let R = R(δ, k, c) be the surface formed
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for (δ,k,c)e(O,ΐ)xNxN in no. 11. By (9) we have C(R;n,δ)^
C(R; 2, δ) ̂  k and R e J^(g(δ, k, c), c). Therefore f(g(δ, k, c), c; n, δ) ̂  k.
Since f(g, c; n, δ) is increasing in g, we have \\mg^oo f(g> c; n, δ) ^ k which
implies lim,-oo/(ff, c; n, δ) — oo by making k —• oo.

§ 4. Proof of the main theorem.

13. We are now giving a proof of our main result in this paper.
Our main theorem is equivalent to the finiteness of the quantity
c(m;n,δ) for any (m, n, δ) eNxNx(0, 1) which is the supremum of
C(R; n, δ) when R runs over ^(m). Contrariwise we suppose c(m; n, δ) = ©o
for some (m, n, δ) e iVxiVx(0, 1) so that there exists a sequence {i2fc}fceiV

in <g*(m) such that C(Rk;n,δ)>k (keN). Taking a ^(ra^exhaustion
of Rk (cf. no. 2) and using the result in no. 4 we can assume for each
keN that Rke^Q(m) and there exists a system {/fcl, , fkn) of functions
/ t J holomorphic on Rk = Rk (J 3J?fc with the following three properties:

(13) max(sup\fkj\) = 1 - Zfc (keN) ,
l£j£ Rk

(14) inf(Σ l/j) = a + dk (keN),
Rk \j=l /

(15) {/tlf ,ΛJ6£7(iefc; n, δ; k) (keN) ,

where {yfce;v is a sequence in (0, 1) and {dk}keN is a sequence of positive
numbers. Since Rke^Q(m)f Rk has a representation (Rk, Δ, πk) as an m-
sheeted covering surface of Δ with a finite number of branch points.

We denote by Uk the disk {\z - (Zk -2)\< 1} and by φk the con-
formal mapping z H> Z + (3fc — 2) of J onto C7fc (keN). We consider the
m-sheeted covering surface (Cm, C, π) of C such that the set of branch
points is contained in 7c~\\JkeNUk) and each π-1(ί7fc) can be identified
with Rk such that π = φk°πk (keN). We denote by τfc the line segment
[3& — 1, 3k] on the real axis in C (keN). We choose sequences {pk}keN

in (0, 1/2) and {σk}kBN in (0, 1). We denote by Vk the disk with its center
3k - 2 and of radius 1 + ρk so that £7ΛcFfc (keN). We set

- Vk\jVk+1)

for each ΛeiV and then consider D = (\Jke!ίVk)\J(\JkeNWk) which is
simply connected so that there exists a conformal mapping φ of D onto
Δ. The subsequence Dm = π~1(D) then belongs to <g*(m) since it has a
representation (Z)TO, z/, φ o π) as an m-sheeted covering surface of Δ. The
set Tk = π~\τk) consists of m line segments tkl, , tkm each of which
starts from a point in 3Rk and terminates at a point in dRk+1 (keN).
We set
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E=(\J Rk)\j({J Tk)

which is a connected closed subset of Cm. We also set

(veN)

which are also connected closed subsets of Cm with Ex = E. Observe
that Dm is a surface containing E as its closed subset and moreover we
can make Dm so small by choosing {pk}keN and {σk}keN convergent to zero
enough rapidly that Dm is contained in any preassigned neighborhood of
E in Cm.

By the technical remark stated in no. 8 with (13) and (14) we can
find continuous functions Flf — ,Fn on E such that Fό\Rk = fkj (keN,
j = l9 ...9n) and that the following two properties are satisfied:

(16) max(_sup \Fj\) ^ 1 - mm(lk, lk+1) (keN) ,
l^j^n Rk{jTk

(17) _inf ( Σ \FJ\) ̂  δ + mm(dk, dk+1) (k e N) .

We apply the approximation lemma in no. 6 to functions Flf •••, Fn and
the closed set E on the surface CTO. Then, in view of (15), (16), and (17),
we can find holomorphic functions f19 •••,/„ on Cm wi th the following
three properties:

(18)

(19) inf(Σ IΛl) ^ S ,

(20) {/lf , fn)eE(Rk; n, δ; k) (keN) .

Here we have also used the lower semicontinuity of the fc-effectiveness
in data (cf. no. 3). By choosing Dm so small that (18) and (19) are also
valid if E is replaced by Dm we can assume that {flf •••,/„} is a corona
datum with index (n, δ) on Dm. Since Dm e ^ ( m ) , the covering corona
theorem assures that there exists a corona solution {glf , gn} to the
datum {flf ---,fn} on Dm. Therefore

k ^ max(sup|^ |) ^ max(sup|^ |)
l^jύ Rk lύύ^n Dm

for every keN. The first inequality follows from (20). This clearly
contradicts gd e H°°(Dm) (j — 1, , n). •

