COMPLEX ANALYTIC PROPERTIES OF TUBES OVER LOCALLY HOMOGENEOUS HYPERBOLIC AFFINE MANIFOLDS

SATORU SHIMIZU

(Received November 25, 1983)

Introduction. Let M be an affine manifold of dimension n, that is, a manifold which admits an atlas $\{(U_{\alpha}, \varphi_{\alpha})\}$ such that $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ is an affine transformation of \mathbb{R}^{n} whenever $U_{\alpha} \cap U_{\beta} \neq \emptyset$. Then the tangent bundle T_{M} over M naturally admits a complex structure. Indeed, let $\{x_{\alpha}^{1}, \dots, x_{\alpha}^{n}\}$ be the local coordinate system defined by the chart $(U_{\alpha}, \varphi_{\alpha})$ and put $z_{\alpha}^{i} = x_{\alpha}^{i} \circ p + \sqrt{-1} dx_{\alpha}^{i}$ $(i = 1, \dots, n)$, where p denotes the natural projection of T_{M} onto M. Then $\{z_{\alpha}^{1}, \dots, z_{\alpha}^{n}\}$ is a complex local coordinate system on $p^{-1}(U_{\alpha})$ and the atlas $\{(p^{-1}(U_{\alpha}), \{z_{\alpha}^{1}, \dots, z_{\alpha}^{n}\})\}$ defines a complex affine structure on T_{M} . When M is a domain in \mathbb{R}^{n} , the complex manifold T_{M} is a usual tube domain, that is, $T_{M} = M + \sqrt{-1}\mathbb{R}^{n}$. In the general case, we obtain T_{M} by pasting tube domains together by "real" affine transformations. The complex manifold T_{M} will be simply called a tube over M.

When M is a domain in \mathbb{R}^n , it is well-known (e.g., Bochner-Martin [2]) that

(*) T_M is a Stein manifold if and only if M is convex.

In this note, we ask whether the "if" part of (*) remains valid for a general affine manifold M and give a partial affirmative answer to this problem.

REMARK. An affine manifold M is called convex if every pair of points of M can be joined by a geodesic with respect to the locally flat linear connection on M corresponding to the affine structure on M. It is known that an affine manifold M is convex if and only if the universal covering of M is affinely equivalent to a convex domain in \mathbb{R}^n .

Before stating our result, we fix notations and conventions which are adopted throughout this note. We denote by \mathbf{R}_+ the set of positive real numbers. For a domain Ω in \mathbf{R}^n , $G(\Omega)$ denote the group of all affine transformations of \mathbf{R}^n leaving Ω invariant. $G(\Omega)$ acts on T_{Ω} as a holomorphic transformation group by the rule

az = f(a)z + q(a) for $a \in G(\Omega)$, $z \in T_{\Omega} = \Omega + \sqrt{-1} \mathbf{R}^n$,

where f(a) and q(a) denote, respectively, the linear and translation parts of the affine transformation a. This action of $a \in G(\Omega)$ on T_{Ω} coincides with the action of the differential of a on the tangent bundle T_{Ω} . A domain Ω in \mathbb{R}^n is called homogeneous if $G(\Omega)$ acts transitively on Ω . For an affine manifold M, the natural projection of T_M onto M is denoted by p.

The purpose of this note is to prove the following:

THEOREM. Let M be an affine manifold whose universal covering is affinely equivalent to a convex domain Ω in \mathbb{R}^n . Suppose Ω contains no complete straight lines. Then there exists a smooth strictly plurisubharmonic function $\psi_{\mathfrak{M}}$ defined on an open subset of the tube $T_{\mathfrak{M}}$ over M whose complement $S_{\mathfrak{M}}$ in $T_{\mathfrak{M}}$ is either an analytic hypersurface of $T_{\mathfrak{M}}$ or an empty set. If moreover M is compact, then $\psi_{\mathfrak{M}}$ is an exhaustion function.

