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Introduction. Let M be an affine manifold of dimension n, that is,
a manifold which admits an atlas {(Uaf φa)} such that φaoφjι is an affine
transformation of Rn whenever Ua Π Uβ Φ 0 . Then the tangent bundle
TM over M naturally admits a complex structure. Indeed, let {a£, , xl)
be the local coordinate system defined by the chart (Ua, φa) and put
Za = Xa°P + Vr=Λdxi

a (i = 1, , ri), where p denotes the natural pro-
jection of TM onto M. Then {zi, ••-,£«} is a complex local coordinate
system on p~\Ua) and the atlas {(jr^E/*), fe •••, z«})} defines a complex
affine structure on TV When M is a domain in Rn, the complex manifold
TM is a usual tube domain, that is, TM = M + l/"^ ΐ i ί\ In the general
case, we obtain TM by pasting tube domains together by "real" affine
transformations. The complex manifold TM will be simply called a tube
over M.

When M i s a domain in Rn, it is well-known (e.g., Bochner-Martin
[2]) that

(* ) TM is a Stein manifold if and only if M is convex.

In this note, we ask whether the "if" part of (*) remains valid for a
general affine manifold M and give a partial affirmative answer to this
problem.

REMARK. An affine manifold M is called convex if every pair of
points of M can be joined by a geodesic with respect to the locally flat
linear connection on M corresponding to the affine structure on M. It
is known that an affine manifold M is convex if and only if the universal
covering of M is affinely equivalent to a convex domain in Rn.

Before stating our result, we fix notations and conventions which
are adopted throughout this note. We denote by R+ the set of positive
real numbers. For a domain Ω in Rn, G(Ω) denote the group of all affine
transformations of Rn leaving Ω invariant. G(Ω) acts on TΩ as a holo-
morphic transformation group by the rule

az = f(a)z + q(a) for a e G{Ω) , zeTΩ = Ω + V^-iRn ,
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where /(α) and q(a) denote, respectively, the linear and translation parts
of the affine transformation a. This action of a e G(Ω) on TΩ coincides
with the action of the differential of a on the tangent bundle TΩ. A
domain Ω in Rn is called homogeneous if G{Ω) acts transitively on Ω.
For an affine manifold M, the natural projection of TM onto M is denoted
by p.

The purpose of this note is to prove the following:

THEOREM. Let M be an affine manifold whose universal covering is
affinely equivalent to a convex domain Ω in Rn. Suppose Ω contains
no complete straight lines. Then there exists a smooth strictly pluri-
subharmonic function ψM defined on an open subset of the tube TM over
M whose complement SM in TM is either an analytic hypersurface of TM

or an empty set. If moreover M is compact, then ψM is an exhaustion
function.

In the above theorem, SM is given as the support of a divisor on
TM. When M is locally homogeneous, that is, Ω is homogeneous, it can
be shown that SM is an empty set. Hence we obtain the following:

COROLLARY. Under the same assumption as in our theorem, suppose
further that Ω is homogeneous. Then TM contains no positive-dimensional
compact analytic subsets. If moreover M is compact, then TM is a Stein
manifold.

REMARK 1. Let Ω be a convex domain in Rn containing no complete
straight lines. In connection with the assumption of the theorem and
its corollary, it should be noted that, when Ω admits a discrete subgroup
Γ of G(Ω) acting properly discontinuously and freely on Ω with Γ\Ω
compact, Ω is necessarily affinely equivalent to a convex cone (Vey [13]).
If moreover Ω is homogeneous, then it is self-dual with respect to a
suitable inner product on Rn (Koszul [6]). We note also that the tube
over a self-dual homogeneous cone is a symmetric domain (Rothaus [7]).

REMARK 2. Let M be a Hessian manifold in the sense of Shima [9].
Then the tube TM over M naturally becomes a Kahler manifold (Shima
[10], Cheng-Yau [3]). Matsushima posed a question, which is closely
related to our problem: When is TM a Stein manifold? We formulate
this question as follows:

Let M be a complete Hessian manifold. Then is TM a Stein mani-
fold?

An affine manifold M is called hyperbolic if the universal covering of
M is affinely equivalent to a convex domain in Rn containing no complete
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straight lines (cf. Koszul [5]). It can be shown that every hyperbolic
affine manifold admits a canonical Hessian metric. Therefore our corollary
shows that, for a compact Hessian manifold M, the answer to the above
problem is affirmative, when M is hyperbolic and locally homogeneous.
We note that every compact, or more generally quasi-compact, Hessian
manifold is convex (Shima [11]).

The author would like to thank Professor Shima for his encourage-
ment and stimulation.

1. Preliminaries. By a convex cone V in Rn, we mean a non-empty
open set in Rn satisfying the following conditions:

(a) If x e V and λ e R+, then Xx e V.
(b) If x, x' e V, then x + xf e V.
(c) V contains no complete straight lines.

