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0. Introduction. Hirzebruch defined in [5] several geometric in-
variants for normal isolated singularities, in particular the ^-invariants
for Hubert modular cusp singularities. The invariant φ is the difference
between the L-polynomial and the signature on the desingularization of
a compact neighborhood of the singular point. He conjectured that the
^-invariant coincides with the invariant w, which was defined by Shimizu
[11] as the special value of an L-function. This conjecture was recently
proved by Atiyah, Donnelly and Singer [1]. Ehlers [4] defined and com-
puted the α/r-invariant for Hubert modular cusp singularities, and Satake
[9], [10] generalized these to the cusp contributions for certain locally
symmetric varieties, i.e., arithmetic varieties of Q-rank one. From the
dimension formula of Hubert modular cusp forms, it is conjectured in [6]
that the invariants ψ and φ coincide.

Here we consider generalized cusp singularities of Tsuchihashi [13].
Generalizing the work of Satake [8], we associate a zeta function to a
pair of a nondegenerate open convex cone and a discrete group appearing
in the definition of Tsuchihashi's cusp singularity. We show among
other things that the special value of the zeta function gives informa-
tion on the topology of the singularity, namely, the cusp contribution in
odd-dimensional cases.

Let N be a free Z-module of rank n (>1) and NR : = iV(x)zlί. Let
C be a nondegenerate open convex cone in NR and Γ a subgroup in the
group GL(N): = Autz (N) of Z-linear automorphisms of N such that C
is Γ-in variant, Γ acts on D : — C/R>0 properly discontinuously and freely,
and that D/Γ is compact. Then the semi-direct product N Γ acts on
the tube domain NR + i/ — 1C in Nc:= N(g)zC properly discontinuously
and freely. We get a complex manifold (NR + V"^Λ C)/N Γ. By adding
a point «>, we can make {(Λ^+V7 — 1 C)/N Γ}U{°°} a complex analytic
space. Tsuchihashi's cusp singularity is this point °o. Let X be the
exceptional set of a resolution of this singularity. Then X = Xλ + + Xt

is a toric divisor, that is, X has only normal crossings as singularities,
each irreducible component Xά of X is isomorphic to an (n — l)-dimen-
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sional compact torus embedding and the union UkΦj Xs Π Xk of the double
locus XjΓ\Xk on Xd coincides with the closure of the union of all the
codimension one orbits on Xd.

On the other hand, let N* be the dual Z-module of N with the
pairing <,>:iVx iV* —>Z. Let dx and dx* be the Lebesgue measures
on NR and N£f respectively, so normalized that the volume of the paral-
lelotope spanned by a basis of N and ΛΓ* is one. Let C* be the dual
cone of C defined by C* : = {x* in N£; (x, x*} > 0 for all x in C\{0}}.
The characteristic function of C is

φc(x) : = 1 exp(— (x, x*))dx*
JC*

defined by Vinberg [14]. Then we define the zeta function associated to
(C, Γ) by

Z(C, Γ; 8):= Σ Φc(x)8 for Re s > 1 .
xe(Nf)C)IΓ

We show in Theorem 2.1 that the function Z(C, Γ; s) can be continued
meromorphically to the whole complex plane. As we briefly mention
below, it is expected that the value of Z(C, Γ; s) at s = 0 gives topologi-
cal information on Tsuchihashi's cusp singularity corresponding to (C, Γ).
It is indeed the case when the dimension n is either two or odd.

The zeta function associated to a self-dual homogeneous cone was
studied by Shintani [12] in the case of simplicial cones, by Zagier [15]
in the case of two dimensional cones and by Satake [8] in general. We
generalize the method employed by Zagier [15] and suggested to the
author by Zagier himself, but in a way different from that in Cassou-
Nogues [3], since (1) C may not be self-dual homogeneous (cf. Tsuchihashi
[13, §5]) and (2) l/φc(x) may not be a polynomial.

We now explain which topological information Z(C, Γ; s) is expected
to give. We consider the following situation: Let ^ be a tube domain
Rn + V^Λ C such that C is a self-dual homogeneous open convex cone.
Let Γo be an arithmetic group acting on 3ί. Assume, for simplicity, that
Γo is torsion-free, that the quotient space £&/Γ0 is smooth and that there
exists a compactification Y: = (&/Γ0) U {plf , ph) of ^ / Γ o by addition
of a finite number of points plf -- ,ph called cusps. Mumford gave a
method to construct a smooth compactification Yf: = (£&/Γ0) U Dω U UD{h)

by using toroidal embeddings. Here D:= \jDω is a divisor with only
simple normal crossings on Y' and D{i) are connected components of Z>.
Let D{i) — Uyβ/w Dj be the decomposition of D{i) into the union of ir-
reducible components. Let δs in H2(Y';Z) be the cohomology class
determined by D, . Then the difference 5L : = X(Y') - χ(Y', D) of the
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arithmetic genus of Y' and logarithmic arithmetic genus of {Yf, D)
depends only on & and Γo and is called the cusp contribution. We can
calculate χ(Y't D) by using the proportionality theorem of Mumford.

