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1. Introduction and the statement of results. Let X be a poly-
hedron. It is said to be totally w-dimensional if there exists a locally
finite triangulation K of X such that for each σ e K, an ^-dimensional
simplex τ exists in K satisfying σ < τ or σ = τ. (See Akin [1].) A totally
ti-dimensional polyhedron X is an w-dimensional Zc-Euler space if there
exist a locally finite triangulation K of X and a subcomplex L of K
satisfying the following:

(1) \L\ is a totally (n — l)-dimensional polyhedron or empty.
(2) The cardinality of {τ e K \ σ < τ) is even for every σ in K — L,

whenever dim σ ^ n — k.
(3 ) The cardinality of {τ 6 K \ σ < τ) is odd for every σ in L, when-

ever dim σ ^ n — k.
(4) The cardinality of {τ e L \ σ < τ) is even for every σ in L, when-

ever dim σ ^ n — k — 1.
We usually denote dX instead of |L | . If X is an ^-dimensional

fc-Euler space, then dX clearly is an (n — l)-dimensional fc-Euler space.
An w-dimensional fc-Euler space X is closed if X is compact and dX is
empty. If k ^ n, we said ^-dimensional fc-Euler spaces to be ^-dimensional
Z2-Euler spaces. (See [10].)

Let X be an ^-dimensional fc-Euler space with a triangulation K.
Then the i-th Stiefel-Whitney homology class st(X) in Hln\Xy dX; Z2) is
the homology class determined as the ί-skeleton Kι of the first bary-
centric subdivision K of if for n — k <i ^ n. Here iϊin f is the homology
theory of infinite chains. The Stiefel-Whitney homology classes of fc-Euler
spaces are well defined by Proposition 2.2.

Since an ^-dimensional differentiable manifold M has a triangulation,
the i-th Stiefel-Whitney homology class s^M) can be defined as above for
0 ^ i ^ n. Whitney [16] announced that the i-th Stief el-Whitney homology
class of an ^-dimensional difϊerentiable manifold M is the Poincare dual
of the (n — i)-th Stief el-Whitney class wn~\M). Its proof was outlined
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by Cheeger [5] and given by Halperin and Toledo [6]. Blanton and
Schweitzer [2] and Blanton and McCrory [3] gave the proof by using an
axiomatic method. Taylor [15] generalized it to the case of Z2-homology
manifolds by using the method as in [2]. Matsui [10] studied the case
of Z2-Poincare-Euler spaces in another method.

In this paper, we study the case of &-Poincare-Euler spaces as in [10].
An ^-dimensional &-Euler space X is said to be an w-dimensional fc-Poincare-
Euler space if the cap products [X]n: iΓ(X, Z2) -+H™t(X, dX; Z2) are iso-
morphisms for 0 ^ i < k. Let X be an ^-dimensional fc-Poincare-Euler
space. Then there exists a proper embedding φ: (X, dX) -> (Rl+a, dRn++a)
for a sufficiently large, where R\+a = {(xlt x2J , xn+a)\xn+a ^ 0}. (See
Hudson [8].) Suppose that R is a regular neighborhood of X in R++a.
Put R =RΓ\dRn++a and R = c\(dR - R). Regard ψ as an embedding from
(X, dX) to (R, R). We also call (R; R, R; φ) a regular neighborhood of
X in Rn

+

+a. Define U(φ) in Ha(R, R; Z2) as the Poincare dual of φ*[X].
Then the cup products U{φ)Ό: H'(R; Z2)-+Hί+a(R, R; Z2) are isomorphisms
for 0 ^ i < k. We call U(φ) the Thorn class of (22; R, R; φ). Define
cohomology classes w\φ) by w\φ) = 9* © (?7(φ)u)~1 ©SqiU{φ) for 0 ^ i < k.
Put w{k\φ) = 1 + w\φ) + + wk~\φ). Then there exists a unique
cohomology class w(X) such that ίΰ(X)Όw{k\φ) = 1. Let $(X) = 1 +

