SPECTRA OF MEASURES AS L_p MULTIPLIERS

ENJI SATO

(Received April 20, 1984)

1. Preliminaries. Let G be a nondiscrete locally compact abelian group with the dual Γ , M(G) the convolution measure algebra of finite regular Borel measures on G. For $\mu \in M(G)$, let $\|\mu\|$ denote the total variation norm, $\mu^1 = \mu$, $\mu^j = \mu^{j-1} * \mu$ $(j=2,3,\cdots)$, where * denotes the convolution, $\hat{\mu}$ the Fourier-Stieltjes transform of, μ , and $\|\hat{\mu}\|_{\infty} = \sup\{|\hat{\mu}(\gamma)|; \gamma \in \Gamma\}$. We call μ a Hermitian measure if $\hat{\mu}(\gamma)$ is real valued on Γ . For $1 \leq p \leq \infty$, let $L_p(G)$ be the L_p space with respect to the Haar measure of G, $\|\cdot\|_p$ the norm of $L_p(G)$. A bounded linear operator T on $L_p(G)$ is called an L_p multiplier if there exists $\hat{T} \in L_{\infty}(\Gamma)$ such that $T(f)^{\hat{}} = \hat{T}\hat{f}$ for every $f \in L_p(G) \cap L_1(G)$. The set of all L_p multipliers will be written as $M_p(G)$ and the norm of $T \in M_p(G)$ is defined by

$$||T||_{M_n(G)} = ||T||_{M_n} = \sup\{||Tf||_{L_n(G)}; ||f||_{L_n(G)} = 1\}.$$

Then $M_p(G)$ is a commutative Banach algebra with unit δ_0 as the convolution operator, where δ_0 is the Dirac measure with unit mass at $0 \in G$. Also for $T \in M_p(G)$, let \widetilde{T} be the Gelfand transform

 $\|\,\widetilde{T}\,\|_{^{_{_{_{_{_{_{p}}}}}}}}=\sup\{|\,h(T)\,|;\,h\ \text{is a complex homomorphism on}\quad M_{_{_{p}}}\!(G)\}\;,$ and Im \widetilde{T} the imaginary part of $\widetilde{T}.$

Now it is known that any measure $\mu \in M(G)$ is contained in $M_p(G)$ as a convolution operator, and $M_1(G)$ is isomorphic to M(G), $M_2(G)$ to $L_{\infty}(\Gamma)$, $M_p(G)$ to $M_q(G)$ if 1/p + 1/q = 1 $(1 , and <math>M_1(G) \subseteq M_p(G) \subseteq M_2(G)$ $(1 \le p \le 2)$ (cf. [6]). For $T \in M_p(G)$, let $\operatorname{sp}(T, M_p)$ be the spectrum of T in $M_p(G)$, i.e., $\operatorname{sp}(T, M_p) = \{\lambda \in C; \lambda \delta_0 - T \text{ is not invertible in } M_p(G)\}$, where C is the complex plane. Then for $\mu \in M(G)$, we have $\operatorname{closure}(\widehat{\mu}(\Gamma)) = \operatorname{sp}(\mu, M_2) \subseteq \operatorname{sp}(\mu, M_p) \subseteq \operatorname{sp}(\mu, M(G))$ $(1 \le p \le 2)$, where $\operatorname{closure}(\widehat{\mu}(\Gamma))$ is the closure of $\widehat{\mu}(\Gamma)$ in the complex plane. Before stating our theorems, we make some preliminary comments. For $f \in L_1(G)$, it is well known and easy to show that $\operatorname{sp}(T_f, M_p(G)) = \widehat{f}(\Gamma) \cup \{0\}$ for $1 \le p \le \infty$ if $T_f(g) = f * g$ for all $g \in L_p(G)$. However, since G is nondiscrete, the classical

Partly supported by the grant-in-Aid for Encouragement of Young Scientists, the Ministry of Education, Science and Culture, Japan.

theorem of Wiener and Pitt and its generalization imply the existence of $\mu \in M(G)$ so that $\operatorname{sp}(\mu, M(G))$ properly contains $\operatorname{closure}(\widehat{\mu}(\Gamma))$. Indeed, there exists $\mu \in M(G)$ so that $\operatorname{sp}(\mu, M(G)) \neq \widehat{\mu}(\Gamma) \cup \{0\}$ and $\widehat{\mu}(\gamma) \to 0$ as $\gamma \to \infty$ $(\gamma \in \Gamma)$ (cf. [9]). Also [4] shows that if $1 , then <math>\operatorname{sp}(\mu, M_p(G)) = \widehat{\mu}(\Gamma) \cup \{0\}$, whenever $\mu \in M(G)$ with $\widehat{\mu}(\gamma) \to 0$ as $\gamma \to \infty$ $(\gamma \in \Gamma)$.