By Satake [9], [10], the cusp contribution can be computed as follows:

where / : = J(1) U Ul{h) and κn denotes ιcn{b) = bn[Y'] for the degree 2n
part bn of 6 in (&ΐ=0H

2i(Y') Q). It is natural to define the contribution
of each cusp pt by

ΓL-i—^

Then we have Zoo = X^) + + Xco(ph).
Satake [9], [10] gave a relation:

where Φ(ί) : = {Jc/ ( ί ) ; J ^ 0 a n d ΰ , : = n j β ; A φ ®)- F o r ^ i n φW w i t h

r = *J we denote by sgn(Z)j) the signature of the (n — r)-dimensional
manifold DJf i.e., the signature of the bilinear form on Hn~r(Dj , R)
defined by cup product. Then we also have (see Lemma 3.15 in Section 3)

(-2)-* - Σ
jΦ

Moreover, if n is odd, then we have

where e{Φ{i)) is the Euler number of the dual graph of D(ί), which is an
(n — l)-dimensional simplicial complex and which is determined by the
exceptional divisor D{ί).

Using the same formula we can define the cusp contribution of
Tsuchihashi's cusp singularity. Namely let (V, p) be TsuchihashΓs cusp
siugularity of dimension n, π:W^V a resolution of the singularity and
\JjeIXj the decomposition of the exceptional set π~\p) into the union of
irreducible components. Let 83 in H?(W; Z) be the cohomology class with
compact support determined by Xs. Then we define the cusp contribution
Zco(p) by

/ 1 — e-

The equalities of Satake also hold in this case:
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= 2- Σ sgnCX,) + J Π % | + β 7 a n d

= e(Φ)/2 if n is odd ,

where Φ:= {Jal J Φ 0 and -3Γ/:= Π/ej^y ^ 0} (see Lemma 3.15 in
Section 3).

Tsuchihashi's cusp singularity in dimension n = 2 is a Hubert modular
cusp singularity. The exceptional divisor of its minimal resolution is a
cycle of rational curves. Z(C, Γ; 0) is expressed in terms of the cusp
contribution as

Z(C, Γ; 0) = - A Σ (β5 + 3) - -Z«o(p) .
1 2 j β /

When w is odd, we show in Theorem 2.3 that Z(C, Γ; 0) coincides
with —1/2 times the Euler number of the dual graph, hence we have

Z(C,Γ;0)= -JL(p).

Even if n ^ 4 is even, we can expect

Z(C,Γ;0)= -Zoo(p)

to hold. Unfortunately, we could not prove this, but can express
Z(C, Γ; 0) in a form very similar to Satake's formula.

The author would like to thank Professors I. Satake, T. Oda and
M.-N. Ishida for their useful advice and encouragement.

1. Tsuchihashis cusp singularities. Generalizing Hubert modular
cusp singularities, Tsuchihashi [13] introduced new normal isolated
singularities. These are the singular points appearing at infinity of the
quotients of tube domains. In this section we explain these generalized
cusp singularities of Tsuchihashi.

Let N be a free Z-module of rank n and N* the dual Z-module of
N with the natural pairing ( , }: N x N* —> Z. Consider a pair (C, Γ)
consisting of an open convex cone in NR:= N®ZR whose closure C
contains no line in NR and a subgroup Γ in GL(N): = Autz(iV) with the
following properties:

(1) C is /"-invariant.
(2) Γ acts on ΰ : = C/JR>0 properly discontinuously and freely.
(3 ) The quotient D/Γ is compact.

Then there exists a rational partial polyhedral decomposition (r.p.p. de-
composition for short) Σ satisfying the following conditions:

( i ) C= Uσer\{o}int(σ).
(ii) For any compact set K contained in C, the set {σ e Σ; σ Π K Φ 0}
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is finite.
(iii) Σ is Γ-invariant.
(iv) Γ acts on Σ\{0} freely.
(v) (Σ\{0})/Γ is a finite set.

Here we denote by 0 the cone {0} and by int(σ) the relative interior of σ.
Tsuchihashi [13] gave an r.p.p. decomposition Σ using the convex

hull θ of CnN. Taking a Γ-invariant subdivision of Σ, if necessary, we
may also assume the following:

(vi) For every σ and τ in Σ, there exists at most one g in Γ with
(gσ)Πτ Φ 0.

(vii) Σ is nonsingular, i.e., for each σ in Σ there exists a Z-basis
{ulf •••,%«} of N and r ^ ^ such that σ is spanned by ^ , , ur, namely,
σ = iJ^o î + + R^our. In the following, we assume that J satisfies
the conditions (i)-(vii).

