STIEFEL-WHITNEY HOMOLOGY CLASSES OF k-POINCARÉ-EULER SPACES

Dedicated to Professor Itiro Tamura on his sixtieth birthday

Akinori Matsui

(Received October 13, 1983)

1. Introduction and the statement of results. Let X be a polyhedron. It is said to be totally n-dimensional if there exists a locally finite triangulation K of X such that for each $\sigma \in K$, an n-dimensional simplex τ exists in K satisfying $\sigma \prec \tau$ or $\sigma=\tau$. (See Akin [1].) A totally n-dimensional polyhedron X is an n-dimensional k-Euler space if there exist a locally finite triangulation K of X and a subcomplex L of K satisfying the following:
(1) $|L|$ is a totally $(n-1)$-dimensional polyhedron or empty.
(2) The cardinality of $\{\tau \in K \mid \sigma \prec \tau\}$ is even for every σ in $K-L$, whenever $\operatorname{dim} \sigma \geqq n-k$.
(3) The cardinality of $\{\tau \in K \mid \sigma \prec \tau\}$ is odd for every σ in L, whenever $\operatorname{dim} \sigma \geqq n-k$.
(4) The cardinality of $\{\tau \in L \mid \sigma \prec \tau\}$ is even for every σ in L, whenever $\operatorname{dim} \sigma \geqq n-k-1$.

We usually denote ∂X instead of $|L|$. If X is an n-dimensional k-Euler space, then ∂X clearly is an $(n-1)$-dimensional k-Euler space. An n-dimensional k-Euler space X is closed if X is compact and ∂X is empty. If $k \geqq n$, we said n-dimensional k-Euler spaces to be n-dimensional \boldsymbol{Z}_{2}-Euler spaces. (See [10].)

Let X be an n-dimensional k-Euler space with a triangulation K. Then the i-th Stiefel-Whitney homology class $s_{i}(X)$ in $H_{i}^{\text {inf }}\left(X, \partial X ; \boldsymbol{Z}_{2}\right)$ is the homology class determined as the i-skeleton \bar{K}^{i} of the first barycentric subdivision \bar{K} of K for $n-k<i \leqq n$. Here $H_{*}^{\text {inf }}$ is the homology theory of infinite chains. The Stiefel-Whitney homology classes of k-Euler spaces are well defined by Proposition 2.2.

Since an n-dimensional differentiable manifold M has a triangulation, the i-th Stiefel-Whitney homology class $s_{i}(M)$ can be defined as above for $0 \leqq i \leqq n$. Whitney [16] announced that the i-th Stiefel-Whitney homology class of an n-dimensional differentiable manifold M is the Poincare dual of the ($n-i$)-th Stiefel-Whitney class $w^{n-i}(M)$. Its proof was outlined
by Cheeger [5] and given by Halperin and Toledo [6]. Blanton and Schweitzer [2] and Blanton and McCrory [3] gave the proof by using an axiomatic method. Taylor [15] generalized it to the case of \boldsymbol{Z}_{2}-homology manifolds by using the method as in [2]. Matsui [10] studied the case of \boldsymbol{Z}_{2}-Poincaré-Euler spaces in another method.

In this paper, we study the case of k-Poincaré-Euler spaces as in [10]. An n-dimensional k-Euler space X is said to be an n-dimensional k-PoincaréEuler space if the cap products $[X]_{n}: H^{i}\left(X, \boldsymbol{Z}_{2}\right) \rightarrow H_{n-i}^{\text {inf }}\left(X, \partial X ; \boldsymbol{Z}_{2}\right)$ are isomorphisms for $0 \leqq i<k$. Let X be an n-dimensional k-Poincaré-Euler space. Then there exists a proper embedding $\varphi:(X, \partial X) \rightarrow\left(\boldsymbol{R}_{+}^{n+\alpha}, \partial \boldsymbol{R}_{+}^{n+\alpha}\right)$ for α sufficiently large, where $\boldsymbol{R}_{+}^{n+\alpha}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n+\alpha}\right) \mid x_{n+\alpha} \geqq 0\right\}$. (See Hudson [8].) Suppose that R is a regular neighborhood of X in $\boldsymbol{R}_{+}^{n+\alpha}$. Put $\widetilde{R}=R \cap \partial \boldsymbol{R}_{+}^{n+\alpha}$ and $\bar{R}=\operatorname{cl}(\partial R-\widetilde{R})$. Regard ρ as an embedding from $(X, \partial X)$ to (R, \widetilde{R}). We also call ($R ; \widetilde{R}, \bar{R} ; \varphi$) a regular neighborhood of X in $\boldsymbol{R}_{+}^{n+\alpha}$. Define $U(\phi)$ in $H^{\alpha}\left(R, \bar{R} ; \boldsymbol{Z}_{2}\right)$ as the Poincaré dual of $\varphi_{*}[X]$. Then the cup products $U(\varphi)^{U}: H^{i}\left(R ; \boldsymbol{Z}_{2}\right) \rightarrow H^{i+\alpha}\left(R, \bar{R} ; \boldsymbol{Z}_{2}\right)$ are isomorphisms for $0 \leqq i<k$. We call $U(\varphi)$ the Thom class of $(R ; \widetilde{R}, \bar{R} ; \varphi)$. Define cohomology classes $w^{i}(\varphi)$ by $w^{i}(\varphi)=\varphi^{*} \circ\left(U(\varphi)^{U}\right)^{-1} \circ S q^{i} U(\varphi)$ for $0 \leqq i<k$. Put $w^{(k)}(\varphi)=1+w^{1}(\phi)+\cdots+w^{k-1}(\varphi)$. Then there exists a unique cohomology class $\widetilde{w}(X)$ such that $\widetilde{w}(X) \cup w^{(k)}(\phi)=1$. Let $\widetilde{w}(X)=1+$ $\widetilde{w}(X)^{1}+\cdots+\widetilde{w}^{n}(X)$, where $\widetilde{w}^{i}(X)$ is in $H^{i}\left(X ; \boldsymbol{Z}_{2}\right)$. Define $w^{i}(X)$ by $w^{i}(X)=\widetilde{w}^{i}(X)$ for $0 \leqq i<k$. We call $w^{i}(X)$ the i-th Stiefel-Whitney class of a k-Poincaré-Euler space X for $0 \leqq i<k$. Define $w^{(k)}(X)$ by $w^{(k)}(X)=1+w^{1}(X)+\cdots+w^{k-1}(X)$.