In the above theorem, S_M is given as the support of a divisor on T_M . When M is locally homogeneous, that is, Ω is homogeneous, it can be shown that S_M is an empty set. Hence we obtain the following:

COROLLARY. Under the same assumption as in our theorem, suppose further that Ω is homogeneous. Then $T_{\mathfrak{M}}$ contains no positive-dimensional compact analytic subsets. If moreover M is compact, then $T_{\mathfrak{M}}$ is a Stein manifold.

REMARK 1. Let Ω be a convex domain in \mathbb{R}^n containing no complete straight lines. In connection with the assumption of the theorem and its corollary, it should be noted that, when Ω admits a discrete subgroup Γ of $G(\Omega)$ acting properly discontinuously and freely on Ω with $\Gamma \setminus \Omega$ compact, Ω is necessarily affinely equivalent to a convex cone (Vey [13]). If moreover Ω is homogeneous, then it is self-dual with respect to a suitable inner product on \mathbb{R}^n (Koszul [6]). We note also that the tube over a self-dual homogeneous cone is a symmetric domain (Rothaus [7]).

REMARK 2. Let M be a Hessian manifold in the sense of Shima [9]. Then the tube $T_{\mathcal{M}}$ over M naturally becomes a Kähler manifold (Shima [10], Cheng-Yau [3]). Matsushima posed a question, which is closely related to our problem: When is $T_{\mathcal{M}}$ a Stein manifold? We formulate this question as follows:

Let M be a complete Hessian manifold. Then is T_M a Stein manifold?

An affine manifold M is called hyperbolic if the universal covering of M is affinely equivalent to a convex domain in \mathbb{R}^n containing no complete

300

straight lines (cf. Koszul [5]). It can be shown that every hyperbolic affine manifold admits a canonical Hessian metric. Therefore our corollary shows that, for a compact Hessian manifold M, the answer to the above problem is affirmative, when M is hyperbolic and locally homogeneous. We note that every compact, or more generally quasi-compact, Hessian manifold is convex (Shima [11]).

The author would like to thank Professor Shima for his encouragement and stimulation.

1. Preliminaries. By a convex cone V in \mathbb{R}^n , we mean a non-empty open set in \mathbb{R}^n satisfying the following conditions:

- (a) If $x \in V$ and $\lambda \in \mathbf{R}_+$, then $\lambda x \in V$.
- (b) If $x, x' \in V$, then $x + x' \in V$.
- (c) V contains no complete straight lines.

The group G(V) then consists of all linear transformations of \mathbb{R}^n leaving V invariant. Let $\langle \#, \# \rangle$ be an inner product on \mathbb{R}^n and let V^* be the dual cone of V with respect to this inner product, that is,

$$V^*=\{u\in {old R}^n|ig\langle x,\,uig
angle>0\quad ext{for all}\quad x\inar V-\{0\}\}\;,$$

where \overline{V} denotes the closure of V in \mathbb{R}^n . We define a function Φ_v on T_v by

$$arPsi_{{\scriptscriptstyle V}}(z) = \int_{{\scriptscriptstyle V}^*} \exp(-\langle z,\,u
angle) du \quad (z\in T_{{\scriptscriptstyle V}})$$
 ,

where du denotes the Lebesgue measure on \mathbb{R}^n and $\langle z, u \rangle = \langle x, u \rangle + \sqrt{-1} \langle y, u \rangle$ for $z = x + \sqrt{-1}y \in T_v = V + \sqrt{-1}\mathbb{R}^n$; the restriction of the function Φ_v to V, viewed as the zero-section of T_v , is denoted by ϕ_v . Note that Φ_v is determined up to positive constant multiple depending on the choice of the inner product $\langle \#, \# \rangle$ on \mathbb{R}^n . The function Φ_v coincides with a constant multiple of the so-called Cauchy kernel associated with the tube domain T_v (cf. Stein-Weiss [12], Mumford et al. [1]) and ϕ_v is called the characteristic function of the convex cone V (cf. Vinberg [14]). Since the integral $\int_{V^*} \exp(-\langle z, u \rangle) du$ converges absolutely and uniformly on any compact set in T_v , Φ_v is holomorphic on T_v and hence ϕ_v is real-analytic on V. The functions Φ_v and ϕ_v have the following properties:

(C1) $\Phi_{v}(az) = |\det a|^{-1}\Phi_{v}(z)$ for all $z \in T_{v}$, $a \in G(V)$.

