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1. Preliminaries. Let G be a nondiscrete locally compact abelian
group with the dual I, M(G) the convolution measure algebra of finite
regular Borel measures on G. For pe M(G), let |¢| denote the total
variation norm, p' =g, pi = pi'xp (j = 2,3, ---), where * denotes the
convolution, #Z the Fourier-Stieltjes transform of, g, and |Z|.=
sup{|Z(M|;veT}. We call ¢ a Hermitian measure if fi(7) is real valued on
I'. For 1< p< oo, let L,(G) be the L, space with respect to the Haar
measure of G, | |, the norm of L,(G). A bounded linear operator T on
L,G) is called an L, multiplier if there exists T € L.(I") such that
T(f)~ = Tf for every feL,(G)NL(G). The set of all L, multipliers will
be written as M,(G) and the norm of T e M,(G) is defined by

N T lapier = 1 T, = sup{ll Tf |z, | fllz,@ = 1}«

Then M,(G) is a commutative Banach algebra with unit J, as the con-
volution operator, where g, is the Dirac measure with unit mass at 0€G.
Also for Te M,(G), let T be the Gelfand transform

I au, = Sup{|M(T)|; h is a complex homomorphism on M,(G)},
and Im T the imaginary part of 7.

Now it is known that any measure pge M(G) is contained in M,(G)
as a convolution operator, and M,(G) is isomorphic to M(G), M,(G) to L.(I"),
M,(G) to M,(G) if 1/p+1/g=1 (1<p< ), and M,(G)SM,(G)SM,G) 1 =
p = 2) (cf. [6]). For Te M,G), let sp(T, M,) be the spectrum of T in
M,(G), i.e., sp(T, M,) = {x€C; N0, — T is not invertible in M,(G)}, where
C is the complex plane. Then for pe M(G), we have closure(gZ(I")) =
sp(y, M,) < sp(pe, M,) Ssp(p, M(G)) (1 < p < 2), where closure(Z(I")) is the
closure of f(I') in the complex plane. Before stating our theorems, we
make some preliminary comments. For fe L,(G), it is well known and
easy to show that sp(T, M,(G)) =f(1‘)U{0} for 1=p = if Tyg) =
f+g for all ge L,(G). However, since G is nondiscrete, the classical
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theorem of Wiener and Pitt and its generalization imply the existence of
reM(G) so that sp(y, M(G)) properly contains closure(Z(I")). Indeed,
there exists ¢ € M(G) so that sp(y, M(G)) # g(I") U {0} and Z(Y)—0as Y —oo
(verl) (cf. [9]). Also [4] shows that if 1 < p <2, then sp(y, M,(G)) =
AU {0}, whenever pe M(G) with f(v) >0 as v — « (vel).

On the other hand, Igari [5] proved that for 1 < p < co(p # 2)
there exists e M(G) such that sp(y, M,) # closure(Z(I")). In fact, he
showed that each operating function from M(G) to M,(G) is extended to
an entire function (cf. [3]). Also Zafran [13] constructed T € M,(G) \ M(G)
(1<p< oo, p=2) such that T(v) >0 as v — oo and sp(T, M,) = T(") U{0}.
Later in [14] he showed that each operating function on CM,(G) =
{Te M,(G); T(v) —0, as ¥ — o, T is continuous on I'} is extended to an
entire function (cf. [15]).

Now for a Hermitian measure pe M(G) with ||¢|| = 1, Sarnak [11]
proved that the spectrum of g in M,(G) is contained in some area of the
unit disk, but generally sp(y, M,) & sp(y, M(G)) (1 < p < ). Indeed,
when G = T (unit circle group), he proved that there exists a Hermitian
measure such that sp(y, M(G)) = {z€C; |z| £ || ¢} 2sp(y, M,(G)) = closure
(M) for all 1 < p < = (ef. [2]).

In this paper, we will give some results concerning spectra of mea-
sures in M,(G) by the method of [6]. Then we will obtain a Hermitian
measure ¢ on G such that sp(y, M,(G)) = closure(Z(I")) for all 1 < p < 2.
In §2, by an application of [5, Lemma 1] we will show that there
exists a Hermitian measure g on each nondiscrete locally compact abelian
group such that ||Imfi|l,, >0 for all 1< p <2. Also in §3, we will
investigate the spectrum of the measure in §2. When G =T, we will
prove in §4 that only entire functions can operate on the algebra which
contains L,(G) and the measure in §2.