Let ($R ; \widetilde{R}, \bar{R} ; \varphi$) be a regular neighborhood of an n-dimensional k-Poincaré-Euler space X in $\boldsymbol{R}_{+}^{n+\alpha}$. We will define homomorphisms $\left(e_{\varphi}^{k}\right)^{i}$: $\mathfrak{N}_{i+\alpha}(R, \bar{R}) \rightarrow Z_{2}$ and $\left(\tilde{e}_{\varphi}^{k}\right)^{i}: \mathfrak{N}_{i+\alpha}(R, \bar{R}) \rightarrow Z_{2}$ for $i<k$, where $\mathfrak{N}_{i+\alpha}(R, \bar{R})$ is the unoriented differentiable bordism group. We need the following:

Transversality Theorem (Rourke and Sanderson [13] and Buoncristiano, Rourke and Sanderson [4]). Let M and N be PL-manifolds. Suppose that $f:(M, \partial M) \rightarrow(N, \partial N)$ is a locally flat proper embedding and that X is a subpolyhedron in N. If $f(\partial M) \cap X=\varnothing$ or if $(\partial N, \partial N \cap X)$ is collared in (N, X) and $\partial N \cap X$ is block transverse to $f \mid \partial M: \partial M \rightarrow \partial N$, then there exists an embedding $g: M \rightarrow N$ ambient isotopic to f relative to ∂N such that X is block transverse to g.

Let $f:(M, \partial M) \rightarrow(R, \bar{R})$ be in $\mathfrak{\Re}_{i+\alpha}(R, \bar{R})$. By Transversality Theorem, there exists an embedding $g:(M, \partial M) \rightarrow\left(R \times D^{\beta}, R \times D^{\beta}\right)$ for β sufficiently large such that $g \cong f \times\{0\}$ and that $(\varphi \times \mathrm{id})\left(X \times D^{\beta}\right)$ is block transverse to g. Let $Y=(\varphi \times \mathrm{id})^{-1} \circ g(M)$ and let $\psi: Y \rightarrow X \times D^{\beta}$ be the
inclusion. If $i<k$, then Y is a closed Z_{2}-Euler space by (1) of Lemma 4.3. Define $\left(e_{\varphi}^{k}\right)^{i}(f, M)$ by the modulo 2 Euler number $e(Y)$ of Y. Note that ψ has a normal block bundle ν in $X \times D^{\beta}$ from (1) of Lemma 4.3. Define $\left(\tilde{e}_{6}^{k}\right)^{i}(f, M)$ as $\left(\widetilde{e}_{\varphi}^{k}\right)^{i}(f, M)=\left\langle\psi^{*} w^{(k)}\left(X \times D^{\beta}\right) \cup \widetilde{w}(\nu),[Y]\right\rangle$, where $\widetilde{w}(\nu)$ is the cohomology class determined by $w^{*}(\nu) \cup \widetilde{w}(\nu)=1$. Now define a homomorphism $\left(o_{\varphi}^{k}\right)^{i}: \mathfrak{N}_{i+\alpha}(R, \bar{R}) \rightarrow \boldsymbol{Z}_{2}$ by $\left(o_{\varphi}^{k}\right)^{i}=\left(\widetilde{e}_{\varphi}^{k}\right)^{i}-\left(e_{\varphi}^{k}\right)^{i}$. We can state the main theorem of this paper as follows:

Theorem. Let X be an n-dimensional k-Poincaré-Euler space. Take a regular neighborhood ($R ; \widetilde{R}, \bar{R} ; \varphi$) of X in $\boldsymbol{R}_{+}^{n+\alpha}$. Then $[X] \cap w^{i}(X)=$ $s_{n-i}(X)$ for $i \leqq m$ if and only if $\left(o_{\varphi}^{k}\right)^{i}=0$ for $i \leqq m$, where $m<k$.

We can apply this theorem to k-regular spaces. Let R be a commutative ring with unit. An n-dimensional 1 -Euler space X is an n-dimensional k-regular space over R if a triangulation K of X satisfies the following:
(1) For each σ in $K-\partial K$, if $\operatorname{dim} \sigma=i$, then $H_{j}(L k(\sigma ; K) ; R)=$ $H_{j}\left(S^{n-i-1} ; R\right)$ for $j \leqq k-1$.
(2) For each σ in ∂K, if $\operatorname{dim} \sigma=i$, then $H_{j}(L k(\sigma ; K) ; R)=H_{j}(p t ; R)$ for $j \leqq k-1$.
(3) For each σ in ∂K, if $\operatorname{dim} \sigma=i$, then $H_{j}(L k(\sigma ; \partial K) ; R)=$ $H_{j}\left(S^{n-i-2} ; R\right)$ for $j \leqq k-1$.

An n-dimensional k-regular space over R is R-orientable if $H_{n}^{\mathrm{inf}}\left(X_{\alpha}\right.$, $\left.\partial X_{\alpha} ; R\right)=R$ for each connected component X_{α} of X.

In order to apply our theorem to k-regular spaces, we need the following:

Partial Poincare Duality Theorem (Kato [9]). Let R be a commutative ring with unit. Let X be an n-dimensional k-regular space over R. Suppose that X is R-orientable unless $R=\boldsymbol{Z}_{2}$. Then the cap products $[X]_{n}: H^{i}(X ; R) \rightarrow H_{n-i}(X, X ; R)$ and $[X]_{n}: H^{i}(X, \partial X ; R) \rightarrow H_{n-i}(X ;$ R) are epimorphisms for all $i \leqq k-1$ or $i \geqq n-k$ and monomorphisms for all $i \leqq k$ or $i \geqq n-k+1$. Here H_{*} is the homology theory of infinite chains whenever H^{*} is the ordinary cohomology theory, or H_{*} is the ordinary homology theory whenever H^{*} is the cohomology theory of cochains with compact support.

In [9], Kato prove this theorem in the case of compact k-regular spaces over \boldsymbol{Z}. But since we can prove this theorem by using the same method as in [9], we do not repeat the proof here.

By our theorem and Partial Poincaré Duality Theorem, we have the following:

Corollary. Let X be an n-dimensional k-regular space over \boldsymbol{Z}_{2}. Then $[X] \cap w^{i}(X)=s_{n-i}(X)$ for all $i<k$.

In Section 2, we study the Stiefel-Whitney homology classes of k-Euler spaces and prove a special product formula for the Stiefel-Whitney homology classes. These are necessary to prove Lemma 5.1. The structure of the bordism group of compact k-Euler spaces is given in Proposition 3.1. Lemma 3.1 is necessary to prove Lemma 5.1. In Section 4, we give a characterization of Stiefel-Whitney classes via the unoriented differentiable bordism group. In Section 5, we give a characterization of StiefelWhitney homology classes via the unoriented differentiable bordism group. Our theorem follows from Lemmas 4.1 and 5.1.
2. Stiefel-Whitney homology classes. The purpose of this section is to show that Stiefel-Whitney homology classes of k-Euler spaces is well defined and to prove a special product formula for Stiefel-Whitney homology classes.

In order to prove Propositions 2.2 and 2.3, it is convenient to define k-Euler complexes for ball complexes.