Tsuchihashi [13] associated to such a pair (C, Γ) a cusp singularity
Cusp(C, Γ) as follows: TN:= N(g)zC

x is an algebraic torus. Since Σ is
nonsingular, the corresponding torus embedding Z:= TNemb(Σ) is a non-
singular complex analytic space. Since Σ is Γ-invariant, Γ also acts on
Z. We define a homomorphism

ord: TN = N(g)zC
x -> iVΛ = iSΓ®x J8

by 1 (̂8) (-log I I). # : = ord^C) U (^\ Γ J in Z is a Γ-invariant open
set and Γ acts on Improperly discontinuously and freely. Ϋ':= Z\TN

in W is also Γ-invariant. We set W:=W/Γ and Y:=Ϋ/Γ. By con-
struction they have the following properties:

(a) Y = Xx + + Xι is a toric divisor with only simple normal
crossings, that is, Y has only simple normal crossings as singularities,
each irreducible component Xό of Y is isomorphic to a nonsingular (% — 1)-
dimensional compact torus embedding and the union \JkΦύ{Xύ Π Xk) of the
double locus Xs Π Xk on Xs coincides with the closure of the union of all
the codimension one orbits on Xά. We define Φ to be the set of subsets
J Φ 0 of {1, , 1} such that the intersection Xj :— Γ\3 ej Xj is nonempty.

(b) For each J in Φ, the analytic space Xj is isomorphic to a com-
pact nonsingular torus embedding of dimension n — %J. We can choose
a complete set of representatives {σ(J)eΣ; JeΦ} of ϋ'xίQ} modulo Γ so
that for J in Φ the closure in W of the torus orbit corresponding to σ(J)
is a compact nonsingular torus embedding isomorphic to Xj. Indeed by
the theory of torus embeddings, we have a canonical bisection between
Σ and the set of torus orbits in TNemb(Σ). For each σ in Σ, let us
denote by V(σ) the closure of the orbit corresponding to σ. dim V(σ) —
n — dim σ. If σ Φ {0}, then V(σ) is contained in Ϋ = TNemb(Σ)\TN(z W.
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We have Y = Ϋ/Γ = XXU ΌXi. Hence for each J in Φ, there exists
an (n — *J)-dimensional cone σ(J) in Σ such that the inverse image of
Xj under the projection W—> W is the disjoint union of V(gσ(J)) with #
running through Γ. Obviously, Σ\{0} = {gσ(J); geΓ, JeΦ}.

(c) Φ gives a triangulation of D/Γ by the projection C —> D = C/R>0.
Namely, each Λ-dimensional cone σ in Σ gives rise to a (fc — l)-simplex
(σ\{0})/R>0 in D = C/R>0 and we get a triangulation {(σ\{0})/R>0; σe
Σ\{0}} of Zλ Thus by the projection D->D/Γ the complete set of
representatives {σ(J)/R>0;JeΦ} of simplices modulo Γ gives rise to a
triangulation of D/Γ.

We obtain Tsuchihashi's cusp singularity Cusp(C, Γ) by contracting
Y to a point p.

WziY

I I

The germ of the analytic space (V, p) depends only on the pair (C, Γ)
and is independent of the choice of Σ.

2. Main theorems. For an open convex cone C in NR, we define the
dual cone C* in Ni by

C* := {x* 6 2V3; <», #*> > 0 for all x in C\{0}} .

Denote by dx* the Lebesgue measure on Ni normalized so that the
volume of the parallelotope spanned by a Z-basis of N* is one. Then

φc(x): = \ exp( - {x, #*>)d#
JC*

is the characteristic function of C defined by Vinberg [14]. The value
φc{x) is positive for every point x in C and goes to infinity as x ap-
proaches the boundary of C. Moreover, iί g is a linear transformation
of NR preserving C, then we have ψc(gx) =

DEFINITION. For a pair (C, Γ) as in Section 1, we define the zeta
function associated to (C, JΓ) by

Z(C, Γ;s):= Σ Φc(%)8 for Re s > 1 .
xe{NΓ\C)IΓ

REMARK. When the cone C is homogeneous and self-dual, this func-
tion coincides with that defined by Satake [8].

To see that it is well-defined, we need only to prove that for each
σ in I'MQ}, the partial zeta function
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Z(σ,s):= Σ Φo(x)'
seiVΠint (α)

converges absolutely for Re s > 1. Indeed,

C = U int(σ)
a e 1 \ {0}

and Σ\{0) modulo Γ is finite. Since {σ(J);JeΦ} is a complete set of
representatives of I'xίQ} modulo Γ, we have a finite sum

Z{C, Γ; s) = Σ £ W ) , β)
JeΦ

Choose an open simplicial cone Δ = R>ύvι + + R>ovn contained in
C and containing σ. vlf , vn are points in C and form a basis of NR.
For any x in iVΠ int(σ) we may write x = axvx + + anvn with positive
real numbers α<. Since C* is contained in Δ*, we have

Φc(x) ^

for a positive constant If. If dimα = r, there exist u19 , ur in
so that σ = R^0^i + + R^our. Let ut = Σ ^ i ^ ^ i Then we have

1 ^ , β)l ^ Σ |̂ (a?)1
xeiVΠint(σ)

^ Σ KR** Π (m ί̂̂  + + m^)-*6 8 .
»!,.. ,mr=l j = l

The right hand side converges absolutely for Re s > r/n, since it has
exactly the same form as that appearing in the Hubert modular case (cf.
Shintani [12, Proposition 1]). Therefore Z(C, Γ; s) is well-defined.