)1 + + wn{X), where «*(JC) is in H\X; Z2). Define w'(Z) by
«'(X) for 0 ^ i < k. We call w'(X) the i-th Stiefel-Whitney

class of a fe-Poincare-Euler space X for 0 ^ i < fc. Define wik\X) by

() y )
Let (R; R, R; φ) be a regular neighborhood of an ^-dimensional

/c-Poincare-Euler space X in jR++α. We will define homomorphisms (ek

φY:
%+a(R,R)->Z2 and ( e ^ : 3ΐί+α(i2, β)-> Z2 for i < k, where %+a(Rf R) is
the unoriented differentiate bordism group. We need the following:

TRANSVERSALITY THEOREM (Rourke and Sanderson [13] and Buoncris-
tiano, Rourke and Sanderson [4]). Let M and N be PL-manifolds. Sup-
pose that f: {My dM) -> (N, dN) is a locally flat proper embedding and
that X is a subpolyhedron in N. If f(dM)ΠX= 0 or if (dN, dNnX)
is collared in (N, X) and dNΓiX is block transverse to f\dM:dM-+dN,
then there exists an embedding g: M-> N ambient isotopic to f relative
to dN such that X is block transverse to g.

Let / : (M, dM) -> (JB, R) be in %+a(R, R). By Transversality Theo-
rem, there exists an embedding g: (M, dM) —> (RxDβ, RxDβ) for β suf-
ficiently large such that g = fx{0} and that (φxid)(XxDβ) is block
transverse to g. Let Y = (φxid)"10g(M) and let ψ: Y—>XxDβ be the
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inclusion. If i < k, then 7 is a closed Z2-Euler space by (1) of Lemma
4.3. Define (β£)'(/, M) by the modulo 2 Euler number e(Y) of Y. Note
that ψ has a normal block bundle v in XxDβ from (1) of Lemma 4.3.
Define («)'(/, M) as (e*)'(/» M) = <f*ΐί;(i)(IxI)OUi(;(v), [Γ]>, where w(»)
is the cohomology class determined by w*(v)Uw(v) = 1. Now define a
homomorphism (o£)*: 5R£+α(i2, 5) —• Z2 by (oj)' = (β )̂* — (β£)*. We can state
the main theorem of this paper as follows:

THEOREM. Let X be an n-dimensional k-Poincare-Euler space. Take
a regular neighborhood (R; R, R; φ) of X in B++a. Then [X]Γ\wi(X) =
sn_i(X) for i ^ m if and only if (ok

φy = 0 for i ^ m, where m < k.

We can apply this theorem to fc-regular spaces. Let R be a com-
mutative ring with unit. An n-dimensional 1-Euler space X is an n-di-
mensional fc-regular space over R if a triangulation K of X satisfies the
following:

(1) For each σ in K - dK, if dim σ = i, then H5{Lk(σ; K); R) =
H/S-'- 1 ; R) for j ^ k - 1.

(2) For each σ in 3if, if dim σ = i, then Hό{Lk{σ) K); R) = ff^pί; i2)
for i ^ fc — 1.

(3) For each <7 in 3iί, if d i m σ ^ i , then Hό(Lk{σ\ dK); R) =
H^S"-*-2; R) for i ^ fc - 1.

An n-dimensional fc-regular space over lϋ is J2-orientable if H'™\Xa,
dXa; R) = R for each connected component Xα of X

In order to apply our theorem to fc-regular spaces, we need the
following:

PARTIAL PoiNCARέ DUALITY THEOREM (Kato [9]). Let R be a com-
mutative ring with unit. Let X be an n-dimensional k-regular space
over R. Suppose that X is R-orientable unless R = Z2. Then the cap
products [X]n: H\X\ R) -> Hn^(X9 X; R) and [X]n: H\X, 3X; R) -> fln_<(JSΓ;
JB) are epimorphisms for all i^k — lori^n — k and monomorphisms
for all i ^ k or i >̂ n — k + 1. Here H* is the homology theory of infinite
chains whenever H* is the ordinary cohomology theory, or H* is the
ordinary homology theory whenever H* is the cohomology theory of
cochains with compact support.