A ball complex K (cf. [4]) is totally n-dimensional if for each σ in K there exists an n-dimensional ball τ in K such that $\sigma \prec \tau$ or $\sigma=\tau$. A totally n-dimensional locally finite ball complex K is an n-dimensional k-Euler complex if there exists a subcomplex L satisfying the same conditions (1), (2), (3) and (4) as in the definition of k-Euler spaces in Section 1. We usually denote ∂K instead of L. An n-dimensional k-Euler complex K is said to be closed if K is a finite complex and ∂K is empty. A polyhedron X is an n-dimensional k-Euler space if there exists an n-dimensional k-Euler complex K such that $X=|K|$. We usually denote ∂X instead of $|\partial K|$. Such definition of k-Euler spaces clearly coincides with that in Section 1.

Let K be a ball complex. The barycentric subdivision \bar{K} of K is defined by $\bar{K}=\left\{\left(\sigma_{0}, \cdots, \sigma_{p}\right) \mid \sigma_{0} \prec \cdots \prec \sigma_{p}, \sigma_{i} \in K\right\}$. Then \bar{K} can be regarded as a ball complex. Denote the p-skeleton of \bar{K} by \bar{K}^{p}. We need the following to prove that Stiefel-Whitney homology classes of k-Euler spaces is well defined:

Proposition 2.1. Let K be an n-dimensional k-Euler complex. Then \bar{K}^{p} are p-dimensional $(p-n+k)$-Euler complexes such that $\partial \bar{K}^{p}=\overline{\partial K^{p-1}}$ for $n-k<p \leqq n$.

In order to prove this proposition, we need the following:
Lemma 2.1. Let K be a totally n-dimensional locally finite ball
complex. If $b \in \bar{K}^{p-1}$, then the cardinality of $\left\{a \in \bar{K}-\bar{K}^{p} \mid a>b\right\}$ is even.
Proof. If $p=n$, then $\bar{K}-\bar{K}^{p}$ is empty. Thus we may assume that $p<n$. Let $a=\left\langle\sigma_{0}, \cdots, \sigma_{s}\right\rangle \in \bar{K}-\bar{K}^{p}$ and let $b=\left\langle\tau_{0}, \cdots, \tau_{t}\right\rangle \in \bar{K}^{p-1}$. Then $s>t+1$. Since the cardinality of $\left\{\sigma \in K \mid \sigma_{0} \prec \sigma \prec \sigma_{1}\right\}$ is even for each $\left\langle\sigma_{0}, \sigma_{1}\right\rangle \in \bar{K}$, the cardinality $\left\{a \in \bar{K}-\bar{K}^{p}|a\rangle b\right\}$ is even for $b \in \bar{K}^{p-1}$. q.e.d.

Proof of Proposition 2.1. Note that the cardinality of $\{b \in \bar{K} \mid a \prec b\}$ equals the sum of the cardinalities of $\left\{b \in \bar{K}^{p} \mid a \prec b\right\}$ and $\left\{b \in \bar{K}-\bar{K}^{p} \mid a \prec b\right\}$ for $a \in \bar{K}$. By Lemma 2.1, the cardinalities of $\{b \in \bar{K} \mid a<b\}$ and $\{b \in$ $\left.\bar{K}^{p} \mid a \prec b\right\}$ are congruent modulo 2 for $a \in \bar{K}^{p-1}$. Therefore \bar{K}^{p} is a p-dimensional $(p-n+k)$-Euler complex such that $\partial \bar{K}^{p}=\overline{\partial K}^{p-1}$ for $p>$ $n-k$.
q.e.d.

Let X be an n-dimensional k-Euler space with a ball complex structure K. Define the i-th Stiefel-Whitney homology classes $s_{i}(X)$ by $s_{i}(X)=j_{*}\left[\left|\bar{K}^{i}\right|\right]$ for $n-k<i \leqq n$, where $j:\left|\bar{K}^{i}\right| \rightarrow X$ are the inclusions. Let $s_{(k)}(X)=s_{n-k+1}(X)+\cdots+s_{n}(X)$. The Stiefel-Whitney homology classes of k-Euler spaces are well defined by the following:

Proposition 2.2. Let K be an n-dimensional k-Euler complex and let L be a subdivision of K. Then $\left(j_{K}\right)_{*}\left[\left|\bar{K}^{i}\right|\right]=\left(j_{L}\right)_{*}\left[\left|\bar{L}^{i}\right|\right]$ for $n-k<$ $i \leqq n$, where j_{K} and j_{L} are the inclusions.

Proof. Define an $(n+1)$-dimensional k-Euler complex W and an n-dimensional k-Euler complex U by $W=(K \times I-K \times\{1\}) \cup(L \times\{1\})$ and $U=(\partial K \times I-\partial K \times\{1\}) \cup(\partial L \times\{1\})$, where $I=\{\{0\},\{1\},[0,1]\}$. We can regard K and L as subcomplexes of W by the identifications $K=K \times\{0\}$ and $L=L \times\{1\}$. Put $\bar{U}^{(i)}=\left(\bar{U}^{i}-\partial \bar{U}\right) \cup \overline{\partial U^{i-1}}$. Then $\bar{U}^{(i)}$ is an i-dimensional $(i-n+k)$-Euler complex in view of Proposition 2.1. Note that \bar{K}^{i} and \bar{L}^{i} are i-dimensional $(i-n+k)$-Euler complexes and that \bar{W}^{i+1} is an $(i+1)$-dimensional $(i-n+k)$-Euler complex such that $\partial \bar{W}^{i+1}=$ $\bar{K}^{i} \cup \bar{U}^{(i)} \cup \bar{L}^{i}$ and $\partial \bar{U}^{(i)}=\partial \bar{K}^{i} \cup \partial \bar{L}^{i}$ by Proposition 2.1. Hence $\left(j_{K}\right)_{*}\left[\left|\bar{K}^{i}\right|\right]=$ $\left(j_{L}\right)_{*}\left[\left|\bar{L}^{i}\right|\right]$.
q.e.d.

The product formula for Stiefel-Whitney homology classes (Halperin and Toledo [7]) may not hold for k-Euler spaces, but we need the following to prove Lemma 5.1.

Proposition 2.3. Let X be an n-dimensional k-Euler space. Then $s_{i}(X) \times[D]=s_{i+1}(X \times D)$ for $n-k<i \leqq n$, where $D=[-1,1]$.