On the other hand, Igari [5] proved that for $1 there exists <math>\mu \in M(G)$ such that $\operatorname{sp}(\mu, M_p) \neq \operatorname{closure}(\hat{\mu}(\Gamma))$. In fact, he showed that each operating function from M(G) to $M_p(G)$ is extended to an entire function (cf. [3]). Also Zafran [13] constructed $T \in M_p(G) \setminus M(G)$ $(1 such that <math>\hat{T}(\gamma) \to 0$ as $\gamma \to \infty$ and $\operatorname{sp}(T, M_p) \neq \hat{T}(\Gamma) \cup \{0\}$. Later in [14] he showed that each operating function on $C_0M_p(G) = \{T \in M_p(G); \hat{T}(\gamma) \to 0, \text{ as } \gamma \to \infty, \hat{T} \text{ is continuous on } \Gamma\}$ is extended to an entire function (cf. [15]).

Now for a Hermitian measure $\mu \in M(G)$ with $\|\mu\| = 1$, Sarnak [11] proved that the spectrum of μ in $M_p(G)$ is contained in some area of the unit disk, but generally $\operatorname{sp}(\mu, M_p) \subsetneq \operatorname{sp}(\mu, M(G))$ (1 . Indeed, when <math>G = T (unit circle group), he proved that there exists a Hermitian measure such that $\operatorname{sp}(\mu, M(G)) = \{z \in C; |z| \leq \|\mu\|\} \supseteq \operatorname{sp}(\mu, M_p(G)) = \operatorname{closure}(\widehat{\mu}(\Gamma))$ for all 1 (cf. [2]).

In this paper, we will give some results concerning spectra of measures in $M_p(G)$ by the method of [5]. Then we will obtain a Hermitian measure μ on G such that $\operatorname{sp}(\mu,M_p(G)) \supseteq \operatorname{closure}(\hat{\mu}(\Gamma))$ for all $1 \le p < 2$. In §2, by an application of [5, Lemma 1] we will show that there exists a Hermitian measure μ on each nondiscrete locally compact abelian group such that $\|\operatorname{Im} \tilde{\mu}\|_{{\mathcal AM}_p} > 0$ for all $1 \le p < 2$. Also in §3, we will investigate the spectrum of the measure in §2. When G = T, we will prove in §4 that only entire functions can operate on the algebra which contains $L_i(G)$ and the measure in §2.

I wish to thank Professor S. Saeki for many useful advices. I also to thank the referees for kind advice.

2. Measures as L_p multipliers on locally compact abelian groups. In this section we will show the existence of certain measures which have suitable spectra as L_p multipliers when G is a nondiscrete locally compact abelian group. Let $\Delta(r)$ be the direct sum of countably many copies of the cyclic group Z(r) of order r ($r \ge 2$) and D(r) be the dual to $\Delta(r)$. We refer the reader to [5] and [8] for the proof of the following.

LEMMA (cf. [5, Lemma 1]). Let Γ be the dual of G, and Γ be Z or $\Delta(r)$. Then for any $1 \leq p < 2$ and a positive integer j there exist a constant K_p (>1) depending only on G and p, and a nonnegative trigono-

metric polynomial $\phi = \phi_{p,j}$ on G such that

- (i) $\hat{\phi} \geq 0$ on Γ , $\|\phi\|_1 = 1$, and
- $\text{(ii)} \quad \|\exp(ij(\phi\lambda_G))\|_{\mathtt{M}_p(G)} > K_p^j,$

where λ_G is the normalized Haar measure on G, and $\exp(i\mu) \in M(G)$ is defined by $\exp(i\mu)^* = \exp(i\hat{\mu})$ for $\mu \in M(G)$.

PROOF. By [5, Lemma 1] and [8], there exists a Hermitian probability measure $\mu=\mu_{p,j}$ on G such that $\|\exp(ij\mu/2)\|_{M_p(G)}>K_p^j$, where $K_p>1$ is a constant depending only on p and G. Put $\nu=(\delta_0+\mu)/2$. Then ν is a probability measure, $\hat{\nu}\geq 0$ on Γ , and

$$\|\exp(ij
u)\|_{_{M_n(G)}} = \|\exp(ij\mu/2)\|_{_{M_n(G)}} > K_p^j$$
 .