In [9], Kato prove this theorem in the case of compact fc-regular
spaces over Z. But since we can prove this theorem by using the same
method as in [9], we do not repeat the proof here.

By our theorem and Partial Poincare Duality Theorem, we have the
following:
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COROLLARY. Let X be an n-dίmensional k-regular space over Z2.
Then [X]f]w\X) = sn^(X) for all i < k.

In Section 2, we study the Stiefel-Whitney homology classes of fc-Euler
spaces and prove a special product formula for the Stiefel-Whitney homology
classes. These are necessary to prove Lemma 5.1. The structure of the
bordism group of compact fc-Euler spaces is given in Proposition 3.1.
Lemma 3.1 is necessary to prove Lemma 5.1. In Section 4, we give a
characterization of Stiefel-Whitney classes via the unoriented differenti-
able bordism group. In Section 5, we give a characterization of Stiefel-
Whitney homology classes via the unoriented differentiable bordism group.
Our theorem follows from Lemmas 4.1 and 5.1.

2. Stiefel-Whitney homology classes. The purpose of this section
is to show that Stiefel-Whitney homology classes of fc-Euler spaces is well
defined and to prove a special product formula for Stiefel-Whitney ho-
mology classes.

In order to prove Propositions 2.2 and 2.3, it is convenient to define
fc-Euler complexes for ball complexes.

A ball complex K (cf. [4]) is totally ^-dimensional if for each σ in
K there exists an ^-dimensional ball τ in K such that σ -< τ or σ = τ.
A totally n-dimensional locally finite ball complex K is an ^-dimensional
fc-Euler complex if there exists a subcomplex L satisfying the same con-
ditions (1), (2), (3) and (4) as in the definition of fc-Euler spaces in Section
1. We usually denote 3K instead of L. An ^-dimensional fc-Euler com-
plex K is said to be closed if K is a finite complex and dK is empty.
A polyhedron X is an ^-dimensional fc-Euler space if there exists an
^-dimensional fc-Euler complex K such that X = \K\. We usually denote
dX instead of \dK\. Such definition of fc-Euler spaces clearly coincides
with that in Section 1.

Let if be a ball complex. The barycentric subdivision K of K is
defined by K = {(σ0, , σ9) | σ0 < -< σp, σ^ e K}. Then K can be regarded
as a ball complex. Denote the p-skeleton of K by Kp. We need the
following to prove that Stiefel-Whitney homology classes of fc-Euler spaces
is well defined:

PROPOSITION 2.1. Let K be an n-dimensional k-Euler complex. Then
Kp are p-dίmensional (p — n + k)-Euler complexes such that dKp = dK9'1

for n — fc < p ^ n.

In order to prove this proposition, we need the following:

LEMMA 2.1. Let K be a totally n-dίmensional locally finite ball
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complex. If beKp~\ then the cardinality of {aeK — Kp\a > b} is even.

PROOF. If p = n, then K — Kp is empty. Thus we may assume that
p < n. Let a = <σ0, , σ8) e K - Kp and let b = <τ0, , τt) e Kp~\ Then
s > t + 1. Since the cardinality of {σe K\σ0 < σ < σj is even for each
( α o , α i > e ϊ , the cardinality {aeK— Kp\a>b) is even for beKp~ι. q.e.d.

PROOF OF PROPOSITION 2.1. Note that the cardinality of {b e K\a < b}
equals the sum of the cardinalities of {beKp\a < b} and {beK — Kp\a <b}
for aeK. By Lemma 2.1, the cardinalities of {beK\a <b} and {be
Kp I a < 6} are congruent modulo 2 for α 6 Kp~\ Therefore Kp is a
p-dimensional (p — n + &)-Euler complex such that dKp = dK7*"1 for p >
n — k. q.e.d.

Let X be an ^-dimensional fc-Euler space with a ball complex struc-
ture K. Define the i-th Stiefel-Whitney homology classes s^X) by
Si(X) = iJIE^I] for n — k < i ^ n, where 2m.\Ki\-+X are the inclusions.
Let 8{k)(X) — sn_k+1(X)-\ \-sn(X). The Stiefel-Whitney homology classes
of fc-Euler spaces are well defined by the following:

PROPOSITION 2.2. Let K be an n-dimensional k-Euler complex and
let L be a subdivision of K. Then (j^^K^] = O"L)*[|L*|] for n — k <
i <̂  n, where jκ and jL are the inclusions.