Proof. Let L and \bar{L} be ball complexes defined by $L=\{\{-1\},\{1\}$, $[-1,1]\}$ and $\bar{L}=\{\langle-1\rangle,\langle 1\rangle,\langle 0\rangle,\langle-1,0\rangle,\langle 1,0\rangle\}$. Here $\langle \pm 1\rangle=\langle\{ \pm 1\}\rangle$, $\langle 0\rangle=\langle[-1,1]\rangle$ and $\langle \pm 1,0\rangle=\langle\{ \pm 1\},[-1,1]\rangle$. Then $|L|=D=[-1,1]$
and \bar{L} is the barycentric subdivision of L. Let K be a ball complex such that $X=|K|$. Let $\bar{D}, c_{i}, \tilde{c}_{i+1}$ and d_{i+2} be chains with \boldsymbol{Z}_{2}-coefficients defined as follows: $\bar{D}=\sum_{\varepsilon= \pm 1}\langle\varepsilon, 0\rangle, \quad c_{i}=\sum\left\langle\sigma_{0}, \cdots, \sigma_{i}\right\rangle, \quad \widetilde{c}_{i+1}=\sum\left\langle\left(\sigma_{0}, \varepsilon\right), \cdots\right.$, $\left.\left(\sigma_{p}, \varepsilon\right),\left(\sigma_{p}, 0\right), \cdots,\left(\sigma_{i}, 0\right)\right\rangle+\sum\left\langle\left(\tau_{0}, \varepsilon\right), \cdots,\left(\tau_{p}, \varepsilon\right),\left(\tau_{p+1}, 0\right), \cdots,\left(\tau_{i+1}, 0\right)\right\rangle$ and $d_{i+2}=\sum[p]\left\langle\left(\tau_{0}, \varepsilon\right), \cdots,\left(\tau_{p}, \varepsilon\right),\left(\tau_{p}, 0\right), \cdots,\left(\tau_{i+1}, 0\right)\right\rangle$, where $\left\langle\sigma_{0}, \cdots, \sigma_{i}\right\rangle$ ranges over all i-balls of \bar{K}^{i} while $\left\langle\tau_{0}, \cdots, \tau_{i+1}\right\rangle$ ranges over all $(i+1)$-balls of $\bar{K}^{i+1}, 0 \leqq p \leqq i+1$ and $\varepsilon= \pm 1$. Here $[p]$ is the class of p modulo 2. Then $\partial d_{i+2}-\left(\widetilde{c}_{i+1}-c_{i} \times \bar{D}\right)=\sum[i]\left\langle\left(\tau_{0}, \varepsilon\right), \cdots,\left(\tau_{i+1}, \varepsilon\right)\right\rangle$. Since $\sum_{\varepsilon= \pm 1}\left\langle\left(\tau_{0}\right.\right.$, $\left.\varepsilon), \cdots,\left(\tau_{i+1}, \varepsilon\right)\right\rangle$ is exact for each $\left\langle\tau_{0}, \cdots, \tau_{i+1}\right\rangle$, it follows that $\widetilde{c}_{i+1}-c_{i} \times \bar{D}$ is exact. Note that $s_{1}(D), s_{i}(X)$ and $s_{i+1}(X \times D)$ coincide with the homology classes defined by chains \bar{D}, c_{i} and \widetilde{c}_{i+1}, respectively, for $n-k<i \leqq n$. Thus $s_{i+1}(X \times D)=s_{i}(X) \times[D]$ for $n-k<i \leqq n$. q.e.d.
3. Bordism groups of k-Euler spaces. Let $\left\{\mathfrak{B}_{n}^{k}, \partial\right\}$ be the bordism theory of compact k-Euler spaces for $k>0$. Then $\left\{\mathfrak{B}_{n}^{k}, \partial\right\}$ is a homology theory (See Akin [1].). If $k=\infty$, then $\left\{\mathfrak{B}_{n}^{k}, \partial\right\}$ is the bordism theory of compact \boldsymbol{Z}_{2}-Euler spaces. (See Akin [1] and Matsui [10].) Let (A, B) be a pair of polyhedra. Define a homomorphism $s_{(k)}: \mathfrak{B}_{n}^{k}(A, B) \rightarrow H_{n-k+1}\left(A, B ; \boldsymbol{Z}_{2}\right)+$ $\cdots+H_{n}\left(A, B ; \boldsymbol{Z}_{2}\right)$ by $s_{(k)}(\varphi, X)=\sum_{i=n-k+1}^{n} \varphi_{*} s_{i}(X)$. Then $s_{(k)}$ is well defined by Proposition 2.1. Define a homomorphism $j_{(p, q)}: \mathfrak{B}_{n}^{p}(A, B) \rightarrow \mathfrak{B}_{n}^{q}(A, B)$ by $j_{(p, q)}(\varphi, X)=(\varphi, X)$ for $p \geqq q$. Then the following holds:

Proposition 3.1. The homomorphisms $s_{(k)}: \mathfrak{B}_{n}^{k}(A, B) \rightarrow H_{n-k+1}(A, B ;$ $\left.\boldsymbol{Z}_{2}\right)+\cdots+H_{n}\left(A, B ; \boldsymbol{Z}_{2}\right)$ are isomorphisms for $0<k \leqq n$. The homomorphisms $j_{(p, q)}: \mathfrak{B}_{q}^{p}(A, B) \rightarrow \mathfrak{B}_{p}^{q}(A, B)$ are surjective for $p \geqq q$.

Proof. Put $h_{n}^{(k)}(A, B)=H_{n-k+1}\left(A, B ; \boldsymbol{Z}_{2}\right)+\cdots+H_{n}\left(A, B ; \boldsymbol{Z}_{2}\right)$ for $k>0$. Define the boundary operator $\partial_{n}^{(k)}: h_{n}^{(k)}(A, B) \rightarrow h_{n-1}^{(k)}(B)$ as that of the ordinary homology theory. Then $\left\{h_{n}^{(k)}, \partial_{n}^{(k)}\right\}$ is a homology theory with compact support for $k>0$. Note that $\left\{\mathfrak{B}_{n}^{k}, \partial\right\}$ is also a homology theory with compact support and that $s_{(k)}$ is a homomorphism from $\mathfrak{B}_{n}^{k}(A, B)$ to $h_{n}^{(k)}(A, B)$ such that $\partial_{n}^{(k)} \circ s_{(k)}=s_{(k)} \circ \partial$. Since $h_{n}^{(k)}(p t)=Z_{2}$ and $\mathfrak{B}_{n}^{k}(p t)=$ $\mathfrak{B}_{n}(p t)=\boldsymbol{Z}_{2}\left(\right.$ cf. [10]) for $n=0, \cdots, k-1$, and $h_{n}^{(k)}(p t)=0$ and $\mathfrak{B}_{n}^{k}(p t)=0$ for $n \geqq k$, where $p t$ is the space of one point, the homomorphism $s_{(k)}$ is an isomorphism. (See Spanier [14].)

Let $\pi: h_{n}^{(p)}(A, B) \rightarrow h_{n}^{(q)}(A, B)$ be the canonical projection. Note that $s_{(q)} \circ j_{(p, q)}=\pi \circ s_{(p)}$. Since π is surjective, so is $j_{(p, q)}$. q.e.d.