The group G( V) then consists of all linear transformations of Rn leaving
V invariant. Let <#, #> be an inner product on Rn and let V* be the
dual cone of V with respect to this inner product, that is,

F* = {ueRn\(x, u) > 0 for all xe V- {0}} ,

where V denotes the closure of V in Rn. We define a function Φv on
Tv by

Φv{z) = I exp( — <z, u))du (ze Tv) ,

where du denotes the Lebesgue measure on Rn and <z, u) = (x, u) +
V^ϊζy, u) for z = x + V^ΛyeTv =V + V^^ΪR71; the restriction of the
function Φv to V, viewed as the zero-section of TV, is denoted by φv.
Note that Φv is determined up to positive constant multiple depending
on the choice of the inner product <#, #> on Rn. The function Φv coincides
with a constant multiple of the so-called Cauchy kernel associated with
the tube domain Tv (cf. Stein-Weiss [12], Mumford et al. [1]) and φv is
called the characteristic function of the convex cone V (cf. Vinberg [14]).

Since the integral 1 ̂ exp(— <2, u))du converges absolutely and uniformly

on any compact set in Tv, Φv is holomorphic on Tv and hence φv is real-
analytic on V. The functions Φv and φv have the following properties:

(Cl) Φv(az) = \deta\~^v(z) for all zeTv, αeG(F).
(C2) Φv(x + V — ly) tends to 0 locally uniformly on xe V as \\y\\ =

«y,y»1/2 (yeRn) tends to «>.
(C3) φv(ax) = Idetαl"1 φv(x) for all xe V, aeG(V).
(C4) φγ > 0 and log φv is a convex function on V, that is, the Hessian

(32logφv(x)/dxidxj) of log^F (x = (α?1, « ,ίcn)) is positive-definite at every
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point of V.
(C5) φv(x) tends to c>o as x e V approaches dV = V — V.
(Cl) is a consequence of the change of variable in the integral Φr(az).

(C3) follows immediately from (Cl). (C2) follows from the Riemann-
Lebesgue theorem. The first assertion of (C4) is obvious by definition.
For the second assertion of (C4) and (C5), see Vinberg [14].

The following lemma is essentially due to Rothaus [7].

LEMMA. Let V be a convex cone in Rn. If V is homogeneous, then
the function Φv never vanishes on Tv.

PROOF. For seC with Res ̂  1, we define a function h8 on V by

hJix) = φv(x)~8 \ e x p ( — (x, u ) ) ό v * ( u y ~ 8 d u ( x e V ) .
Jv*

It follows from (C3) that the function hs is G( F)-invariant. Hence, as
V is assumed homogeneous, h8 is a constant function on V, which we
denote by Δ{β). Here Δ(s) is a holomorphic function of s e C f o r R e s ^ l
and called the Gamma function of V when V is self-dual. Once Δ(?) is
defined, the rest of the proof follows from Rothaus [7, Theorem 2.3, p.
195].

2. Proof of Theorem and Corollary. Let Ω be a convex domain in
Rn containing no complete straight lines. We define a convex cone V(Ω)
in Rn+1 = RnxR by

(1) V(Ω) = {(Xx,X)eRnxR\xeΩ, xeR+} .

Then there exists a natural affine embedding c of Ω into V{Ω) defined by

(2) c: Ω 9 x H> (a?, 1) e V(Ω) .

Let p be the group homomorphism of A(n, R) into GL(n + 1, R) given

by

If (a) q(a)\
(3) A(n,R)Baι-*Γ I 6 GL(n + 1, R) ,

where A(n, R) denotes the group of all affine transformations of Rn.
Then we have p(G(Ω))aG(V(Ω)); the pair (p, c) of the homomorphism
p: G(Ω) —> G(V(Ω)) and the map c: Ω —>V(Ω) is equivariant, that is,

(4) e © α = |θ(α) ° r for every α e G(i2) .

In view of (1) and (2), this shows that the subgroup p(G(Ω)) {λln+11 λ e R+}
of G( V(Ω)) acts transitively on V(Ω) if G(Ω) acts transitively on Ω, where
ln + 1 denotes the identity matrix of degree n + 1. Therefore, when Ω is
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homogeneous, V{Ω) is also homogeneous. We denote by dc the differential
of the map c: Ω —>V(Ω). Then, since c is an affine map, dc gives a holo-
morphic embedding of TΩ into TV{Ω). Moreover, by differentiating both
sides of (4), we obtain

(5 ) dc © a = p(a) ° dc for every a e G(Ω) .

We now define a function ΦΩ on TΩ by

ΦΩ = ΦriQ) ° dc

the restriction of the function ΦΩ to Ω, viewed as the zero-section of TΩf

is denoted by φΩ. When Ω is a convex cone, the function ΦΩ defined
above coincides with the one defined in § 1 up to positive constant multi-
ple. Indeed, we have V(Ω) = ΩxR+ as a convex cone. On the other
hand, it can be shown that, for the product 7 = 7 j X 7 2 of convex cones
VΊ and V2f we have Φv{z) = cΦVl{z^Φγ2{z^ for some ce R+, where Φv, ΦFl, ΦV2

denote the functions defined in §1 and z = (zlf z2) e Tv — TVlx TV2. Hence
our assertion follows from the fact that the map dc: TΩ —• TV{Ω) is given
by dc(z) = (z, 1) (2:6 Γβ). It is clear from the definition that ΦΩ is holo-
morphic on TΩ, while φΩ is real-analytic on Ω. (C1)~(C5) in §1 hold for ΦΩ

and φQ. This follows from the corresponding properties of ΦV{Ω) and φrιQ).
Here, in view of (5) and (3), detα is replaced by det/(α) in (Cl) and (C3).
The lemma in § 1 also remains valid for ΦΩ. Indeed, if Ω is homogeneous,
then, as previously remarked, V(Ω) is also homogeneous. Hence, applying
the lemma in §1 to Φr{Ω)9 we see that ΦV{Ω) never vanishes on TV(Ω), which
clearly implies that ΦΩ never vanishes on TΩ.