PROOF. Define an (n + l)-dimensional A -Euler complex W and an
^-dimensional fc-Euler complex U by W = (Kxl — K x{l})U(Lx{l}) and
U = (dKx I - dKx {1}) U @L x {1}), where I = {{0}, {1}, [0, 1]}. We can
regard K and L as subcomplexes of W by the identifications K = Kx {0}
and L = Lx{l}. Put UH) = (ϋ* - dfyudϋ'-1. Then U{ί) is an i-dimen-
sional (i — n + fc)-Euler complex in view of Proposition 2.1. Note that
K* and D are i-dimensional (ΐ — n + fc)-Euler complexes and that Wi+1

is an (i + l)-dimensional (i — n + fc)-Euler complex such that dWi+1 =
Kι U UU) U V and 3UH) = 3 ^ ί U δL4 by Proposition 2.1. Hence (Jκ)Λ\K*|] =

The product formula for Stiefel-Whitney homology classes (Halperin
and Toledo [7]) may not hold for fc-Euler spaces, but we need the follow-
ing to prove Lemma 5.1.

PROPOSITION 2.3. Let X be an n-dimensional k-Euler space. Then
8t(X) x [D] = si+1(XxD) for n-k<i^n, where D = [ -1 , 1].

PROOF. Let L and L be ball complexes defined by L = {{ — 1}, {1},
[-1 , 1]} and L = {<-l>, <1>, <0>, < - l , 0>, <1, 0>}. Here <±1> - <{±1}>,
<0> = < [ - l , 1]> and <±1, 0> - <{±1}, [ -1 , 1]>. Then \L\ = D= [ - 1 , 1]
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and L is the barycentric subdivision of L. Let if be a ball complex such
that X — \K\. Let Ό, ciy ci+1 and di+2 be chains with Z2-coefficients defined
as follows: D = Σ«=±i <ε, 0>, c* = Σ ((?o, ', σt}9 ci+1 = Σ <0o> e),
(σp, ε), (<τp, 0), , (σi9 0)> + Σ <(r0, e), , (rp, ε), (rp+1> 0), , (τ i+1, 0)> and
di+2 = Σ [pl<fa>, ε), _ , (rp, ε), (rp, 0), , (r<+1, 0)>, where <σ0, , σ<> ranges
over all i-balls of Kι while <τ0, , r i + 1 ) ranges over all (i + l)-balls of
Ki+1, 0 ^ p ^i + 1 and ε = ± 1 . Here [p] is the class of p modulo 2.
Then ddί+2 - (ci+1 - c.xD) = Σ [i]<fa>, e), , (τ ί+1, ε)>. Since Σε=±i <(ro_,
ε), , (τ ί + 1, ε)> is exact for each <τ0, , τ ΐ+1>, it follows that ci+ι—CiXD
is exact. Note that s^D), 8t(X) and si+1(XxD) coincide with the homology
classes defined by chains D, ct and ci+1, respectively, for n — k < ί ^ n.
Thus si+1(XxD) = SAX)x[D] for n - k <ί^n. q.e.d.

3. Bordism groups of fc-Euler spaces. Let {83*, 3} be the bordism
theory of compact A -Euler spaces for k > 0. Then {S3*, 3} is a homology
theory (See Akin [1].). If fc = <*>, then {33*, 3} is the bordism theory of
compact Z2-Euler spaces. (See Akin [1] and Matsui [10].) Let (A, B) be a
pair of polyhedra. Define a homomorphism s{]e): 33*(A, B)->Hn_k+ί(A, B; Z2) +
• +Hn(A, B; Z2) by 8ιk)(φ, X) = Σ?=n-fc+i 9>*βi(-X"). Then β(Λ) is well defined
by Proposition 2.1. Define a homomorphism j ( P ι β ) : 33 (̂A, B) -+33£(A, J5) by
j{p>q)(φ, X) = (φ, X) for p ^ q. Then the following holds:

PROPOSITION 3.1. The homomorphisms s{k): 33*(A, B) -> iίn_fc+1(A, S;
Z2) + + J3"n(i4., J5; Z2) are isomorphisms for 0 < k ^ n. The homomor-
phisms j \ p > q ) : 33J(A, B) —>33£CA, B) are surjective for p ^ q.