Therefore we obtain the trigonometric polynomial $\phi = \phi_{p,j}$ on G with the desired properties by convolving ν with an appropriate trigonometric polynomial (cf. [1]).

REMARK 1 (cf. [8]). (i) For $\Gamma = \Delta(r)$ for some r, we may choose

$$K_p = \left[\sum_{\gamma \in I} \left| \int \exp\left(iR(x, \gamma_0)\right)(x, \gamma) dx \right|^p \right]^{1/(2p)}$$
 ,

where dx is the normalized Haar measure of D(r) and γ_0 is an element of order r.

(ii) For $\Gamma = \mathbf{Z}$, we may choose

$$\begin{split} K_{p} &= \left[\sum_{\mathbf{m} \in \mathbf{Z}} \left| \int & \exp(i(\cos x - mx)) dx / (2\pi) \right|^{p} \right]^{1/(2p)} \\ &= \left[\sum_{\mathbf{m} \in \mathbf{Z}} \left| J_{\mathbf{m}}(1) \right|^{p} \right]^{1/(2p)} \end{split}$$

where $dx/(2\pi)$ is the normalized Haar measure of T and $J_{\rm m}(x)$ is the Bessel function.

REMARK 2. By Riesz-Thorin's convexty theorem we choose $K_p \le \exp(2/p-1)$ in Lemma. Thus we have $K_p \to 1$ as $p \to 2(p < 2)$.

THEOREM 1. Let G be an infinite compact abelian group. Then there exists a probability measure $\mu \in M(G)$, with nonnegative Fourier-Stieltjes transform, such that for real number $1 \le p < 2$

$$\|\operatorname{Im} \widetilde{\mu}\|_{{\scriptscriptstyle \Delta M_n(G)}} > 0$$
.

In particular, we get $\operatorname{sp}(\mu, M_p(G)) \supseteq \operatorname{closure}(\widehat{\mu}(\Gamma))$ for all $p \ (1 \leq p < 2)$.

PROOF. Let Q be the set of all rational numbers. For $1 \le p < 2$ and $T \in M_p(G)$, we write $||T||_{M(p,\Gamma)}$ for $||T||_{M_p(G)}$. For each natural number n, let p_n be a rational number satisfying $1 \le p_n < 2$ such that $\{p_n; n \ge 1\} = 1$

 $Q \cap \{p; 1 \le p < 2\}$ and that each $p \in Q$ with $1 \le p < 2$ appears infinitely often among the p_n 's.

Case 1. $\Gamma = \Delta(r)$ for some r. For natural numbers m < n, we write

$$G(m, n) = \prod_{k=m+1}^{n} \mathbf{Z}(r)$$
, and $\Gamma(m, n) = \prod_{k=m+1}^{n} \mathbf{Z}(r)$.

We shall identify G(m, n) and $\Gamma(m, n)$ with the naturally corresponding subgroups of G and Γ , respectively.

Now we choose natural numbers n_j $(j \ge 0)$ as follows. Put $n_0 = 1$, and suppose that $n_0 < n_1 < \cdots < n_{j-1}$ have been choosen for some $j \ge 1$. By the above Lemma with $p = p_j$, there exist $n_j > n_{j-1}$ and a probability measure $\mu_j \in M(G(n_{j-1}, n_j))$ such that

$$\hat{\mu}_{j} \geq 0$$
 on $\Gamma(n_{j-1}, n_{j})$, and

$$\|\exp(ij\mu_{j})\|_{M_{m{p}}(G(n_{j-1},n_{j}))} > K_{m{p}}^{j} \quad ext{ for } \quad p=p_{j}$$
 .

Identify G with the product group $\prod_{j=1}^{\infty} G(n_{j-1}, n_j)$, and put $\mu = \mu_1 \times \mu_2 \times \cdots$, the product measure of all $\mu_j (j \ge 1)$. Clearly, μ is a probability measure on G with $\hat{\mu} \ge 0$. Writing $\Gamma_j = \Gamma(n_{j-1}, n_j) \subset \Gamma$ for each $j \ge 1$, we also have

$$\begin{split} \|\exp(ij\mu)\|_{_{M_p(G)}} &= \|\exp(ij\widehat{\mu})\|_{_{M(p,\varGamma_j)}} \ &\geq \|\exp(ij\widehat{\mu}_j)\|_{_{M(p,\varGamma_j)}} \qquad ext{for} \quad p = p_j \; , \end{split}$$

where the first inequality is obvious, since $\hat{\mu} = \hat{\mu}_j$ on Γ_j (cf. [10, Corollary 4.6]) and the second inequality follows from (2). Since each element of $Q \cap \{p; 1 \leq p < 2\}$ appears infinitely often in $\{p_j\}$, it is routine to show that