In the next section, we shall prove the following theorems.

THEOREM 2.1. The zeta function Z(C, Γ; s) associated to (C, Γ) can
be continued meromorphically to the whole complex plane.

For any positive integer k, let Σ(k) := {σeΣ; dimσ = k} and σ(l) : =
{τ; τ < σ and dim τ = 1} for σ in Σ. For any p in ^(1), we denote
by ^ the derivation in the direction p, that is, for a function Fix)
on C,

dPF(x): = lim {F(x + hu(ρ)) - F(x))lh ,
h-*0

where u(p) is the unique primitive element in pf]N. For any compact
complex manifold M of dimension r, we denote by sgn(M) the signature
of the bilinear form on Hr(M; R) defined by cup product Hr(M; R) x
Hr(M; R) -> H2r(M; R) = R.

THEOREM 2.2. For any integer v >̂ 2, we have
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Z(C, Γ; 0) = Σ ( Γ Π Λ

 dp A GXx)dxτ
re(i\<0})/Γ JrL/oeτ(l) 1 — e~ P J d i m r

= - 2 - Σ sgntX,) + Σ (—\
JeΦ JeΦ \ 2

Γ π %• \+ β!, 1
i Lpeσ(J)d) 2 1 — β~ p Jdi

π l l ^ l w.*
σ(J) Lpeσ(J)d) 2 1 — β~ p Jdimσ(,7)

where G>(x) := exp( — ̂ (αO""), cία;r is £/&e Lebesgue measure on the linear
subspace τ + ( —τ) of NR normalized so that for a Z-basίs {ulf , un} of
N with τ — R^uλ + + R>Qur the volume of the parallelotope spanned
by {ult , uT] is one, and {σ(J); JeΦ} is a complete set of representative
of (Σ\{0)) modulo Γ as in Section 1. We denote by

Γ π

 d> 1
Lperd) 1 — e~dp Jfc

the total degree k part of the formal power series expansion of

TT dp

peτ(l) 1 — e~ p

regarded as a differential operator of order k acting on the function
GXx).

THEOREM 2.3. When n is odd, we have

Z(C,Γ;0)= -2-XD/Γ),

where e(D/Γ) is the Euler number of D/Γ.

3. Proof of the theorems. For the proof of Theorem 2.1, it is
enough to show that Z{σ, s) = Σχei\mint«x) Φc(%)8 can be continued meromor-
phically to the whole complex plane for each σ in -SxίQ}. In fact, we
show the following in Proposition 3.7:

For any positive integer v, the function Zu(σ, s): = Z(σ, vs) can be
continued meromorphically to the half plane

Res > - 1 + 1/v .

Thus Z(σ, s) can be continued meromorphically to the half plane Re s >
—v + 1 for any positive integer v, hence to the whole complex plane.
Moreover, using the complete set of representatives {σ(J);JeΦ} of

ίQ} modulo Γ, we have a finite sum

Z(C, Γ; 0) = Σ Z(σ(J), 0) .
JeΦ

To prove Proposition 3.7, we use a general result on the special
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values of Dirichlet series. The following proposition is a slight generali-
zation of that in Zagier [15] to the case where fit) is expanded asymptoti-
cally in terms of fractional powers of t.

PROPOSITION 3.1. Suppose a Dirichlet series

fc=0

converges absolutely for Re s > 1, where {Xk}k=o is a sequence of positive
real numbers which diverges to infinity, and let

oo

fit) := Σ α* exp( —xkt)
AJ=O

be the corresponding exponential series defined for t > 0. // fit) has an
asymptotic expansion at t = 0 of the form

fit) = ΣJ bktk/ι + O(tκ/ι) as t -> 0 ,
k=-l

for positive integers K and I, then ψ(s) admits a meromorphic continua-
tion to the half plane Re s > — K/l and is holomorphic at s = 0 with
Ψ (0) = 60.

PROOF. For each t > 0, there exists a positive number y0 with
ety > y1+t for all y ^ y0. Thus using the gamma function Γ(s): =

S CO

t'^e^dt, we can write

Γ(s) f(s) = \ Mt'-'dt for Re s
JO

Set

I^s) = [f(t)t"ιdt and 72(s) = Γ
JO J l

Since the absolute value of fit) = O(exp(—λ0)) decreases exponentially as
t —> + oo, J2(s) converges absolutely for all s and uniformly on compact
sets. Thus 72(s) is an entire function in s.