(C2) $\Phi_V(x + \sqrt{-1}y)$ tends to 0 locally uniformly on $x \in V$ as $||y|| = (\langle y, y \rangle)^{1/2}$ $(y \in \mathbf{R}^n)$ tends to ∞ .

(C3) $\phi_{v}(ax) = |\det a|^{-1} \phi_{v}(x)$ for all $x \in V$, $a \in G(V)$.

(C4) $\phi_V > 0$ and $\log \phi_V$ is a convex function on V, that is, the Hessian $(\partial^2 \log \phi_V(x)/\partial x^i \partial x^j)$ of $\log \phi_V(x) = (x^1, \dots, x^n)$ is positive-definite at every

point of V.

(C5) $\phi_V(x)$ tends to ∞ as $x \in V$ approaches $\partial V = \overline{V} - V$.

(C1) is a consequence of the change of variable in the integral $\Phi_{\nu}(az)$. (C3) follows immediately from (C1). (C2) follows from the Riemann-Lebesgue theorem. The first assertion of (C4) is obvious by definition. For the second assertion of (C4) and (C5), see Vinberg [14].

The following lemma is essentially due to Rothaus [7].

LEMMA. Let V be a convex cone in \mathbb{R}^n . If V is homogeneous, then the function Φ_V never vanishes on T_V .

PROOF. For $s \in C$ with $\operatorname{Re} s \ge 1$, we define a function h_s on V by

$$h_s(x) = \phi_V(x)^{-s} \int_{V^*} \exp(-\langle x, u \rangle) \phi_{V^*}(u)^{1-s} du \quad (x \in V) \ .$$

It follows from (C3) that the function h_s is G(V)-invariant. Hence, as V is assumed homogeneous, h_s is a constant function on V, which we denote by $\Delta(s)$. Here $\Delta(s)$ is a holomorphic function of $s \in C$ for $\operatorname{Re} s \geq 1$ and called the Gamma function of V when V is self-dual. Once $\Delta(s)$ is defined, the rest of the proof follows from Rothaus [7, Theorem 2.3, p. 195].

2. Proof of Theorem and Corollary. Let Ω be a convex domain in \mathbb{R}^n containing no complete straight lines. We define a convex cone $V(\Omega)$ in $\mathbb{R}^{n+1} = \mathbb{R}^n \times \mathbb{R}$ by

(1)
$$V(\Omega) = \{ (\lambda x, \lambda) \in \mathbf{R}^n \times \mathbf{R} | x \in \Omega, \lambda \in \mathbf{R}_+ \}.$$

Then there exists a natural affine embedding ι of Ω into $V(\Omega)$ defined by

$$(2) \qquad \qquad \mathcal{L}: \mathcal{Q} \ni x \mapsto (x, 1) \in V(\mathcal{Q}) \ .$$

Let ρ be the group homomorphism of $A(n, \mathbf{R})$ into $GL(n + 1, \mathbf{R})$ given by

$$(3) A(n, \mathbf{R}) \ni a \mapsto \begin{pmatrix} f(a) & q(a) \\ 0 & 1 \end{pmatrix} \in GL(n + 1, \mathbf{R}) ,$$

where $A(n, \mathbf{R})$ denotes the group of all affine transformations of \mathbf{R}^n . Then we have $\rho(G(\Omega)) \subset G(V(\Omega))$; the pair (ρ, ι) of the homomorphism $\rho: G(\Omega) \to G(V(\Omega))$ and the map $\iota: \Omega \to V(\Omega)$ is equivariant, that is,

$$(4) \qquad \qquad \iota \circ a = \rho(a) \circ \iota \quad \text{for every} \quad a \in G(\Omega)$$