I wish to thank Professor S. Saeki for many useful advices. I also
to thank the referees for kind advice.

2. Measures as L, multipliers on locally compact abelian groups.
In this section we will show the existence of certain measures which
have suitable spectra as L, multipliers when G is a nondiscrete locally
compact abelian group. Let 4(r) be the direct sum of countably many
copies of the cyclic group Z(r) of order r (r = 2) and D(r) be the dual to
A(r). We refer the reader to [5] and [8] for the proof of the following.

LeMMA (cf. [6, Lemma 1]). Let I" be the dual of G, and I" be Z or
A(r). Then for any 1< p <2 and a positive integer j there exist a
constant K, (>1) depending only on G and p, and a nonnegative trigono-
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metric polynomial ¢ = ¢,; on G such that

(i) ¢=z0on T, [¢],=1, and

(i) ”exP(ij(¢>"G))“Mp(G) > Ki,
where \g 18 the mormalized Haar measure on G, and exp(ip) € M(G) is
defined by exp(iy)” = exp(ifl) for pe M(G).

ProoOF. By [5, Lemma 1] and [8], there exists a Hermitian probability
measure g = f,; on G such that | exp(¢j/2)||x, > Kj, where K, >1
is a constant depending only on p and G. Put v = (6, + #)/2. Then v
is a probability measure, ¥ = 0 on I, and

| exp(Egv) llu,@ = |l exp(Eiee/2)|lx,@ > K; .

Therefore we obtain the trigonometric polynomial ¢ = ¢, ; on G with the
desired properties by convolving v with an appropriate trigonometric
polynomial (cf. [1]). q.e.d.

REMARK 1 (cf. [8]). (i) For I' = 4(r) for some r, we may choose
K, = [ 5| exp (iR, W@ Maa| [

rel
where dx is the normalized Haar measure of D(r) and 7, is an element
of order 7.

(ii) For I' = Z, we may choose

K, = [ E‘J Sexp('i(cos % — ma))de/@n)

_ [Ez[ Jm(l) IP :|1/(2p)

where dx/(27) is the normalized Haar measure of T and J,(x) is the Bessel
funection.

p:ll/ﬂp)

REMARK 2. By Riesz-Thorin’s convexty theorem we choose K, <
exp(2/p — 1) in Lemma. Thus we have K, —1 as p — 2(p < 2).

THEOREM 1. Let G be an infinite compact abelian group. Then
there extists a probability measure pe M(G), with nonnegative Fourier-
Stieltjes tramsform, such that for real mumber 1 < p <2

1 Tm 2] e y) > 0 .
In particular, we get sp(y, M,(G)) 2 closure (Z(I) for all p 1 < p < 2).

PrROOF. Let Q be the set of all rational numbers. For 1 < p < 2
and T € M,(G), we write ||T||yq,ry for (| T|lx,«. For each natural number
n, let p, be a rational number satisfying 1 < p, <2 such that {p,; n =1} =
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QN{p; 1 =< p <2} and that each pe Q with 1 < p < 2 appears infinitely
often among the p,’s.
Case 1. I = A(r) for some . For natural numbers m < n, we write

G(m, m) :kj[HZ(r) , and I'(m,n) =k=f1+ 207

We shall identify G(m, n) and I'(m, n) with the naturally corresponding
subgroups of G and I', respectively.

Now we choose natural numbers =; (7 = 0) as follows. Put =n,=1,
and suppose that n, < n, < :-+ < m;_, have been choosen for some j = 1.
By the above Lemma with p = p;, there exist n; > m,_, and a probability
measure g; € M(G(n;_,, m;)) such that

(1) £; =0 on I'(m;_,m;), and
(2) llexp(ijes;) ”M,,(G(nj_l,n,-)) > Kj for p=mp;.