On the other hand, for Re s > 1, we have

Γ ( Σ bkt
m)t*~ιdt = [ Σ bkt

s+k!\s + fc/ϊΠS = Σ his +
JO k<K k<K k<K

and

Us) = Σ δΛ(s + kβ)-1 + [ ifit) - Σ ht^t'-'dt .
fc<tf JO k<K

Here the integral on the right hand side converges absolutely for the
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half plane Re s > — K/l and uniformly on compact sets in the half plane
by assumption, hence is holomorphic there. Therefore the function
Γ(s)ψ(s) — Σfc<Λ(s + k/iy1 has a holomorphic continuation to the half
plane Res > — K/L Since 1/Γ(s) is an entire function, ψ(s) can be con-
tinued meromorphically to the half plane Res > — K/L

Finally Γ(s)ψ(s) has a simple pole at s = 0 with the residue δ0 and
Γ(s) has a simple pole at s = 0 with the residue 1. Therefore ψ(s) is
holomorphic at s = 0 with ψ(0) — b0. q.e.d.

In order to apply Proposition 3.1 to the proof of Theorems 2.1 and
2.2, we need an asymptotic expansion of Σse^ninw exp(—φc(%)~vt) at t = 0
for each σ in Σ\{0) and any positive integer v. We use the Bernoulli
polynomials Bk{x) defined as follows:

DEFINITION.

tetx

Σ Bk(x)tk/k\ =
— 1

Bk:=Bk(0) are ordinary Bernoulli numbers. These polynomials satisfy
the following properties:

(d/dx)Bk(x) = kB^ix) ,

^(a + 1) = j?fc(&) + ^ f c - χ for fc ^ 1 .

For a real number a, denote by [x] the Gauss symbol.

LEMMA 3.2 (Euler-Maclaurin summation formula, see, for instance,
Bourbaki [2]). For any positive integers L, K and any Cκ-function g(x)
on [0, L], we have

Σ 9(D = \L 9(x)dxΣ 9(D \ 9(x)dx + Σ γ
ι=i Jo *=o (k + 1)!

where gω(x) is the k-ih derivative of g(x).

REMARK. Lemma 3.2 is also true for a function g(x) in Cκ(0, L] such
that the derivatives g{k\x) of orders up to K — 1 have limits at x = 0
and that g{κ)(x) is bounded.

Set

βh:=(-ΐ)*Bh/kl

for every positive integer &. Thus /30 = 1 and
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1 — e~* fc=o

We say that a continuous function f(x) on [0, °o)n tends to 0 rapidly at
infinity if for any positive integer m the function (1 + |M|)m/G*0 is
bounded for ||g|| sufficiently large, where ||x|| denotes a fixed Euclidean
norm of x in Rn. Using Lemma 3.2, we easily have the following:

COROLLARY 3.3 (Zagier [15]). Let g(x) be a Cκ+1-function on (0, ©o)
such that its derivatives of orders up to K + 1 tend to 0 rapidly at
infinity, while its derivatives of orders up to K have limits at x = 0
and the (K + l)-th derivative is bounded. Then the function

for t>0
1=1

has an asymptotic expansion at t = 0 of the form

At) = r1 \~ g{x)dx - Σ Afl^-'W-1 + O(tκ)
JO k=ι

= Σ **"1 Γ βk9
{k\x)dx + 0{tκ) as t -> 0 .

fc=o Jo

Applying Corollary 3.3 repeatedly to each variable, we have the
following for functions G(x) = G(x19 , xr) of r variables:

PROPOSITION 3.4. Let K be a positive integer and assume that G(x)
is a Cκ+1-function on [0, °o)r \ {(0, , 0)} such that its partial derivatives
of total orders up to K + 1 tend to 0 rapidly at infinity, while its partial
derivatives of total orders up to K have limits as x goes to the origin
and its partial derivatives of total order K + 1 are bounded. Then we
have the following asymptotic expansion at t = 0:

OO

Σ G(tmlf , tmr)
mV"',mr=l

= Σ tlk]-r\ βk(d/dx)kG(x)dx + O ( t κ + 1 ~ r ) a s ί - > 0 ,

where h : = (klf , K) 6 (Z^0)
r, |fc| : = fct + + kr, βk : = ^ /Sfcr

For each r-dimensional cone σ in J , we have primitive elements
ul9 , un in iVΠ C such that σ = JR^A + + Λ^o r̂ Then the function

Ί + + ί»r̂ r) is a C°°-function on [0, oo)r\{(0, , 0)}.

LEMMA 3.5. For each positive integer v and r-dimensional cone σ
in Σ, the function
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GO)Xx) = G.,Axlf , xr) : = exvi-φdx^ + + a?rwr)-
1')

and its partial derivatives of all orders tend to 0 rapidly at infinity.

PROOF. We identify the linear subspace a + ( — σ) of NR with the
Euclidean space Rr by regarding (u19 , ur) as an orthonormal basis. It
is clear that φc(x)~m exj)( —φc(x)~v) is bounded for x in σ with sufficiently
large \\x\\, since φc(x) goes to 0 at infinity.