Let $\xi=(E(\xi), A, \ell)$ be a p-block bundle over a polyhedron A. Define $\bar{E}(\xi)$ as the total space of the sphere bundle associated with ξ. Then we will define a homomorphism $\left(e_{\xi}^{k}\right)^{i}: \mathfrak{B}_{p+i}^{k}(E(\xi), \bar{E}(\xi)) \rightarrow \boldsymbol{Z}_{2}$ for $i<k$, where $\mathfrak{B}_{p+i}^{k}(E(\xi), \bar{E}(\xi))$ is the bordism group of compact k-Euler spaces. Let R be a regular neighborhood of A in \boldsymbol{R}^{α}. Let $j: A \subset R$ be the inclusion and
$p: R \rightarrow A$ be a deformation retraction. Suppose that $p^{*} \xi=\left(E\left(p^{*} \xi\right), R, \iota_{R}\right)$ is the induced bundle. Then there exist bundle maps $(\bar{j}, j):(E(\xi), A) \rightarrow$ $\left(E\left(p^{*} \xi\right), R\right)$ and $(\bar{p}, p):\left(E\left(p^{*} \xi\right), R\right) \rightarrow(E(\xi), A)$. (See Rourke and Sanderson [12].) For each ($\mathcal{\varphi}, X$) in $\mathfrak{B}_{p+i}^{k}(E(\xi), \bar{E}(\xi))$, there exists an embedding $\tilde{\varphi}:(X, \partial X) \rightarrow\left(E\left(p^{*} \xi\right), \bar{E}\left(p^{*} \xi\right)\right)$ such that $\tilde{\varphi} \cong j \circ \varphi$. By the transversality theorem (see [12]), we may assume that $\widetilde{\rho}(X)$ is block transverse to $\iota_{R}: R \rightarrow E\left(p^{*} \xi\right)$. Let $Y=\tilde{\varphi}^{-1} \circ \iota_{R}(R)$. Note that the inclusion $Y \subset X$ has a normal block bundle, the total space of which is an n-dimensional k-Euler space. Then Y is a closed i-dimensional k-Euler space. Hence Y is a closed i-dimensional Z_{2}-Euler space whenever $i<k$. Define $\left(e_{\xi}^{k}\right)^{i}(\varphi, X)$ by the modulo 2 Euler number $e(Y)$ of Y.

To prove Lemma 5.2, we need the following:
Lemma 3.1. Let $\nu=(E, M, \iota)$ be a normal p-block bundle of a proper embedding from a compact q-dimensional triangulated differentiable manifold M to $D^{p+q}=[-1,1]^{p+q}$. Let U_{ν} be the Thom class of ν. Then $\left\langle U_{\nu} \cup\left(\iota^{*}\right)^{-1} w^{*}(M), \varphi_{*} s_{(k)}(X)\right\rangle=\left(e_{\nu}^{k}\right)^{i}(\varphi, X)$ for every (φ, X) in $\mathfrak{B}_{p+i}^{k}(E, \bar{E})$ for $i<k$. Here $s_{(k)}(X)=s_{p+i-k+1}(X)+\cdots+s_{p+i}(X)$.

Proof. The case $k=\infty$ was proved in [10]. By Proposition 3.1, we may assume that X is a \boldsymbol{Z}_{2}-Euler space. Note that $\left(e_{\nu}^{\infty}\right)^{i}(\varphi, X)=\left(e_{\nu}^{k}\right)^{i}(\varphi, X)$ for (φ, X) in $\mathfrak{B}_{p+i}^{\infty}(E, \bar{E})$ for $i<k$. Then $\left\langle U_{\nu} \cup\left(c^{*}\right)^{-1} w^{*}(M), \varphi_{*} s_{(k)}(X)\right\rangle=$ $\left(e_{\nu}^{k}\right)^{i}(\varphi, X)$ for $i<k$, in view of the case $k=\infty$.
q.e.d.
4. A characterization of Stiefel-Whitney classes. The product formula for Stiefel-Whitney classes (see Milnor [11]) may not hold for k-Poincaré-Euler spaces, but we need the following to deduce Lemma 4.1 from Lemma 4.2:

Proposition 4.1. Let X be an n-dimensional k-Poincaré-Euler space. Then $w^{i}(X \times D)=w^{i}(X) \times 1$ for $0 \leqq i<k$, where $D=[-1,1]$.

Proof. Let ($R ; \widetilde{R}, \bar{R} ; \varphi$) be a regular neighborhood of X in $\boldsymbol{R}_{+}^{n+\alpha}$. Let $U(\mathcal{P})$ and $U(\varphi \times \mathrm{id})$ be cohomology classes such that $[R] \cap U(\varphi)=\varphi_{*}[X]$ and $[R \times D] \cap U(\varphi \times \mathrm{id})=(\varphi \times \mathrm{id})_{*}[X \times D]$, where id: $D \rightarrow D$ is the identity. Then $U(\varphi \times \mathrm{id})=U(\varphi) \times 1$. Note that $U(\varphi) \cup\left(\varphi^{*}\right)^{-1} w^{i}(\varphi)=S q^{i} U(\varphi)$ and $U(\varphi \times \mathrm{id}) \cup\left[(\varphi \times \mathrm{id})^{*}\right]^{-1} w^{i}(\varphi \times \mathrm{id})=S q^{i} U(\varphi \times \mathrm{id})$ for $0 \leqq i<k$. Then $U(\varphi \times$ id) $\cup\left[(\varphi \times \mathrm{id})^{*}\right]^{-1}\left(w^{i}(\varphi) \times 1\right)=S q^{i} U(\varphi \times \mathrm{id})$ for $0 \leqq i<k$. Hence $w^{i}(\varphi \times \mathrm{id})=$ $w^{i}(\mathcal{P}) \times 1$ for $0 \leqq i<k$. Thus $w^{i}(X \times D)=w^{i}(X) \times 1$ for $0 \leqq i<k$. q.e.d.

Let ($R ; \widetilde{R}, \bar{R} ; \varphi$) be a regular neighborhood of an n-dimensional k-Poincaré-Euler space X in $\boldsymbol{R}_{+}^{n+\alpha}$. Suppose that $\left(\tilde{e}_{\varphi}^{k}\right)^{i}: \mathfrak{R}_{i+\alpha}(R, \bar{R}) \rightarrow \boldsymbol{Z}_{2}$ is the homomorphism defined for $i<k$ in Section 1 . We need the following to prove our theorem:

Lemma 4.1. For every (f, M) in $\mathfrak{n}_{i+\alpha}(R, \bar{R})$, we have $\langle U(\varphi) \cup$ $\left.\left(\varphi^{*}\right)^{-1} w^{(k)}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\left(\widetilde{e}_{\varphi}^{k}\right)^{i}(f, M)$ whenever $i<k$. Here $w^{(k)}(X)=$ $1+\cdots+w^{k-1}(X)$.

In order to prove Lemma 4.1, we need the following:
Lemma 4.2. Let $f:(M, \partial M) \rightarrow(R, \bar{R})$ be a PL-embedding with a normal block bundle ξ, where M is an $(i+\alpha)$-dimensional triangulated differentiable manifold. If $\varphi(X)$ is transverse to ξ and $i<k$, then $\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} w^{(k)}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\left(\widetilde{e}_{\varphi}^{k}\right)^{i}(f, M)$.