PROOF. Put &f(A, B) = fln-*+i(A, B; Z2) + + #n(A, B; Z2) for
k > 0. Define the boundary operator 3f: Aifc>(A, B)-+hlϊl^B) as that of
the ordinary homology theory. Then {hΐ\ 3ifc)} is a homology theory with
compact support for k > 0. Note that {S3*, 3} is also a homology theory
with compact support and that s{k) is a homomorphism from 33*(A, β) to
Kk\A,B) such that 3f oS(Jb) = S{k) o j . Since h{

n

k)(pt) = Z2 and S3£(pί) =
a3n(2>ί) = Z2 (cf. [10]) for n = 0, , k - 1, and h™(pt) = 0 and 33*(pί) = 0
for n^kf where pt is the space of one point, the homomorphism s{k) is
an isomorphism. (See Spanier [14].)

Let π:h{

n

p)(A, B)-+h{

n

q)(A, B) be the canonical projection. Note that
siQ)°j\p,Q) = π ° s w Since π is surjective, so is j { 9 t q ) . q.e.d.

Let ξ = (E(ξ), A, c) be a p-block bundle over a polyhedron A. Define
E(ξ) as the total space of the sphere bundle associated with ξ. Then we
will define a homomorphism (e*)*: SBJ+i(^(f), 2£(£)) —> Z2 for i <k, where
S5J+<(-E(f), jE(<f)) is the bordism group of compact fc-Euler spaces. Let R
be a regular neighborhood of A in Ra. Let j : A c i 2 be the inclusion and
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p: iϋ—> A be a deformation retraction. Suppose that p*ζ = (E(p*ξ), R, cR)
is the induced bundle. Then there exist bundle maps (J, j): (E(ζ), A) -*
(E(p*ξ), R) and (p, p): (E(p*ξ), R) -> (E(ξ), A). (See Rourke and Sanderson
[12].) For each (φ, X) in S3*+<(£7(f), E(ξ)), there exists an embedding
φ: (X, dX) —> (E(p*ξ), E(p*ξ)) such that φ=joφ. By the transversality
theorem (see [12]), we may assume that <p(X) is block transverse to
cs:R-*E(p*ξ). Let Γ = φ-λ°ιB{R). Note that the inclusion 7 c l has
a normal block bundle, the total space of which is an ^-dimensional
fc-Euler space. Then 7 is a closed ΐ-dimensional fc-Euler space. Hence
Γ is a closed ΐ-dimensional Z2-Euler space whenever i < k. Define
(β*)*(9>, X) by the modulo 2 Euler number e(Y) of Y.

To prove Lemma 5.2, we need the following:

LEMMA 3.1. Let v — (E, Mf c) be a normal p-block bundle of a proper
embedding from a compact q-dimensional triangulated differentiable
manifold M to Dp+q = [ - 1 , l]p+q. Let Uv be the Thorn class of v. Then
<C7PU(O"1w*(M),φllts(fc)(X)> = (e;)<(φ>X) for every (<p, X) in ®k

P+i(E, E)
for i < k. Here s{k)(X) = sp+ί_k+1(X) + • + sp+i(X).

PROOF. The case k = °° was proved in [10]. By Proposition 3.1, we
may assume that X is a Z2-Euler space. Note that (e?y(φ, X) = (eiY(φf X)
for (φ, X) in %ς+t(E, E) for i < k. Then <J7,U(i*)~1'M;*(ikf), φ*8ιk)(X)} =
(ei)*(9>, X) for i < k, in view of the case k = ©o. q.e.d.