Now we choose as in Section 2 an open simplicial cone Δ — R>Qv1 +
• + R>ovn contained in C and containing σ. Then we have

Φλx.u, + + xrur) = iξ Π (x&P + + XrU?)-1 ,
3=1

for a positive constant Kx. Hence for any (mlt •• , m r ) in (Z^ 0 ) r , we

have

l + ... + χrur)\

= \ Π <%, ^*>m i exp(-
Jc* i=i

J j *
Π

'Ki Π (aά«ίί-) + + XrvP
3=1

This is obviously bounded at infinity. Note that every partial derivative
of GPiXx) is represented as the product of GOtV with a polynomial in φc1

and partial derivatives of φc.
Let k be any positive integer. Then there exist positive constants

K2, KB and K4 such that

IMI* ̂  K2(xx + .. + ̂ r)
fc ̂ ζ Π ( r f + + a?^)*

^ KtφcίXiU! + + XτUr)~k

for ||ίc|| sufficiently large. Therefore Gσ>v and its partial derivatives of
all orders tend to 0 rapidly at infinity. q.e.d.

To apply Proposition 3.4 to this GβιU, we need to investigate the
behavior of Gσ>v and its partial derivatives near the origin.

LEMMA 3.6. For each positive integer v and r-dimensional cone σ
in Σf let GO)U be as in Lemma 3.5. Then GOtU and its partial derivatives
of total orders up to nv — 1 have limits at the origin and the partial
derivatives of total order nv are bounded.

PROOF. We identify NR with the Euclidean space Rn by regarding
(ulf •• , M J as an orthonormal basis. Since φc(v) diverges to infinity as v



CUSP SINGULARITIES 379

in C goes to the origin, Gσ,v(x) goes to 1 as \\x\\ tends to 0.
Let x' be any point in σ with \\xf\\ = 1. Then tx' is a point in σ for

t > 0. For each m = (mx, , mr) in (Z^0)
r, we write the value of partial

derivatives of φdx^ + + av^r) at txr as

Then we have

\((d/dx)mΦo)(txr)\ = \ Π <%, α * ) ^ - ^ '

= t-\m\-n f JJ < X^ ie-^'^dX* .
Jc* i=l

Let ax* be the Haar measure on the hyperplane H(rf, a):= {x* eNi;
(xf, #*> = a} defined by the following condition: For any continuous
function / with compact support on Nt, we have

JiV*
f(x*)dxr .

H(x',a)

Then we have

[ Π <%, x*ymie-<x'>x*ydx* = [ e~ada [ Π (us, x*)midx? .
JC* i = l JO JH(x',a)Γ\C* 3=1

Since H(x', a) Π C* is bounded, the volume V(x\ a) of H(a?f, α) Π C* and
M/ίc', α ) : = sup{<%, α?*>; a;* e H(x', a) Π C*} are fininite for j = 1, , r.
Since i/(#', α) is obtained from H(x', 1) by the homothety with respect
to α, we get V(x'9 TO) = α 7 1 " 1 ^ ' , 1) and Ms(x', a) = aMs(x'f 1). Therefore
we have

\((dldxTφc)(tx')\ ^ t-^-nV(x', 1) Π Mjtf, l)mi Γ e-*a™+n-ιda
3=1 JO

= r | m | ~ n F ( x ' , 1) Π Ms(xr, l)m'T(\m\ + n) .

Similarly we have

φc(tx') = t~nV(x', 1) [~ e-'oΓ^da = rnV(x',
Jo

Since σ Π {x 6 JVΛ; ||x|| = 1} is compact, sup{Π5=i Λf(a5f, l)m^'; a?f e σ and \\x'\\ = 1}
and sup{F(α;', I)" 1 ; x'eσ and ||aj'|| = 1} are finite. Thus

\((d/dx)mφcv)(tx')\ = O ( Γ 1 ' - I m l ) a s ί - > 0 .

Therefore the partial derivatives of GσtV(x) of total orders up to nv — 1
have limits 0 at the origin and those of total order nv are bounded at
the origin. q.e.d.

By Lemmas 3.5 and 3.6 and Proposition 3.4, we have for
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the following asymptotic expansion at t = 0:

Σ
m1, ,w r=l

^ GCtXtm19 , tmr)

= Σ ί u ι " r ( βk(d/dx)kGσ £x)dx + O(tnv~r) as
0 £ \ k \ Z l J ( R ) r

Note that GOtXtx) = tn"GσtU(x) Hence replacing t by t1/nv above and
applying Proposition 3.1, we have the following:

PROPOSITION 3.7. Let σ = R^ux + + R^ur be an r-dimensional
cone in Σ. Then for any positive integer v, the function Zu(σ, s) =
Z(σ, vs) can be continued meromorphically to the half plane Re s > — 1 +
r/nv. Hence the partial zeta function Z(σ, s) can be continued meromor-
phically to the whole complex plane. For any integer v >̂ 2, we have

(3.8) Z(σ, 0) = Σ ( βk(d/dxYGσtXx)dx,
\k\=r J(Λ^ 0 ) r

where Gσ>v(x) = exp( — Φdx^ + + xrur)~u).