In order to prove Lemmas 4.2 and 5.2, we need the following:
Lemma 4.3. Let ($R ; \widetilde{R}, \bar{R} ; \varphi$) be a regular neighborhood of an n-dimensional k-Poincaré-Euler space X in $\boldsymbol{R}_{+}^{n+\alpha}$. Let M be an $(i+\alpha)$ dimensional triangulated differentiable manifold, where $0 \leqq i<k$. Given a PL-embedding $f:(M, \partial M) \rightarrow(R, \bar{R})$ with a normal block bundle $\xi=$ $\left(E, M, f_{E}\right)$, suppose that $\varphi(X)$ is transverse to ξ. Let U_{ξ} be the Thom class of ξ and $j_{E}: E \rightarrow R$ be the inclusion. Define $Y=\varphi^{-1} \circ f(M)$ and $X_{E}=\varphi^{-1} \circ j_{E}(E)$. Let $\varphi_{E}: X_{E} \rightarrow E$ and $\psi_{M}: Y \rightarrow M$ be embeddings defined by $\varphi_{E}=j_{E}^{-1} \circ \varphi$ and $\psi_{M}=f^{-1} \circ(\varphi \mid Y)$. Then the following hold:
(1) Y is a closed \boldsymbol{Z}_{2}-Euler space with a normal block bundle.
(2) $\left(f_{E}\right)_{*}\left([M] \cap f^{*} U(\varphi)\right)=\left(\varphi_{E}\right)_{*}\left[X_{E}\right] \cap U_{\xi}$.
(3) $[M] \cap f^{*} U(\phi)=\left(\psi_{M}\right)_{*}[Y]$.

Proof. (1) Clearly $\psi_{\mu}^{*} \xi$ is a normal $(n-i)$-block bundle of Y in X. Note that E is an n-dimensional k-Euler space. Then Y is an i dimensional k-Euler space. Hence Y is a Z_{2}-Euler space, since $i<k$. Since M is compact, Y is closed.
(2) Note that $j_{E} \circ f_{E}=f$ and $[E] \cap U_{\xi}=\left(f_{E}\right)_{*}[M]$. Thus $\left(f_{E}\right)_{*}([M] \cap$ $\left.f^{*} U(\varphi)\right)=\left([E] \cap j_{E}^{*} U(\varphi)\right) \cap U_{\xi}$. If $[E] \cap j_{E}^{*} U(\varphi)=\left(\varphi_{E}\right)_{*}\left[X_{E}\right]$, then $\left(f_{E}\right)_{*}([M] \cap$ $\left.f^{*} U(\varphi)\right)=\left(\varphi_{E}\right)_{*}\left[X_{E}\right] \cap U_{\xi}$. Hence we have only to prove $[E] \cap j_{E}^{*} U(\varphi)=$ $\left(\varphi_{E}\right)_{*}\left[X_{E}\right]$. Let $\tilde{R}=\operatorname{cl}\left(R-j_{E}(E)\right)$ and let $j_{R}:(R ; \widetilde{R}, \bar{R}) \rightarrow(R ; \tilde{R}, \bar{R})$ be defined by the inclusion. Regard j_{E} as a map $j_{E}:(E ; \widetilde{E}, \bar{E}) \rightarrow(R ; \bar{R}, \tilde{R})$, where $\widetilde{E}=\operatorname{cl}(\partial E-\bar{E})$. Note that $\left(j_{E}\right)_{*}[E]=\left(j_{R}\right)_{*}[R]$ and $[R] \cap U(\varphi)=$ $\varphi_{*}[X]$. Then $\left(j_{E}\right)_{*}\left([E] \cap\left(j_{E}\right)^{*} U(\varphi)\right)=\left(j_{R}\right)_{*} \circ \varphi_{*}[X]=\left(j_{E}\right)_{*} \circ\left(\varphi_{E}\right)_{*}\left[X_{E}\right]$. Since $\left(j_{E}\right)_{*}: H_{*}\left(E, \bar{E} ; \boldsymbol{Z}_{2}\right) \rightarrow H_{*}\left(R, \tilde{R} ; \boldsymbol{Z}_{2}\right)$ is an isomorphism, we have $[E] \cap$ $\left(j_{E}\right)^{*} U(\varphi)=\left(\varphi_{E}\right)_{*}\left[X_{E}\right]$.
(3) Note that $\left[X_{E}\right] \cap\left(\varphi_{E}\right)_{*} U_{\xi}=\left(\psi_{E}\right)_{*}[Y]$, where $\psi_{E}: Y \rightarrow X_{E}$ is the inclusion. By (2), we have $\left(f_{E}\right)_{*}\left([M] \cap f^{*} U(\rho)\right)=\left(\varphi_{E}\right)_{*} \circ\left(\psi_{E}\right)_{*}[Y]$. Note that $\varphi_{E} \circ \psi_{E}=f_{E} \circ \psi_{M}$ and that $\left(f_{E}\right)_{*}: H_{*}\left(M, \partial M ; \boldsymbol{Z}_{2}\right) \rightarrow H_{*}\left(E, \widetilde{E} ; \boldsymbol{Z}_{2}\right)$ is an isomorphism. Then $[M] \cap f^{*} U(\varphi)=\left(\psi_{M}\right)_{*}[Y]$. q.e.d.

Proof of Lemma 4.2. We use the notation of Lemma 4.3. By (2)
of Lemma 4.3, we have $\left\langle U(\phi) \cup\left(\varphi^{*}\right)^{-1} w^{(k)}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=$ $\left\langle f^{*} \circ\left(\varphi^{*}\right)^{-1} w^{(k)}(X) \cup w^{*}(M),\left(\psi_{M}\right)_{*}[Y]\right\rangle$. Let $\psi_{x}: Y \rightarrow X$ be the inclusion. Note that $f \circ \psi_{M}=\varphi \circ \psi_{x}$. Then $\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} w^{(k)}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=$ $\left\langle\psi_{x}^{*} w^{(k)}(X) \cup \psi^{*}(M),[Y]\right\rangle=\left\langle\psi_{x}^{*} w^{(k)}(X) \cup \psi_{x}^{*} \bar{w}(\xi),[Y]\right\rangle=\left\langle\psi_{x}^{*} w^{(k)}(X) \cup \bar{w}\left(\psi_{u}^{*} \xi\right)\right.$, $[Y]\rangle$. Thus $\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} w^{(k)}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\left(\widetilde{e}_{\varphi}^{k}\right)^{i}(f, M)$ by the definition of $\left(\tilde{\boldsymbol{e}}_{\varphi}^{k}\right)^{i}$.
q.e.d.