14. We close the paper by establishing (4). From (7) and (8) it
follows that limsupm^oo c(m; n, δ) — oo. Therefore we only have to prove
the first inequality of (4) to complete the proof of (4).
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We start the proof for c(m; n, δ) ̂  c(m + 1; n, δ) for an arbitrary
(m, n, δ) in NxNx (0, 1). What we need to show is that c(m + 1; n, δ) > t
whenever c(m; n, δ) > t ^ 1/δ. Hence we take an arbitrary but then
fixed t in [1/δ, c(m; n, δ)) and will show that c{m + 1; n, δ) > t. There
exists an i ? e ^ ( m ) such that C(R; n, 8) > t. By taking a ^0(m)-exhaus-
tion of R (cf. no. 2) and using the technical remark in no. 4, we can
assume that R e <g*Q(m) with (R, A, π) as its representation as an m-
sheeted covering surface of A having a finite number of branch points
and there exists a system {flf •••,/«} of functions fi holomorphic on R
with the following three properties:

(21) max(sup|./; |) = l - ί ,
l^j^n R

(22) i n f ( Σ l/il) = δ + d ,

(23)

where I is in (0, 1) and d is a positive number. Choose a point p in
jβ which is not a branch point of the covering surface (R, A, π) and
a closed parametric disk K in R about p with a finite radius, i.e.
K: \z\ ̂  r with z(p) = 0, such that there is no branch point in K.
Clearly (21)-(23) are also valid if R is replaced by R — {p} and in
particular {f5} is ^-effective on R — {p}. By the lower semicontinuity
of the ^-effectiveness of {fά} (cf. no. 3) we see that {fά} is an ί-effective
corona datum of index (n, δ) on R — K if r is chosen sufficiently close
to zero. Hence we can and hereafter we will fix K in addition to R, p,
and {fj} such that {f5} satisfies the following two conditions:

(24)

(25) max(max \f5 - fή(p)\) < J - max(l, d) .
i^jzn K 3n

Let σ be contained in the interior of K corresponding to a line seg-
ment [0, s] in terms of the local parameter z and R8 be obtained from
R — σ and C — σ, C being the extended complex plane, by connecting
each other crosswise along the segment σ. We set nό = Refd (j = 1, , n)
which are harmonic on R. We denote by Uά = Ud8 the solution of the
Dirichlet problem on R8 with boundary values us on 3R8 = dR (j = 1, •••,%)
which are also harmonic on R8 — R8{JdR8. By the maximum principle it
is easy to see that

(26) lim(sup | Ud - u,\) = 0 (J = 1, , n) .
s-*0 R-K

Let d , Cq be the homology basis of R8 which can be taken in R — K.
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Then C19 — -,Cg also form the homology basis of R. It is well known

that the mapping ψ\-^(\ ψ, m">\ ψ) from the space A(R) of Abelian

differentials ψ of the first kind on qR to Cq is surjective. Let ψk be in

A(R) such that

( L *k' "'' L t f e ) = ̂ ίδklί ' "' ίδkg) (fc = lf ''*' Q)

where δkj be the Kronecker delta. Then I Re ψk — 0 (j = 1, , q) and

thus Re γk is exact, i.e. there exists a gk harmonic on R with Re ψk = dgk

on R (k — 1, , q). Therefore ψk = dgk + i*dgk and

*dgk = δfci (fc, j = 1, •••, g) .L
We denote by Gk — Gk8 the solution of the Dirichlet problem on R8 with
boundary values gk on dR8 = dR. Thus Gk is harmonic on R8 (k — 1, , q).
As in (26) we obtain

(27) lim(sup \Gk-gh\) = 0 (fc = 1, , «) .

Hence in particular we see that

(28) lim( *dGk=\ *dgk = δkj (fc, j = 1, . . , g) .

We set Hh = Hh8 = Σ L i cAfc Gfc with cAft = chk8 satisfying
Q C

ΣjChk\ * dGk = δ Λ i (fe, j = 1, , g) .
fc=l J Cj

In view of (28) we can define Hh for sufficiently small s and moreover
chk (h, k = 1, , g) are bounded as s —> 0. Hence Hh (h = 1, , g) are
bounded on R — K and a fortiori on R8 uniformly for s —> 0.

Now consider the differentials

on .Bs which are easily seen to have no period along any of Ch (h =
1, , q) and therefore exact. There exists a holomorphic functions
Fj — Fj8 on R8 such that

dFJ = dUj + i*dUJ-Σi(\ *dU0)(dHh + i*dHh) (j = 1, . . . , t ι ) .

Fixing a point w in i? — i ί we normalize Fs as Im F/w) = lmfβ(w) by

adding a suitable constant to Fά if necessary. Observe that 1 *duj — 0
Jch
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(h = 1, , q) a n d t h u s b y (26)

l i m Γ *eZC7y = l i m ( *d(E7y - us) = 0 (j = 1, • • - , % ) •

Since w e h a v e

uniformly on R — K, the normalization lm(Fά{w) — f3 (w)) = 0 implies that

(26) lim sup IF, - /,| = 0 (j = 1, , n) .
*-*° R-K

Let W = W8be the part of R8 over J so that W is obtained from R — σ
and J — σ by connecting each other crosswise along σ. Clearly W belongs
to ς^(m + 1), By using the maximum principle, (21), (22), (24), (25), and
(29), we can see that {Fj} is a ί-effective corona datum of index (n, δ)
on Wiΐ s is sufficiently close to zero. In particular we have C(W; n, δ) > t
and a fortiori c(m + 1; n, δ) > t. •
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