Identify G with the product group [[:,G(n;_, n;), and put p=
PaX p X+« the product measure of all g;(j = 1). Clearly, ¢ is a prob-
ability measure on G with & = 0. Writing I'; = I'(n;_,, n;)CI" for each
j =1, we also have

lexp(Z5te) llupier = |l exP(E5 ) |law.ry
= ”eXp(":jﬁj)”M(p,Fj) for p=1p;,
where the first inequality is obvious, since Z = ff; on I'; (cf. [10, Co-
rollary 4.6]) and the second inequality follows from (2). Since each

element of QN {p; 1 < p < 2} appears infinitely often in {p,}, it is routine
to show that

(3) Tim (|| exp (6249 [y i0)" Z K, > 1
forallpeQN{p; 1=p<2}. But@n{p; 1=p<2}isdensein {p;1=p<2},
so we get
lim || exp(ing) [|ih @ > 1 forall 1<p<2
by (8) and Riesz-Thorin’s theorem.

Case 2. I' = Z. TFor each positive integer j, the Lemma yields a
nonnegative trigonometric polynomial ¢; on T such that

(4) $;20 on Z, |gl,=1, and
(5) llexp (258:) llur,m > Kj for p=p;.
Choose a trigonometric polynomial f; on T such that

(6)  Ifil,=1 and S exp(iid;(0)fk) exp (ikt)| > K
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for p = p;. Also choose a natural number m; so that
(7) (supp $;) U (supp f) C{—my, —m; + 1, -+, m; — 1, mj} .

Now let r, = 1, 7, 75, - - - be an increasing sequence of natural numbers
such that », — very rapidly. Let \; be the normalized Haar measure of
T. Then by the proof of [7, Lemma 5], the measures defined by

dpa(t) = [$:(rid)go(rst) -+ + $a(r,t)]dN(T)

all are probability measures, and converges weak* to a probility measure
©r € M(T) such that

(8) ki, + Ry + -+ + ) = 1T §ik)
J=1

whenever the k; are integers such that

(9) ‘kylé/m‘: (j=1,2,~-,n), and

(10) Z(m) =0 for all other integers m .

Now let a natural number 5 be given. Define a trigometric polynomial
g; by setting g;(t) = fi(r;t) for te T. Then

11) llg;ll, =1 and suppg;C{rk; k= —my, -+, m;}

by (6) and (7). Moreover, §;(kr;) = f;(k) for all ke Z. Tt follows that
by (6) and (8)

| =% exp (35200308 exo Gkt |

= H 3% exp(ijfkr)gkr;) exp (ikr )

‘P

- H % exp(id () (k) exp(ikt)Hp > Ki for p=p,.
This, combined with (11), yields
lexp(25£0) |l s, ry > Kj for p=p; and j=1,2,---.

As in Case 1, we conclude that g has the required properties.

Case 3. Let I' be an unbounded ordered group. For each positive
integer j, the Lemma yields trigonometric polynomials f; and g; on T
such that

(12) fz00fl=17fz0,

(13) lgill, =1, llgexp(isfiz)ll, > Ki for p = p;.
Also choose a natural number N; so that

(14) (supp f;) U(supp §,)c{—N;, -+, —=1,0,1, --+, N} .
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Then by the proof of [7, Lemma 5], there exist {7}, "(ord (7,) = 3,
s = 1) and a probability measure ¢ € M(G) which has the following proper-
ties: (i) when

6 =3 Fil@ k) for j=1,2---, and
dpt, = gy -+ godhg for m=1,2, -,

the probability measures {dy,} converge weak* to p.
(ii) We have

(15) Pl + -+ + e = 1 Fitky)

whenever the k; are integers such that

(16) kil =N; G=1,---,m).
(iii)

) Am =0 on T\ U{kv+ - +k7ilk SN, 1Sj<n).
n—1

Now let a natural number j be given. Define a trigonometric
polynomial ;) = 3.kisw; §;(k)(x, k7;) on G. Then

(18) Sllpp QF‘jC{k'Yj: [k[ é NJ} and qﬁ,(k’)’,) = g\.’l(k)
for all ke Z. It follows that by (17) and (18)
(19) exp(ij Ak ,)p;(k7;) = exp(ij fi(k))d (k)

for all keZ, and 7=1,2, ---.. .
For the polynomial Q on T of order m, put @*x) = X, ni<m @) (x, k7)
for any v eI of order = 3. Then it is well known that

(20) RIz,m 2 11Q% 2,0 = A2 Q]
for 1 < p < 2 (cf. [3], [B]).
Then it follows by (13), (19) and (20) that
3llexp(@it) lluy@ = Il exPEI)*Y; 1|20
= (1/2)| eXp(ijf}Nr)*gjlle(r) > (1/2)K3
for p = p;. This yields
| exp(it) llu, 0 > (1/6)K; for p=p; and j=1.