(3)
$$\lim_{n \to \infty} (\| \exp(in\mu) \|_{M_p(G)})^{1/n} \ge K_p > 1$$

for all $p \in Q \cap \{p; 1 \le p < 2\}$. But $Q \cap \{p; 1 \le p < 2\}$ is dense in $\{p; 1 \le p < 2\}$, so we get

$$\lim_{n o\infty}\|\exp(in\mu)\|_{M_p(G)}^{1/n}>1 \qquad ext{for all} \quad 1\leq p<2$$

by (3) and Riesz-Thorin's theorem.

Case 2. $\Gamma = Z$. For each positive integer j, the Lemma yields a nonnegative trigonometric polynomial ϕ_j on T such that

(4)
$$\hat{\phi}_{j} \geq 0$$
 on $oldsymbol{Z}$, $\|\phi_{j}\|_{\scriptscriptstyle 1} = 1$, and

$$\|\exp(ij\phi_{j})\|_{M_{p}(T)} > K_{p}^{j} \quad {
m for} \quad p = p_{j} \; .$$

Choose a trigonometric polynomial f_i on T such that

(6)
$$\|f_j\|_p = 1$$
 and $\left\|\sum_k \exp{(ij\hat{\phi}_j(k))}\hat{f}_j(k)\exp{(ikt)}\right\|_p > K_p^j$

for $p = p_j$. Also choose a natural number m_j so that

$$(7) \qquad (\operatorname{supp} \hat{\phi}_j) \cup (\operatorname{supp} \hat{f}_j) \subset \{-m_j, -m_j + 1, \cdots, m_j - 1, m_j\} \ .$$

Now let $r_1 = 1$, r_2 , r_3 , \cdots be an increasing sequence of natural numbers such that $r_n \to \infty$ very rapidly. Let λ_T be the normalized Haar measure of T. Then by the proof of [7, Lemma 5], the measures defined by

$$d\mu_n(t) = [\phi_1(r_1t)\phi_2(r_2t)\cdots\phi_n(r_nt)]d\lambda_T(t)$$

all are probability measures, and converges weak* to a probility measure $\mu \in M(T)$ such that

$$\hat{\mu}(k_{1}r_{1}+k_{2}r_{2}+\cdots+k_{n}r_{n})=\prod_{i=1}^{n}\hat{\phi}_{j}(k_{i})$$

whenever the k_j are integers such that

(9)
$$|k_i| \leq m_i \ (j = 1, 2, \dots, n)$$
, and

(10)
$$\hat{\mu}(m) = 0$$
 for all other integers m .

Now let a natural number j be given. Define a trigometric polynomial g_j by setting $g_j(t) = f_j(r_j t)$ for $t \in T$. Then

(11)
$$\|g_j\|_p = 1$$
 and supp $\hat{g}_j \subset \{r_j k; k = -m_j, \dots, m_j\}$

by (6) and (7). Moreover, $\hat{g}_j(kr_j) = \hat{f}_j(k)$ for all $k \in \mathbb{Z}$. It follows that by (6) and (8)

$$\begin{split} &\left\| \sum_{k} \exp\left(ij\hat{\mu}(k)\right) \hat{g}_{j}(k) \exp\left(ikt\right) \right\|_{p} \\ &= \left\| \sum_{k} \exp(ij\hat{\mu}(kr_{j})) \hat{g}_{j}(kr_{j}) \exp\left(ikr_{j}t\right) \right\|_{p} \\ &= \left\| \sum_{k} \exp(ij\hat{\phi}_{j}(k)) \hat{f}_{j}(k) \exp(ikt) \right\|_{p} > K_{p}^{j} \quad \text{for} \quad p = p_{j} \; . \end{split}$$

This, combined with (11), yields

$$\|\exp(ij\mu)\|_{\mathtt{M}_{p}(T)}>K_{p}^{j} \quad ext{for} \quad p=p_{j} \quad ext{and} \quad j=1,\,2,\,\cdots \,.$$

As in Case 1, we conclude that μ has the required properties.

Case 3. Let Γ be an unbounded ordered group. For each positive integer j, the Lemma yields trigonometric polynomials f_j and g_j on T such that

(12)
$$f_j \ge 0, \|f_j\|_1 = 1, \hat{f}_j \ge 0$$
,

(13)
$$\|g_j\|_p \leq 1$$
, $\|g_j * \exp(ijf_j \lambda_T)\|_p > K_p^j$ for $p = p_j$.