Proof of Lemma 4.1. Let (f, M) be in $\mathfrak{M}_{i+\alpha}(R, \bar{R})$. By Transversality Theorem, there exists an embedding $g:(M, \partial M) \rightarrow\left(R \times D^{\beta}, \bar{R} \times D^{\beta}\right)$ such that $g \cong f \times\{0\}$ and $(\varphi \times \mathrm{id})\left(X \times D^{\beta}\right)$ is block transverse to g. By Lemma 4.2, it follows that $\left\langle(U(\varphi) \times 1) \cap\left[(\varphi \times \mathrm{id})^{*}\right]^{-1} w^{(k)}\left(X \times D^{\beta}\right), g_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=$ $\left(\tilde{e}_{\varphi}^{k}\right)^{i}(f, M)$. Note that $w^{(k)}\left(X \times D^{\beta}\right)=w^{(k)}(X) \times 1$ by Proposition 4.1. Hence $\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} w^{(k)}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\left\langle(U(\varphi) \times 1) \cup\left[(\varphi \times \mathrm{id})^{*}\right]^{-1} w^{(k)}\left(X \times D^{\beta}\right)\right.$, $\left.g_{*}\left([M] \cap w^{*}(M)\right)\right\rangle$. Thus $\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} w^{(k)}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\left(\widetilde{e}_{\varphi}^{k}\right)^{i}(f$, M).
q.e.d.

A characterization of Stiefel-Whitney classes is given by Lemma 4.1 and the following:

Lemma 4.4. Let (A, B) be a pair of polyhedra. Let Φ^{i} be in $H^{i}(A$, $\left.B ; \boldsymbol{Z}_{2}\right)$ for $i=0,1, \cdots, k-1$. Put $\Phi^{(k)}=\Phi^{0}+\cdots+\Phi^{k-1}$. If $\left\langle\Phi^{(k)}, f_{*}([M] \cap\right.$ $\left.\left.w^{*}(M)\right)\right\rangle=0$ for every (f, M) in $\mathfrak{N}_{*}(A, B)$, then $\Phi^{(k)}=0$.

Proof. Since $\left\langle\Phi^{(k)}, f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\left\langle\Phi^{0}, f_{*}[M]\right\rangle$ for $(f, M) \in \mathfrak{N}_{0}(A$, B), the assumption $\left\langle\Phi^{(k)}, f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=0$ for every (f, M) implies $\Phi^{0}=0$. Suppose that $\Phi^{0}=0, \Phi^{1}=0, \cdots, \Phi^{j}=0$. Then $\left\langle\Phi^{(k)}, f_{*}([M] \cap\right.$ $\left.\left.w^{*}(M)\right)\right\rangle=\left\langle\Phi^{j+1}, f_{*}[M]\right\rangle$ for $(f, M) \in \mathfrak{N}_{j+1}(A, B)$. Hence, if $\left\langle\Phi^{(k)}, f_{*}([M] \cap\right.$ $\left.\left.w^{*}(M)\right)\right\rangle=0$ for every (f, M), it follows that $\Phi^{j+1}=0$. By induction on j, we have $\Phi^{(k)}=0$.
q.e.d.
5. Characterizations of Stiefel-Whitney homology classes. Let ($R ; \widetilde{R}, \bar{R} ; \varphi$) be a regular neighborhood of an n-dimensional k-PoincaréEuler space X in $\boldsymbol{R}_{+}^{n+\alpha}$. Suppose that $\left(e_{\phi}^{k}\right)^{i}: \mathfrak{N}_{i+\alpha}(R, \bar{R}) \rightarrow \boldsymbol{Z}_{2}$ is the homomorphism defined for $i<k$ in Section 1. We need the following to prove our theorem:

Lemma 5.1. For every (f, M) in $\mathfrak{N}_{i+\alpha}(R, \bar{R})$, we have $\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1}\right.$ 。 $\left.\left([X]_{\cap}\right)^{-1} s_{(k)}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\left(e_{\varphi}^{k}\right)^{i}(f, M)$, whenever $\quad i<k$. Here $s_{(k)}(X)=s_{n-k+1}(X)+\cdots+s_{n}(X)$.

In order to prove this, we need the following:
Lemma 5.2. Let $f:(M, \partial M) \rightarrow(R, \bar{R})$ be a PL-embedding with a normal block bundle ξ, where M is an $(i+\alpha)$-dimensional triangulated differentiable manifold. If $\varphi(X)$ is transverse to ξ and $i<k$, then
$\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} \circ\left([X]_{\cap}\right)^{-1} s_{(k)}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\left(e_{\varphi}^{k}\right)^{i}(f, M)$.
Proof. We use the notation of Lemma 4.3. By (2) of Lemma 4.3, we have $\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} \circ\left([X]_{\cap}\right)^{-1} s_{(k)}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\left\langle w^{*}(M) \cup f^{*}\right.$ 。 $\left.\left(\varphi^{*}\right)^{-1} \circ\left([X]_{\cap}\right)^{-1} s_{(k)}(X),\left(f_{E}\right)_{*}^{-1}\left(\left(\varphi_{E}\right)_{*}\left[X_{E}\right] \cap U_{\xi}\right)\right\rangle$. Note that $j_{E} \circ f_{E}=f$. Then $\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} \circ\left([X]_{\cap}\right)^{-1} s_{(k)}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\left\langle U_{\xi} \cup\left(f_{E}^{*}\right)^{-1} w^{*}(M),\left(\left(\varphi_{E}\right)_{*}\right.\right.$ $\left.\left.\left[X_{E}\right]\right) \cap j_{E}^{*} \circ\left(\mathscr{P}^{*}\right)^{-1} \circ\left([X]_{\cap}\right)^{-1} s_{(k)}(X)\right\rangle$. Since there exists the following commutative diagram

and since $[X]_{n}, \varphi^{*}$ and $\left(j_{E}\right)_{*}$ are isomomorphisms for $i<k$, we have $\left(\left(\mathcal{P}_{E}\right)_{*}\left[X_{E}\right]\right) \cap j_{E}^{*} \circ\left(\mathscr{P}^{*}\right)^{-1} \circ\left([X]_{\cap}\right)^{-1} s_{(k)}(X)=\left[\left(j_{E}\right)_{*}\right]^{-1} \circ \bar{\varphi}_{*} s_{(k)}(X)=\left(\varphi_{E}\right)_{*} s_{(k)}\left(X_{E}\right)$. Let $\left(e_{\xi}^{k}\right)^{i}: \mathfrak{B}_{n}(E, \bar{E}) \rightarrow \boldsymbol{Z}_{2}$ be the homomorphism defined in Section 3. Then $\left\langle U_{\xi} \cup\left(f_{E}^{*}\right)^{-1} w^{*}(M),\left(\varphi_{E}\right)_{*} s_{(k)}\left(X_{E}\right)\right\rangle=\left(e_{\xi}^{k}\right)^{i}\left(\varphi_{E}, X_{E}\right)$ by Lemma 3.1. Note that $\left(e_{\varphi}^{k}\right)^{i}(f, M)=\left(e_{\xi}^{k}\right)^{i}\left(\varphi_{E}, X_{E}\right)$ by definition. Thus $\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} \circ\left([X]_{\cap}\right)^{-1} s_{(k)}(X)\right.$, $\left.f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\left(e_{\varphi}^{k}\right)(f, M)$.
q.e.d.