4. A characterization of Stiefel-Whitney classes. The product
formula for Stiefel-Whitney classes (see Milnor [11]) may not hold for
fc-Poincare-Euler spaces, but we need the following to deduce Lemma 4.1
from Lemma 4.2:

PROPOSITION 4.1. Let X be an n-dimensional k-Poincare-Euler space.
Then w%XxD) = wi(X)xl for 0^i<k, where D = [ - 1 , 1].

PROOF. Let (R; R, R; φ) be a regular neighborhood of X in iί++ α.
Let U(φ) and U(φxiά) be cohomology classes such that [R]Π U(φ) = φ*[Xλ
and [RxD]f] U(φxiά) = (φxiά)*[XxD], where id: D-^D is the identity.
Then U(φxid)= U(φ)xl. Note that U{φ)\J{φ^-ιw\φ) = Sq'Uiφ) and
U(φ x id) U [(φ x i d ) * ] - 1 ^ ' ^ x id) = Sq* U(φ x id) for 0 ^ i < k. Then U{φ x
id) U [(φ x id)*]" 1 ^*^) x 1) = Sq* U(φ x id) for 0 ^ i < k. Hence w\φ x id) =
w\φ)x\ for 0 ^ i < k. Thus w\XxD) = w*(X)xl for 0 ^ i < k. q.e.d.

Let (jβ; R, R; φ) be a regular neighborhood of an n-dimensional
fc-Poincare-Euler space X in Rl+a. Suppose that (e £)': 9ΐΐ+α(i2, S) -^ Z2 is
the homomorphism defined for i < k in Section 1. We need the following
to prove our theorem:
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LEMMA 4.1. For every (f,M) in %+a(R,R), we have (U(φ){J
(<P*)-Vfc)(X), Λ([M] Π w*(M))) = (ek

ψγ(f, M) whenever i < k. Here w{k\X) =
1 + + wk~\X).

In order to prove Lemma 4.1, we need the following:

LEMMA 4.2. Let f: (M, dM) -> (R, R) be a PL-embedding with a
normal block bundle ξ, where M is an (i + a)-dimensional triangulated
differentiable manifold. If φ(X) is transverse to ζ and i <k, then
<U(φ)[J(φ*riw(k)(X),U[M]Γ\w*(M))> = (ek

φy(fM).

In order to prove Lemmas 4.2 and 5.2, we need the following:

LEMMA 4.3. Let (R; R, R; φ) be a regular neighborhood of an
n-dimensional k-Poincare-Euler space X in R\+a. Let M be an (i + α)-
dimensional triangulated differentiable manifold, where 0 ^ i < k. Given
a PL-embedding f: (ikf, dM) -> (JR, R) with a normal block bundle ξ =
(E, My fE), suppose that φ{X) is transverse to ξ. Let Uξ be the Thorn
class of ξ and jE:E-^R be the inclusion. Define Y=φ~1of(M) and
XE = Ψ~1O3E{E). Let φE: XE-*E and ψM: Y-+M be embeddings defined
by φE — 3EΛ°Ψ and ψM = f~~lo(φ\Y). Then the following hold:

(1) Y is a closed Z2-Euler space with a normal block bundle.
(2) (Λ) p π n /* U{φ)) = (φE)ΛXE] n uξ.
(3) [M]r\ΓU(φ) = (ψMUY].
PROOF. (1) Clearly φiξ is a normal {n — i)-block bundle of Y in

X. Note that E is an ^-dimensional fc-Euler space. Then Y is an i-
dimensional &-Euler space. Hence Y is a Z2-Euler space, since i < k.
Since M is compact, Y is closed.