Also choose a natural number N_i so that

(14)
$$(\operatorname{supp} \hat{f}_j) \cup (\operatorname{supp} \hat{g}_j) \subset \{-N_j, \dots, -1, 0, 1, \dots, N_j\}$$

Then by the proof of [7, Lemma 5], there exist $\{\gamma_s\}_{s=1}^{\infty} \subset \Gamma(\operatorname{ord}(\gamma_s) \geq 3, s \geq 1)$ and a probability measure $\mu \in M(G)$ which has the following properties: (i) when

$$\phi_j = \sum\limits_{|k| \leq Nj} \widehat{f}_j(k)(x,\,k\gamma_j) \quad ext{for} \quad j=1,\,2,\,\cdots\,, \quad ext{and} \ d\mu_n = \phi_1 \cdots \phi_n d\lambda_G \quad ext{for} \quad n=1,\,2,\,\cdots\,,$$

the probability measures $\{d\mu_n\}$ converge weak* to μ .

(ii) We have

$$\hat{\mu}(k_1\gamma_1+\cdots+k_n\gamma_n)=\prod_{j=1}^n\hat{f}_j(k_j),$$

whenever the k_i are integers such that

(16)
$$|k_j| \leq N_j \quad (j=1,\,\cdots,\,n) \; . \label{eq:kj}$$
 (iii)

$$(17) \qquad \widehat{\mu}(\gamma) = 0 \quad \text{on} \quad \Gamma \Big/ \bigcup_{n=1}^{\infty} \left\{ k_{1} \gamma_{1} + \cdots + k_{n} \gamma_{n} : |k_{j}| \leq N_{j}, \, 1 \leq j \leq n \right\}.$$

Now let a natural number j be given. Define a trigonometric polynomial $\psi_j(x) = \sum_{|k| \leq N_j} \hat{g}_j(k)(x, k\gamma_j)$ on G. Then

(18)
$$\operatorname{supp} \hat{\psi}_i \subset \{k\gamma_i : |k| \leq N_i\} \quad \text{and} \quad \hat{\psi}_i(k\gamma_i) = \hat{g}_i(k)$$

for all $k \in \mathbb{Z}$. It follows that by (17) and (18)

(19)
$$\exp(ij\hat{\mu}(k\gamma_i))\hat{\psi}_i(k\gamma_i) = \exp(ij\hat{f}_i(k))\hat{g}_i(k)$$

for all $k \in \mathbb{Z}$, and $j = 1, 2, \cdots$.

For the polynomial Q on T of order m, put $Q^*(x) = \sum_{|k| \leq m} \widehat{Q}(k)(x, k\gamma)$ for any $\gamma \in \Gamma$ of order ≥ 3 . Then it is well known that

(20)
$$3 \|Q\|_{L_{p}(T)} \ge \|Q^*\|_{L_{p}(G)} \ge (1/2) \|Q\|_{L_{p}(T)}$$

for $1 \le p < 2$ (cf. [3], [5]).

Then it follows by (13), (19) and (20) that

$$\begin{split} 3 \| \exp(ij\mu) \|_{_{M_p(G)}} & \geq \| \exp(ij\mu) * \psi_j \|_{_{L_p(G)}} \\ & \geq (1/2) \| \exp(ijf_j \lambda_T) * g_j \|_{_{L_p(T)}} > (1/2) K_p^j \end{split}$$

for $p = p_j$. This yields

$$\|\exp(ij\mu)\|_{_{M_p(G)}}>(1/6)K_p^j \quad ext{for} \quad p=p_j \quad ext{and} \qquad j\geqq 1$$
 .

As in Case 1, we conclude that μ has the required properties.

Case 4. Suppose G is an infinite compact abelian group. Then Γ contains Z, $\Delta(r)$ for some r or an unbounded ordered group. Since $\|\hat{T}\|_{M(p,\Gamma)} \ge \|\hat{T}\|_{M(p,\Lambda)}$ for all $T \in M_p(G)$ with all closed subgroups Λ of Γ by [10, Corollary

4.6], this completes the proof.

q.e.d.

Theorem 2. Let G be a nondiscrete locally compact abelian group. Then there exists a probability measure $\mu \in M(G)$ with nonnegative Fourier-Stieltjes transform, such that for real number $1 \leq p < 2$

$$\|\operatorname{Im} \widetilde{\mu}\|_{AM_{\mathcal{D}}(G)} > 0$$
.

In particular, we get $\operatorname{sp}(\mu, M_p(G)) \supseteq \operatorname{closure}(\hat{\mu}(\Gamma))$ for all $p \ (1 \leq p < 2)$.