Proof of Lemma 5.1. Let (f, M) be in $\mathfrak{R}_{i+\alpha}(R, \bar{R})$. Then there exists an embedding $g:(M, \partial M) \rightarrow\left(R \times D^{\beta}, \bar{R} \times D^{\beta}\right)$ such that $g \cong f \times\{0\}$ and ($\varphi \times \mathrm{id}$) $\left(X \times D^{\beta}\right)$ is block transverse to g by Transversality Theorem. By Lemma 5.2 , we have $\left\langle(U(\varphi) \times 1) \cup\left[(\varphi \times \mathrm{id})^{*}\right]^{-1} \circ\left(\left[X \times D^{\beta}\right]_{\cap}\right)^{-1} s_{(k)}\left(X \times D^{\beta}\right)\right.$, $\left.g_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\left(e_{\varphi}^{k}\right)^{i}(f, M)$ for $i<k$. Note that $s_{(k)}\left(X \times D^{\beta}\right)=s_{(k)}(X) \times$ $\left[D^{\beta}\right]$ by Proposition 2.3. Then $\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} \circ\left([X]_{\cap}\right)^{-1} s_{(k)}(X), f_{*}([M] \cap\right.$ $\left.\left.w^{*}(M)\right)\right\rangle=\left\langle(U(\varphi) \times 1) \cup\left[(\varphi \times \mathrm{id})^{*}\right]^{-1} \circ\left(\left[X \times D^{\beta}\right]_{\cap}\right)^{-1} s_{(k)}\left(X \times D^{\beta}\right), g_{*}\left([M] \cap w^{*}(M)\right)\right\rangle$. Thus $\left\langle U(\varphi) \cup\left(\varphi^{*}\right)^{-1} \circ\left([X]_{\cap}\right)^{-1} s_{(k)}(X), f_{*}\left([M] \cap w^{*}(M)\right)\right\rangle=\left(e_{\varphi}^{k}\right)^{i}(f, M)$ for $i<k$. q.e.d.

Proof of Theorem. If $[X] \cap w^{i}(X)=s_{n-i}(X)$ for $i \leqq m$, then $\left(e_{\varphi}^{k}\right)^{i}(f, M)=\left(\widetilde{e}_{\varphi}^{k}\right)^{i}(f, M)$ for $i \leqq m$ by Lemmas 4.1 and 5.1. This means $\left(o_{\varphi}^{k}\right)^{i}=0$ for $i \leqq m$. Conversely, suppose that $\left(o_{\varphi}^{k}\right)^{i}=0$ for $i \leqq m$. By Lemmas 4.1, 4.4 and 5.1, we have $U(\varphi) \cup\left(\varphi^{*}\right)^{-1} w^{i}(X)=U(\varphi) \cup\left(\varphi^{*}\right)^{-1} 。$ $\left([X]_{\cap}\right)^{-1} s_{n-i}(X)$ for $i \leqq m$. Since $U(\varphi) \cup\left(\varphi^{*}\right)^{-1}$ and $[X]_{\cap}$ are isomorphisms for $\mathrm{m}<k$, we have $[X] \cap w^{i}(X)=s_{n-i}(X)$ for $\mathrm{i} \leqq m$.
q.e.d.

Proof of Corollary. Note that k-regular spaces over \boldsymbol{Z}_{2} are k-Euler spaces by the consideration of the definitions. Then k-regular spaces over \boldsymbol{Z}_{2} are k-Poincaré-Euler spaces by Partial Poincaré Duality Theorem. Let $\psi: Y \rightarrow X \times D^{\beta}$ be the embedding used to define $\left(e_{\varphi}^{k}\right)^{i}$ and $\left(\widetilde{e}_{\varphi}^{k}\right)^{i}$. Note that ψ has a normal block bundle ν in $X \times D^{\beta}$. Then Y is an i-dimensional k-regular space. Since Y is compact and $i<k$, it follows that Y is a
closed Z_{2}-homology manifold. Hence $\psi^{*} w^{(k)}\left(X \times D^{\beta}\right)=w^{*}(Y) \cup w^{*}(\nu)$. Thus $\left(o_{\varphi}^{k}\right)^{i}=0$ in view of the definition of $\left(e_{\varphi}^{k}\right)^{i}$ and $\left(\widetilde{e}_{\varphi}^{k}\right)^{i}$. Hence $[X] \cap w^{i}(X)=$ $s_{n-i}(X)$ for $i<k$ by Theorem.
q.e.d.

References

[1] E. Akin, Stiefel-Whitney homology classes and cobordism, Trans, Amer. Math. Soc. 205 (1975), 341-359.
[2] J. D. Blanton and P. A. Schweitzer, Axiom for characteristic classes of manifolds, Proc. Symp. in Pure Math. 27 (1975), Amer. Math. Soc., 349-356.
[3] J. D. Blanton and C. McCrory, An axiomatic proof of Stiefel conjecture, Proc. Amer. Math. Soc. 77 (1979), 409-414.
[4] S. Buoncristiano, C. R. Rourke and B. J. Sanderson, A geometric approach to homology theory, London Math. Soc. Lecture Notes, 18, 1976.
[5] J. Cheeger, A combinatorial formula for Stiefel-Whitney classes, in Topology of Manifolds, (Cantrel and Edward, eds.), Markham Publ., 1970, 470-471.
[6] S. Halperin and D. Toledo, Stiefel-Whitney homology classes, Ann. of Math. 96 (1972), 511-525.
[7] S. Halperin and D. Toledo, The product formula for Stiefel-Whitney homology classes, Proc. of Amer. Math. Soc. 48 (1975), 239-244.
[8] J. F. P. Hudson, Piecewise Linear Topology, Benjamin, New York, 1969.
[9] M. Kato, Topology of k-regular spaces and algebraic sets, Manifolds Tokyo 1973, Univ. of Tokyo Press (1975), 153-159.
[10] A Matsui, Stiefel-Whitney homology classes of \boldsymbol{Z}_{2}-Poincaré-Euler spaces, Tôhoku Math. J. 35 (1983), 321-339.
[11] J. Milnor and J. Stasheff, Characteristic classes, Ann. of Math. Studies 76, Princeton Univ. Press., 1974.
[12] C. P. Rourke, Block structures of in geometric and algebraic topology, Actes, Congress intern. Math. Nice. (1970), 127-132.
[13] C. P. Rourke and B. J. Sanderson, Block boundles, I and II, Ann. of Math. 87 (1968), 1-28 and 255-277.
[14] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[15] L. Taylor, Stiefel-Whitney homology classes, Quart. J. Oxford 28 (1977), 381-387.
[16] H. Whitney, On the theory of sphere bundles, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 148-153.

Ichinoseki Technical College
Ichinoseki, 021
Japan