(2) Note that jEofE = f and [E] Γ)Uξ = (Λ) JM]. Thus (Λ)*([Λf] ΓΊ
/* U(φ)) = ([E] n 3% U{φ)) Π Uξ. If [E] n j% t%>) = (<PE)*[XEI then (fE)ΛM] n
f*U(φ)) = (^)*[-3ΓJΠ Uξ. Hence we have only to prove [E]Γ\jEU(φ) =
(<PE)*[XEI Let R = C1(JB - jE(E)) and let j R : (R; R, R) -+ (R; R, R) be
defined by the inclusion. Regard j E as a map j E : (E; E, E) —> (R; R, R),
where E = c\(dE - E). Note that (jB)*[E] = UR)*[E\

 a n d [R]ί~)U(φ) =
Then(jEU[E]n(jE)*U(<p)) - (i*)*°<P*[X] = 0*) ° ( ^ ) * [ ^ ] Since

: H*(E, E; Z2) —> H*(R, R; Z2) is an isomorphism, we have [2£] Γl

(3) Note that [XJn(?>*)*IT, = (^)*[Γ], where ψE: Y^XE is the
inclusion. By (2), we have (fE)*([M]Πf*U{φ)) = {φE)*o(ψE)JΓ]. Note
that φEoψE= fEoψM and that (Λ)*: ^(Λί, 3ikf; Z2)-> H*(E, E; Z2) is an
isomorphism. Then [M]Πf*U(φ) = (^Jf)J | t[ϊr]. q.e.d.

PROOF OF LEMMA 4.2. We use the notation of Lemma 4.3. By (2)
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of Lemma 4.3, we have (U(φ) U (<?*)"Vfc)(X), Λ([Λf ] n w*(ΛΓ))> =
(f*o(φ*)-iwW(X){jw*(M), (^jr)*[Γ]>. Let ψx: Y-+X be the inclusion.
Note that fofM = φoψx. Then <C%>)U (<?*)" Vfc)(X), M[M]f)w*(M))> =
(ψ$w^(X) U ψ*(M), [Y]) = (ψϊw{k\X) U ψlw(ξ), [Y]) = (ψ$w{k\X) U wtytξ),
[Γ]>. Thus < t f ( ^ ) U ( ^ * ) - V f c m / * ( M ^ ^ by the
definition of (eky. q.e.d.

PROOF OF LEMMA 4.1. Let (/, M) be in %+a(R, R). By Transversality
Theorem, there exists an embedding g: (Λf, 3Λf) —> (RxDβ, RxDβ) such
that # ̂  /x{0} and (<pxid)(XxZ)0 is block transverse to g. By Lemma
4.2, it follows that <(tf(p)xl)n[(?xid)*]-V fc)(XxZ)'), flf*([M]Πw*(M))> =
(e J)'(/, AT). Note that w{k\Xx Dβ) = w{k\X) x 1 by Proposition 4.1. Hence

-V* } (X),/*([M]n^
Πw*(M))>. Thus <?7(^)U(9*)"^(fc)(X), f*([M]nw*(M))} = (ek

ΨY(f,
M). q.e.d.

A characterization of Stiefel-Whitney classes is given by Lemma 4.1
and the following:

LEMMA 4.4. Let (A, B) be a pair of polyhedra. Let Φι be in H*(A,
B; Z2) for ί = 0,1, ••-,&- 1. Put Φ{k) = Φ° + + Φk~\ If(Φ{k\M[M]f\
w*(M))y = 0 for every (/, M) in 5ft*(A, B), then Φ{k) = 0.

PROOF. Since (Φ{k), M[M] n w*(M))> = <Φ°, Λ[M]> for (/, M) 6 ϊio(A,
B), the assumption <Φ(fc), /^[ΛflΠw*^))) = 0 for every (/, M) implies
Φ° = 0. Suppose that Φ° = 0, Φ1 = 0, , Φj = 0. Then <Φ(fc), Λ([Λί] Π
w*(M))> = <Φ' +1,/*[M]> for (/, M)e%+1(A, B). Hence, if <Φ(*},Λ([M]Π
w*(ilf))> = 0 for every (/, Λf), it follows that Φj+1 = 0. By induction on
j , we have Φ(fc) = 0. q.e.d.

5. Characterizations of Stiefel-Whitney homology classes. Let
(jβ; R, R; ψ) be a regular neighborhood of an w-dimensional A -Poincare-
Euler space X in Rn

+

+a. Suppose that {ekY: %+a(R, R) -> Z2 is the homo-
morphism defined for i < k in Section 1. We need the following to prove
our theorem:

*)"1
LEMMA 5.1. For every (/, Λf) in %+a(R, R), we have (U(φ)U Op*)"

-'s^X), M[M]Γίw*(M))} = (ekY(f M), whenever ί < k. Here
8{h)(X) = sn_k+1(X) + + sn(X).