In view of (1) and (2), this shows that the subgroup $\rho(G(\Omega)) \cdot \{\lambda \mathbf{1}_{n+1} | \lambda \in \mathbf{R}_+\}$ of $G(V(\Omega))$ acts transitively on $V(\Omega)$ if $G(\Omega)$ acts transitively on Ω , where $\mathbf{1}_{n+1}$ denotes the identity matrix of degree n + 1. Therefore, when Ω is

302

homogeneous, $V(\Omega)$ is also homogeneous. We denote by $d\iota$ the differential of the map $\iota: \Omega \to V(\Omega)$. Then, since ι is an affine map, $d\iota$ gives a holomorphic embedding of T_{Ω} into $T_{V(\Omega)}$. Moreover, by differentiating both sides of (4), we obtain

(5)
$$d\iota \circ a = \rho(a) \circ d\iota$$
 for every $a \in G(\Omega)$.

We now define a function Φ_{Ω} on T_{Ω} by

$$\varPhi_{\varrho} = \varPhi_{V(\varrho)} \circ d\iota ;$$

the restriction of the function Φ_{α} to Ω , viewed as the zero-section of T_{α} , is denoted by $\phi_{\mathcal{Q}}$. When Ω is a convex cone, the function $\Phi_{\mathcal{Q}}$ defined above coincides with the one defined in §1 up to positive constant multiple. Indeed, we have $V(\Omega) = \Omega \times \mathbf{R}_+$ as a convex cone. On the other hand, it can be shown that, for the product $V = V_1 \times V_2$ of convex cones V_1 and V_2 , we have $\Phi_V(z) = c \Phi_{V_1}(z_1) \Phi_{V_2}(z_2)$ for some $c \in \mathbf{R}_+$, where $\Phi_V, \Phi_{V_1}, \Phi_{V_2}$ denote the functions defined in §1 and $z = (z_1, z_2) \in T_v = T_{v_1} \times T_{v_2}$. Hence our assertion follows from the fact that the map $d\iota: T_{\mathcal{Q}} \to T_{V(\mathcal{Q})}$ is given by $d\iota(z) = (z, 1)$ $(z \in T_{\varrho})$. It is clear from the definition that Φ_{ϱ} is holomorphic on $T_{\mathcal{Q}}$, while $\phi_{\mathcal{Q}}$ is real-analytic on \mathcal{Q} . (C1)~(C5) in §1 hold for $\Phi_{\mathcal{Q}}$ and $\phi_{\mathcal{Q}}$. This follows from the corresponding properties of $\Phi_{\mathcal{V}(\mathcal{Q})}$ and $\phi_{\mathcal{V}(\mathcal{Q})}$. Here, in view of (5) and (3), det a is replaced by det f(a) in (C1) and (C3). The lemma in §1 also remains valid for Φ_{Ω} . Indeed, if Ω is homogeneous, then, as previously remarked, $V(\Omega)$ is also homogeneous. Hence, applying the lemma in §1 to $\Phi_{V(\Omega)}$, we see that $\Phi_{V(\Omega)}$ never vanishes on $T_{V(\Omega)}$, which clearly implies that Φ_{g} never vanishes on T_{g} .