Let Ω be as above. We put SΩ = {ze TΩ\ΦΩ(z) = 0}. Then, since the
function ΦΩ is not identically zero by, e.g., (C4), TΩ — SΩ is a non-empty
open subset of TΩ. By (Cl), we also see that the sets TΩ — SΩ and SΩ

are G(β)-invariant. We define a function ψΩ on TΩ — SΩ by

fΩ{z) = l o g φΩ(p(z)) - l o g I ΦΩ(z) I f o r z e T Ω - S Ω .

Note that, for z e TΩ, p(z) is the real part of z with respect to the
complex structure TΩ = Ω + i/^Tiϊ 7 1. Since

JΣ dz* A dz* ,

where « = (z\ , z71), p(«) = x = (a?1, , ί»π) and Re2* = a*, and since the
matrix (d^ogφ^/dx^x3') is positive-definite at every point of Ω by (C4),
ψΩ is a smooth strictly plurisubharmonic function on TΩ — SΩ. Moreover,
(Cl) and (C3) imply that the function ψΩ is G(42)-invariant, because
p(az) = ap(z) for all ze TΩy aeG(Ω).
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We now prove our theorem. Let Γ be the covering transformation
group of the covering Ω->M. Then we have ΓcG{Ω) by assumption.
It follows that Γ acts properly discontinuously and freely on TΩ and
Γ\TΩ = TM as a complex manifold. Therefore, in view of (Cl), the function
ΦQ can be regarded as a non-trivial holomorphic section of a flat line
bundle over TM. We denote by SM the support of the divisor determined
by ΦΩ; SM is either a closed analytic hypersurface of TM or an empty
set. Then TΩ — SΩ is a Γ-invariant open subset of TΩ and we have
TM — SM = Γ\(TΩ — SΩ). Since ψΩ is a G(Ω)- and hence Γ-invariant function
on TΩ — SΩ, ψΩ induces a function ψM on TM — SM9 which is smooth and
strictly plurisubharmonic, because ψΩ is smooth and strictly plurisubhar-
monic. This proves the first assertion of the theorem. To prove the
second, let ceR and put E = {ze TM — SM\ψM(z) < c}. Then, from (C2)
and the definition of ψΩ and SQ, we see that, for any x e M, there exists
a neighborhood Ux of x such that p~\Ux)f]E is relatively compact in
TM — SM. Since M is compact by assumption, there exist a finite number
of points x19 •••,&* of M such that M — l l ί U ^ - Thus E is relatively
compact in TM — SM, because E= [Ji=1(p~1(Ux.)f]E) and each set p~\Ux.)f]E
is relatively compact in TM — SM. Hence ψM is an exhaustion function,
which completes the proof of the theorem.

Next we prove the corollary. Since Ω is homogeneous by assumption,
we see by the lemma that the function ΦΩ never vanishes on TΩ, which
implies that, in the theorem, SM is an empty set and hence fM is a
smooth strictly plurisubharmonic function defined on the whole of TM.
Therefore TM contains no positive-dimensional compact analytic subsets.
If M is compact, then, since ψM is an exhaustion function, TM is a Stein
manifold by a theorem of Grauert [4].

EXAMPLE. Let Ω be the cone of positive real numbers and let M
be an affine manifold Γ\Ω with Γ = {Xk\keZ} (λ Φ leB+). Then TΩ is
the right-half plane in the complex plane and TM is a half torus. The
function ψΩ defined in the proof of the theorem is given by

ψΩ(z) = log(l/Re z) - log 11/z \ (z e To) .

This function induces a strictly subharmonic function ψM on the half
torus TV

REMARK. From the proof of the theorem and the second half of the
corollary, we conclude the existence of invariant holomorphic functions
on a symmetric tube domain (cf. Remark 1 in the introduction): Let Ω
be a self-dual homogeneous cone. Let Γ be a discrete subgroup of G(Ω)
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acting properly discontinuously and freely on Ω. Suppose M: = Γ\Ω is
compact. Then there exists a non-constant Γ-invariant holomorphic
function on TΩ.

In the above situation, combined with a result of Serre [8], our
corollary also shows

H\Γ, O(Ta)) = 0 ,

where O(TΩ) denotes the ring of holomorphic functions on TΩ and is re-
garded as a Γ-module by the rule a-f = f - foa'1 (aeΓ, feO(TΩ)).
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