As in Case 1, we conclude that g has the required properties.
Case 4. Suppose G is an infinite compact abelian group. Then I con-
tains Z, 4(r) for some 7 or an unbounded ordered group. Since || 7 ||, p.r =

| T |l seep.s, Tor all T e M,(G) with all closed subgroups 4 of I" by [10, Corollary
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4.6], this completes the proof. q.e.d.

THEOREM 2. Let G be a mondiscrete locally compact abelian group.
Then there exists a probability measure peM(G) with mnonnegative
Fourier-Stieltjes transform, such that for real number 1 < p < 2

| Im ﬁuw,,(m >0.
In particular, we get sp(y, M,(G@)) 2 closure(Z(I")) for all p 1 =< p < 2).

ProorF. By Theorem 1, we may assume G to be noncompact. Since
G is nondiscrete, by the structure theorem (cf. [9]) G contains an open
subgroup of the form G, = R"x H, where n» = 0 and H is compact.

Case 1. Suppose H is an infinite group. Then there exists ¢, € M(H)
having the properties of Theorem 1. By Theorem 1 and [10, Lemma 3.1}
there exists a probability measure pe M(G) with nonnegative Fourier-
Stieltjes transform such that

llexp (52) HM,,(G) = “exP(ijFo)HM,,(m

forall1<p<2and =12, ..-. Therefore we get

lim ||exp(impe) [[ie > 1 for all 1<p <2.
Case 2. Suppose H is a finite group. Since G is nondiscrete, n is
a posivive integer. Then by Theorem 1 there exists g, € M(T) having
the properties of Theorem 1. By [9] and [10, Corollary 4.6], there exists

a probability measure g, € M(R") with nonnegative Fourier-Stieltjes trans-
form such that

lexp(@gge) llapmm = || €XPET ) (30, my

forall 7=1,2, ---. So by [10, Lemma 3.1], there exists a probability
measure g€ M(G) with nonnegative Fourier-Stieltjes transform such that

llexp(eite) lup@ = |lexp(@it) llu,m
for all 7=1,2, --.. Therefore we get the desired results. qg.ed

3. Spectra of measures. Let g e M(G) be a Hermitian measure
with ||¢|l = 1. Then by Riesz-Thorin’s theorem, we have

1Im ||, =2/p—1 for 1<p<2. (cf. Remark 2)
Hence we have ||[Im f|u, —0 as p—2 (p <2).

Sarnak [11] obtained the next result which is better that the above
result.

ProOPOSITION 1 ([11]). Let G be a locally compact abelian group,
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reM(G) a Hermitian measure with ||p|l=1 and 1= p <2. Then
sp(y, M,(G)) 1s contained in the region bounded by 7, = {z; 6(2) =/
2+ n(p— 1)/p} where 6(z) is the angle subtended at z by the line segment
[—1, 1].

Morever, when G = T and p is the measure given by convolution
by Cantor-Lebesgue-type, he proved that sp(y, M,(T)) = closure(i(Z)),
and sp(y, M(T)) 2sp(e, M,(T)) (1 <p=2). He also showed the same
result for certain Riesz products (cf. [2]).

PROPOSITION 2 ([12, Lemma 2.2]). Let G be a locally compact abelian
group, p€ M(G), and 1 £ p < . If a complex number N is an isolated
point of sp(y, M,(G)), then \ is in the closure of {(I).

By §2 and Proposition 2, we get the following, which may be of
some interest in view of Proposition 1.