This completes the proof of Theorem 2.1.

We now calculate the value Z(C, Γ O). We reformulate (3.8) as
follows: Since

βk(d/3x)k = Π β

and

we can write

2-1 Hk
\k\=r

i d

O/dxy = [π(l

= Σ

d/dxX

β

1

fm

-e~

where [ ] r denotes the total degree r part of the formal power series
expansion. Recall that Σ(l) is the set of one-dimensional cones in Σ. For
any p in Σ(ϊ), we denote by 3, the derivation in the direction p, that
is, for a function F(x) on C,

3PF(x) : = \im{F(x + hu{ρ)) - F(x)}/h ,

where u(p) is the unique primitive element in pf]N. Then

(3.9) Z(σ, 0) - ( Γ Π , dp , 1
JσL/oeσd) 1 — &~dp Jdimσ
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where G£x) := exp(—φo(x)~v) and dxσ is the Lebesgue measure on the linear
subspace σ + ( — σ) of NR normalized so that for a Z-basis {ulf , un} of
N with σ = -K̂ ô i + + R>our the volume of the parallelotope spanned
by {ulf "

mfUr} is one. Therefore we have the following:

PROPOSITION 3.10.

Z{C, Γ; 0) = Σ { Γ Π , dp

 a . 1 GXx)dxσ .
σe(Σ\{0})/Γ JσL/o&σd) 1 — e~ P Jdimσ

Since ί(l - e"')"1 = Σϊ=» βJM, βo = 1, /8, = 1/2 and ftm+1 = 0 for m ̂  1,
we see that

t t 1 1 + e~*

1 -e-< 2 2 1 - e-4

is a power series in ί2, Thus

Π d> = Σ ( Π ^ f π
peσ(l) 1 — 0~90 r<<; Vpe σ(D \r(l) 2 ' Vperd) 2 1 — Q~dP

Performing integration in the directions p e σ(l)\τ(l), we thus have

( 1 \dimσ-dimr r Γ Λ 1 _L />-3β Ί

-i) Π ̂  ! + e /
2/ Jr L|θer(l) 2 1 — e~V Jdimr

PROPOSITION 3.12.

, Γ; 0) = Σ ( ~ ) *(Σ(j)/Γ) + Σ ( )
ί=l \ 2 / r€(:\{0})/Γ

where V(σ) is the closure of the TN-orbit in Z corresponding to the poly-
hedral cone σ in Σ.

PROOF. By (3.11) we have

( 1 \ d i m σ - d i m r Γ Γ ^ 1 _L *>—*n "Ί

~) Π % ] + e / G,(ίB)da!r.
2/ JrLper(l) 2 1 — 6 <° Jdimr

Since the integral is independent of the choice of representatives τ, we
have

( -1 \dimσ-dim-f Γ Λ 1 _L />-3fl "1

-•!•) Γ Π I f 1 ^ 1 G^)^ .
2/ JrLιoer(l) 2 1 — e P Jdimr

Separating the summation into the term for τ = {0} and the summation
over re(J£\{0}) modulo Γ, we have
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Z(C,r;θ)= Σ (~Yma+ Σ
σe{Σ\{0])/Γ \ 2 / r e ( Γ \ { 0 ) ) / Γ

Obviously we have

( 1 \dimσ n / 1

_ . 2 / i=i V 2

Since the r.p.p. decomposition {σ e Σ; σ > τ) gives a torus embedding
F(r) for τ in J \ {0}, the following lemma shows that

Σ (_l/2)d i m σ-d i m r = (-l/2)dimF(Γ) sgn V{τ) .

LEMMA 3.13 (Ehlers [4]). Let Z' = TN,emb{Ξ) be a compact nonsingular
torus embedding of dimension r\ Then we have

sgn(Z') = Σ (-2y*Ξ(r> - i) = Σ (-2) r '-d i m f

r' is odd, both sides vanish.

Since ί(l + e"')/2(l — e-i) is a power series in f, we see that

r π a i + β-,1
L/oee d) 2 1 — β~3° Jdimσ

vanishes if dim σ is odd, while sgn F(σ) = 0 if dim V(σ) = n — dim σ is
odd. Thus when n is odd,

vanishes for all σ in .ΣMO}. Hence in the notations in Section 1, we
have the following:

PROPOSITION 3.14. When n is odd,

Z(C, Γ;0) = ± (-1/2)* *(Σti)/Γ) = Σ (-
3=1 ί = l

LEMMA 3.15 (Satake [9], [10]).