PROOF. By Theorem 1, we may assume G to be noncompact. Since G is nondiscrete, by the structure theorem (cf. [9]) G contains an open subgroup of the form $G_0 = \mathbb{R}^n \times H$, where $n \ge 0$ and H is compact.

Case 1. Suppose H is an infinite group. Then there exists $\mu_0 \in M(H)$ having the properties of Theorem 1. By Theorem 1 and [10, Lemma 3.1] there exists a probability measure $\mu \in M(G)$ with nonnegative Fourier-Stieltjes transform such that

$$\|\exp(ij\mu)\|_{M_{\mathcal{D}}(G)} = \|\exp(ij\mu_0)\|_{M_{\mathcal{D}}(H)}$$

for all $1 \le p < 2$ and $j = 1, 2, \cdots$. Therefore we get

$$\lim_{m o\infty}\|\exp(im\mu)\|_{M_p(G)}^{1/m}>1\quad ext{for all}\quad 1\leq p<2.$$

Case 2. Suppose H is a finite group. Since G is nondiscrete, n is a posivive integer. Then by Theorem 1 there exists $\mu_0 \in M(T)$ having the properties of Theorem 1. By [9] and [10, Corollary 4.6], there exists a probability measure $\mu_1 \in M(\mathbf{R}^n)$ with nonnegative Fourier-Stieltjes transform such that

$$\|\exp(ij\mu_{\scriptscriptstyle 1})\|_{{}_{M_p(R^n)}} \ge \|\exp(ij\mu_{\scriptscriptstyle 0})\|_{{}_{M_p(T)}}$$

for all $j=1,2,\cdots$. So by [10, Lemma 3.1], there exists a probability measure $\mu \in M(G)$ with nonnegative Fourier-Stieltjes transform such that

$$\|\exp(ij\mu)\|_{M_{\mathcal{D}}(G)} \ge \|\exp(ij\mu_0)\|_{M_{\mathcal{D}}(T)}$$

for all $j = 1, 2, \cdots$. Therefore we get the desired results. q.e.d

3. Spectra of measures. Let $\mu \in M(G)$ be a Hermitian measure with $\|\mu\| = 1$. Then by Riesz-Thorin's theorem, we have

Hence we have $\|\operatorname{Im} \tilde{\mu}\|_{{\scriptscriptstyle AM}_p} \to 0$ as $p \to 2$ (p < 2).

Sarnak [11] obtained the next result which is better that the above result.

PROPOSITION 1 ([11]). Let G be a locally compact abelian group,

 $\mu \in M(G)$ a Hermitian measure with $\|\mu\| = 1$ and $1 \leq p \leq 2$. Then $\operatorname{sp}(\mu, M_p(G))$ is contained in the region bounded by $\gamma_p = \{z; \theta(z) = \pi/2 + \pi(p-1)/p\}$ where $\theta(z)$ is the angle subtended at z by the line segment [-1, 1].

Morever, when G = T and μ is the measure given by convolution by Cantor-Lebesgue-type, he proved that $\operatorname{sp}(\mu, M_p(T)) = \operatorname{closure}(\hat{\mu}(Z))$, and $\operatorname{sp}(\mu, M(T)) \supseteq \operatorname{sp}(\mu, M_p(T))$ (1 . He also showed the same result for certain Riesz products (cf. [2]).

PROPOSITION 2 ([12, Lemma 2.2]). Let G be a locally compact abelian group, $\mu \in M(G)$, and $1 \leq p < \infty$. If a complex number λ is an isolated point of $\operatorname{sp}(\mu, M_p(G))$, then λ is in the closure of $\widehat{\mu}(\Gamma)$.

By §2 and Proposition 2, we get the following, which may be of some interest in view of Proposition 1.

THEOREM 3. Let G be a nondiscrete locally compact abelian group. Then there exists a probability measure μ , with nonnegative Fourier-Stieltjes transform having the following properties: There exists a sequence $\{p_j\}_{j=1}^{\infty}$ of real numbers such that $p_j \to 2$ $(p_j < 2)$ as $j \to \infty$, that

$$\|\operatorname{Im} \widetilde{\mu}\|_{{\scriptscriptstyle AM}_{p_{j}}} > \|\operatorname{Im} \widetilde{\mu}\|_{{\scriptscriptstyle AM}_{p_{j+1}}} \quad \text{ for all } \quad j$$

and that $sp(\mu, M_{p_j}) \setminus sp(\mu, M_{p_{j+1}})$ is uncountable $(j \ge 1)$. In particular, we have

$$\operatorname{sp}(\mu, M_{p_i}) \supseteq \operatorname{sp}(\mu, M_{p_{i+1}}) \supseteq \operatorname{closure}(\hat{\mu}(\Gamma)) \quad (j \ge 1)$$
.