THEOREM 8. Let G be a mondiscrete locally compact abelian group.
Then there exists a probability measure pt, with nonmegative Fourier-
Stieltjes transform having the following properties: There exists a
sequence {p;}i. of real mumbers such that p; —2 (p; < 2) as j — oo, that

1T Ly > 110 Ly, for all

and that sp(y, M,;) \sp(¢, M,,,) is uncountable (j =1). In particular,
we have
sp(, M,;) 2 sp(e, M,,,, ) 2 closure(&(I)) (G =1).

Proor. By Theorem 2, there exists a probability measure pe M(G)
having the properties of Theorem 2. We put N, = |[Im f||,y, for all p
(1 £ p<2). By the remark at the beginning of this section, we have
N,—0 as p—2 (p <2). Then by Theorem 2, there exists a sequence
{p, < p, < -+ < 2} of real numbers such that

Np1>Np2>-">Npi>'--20.

Moreover by N,; > N,.., ( =1) and Proposition 2, sp(y, M,,(G))\sp(z,
M, (@) contains a nonempy perfect set. Thus it is uncountable. g.e.d.

4. Individual symbolic calculus. In this section, we consider the
operating function of p obtained in Theorem 1 for G = T.

PROPOSITION 3. Let @ be a 2rm-periodic continuous function on R,
and pt as in Theorem 1. Also let p be any fixed positive number with
1< p<2 Assume that ONE + a + f) e M,(T)" for \,a€R, andfreal-
valued (f € L(T)), where M, (T)" = (T; TeM,T)}. Then @ is extended
to an entire function.
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ProoF. Step 1. We show that for any real number A\, there exists
C; > 0 depending only on X\ such that ||@°(\t 4 ady)|lu,mr < C; for all a e
[—=m, x]. If the above result is false, we may suppose that there exists
a sequence {a,} such that [a,| <1/2", and [[@o(\t + @,0, + Bdy) ||x, — o
as n—co, Then there exists a sequence {k,} of positive integers and an
S, € M,(T) such that S, = X;_,_ .1, the characteristic function of [—£k,, k,],
and

[ Suo@o(Mpt + a,3 + b3)|lu, — 00 88 m— oo .

There exist a sequence {N,} of positive integers and {Q,} trigono-
metric polynomials on 7T such that

(1) the [—k., k,] + N, are pairwise disjoint,
(2) Q.=1 on [—k,k]+N,,

(3) supp @,Nsupp Q,, = @(n = m) and
(4) Q.. <2 for all =.

Also we define g = 3., a,Q,¢ L(T) and B,e M,(T) with B, = %, 4,1:x,,
Then by assumption, we have @o(\pt + g + bd,) € M (T).
Hence by the Fourier-Stieltjes transform, we get

B,o®o(\t + g + bd,) = B,e@(\t + @,Q, + bd,) = B,o@o(\pt + a,0, + bd,) .

Hence ”Bn°@°(7\'.u + 9+ bBO)“Mp = ||Sn°@°(>“# + a,9, + bao”u,,- On the other
hand, by M. Riesz’s theorem we have | B, |y, < 4, (n = 1), where 4, is
a constant depending only on p. Thus we have

| Spo@o (Mt + @,0, + by) “Mp = Ap“@"()"/" +9+ bao)”u,

for all n, and we obtain a contradiction.

Step 2. Let the Fourier series of @ be 3 a, exp (int). Then for any
positive integer j, we have a, = O(exp(—j|n|)) for all nec Z.

Indeed, let 7 be a positive integer, and n a nonnegative integer. Then
we get

a, exp(ingf) = (1/27) |0(@) exp(—inw — jD)de
~ (1/27) S@(x + jp) exp (—jna)dz .
By Step 1, we get
. exp(ini) , < (112106 + j2) lu,de < €,

where C; is a constant depending only on j. Hence |a,| < C;|| exp(injf)||x,.
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On the other hand, by Theorem 1 we get || exp(injf) ||x} < 6 exp(—njlog K,)
(cf. Remark 1) and |a,| < 6C;exp(—mnjlog K,). When = is negative
integer, we analogously get |a,| < 6C_; exp(—|n|jlog K,). Therefore by
Steps 1 and 2, we get the desired result. q.e.d.

REMARK (Added on December 25, 1984). After submitting this paper
we have been informed, by Professor S. Igari that Lamberton [16] inde-
pendently proved our Theorem 1 when G is the unit circle group.
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