Let Ω be as above. We put $S_{\varrho} = \{z \in T_{\varrho} | \varPhi_{\varrho}(z) = 0\}$. Then, since the function \varPhi_{ϱ} is not identically zero by, e.g., (C4), $T_{\varrho} - S_{\varrho}$ is a non-empty open subset of T_{ϱ} . By (C1), we also see that the sets $T_{\varrho} - S_{\varrho}$ and S_{ϱ} are $G(\varrho)$ -invariant. We define a function ψ_{ϱ} on $T_{\varrho} - S_{\varrho}$ by

$$\psi_{g}(z) = \log \phi_{g}(p(z)) - \log |\Phi_{g}(z)| \quad \text{for} \quad z \in T_{g} - S_{g}.$$

Note that, for $z \in T_{g}$, p(z) is the real part of z with respect to the complex structure $T_{g} = \Omega + \sqrt{-1}R^{n}$. Since

$$\partial ar{\partial} \psi_{{\scriptscriptstyle B}}(z) = \partial ar{\partial} \log \phi_{{\scriptscriptstyle B}}(p(z)) = rac{1}{4} \sum_{i,j=1}^n rac{\partial^2 \log \phi_{{\scriptscriptstyle B}}(x)}{\partial x^i \partial x^j} dz^i \wedge dar{z}^j$$
 ,

where $z = (z^1, \dots, z^n)$, $p(z) = x = (x^1, \dots, x^n)$ and $\operatorname{Re} z^i = x^i$, and since the matrix $(\partial^2 \log \phi_0(x)/\partial x^i \partial x^j)$ is positive-definite at every point of Ω by (C4), ψ_{α} is a smooth strictly plurisubharmonic function on $T_{\alpha} - S_{\alpha}$. Moreover, (C1) and (C3) imply that the function ψ_{α} is $G(\Omega)$ -invariant, because p(az) = ap(z) for all $z \in T_{\alpha}$, $a \in G(\Omega)$.

We now prove our theorem. Let Γ be the covering transformation group of the covering $\Omega \to M$. Then we have $\Gamma \subset G(\Omega)$ by assumption. It follows that Γ acts properly discontinuously and freely on T_{g} and $\Gamma \setminus T_{g} = T_{M}$ as a complex manifold. Therefore, in view of (C1), the function $arPsi_{g}$ can be regarded as a non-trivial holomorphic section of a flat line bundle over T_{M} . We denote by S_{M} the support of the divisor determined by Φ_{g} ; S_{M} is either a closed analytic hypersurface of T_{M} or an empty set. Then $T_g - S_g$ is a Γ -invariant open subset of T_g and we have $T_{M} - S_{M} = \Gamma \setminus (T_{g} - S_{g})$. Since ψ_{g} is a $G(\Omega)$ - and hence Γ -invariant function on $T_{g} - S_{g}$, ψ_{g} induces a function ψ_{M} on $T_{M} - S_{M}$, which is smooth and strictly plurisubharmonic, because ψ_{ρ} is smooth and strictly plurisubharmonic. This proves the first assertion of the theorem. To prove the second, let $c \in \mathbf{R}$ and put $E = \{z \in T_{\mathcal{M}} - S_{\mathcal{M}} | \psi_{\mathcal{M}}(z) < c\}$. Then, from (C2) and the definition of ψ_{a} and S_{a} , we see that, for any $x \in M$, there exists a neighborhood U_x of x such that $p^{-1}(U_x)\cap E$ is relatively compact in $T_{M} - S_{M}$. Since M is compact by assumption, there exist a finite number of points x_1, \dots, x_k of M such that $M = \bigcup_{i=1}^k U_{x_i}$. Thus E is relatively compact in $T_{\mathcal{M}} - S_{\mathcal{M}}$, because $E = \bigcup_{i=1}^{k} (p^{-1}(U_{x_i}) \cap E)$ and each set $p^{-1}(U_{x_i}) \cap E$ is relatively compact in $T_M - S_M$. Hence ψ_M is an exhaustion function, which completes the proof of the theorem.

Next we prove the corollary. Since Ω is homogeneous by assumption, we see by the lemma that the function Φ_a never vanishes on T_a , which implies that, in the theorem, S_M is an empty set and hence ψ_M is a smooth strictly plurisubharmonic function defined on the whole of T_M . Therefore T_M contains no positive-dimensional compact analytic subsets. If M is compact, then, since ψ_M is an exhaustion function, T_M is a Stein manifold by a theorem of Grauert [4].