In order to prove this, we need the following:

LEMMA 5.2. Let f: (Λf, dM) -> (R, R) be a PL-embedding with a
normal block bundle ξ, where M is an (i + a)-dimensional triangulated
differentiate manifold. If φ{X) is transverse to ξ and i < k, then
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PROOF. We use the notation of Lemma 4.3. By (2) of Lemma 4.3,
we have < U(φ) U (<P*Tι ° {[X^Y's^X), U[M] Π w*(M))) = (w*(M) U /* °

), (fE)~Λ(<PE)ΛXE] n Ut)}. Note that 3κ % = f Then

[ ( ) Since there exists the following com-
mutative diagram

Hn-\X; Zύ *^- Hn-\R; Zt) -^ Hn~%E; Zt)

j
H?\X, 3X; Z2) -^ Ht{(R, cl(R - E); Z2) - ^ H^(E, E; Z2)

and since [X]n, 9>* and (i^), are isomomorphisms for i < k, we have

Let (e*)*: S3n(-&, -E) -* Z2 be the homomorphism defined in Section 3. Then
<^U(/|)-%*(M), (φE)*8{k)(Xs)y - (4y(φs, XE) by Lemma 3.1. Note that
(«»)'(/, M) = (ββ'fa,, X,) by definition. Thus (U(φ)[J(φη-ίo([X]f])-^k)(X)f

U[M]f)w*(M))> = (βfc,)(/, M). q.e.d.

PROOF OF LEMMA 5.1. Let (/, M) be in %+a(Rf R). Then there exists
an embedding g: (M, dM)->(RxDβ, RxDβ) such that g = fx{0} and
(9>xid)(-X"xl?0 is block transverse to g by Transversality Theorem. By
Lemma 5.2, we have ((U(φ)xl)[j[(φxidy]-1o([XχD%)-1s{k)(XxDβ)f

g*([M] n w*(M))> = (e*)*(/, M) for i < fc. Note that s(fc)(Zx Dβ) = s{k)(X) x
[Dβ] by Proposition 2.3. Then <C7(^)U(^*)-1o([X]n)-1s(fc)(X),Λ([M]n

Thus <C7(9>) U C^*)"1 o ([X]n)-1s(fc)(X), Λ([M] n w*(M))> = (4)'(/f M) for i < Λ.
q.e.d.

PROOF OF THEOREM. If [X] n w\X) = sn_,(X) for i ^ m, then
(4)*(/, -M") = («*)*(/» Af) f° r i ^ m by Lemmas 4.1 and 5.1. This means
(PφY = 0 for i ^ m. Conversely, suppose that (oj)1 = 0 for i ^ m. By
Lemmas 4.1, 4.4 and 5.1, we have U(φ) U (φ*)~W(X) = EfaOUte*)-1"
([X]n)"1sn_i(X) for ί ^ m. Since £%>) U (φ*)"1 and [X]n are isomorphisms
for m < fc, we have [X]f]wi(X) = sn_XX) for i ^ m. q.e.d.

PROOF OF COROLLARY. Note that fc-regular spaces over Z2 are fc-Euler
spaces by the consideration of the definitions. Then fc-regular spaces over
Z2 are &-Poincare-Euler spaces by Partial Poincare Duality Theorem. Let
ψ: Y-+Xx Dβ be the embedding used to define (ek

ψy and (if*)*. Note that
ψ has a normal block bundle v in XxDβ. Then F is an i-dimensional
fc-regular space. Since Y is compact and i <k, it follows that Y is a
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closed Z2-homology manifold. Hence f % ( f c ) ( I x Dβ) = w*(Y) U w*(v). Thus
(o*)* = 0 in view of the definition of (ek

ΨY and (e%)\ Hence [ I J f l w W =
βn-iCX") ί ° r ί < fe by Theorem. q.e.d.
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