PROOF. By Theorem 2, there exists a probability measure $\mu \in M(G)$ having the properties of Theorem 2. We put $N_p = \|\operatorname{Im} \widetilde{\mu}\|_{{\mathbb AM}_p}$ for all p $(1 \le p < 2)$. By the remark at the beginning of this section, we have $N_p \to 0$ as $p \to 2$ (p < 2). Then by Theorem 2, there exists a sequence $\{p_1 < p_2 < \cdots < 2\}$ of real numbers such that

$$N_{p_1} > N_{p_2} > \dots > N_{p_j} > \dots \ge 0$$
 .

Moreover by $N_{p_j} > N_{p_{j+1}}$ $(j \ge 1)$ and Proposition 2, $\operatorname{sp}(\mu, M_{p_j}(G)) \setminus \operatorname{sp}(\mu, M_{p_{j+1}}(G))$ contains a nonempty perfect set. Thus it is uncountable. q.e.d.

4. Individual symbolic calculus. In this section, we consider the operating function of μ obtained in Theorem 1 for G = T.

PROPOSITION 3. Let Φ be a 2π -periodic continuous function on R, and μ as in Theorem 1. Also let p be any fixed positive number with $1 . Assume that <math>\Phi(\lambda \hat{\mu} + a + \hat{f}) \in M_p(T)^{\hat{}}$ for λ , $a \in R$, and \hat{f} real-valued $(f \in L_1(T))$, where $M_p(T)^{\hat{}} = \{\hat{T}; T \in M_p(T)\}$. Then Φ is extended to an entire function.

PROOF. Step 1. We show that for any real number λ , there exists $C_{\lambda} > 0$ depending only on λ such that $\| \varPhi \circ (\lambda \mu + a \delta_0) \|_{\mathcal{H}_p(T)} \leq C_{\lambda}$ for all $a \in [-\pi, \pi]$. If the above result is false, we may suppose that there exists a sequence $\{a_n\}$ such that $|a_p| < 1/2^n$, and $\| \varPhi \circ (\lambda \mu + a_n \delta_0 + b \delta_0) \|_{\mathcal{H}_p} \to \infty$ as $n \to \infty$. Then there exists a sequence $\{k_n\}$ of positive integers and an $S_n \in M_p(T)$ such that $S_n = \chi_{[-k_n,k_n]}$, the characteristic function of $[-k_n,k_n]$, and

$$\|S_n \circ \Phi \circ (\lambda \mu + a_n \delta_0 + b \delta_0)\|_{M_p} o \infty$$
 as $n o \infty$.

There exist a sequence $\{N_n\}$ of positive integers and $\{Q_n\}$ trigonometric polynomials on T such that

(1) the
$$[-k_n, k_n] + N_n$$
 are pairwise disjoint,

$$(2)$$
 $\widehat{Q}_n=1$ on $[-k_n,k_n]+N_n$,

(3)
$$\operatorname{supp} \widehat{Q}_n \cap \operatorname{supp} \widehat{Q}_m = \varnothing(n \neq m) \quad \text{and} \quad$$

$$||Q_n||_1 \leq 2 \quad \text{for all} \quad n.$$

Also we define $g = \sum a_n Q_n \in L_1(T)$ and $B_n \in M_p(T)$ with $\hat{B}_n = \chi_{[-k_n, k_n] + N_n}$. Then by assumption, we have $\Phi \circ (\lambda \mu + g + b \delta_0) \in M_p(T)$.

Hence by the Fourier-Stieltjes transform, we get

$$B_r \circ \Phi \circ (\lambda \mu + g + b\delta_0) = B_r \circ \Phi \circ (\lambda \mu + a_r Q_r + b\delta_0) = B_r \circ \Phi \circ (\lambda \mu + a_r \delta_0 + b\delta_0).$$

Hence $\|B_n \circ \Phi \circ (\lambda \mu + g + b\delta_0)\|_{M_p} = \|S_n \circ \Phi \circ (\lambda \mu + a_n\delta_0 + b\delta_0\|_{M_p}$. On the other hand, by M. Riesz's theorem we have $\|B_n\|_{M_p} \leq A_p$ $(n \geq 1)$, where A_p is a constant depending only on p. Thus we have

$$\|\,S_{\scriptscriptstyle n} \circ \varPhi \circ ({\scriptstyle \lambda} \mu \, + \, a_{\scriptscriptstyle n} \delta_{\scriptscriptstyle 0} \, + \, b \delta_{\scriptscriptstyle 0}) \,\|_{{}_{M_{\it p}}} \leqq A_{\scriptscriptstyle p} \|\, \varPhi \circ ({\scriptstyle \lambda} \mu \, + \, g \, + \, b \delta_{\scriptscriptstyle 0}) \,\|_{{}_{M_{\it p}}}$$

for all n, and we obtain a contradiction.