EXAMPLE. Let Ω be the cone of positive real numbers and let M be an affine manifold $\Gamma \setminus \Omega$ with $\Gamma = \{\lambda^k | k \in \mathbb{Z}\}$ $(\lambda \neq 1 \in \mathbb{R}_+)$. Then T_{Ω} is the right-half plane in the complex plane and T_M is a half torus. The function ψ_{Ω} defined in the proof of the theorem is given by

$$\psi_{\mathcal{Q}}(z) = \log(1/\operatorname{Re} z) - \log|1/z| \quad (z \in T_{\mathcal{Q}}) \;.$$

This function induces a strictly subharmonic function ψ_{M} on the half torus T_{M} .

REMARK. From the proof of the theorem and the second half of the corollary, we conclude the existence of invariant holomorphic functions on a symmetric tube domain (cf. Remark 1 in the introduction): Let \mathcal{Q} be a self-dual homogeneous cone. Let Γ be a discrete subgroup of $G(\mathcal{Q})$

304

acting properly discontinuously and freely on Ω . Suppose $M: = \Gamma \setminus \Omega$ is compact. Then there exists a non-constant Γ -invariant holomorphic function on T_{ρ} .

In the above situation, combined with a result of Serre [8], our corollary also shows

$$H^1(\Gamma, O(T_g)) = 0$$
 ,

where $O(T_{\rho})$ denotes the ring of holomorphic functions on T_{ρ} and is regarded as a Γ -module by the rule $a \cdot f = f - f \circ a^{-1}$ $(a \in \Gamma, f \in O(T_{\rho}))$.

References

- A. ASH, D. MUMFORD, M. RAPOPORT AND Y. TAI, Smooth Compactification of Locally Symmetric Varieties, Lie Groups: History Frontiers and Applications IV, Math. Sci. Press, Brookline, Mass. 1975.
- [2] S. BOCHNER AND W. T. MARTIN, Several Complex Variables, Princeton Univ. Press, 1948.
- [3] S.-Y. CHENG AND S.-T. YAU, The real Monge-Ampère equation and affine flat structures, Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Sci. Press, Beijing, China, 1982, 339-370.
- [4] H. GRAUERT, On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math. 68 (1958), 460-472.
- [5] J.-L. KOSZUL, Déformations de connexions localement plates, Ann. Inst. Fourier (Grenoble) 18 (1968), 103-114.
- [6] J.-L. KOSZUL, Trajectoires convexes de groupes affines unimodulaires, in Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer-Verlag, Berlin-Heidelberg-New York, 1970, 105-110.
- [7] O.S. ROTHAUS, Domains of positivity, Abh. Math. Sem. Univ. Hamburg 24 (1960), 189-235.
- [8] J.-P. SERRE, Applications de la théorie générale à divers problèmes globaux, Séminaire H. Cartan, E.N.S. Paris 1951/52, Exposé 20.
- [9] H. SHIMA, On certain locally flat homogeneous manifolds of solvable Lie groups, Osaka J. Math. 13 (1976), 213-229.
- [10] H. SHIMA, Homogeneous Hessian manifolds, Ann. Inst. Fourier (Grenoble) 30 (1980). 91-128.
- [11] H. SHIMA, Hessian manifolds and convexity, in Manifolds and Lie Groups (Papers in Honor of Yozô Matsushima), Progress in Mathematics, Vol. 14, Birkhäuser, Boston-Besel-Stuttgart, 1981, 385-392.
- [12] E. M. STEIN AND G. WEISS, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
- J. VEY, Sur les automorphismes affines des ouverts convexes saillants, Ann. Scuola Norm. Sup. Pisa 24 (1970), 641-665.
- [14] E. B. VINBERG, The theory of convex homogeneous cones, Trans. Moscow Math. Soc. 12 (1963), 340-403.

Mathematical Institute Tôhoku University Sendai, 980 Japan