Σ
JeΦ

Σ (-2y-**Φ(j) + 2" Σ (-1)-
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Consequently, when n is odd,

Σ sgn(X) = 2""1 Σ (-I)""' *ΦU) •
JeΦ 3=1

PROOF. By our definition in Section 1, we have Xj ~ V(σ(J)) for
JeΦ. By Lemma 3.13, we have

,π-dimr

hence

= Σ (-2)'
τeI,τ>σ(J)

Σ g C ^ ) = Σ Σ (-2)«-d

JeΦ JeΦ τel,τ>σtf)

Since for τ in Σ with τ > σ(J) there exists J' in Φ such that τ = σ(J')
modulo Γ, we may change the order of the summation to get

Σ sgn(X,) = Σ (-2)"-dlm (/#) f{τ e ̂ \{0}; τ <
JeΦ J'eΦ

_ . ^ / o\n—dimαU) fnάimσ(J) 1\

J e J

__ 2n V ( J\n-dimσ(<Π 'y / 2)n~di

JeΦ JeJ

On the other hand, we may write

because both sides vanish when dim Xj — n — dim σ(J) is odd. Thus we
have

Σ sgnQ
JeΦ

JeΦ

= (-i:

= (-i:

= (-i:

— 1

)n ^

j r

eΦ

Σ (-

re Σ,τ>σ{J)

τeΣ

n-άim.σ(Jf)ί(-t

2).-«».w'>

_ 2 ) n - 4 i m !

Σ
\(0},r<σ(J')

- D d l m f f

q.e.d.

By Lemma 3.15, we have

Σ sgnCX ,) = -2" Σ (-2)~'*Φ(i) = -2" Σ {-2)-ι*(ΣU)in .
JeΦ j=l j=ί

By this and Proposition 3.12, we complete the proof of Theorem 2.2. By
Proposition 3.14, we have
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Z(C,Γ;0)= -e(D/Γ)/2

when n is odd, since Φ gives a triangulation of the (n — l)-dimensional
compact manifold D/Γ and since Σ(k)/Γ is in bijective correspondence
with the set of (jk — l)-simplices in Φ for each positive integer k. Thus
we conclude the proof of Theorem 2.3.

REFERENCES

[ 1 ] M. F. ATIYAH, H. DONNELLY AND I. M. SINGER, Eta invariants, signature defects of cusps,

and values of L-functions, Ann. of Math. 118 (1983), 131-177.
[ 2 ] N. BOURBAKI, Functions d'une Variable reelle (Theorie elementaire), Chapitres 4, 5, 6 et

7, Elements de Mathematique XII, Deuxieme edition, Hermann, Paris, 1961.
[3] P. CASSOU-NOGUes, Valeurs aux entiers negatifs des series de Dirichlet associees a un

polynδme, I, J. Number Theory 14 (1982), 32-64.
[ 4 ] F. EHLERS, Eine Klasse komplexer Mannigfaltigkeiten und die Auflosung einiger isolierter

Singularitaten, Math. Ann. 218 (1975), 127-156.
[5] F. HIRZEBRUCH, Hubert modular surfaces, Enseign, Math. 19 (1973), 183-281.
[6] F. HIRZEBRUCH AND G. VAN DER GEER, Lectures on Hubert modular surfaces, Presses de

ΓUniversite de Montreal, Modtreal, 1981.
[7] T. ODA, Lectures on Torus Embeddings and Applications (Based on joint work with K.

Miyake), Tata Inst. of Fund. Res., Bombay, Springer-Verlag, Berlin, Heidelberg,
New York, 1978.

[8] I. SATAKE, Special values of zeta functions associated with self-dual homogeneous
cones, in Manifolds and Lie groups (Notre Dame Ind., 1980), Progress in Math. 14,
Birkhauser, Boston, 1981, 359-384.

[9] I. SATAKE, On numerical invariants of arithmetic varieties (the case of Q-rank one) (in
Japanese), Sugaku 35 (1983), 210-220.

[10] I. SATAKE, On numerical invariants of arithmetic varietis of Q-rank one, Automorphic
Forms of Several Variables, Taniguchi Symposium, Katata, 1983 (I. Satake and
Y. Morita, eds.), Progress in Math. 46, Birkhauser, Basel, Boston, Stuttgart, 1984,
353-369.

[11] H. SHIMIZU, On discontinuous groups operating on the product of upper half planes,
Ann. of Math. 77 (1963), 33-71.

[12] T. SHINTANI, On evaluation of zeta functions of totally real algebraic number fields at
non-positive integers, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 23 (1976), 393-417.

[13] H. TSUCHIHASHI, Higher dimensional analogues of periodic continued fractions and cusp
singularities, Tδhoku Math. J. 35 (1983), 607-639.

[14] E. B. VINBERG, Theory of homogeneous convex cones, Trans. Moscow Math. Soc. 12
(1967), 303-368.

[15] D. ZAGIER, Valeurs des functions zeta des corps quadratiques reels aux entiers negatifs,
Journees Arithmetiques de Caen (Univ. Caen, Caen, 1976), Asterisque Nos. 41-43,
Soc. Math. France, Paris, 1977, 135-151.

[16] D. ZAGIER, Zetafunktionen und quadratische Korper, Springer-Verlag, Berlin, Heidelberg,
New York, 1981.

MATHEMATICAL INSTITUTE

TOHOKU UNIVERSITY

SENDAI, 980

JAPAN