Step 2. Let the Fourier series of Φ be $\sum a_n \exp(int)$. Then for any positive integer j, we have $a_n = O(\exp(-j|n|))$ for all $n \in \mathbb{Z}$.

Indeed, let j be a positive integer, and n a nonnegative integer. Then we get

$$\begin{split} a_n \exp(inj\hat{\mu}) &= (1/2\pi) \int \!\! \varPhi(x) \exp(-in(x-j\hat{\mu})) dx \\ &= (1/2\pi) \! \int \!\! \varPhi(x+j\hat{\mu}) \exp{(-jnx)} dx \;. \end{split}$$

By Step 1, we get

$$\|a_n \exp(\mathrm{inj}\hat{\mu})\|_{_{M_p}} \leq (1/2\pi)\!\!\int\!\!\|arPhi(x+j\hat{\mu})\|_{_{M_p}}\!dx \leq C_j$$
 ,

where C_j is a constant depending only on j. Hence $|a_n| \leq C_j \| \exp(inj\hat{\mu}) \|_{\mathcal{M}_p}^{-1}$.

On the other hand, by Theorem 1 we get $\|\exp(inj\hat{\mu})\|_{M_p}^{-1} \le 6 \exp(-nj\log K_p)$ (cf. Remark 1) and $|a_n| \le 6C_j \exp(-nj\log K_p)$. When n is negative integer, we analogously get $|a_n| \le 6C_{-j} \exp(-|n|j\log K_p)$. Therefore by Steps 1 and 2, we get the desired result.

REMARK (Added on December 25, 1984). After submitting this paper we have been informed, by Professor S. Igari that Lamberton [16] independently proved our Theorem 1 when G is the unit circle group.

REFERENCES

- J. J. BENEDETTO, Spectral Synthesis, Acadimic Press, New York, London, San Francisco, 1975.
- [2] G. Brown, Riesz products and generalized characters, Proc. of London Math. Soc. 30 (1975), 209-238.
- [3] H. Helson, J. P. Kahane, Y. Katznelson and W. Rudin, The functions which operate on Fourier transforms, Acta Math. 102 (1959), 135-157.
- [4] L. HÖRMANDER, Estimates for translation invariant operators in L^p spaces, Acta Math. 104 (1960), 93-140.
- [5] S. IGARI, Functions of L^p multipliers, Tôhoku Math. J. 21 (1969), 304-320.
- [6] R. LARSEN, An introduction to the theory of multipliers, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
- [7] L. PIGNO AND S. SAEKI, Constructions of singular measures with remarkable convolution properties, Studia Math. 69 (1980), 133-141.
- [8] W. Rudin, A strong converse of the Wiener-Lévy theorem, Canad. J. Math. 14 (1962), 694-701.
- [9] W. Rudin, Fourier analysis on groups, 2nd. ed., Interscience Publishers, New York, 1967.
- [10] S. SAEKI, Translation invariant operators on groups, Tôhoku Math. J. 22 (1970), 409-419.
- [11] P. Sarnak, Spectra of singular measures as multipliers on L^p , J. of Functional Analysis 37 (1980), 302-317.
- [12] M. ZAFRAN, On the spectra of multipliers, Pacific J. of Math. 47 (1973), 609-626.
- [13] M. ZAFRAN, The spectra of multiplier transformations on the L_p spaces, Ann. of Math. 103 (1976), 355-374.
- [14] M. ZAFRAN, The functions operating on multiplier algebras, J. of Functional Analysis 26 (1977), 289-314.
- [15] M. ZAFMAN, Exponential estimates in multiplier algebras, Conference on harmonic analysis in honor of A. Zygmund, Vol. 1, Wadsworth International Group Belmont, California, (1981), 114-121.
- [16] D. LAMBERTON, Seminar on the geometry of Banach spaces (Paris, 1982), 85-101, Publ. Math. Univ. Paris VII 16.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE YAMAGATA UNIVERSITY YAMAGATA, 990 JAPAN