# CHARACTERIZATION OF QUASI-DISKS AND TEICHMÜLLER SPACES 

Hiroshige Shiga

(Received November 16, 1984)

1. Introduction and main results. A simply connected domain in the Riemann sphere $\hat{\boldsymbol{C}}$ is called a quasi-disk if it is the image of the unit disk by a quasiconformal automorphism of the sphere. Since Ahlfors' investigation [2] in 1963, several characteristic properties of quasi-disks have been studied by many authors. As a result, quasi-disks are related to various topics in analysis. A bird's eye view of these studies are given in Gehring [9]. Among them, the topics with which we are concerned in this article are the BMO extension property and the Schwarzian derivative property.

Let $W$ be a domain in $C$. Then $f \in L_{1 \mathrm{ioc}}^{1}(W)$ belongs to $\mathrm{BMO}(W)$ if

$$
\|f\|_{*, W}=\sup _{B \subset W} \frac{1}{|B|} \int_{B}\left|f-f_{B}\right| d x d y<+\infty
$$

where $B$ is a disk in $W$ with $\bar{B} \subset W,|B|=\int_{B} d x d y$ and $f_{B}=|B|^{-1} \int_{B} f d x d y$.
Let $\mathscr{F}$ be a subclass of $\operatorname{BMO}(W)$. $\stackrel{B}{W}$ We say that $W$ has the BMO extension property for $\mathscr{F}$ if there exists a constant $C_{1}>0$ such that for every $f \in \mathscr{F}$ there is an $F \in \operatorname{BMO}(\boldsymbol{C})$ with $F \mid W=f$ and

$$
\begin{equation*}
\|F\|_{*, c} \leqq C_{1}\|f\|_{*, W} \tag{1.1}
\end{equation*}
$$

Jones [11] has shown that a simply connected domain $\Delta(\neq \boldsymbol{C})$ in $\boldsymbol{C}$ is a quasi-disk if and only if $\Delta$ has the BMO extension property for BMO(4) (see also Gehring [9]).

In the first part, we shall strengthen the "if" part of Jones' result.
THEOREM 1. Let $\Delta(\neq \boldsymbol{C})$ be a simply connected domain in $\boldsymbol{C}$. If $\Delta$ has the BMO extension property for $\operatorname{ABD}(\Delta)$, then $\Delta$ is a quasi-disk, where $\mathrm{ABD}(\Delta)$ is the space of all bounded holomorphic functions in $\Delta$ with finite Dirichlet integrals.

In the second part, we shall investigate Teichmuiller spaces of Fuchsian groups and the Schwarzian derivative property, independently

[^0]of Theorem 1. Let $\Gamma$ be a finitely generated Fuchsian group of the first kind acting on the upper half plane $U$ and let $T(\Gamma)$ be the Teichmuiller space of $\Gamma$. It is well known (cf. Bers [4]) that $\operatorname{dim} T(\Gamma)<+\infty$ and $T(\Gamma)$ can be idenified with a bounded domain in the Banach space $\mathrm{B}_{2}(L, \Gamma)$ of all holomorphic functions $\phi$ on the lower half plane $L$ which satisfy
\[

$$
\begin{aligned}
& \phi(\gamma(z)) \gamma^{\prime}(z)^{2}=\phi(z) \text { for all } \quad \gamma \in \Gamma \quad \text { and } \\
& \|\phi\|=\sup _{z \in L}(\operatorname{Im} z)^{2}|\phi(z)|<+\infty
\end{aligned}
$$
\]

For every $\phi$ in $B_{2}(L, \Gamma)$ there exists a meromorphic function $W_{\phi}$ defined on $L$ such that the Schwarzian derivative $\left\{W_{\phi}, z\right\}$ of $W_{\phi}$ on $L$ is equal to $\phi(z)$ and $W_{\phi}$ satisfies the condition

$$
W_{\phi}(z)=(z+i)^{-1}+O(|z+i|) \quad \text { as } \quad z \rightarrow-i
$$

We denote by $S(\Gamma)$ the set of all $\phi$ in $B_{2}(L, \Gamma)$ such that $W_{\phi}$ is univalent on $L$. It is known that $S(\Gamma)$ is closed and contains $T(\Gamma) \cup \partial T(\Gamma)$. For every $\phi$ in $B_{2}(L, \Gamma)$, $W_{\phi}$ yields a homomorphism $\chi_{\phi}$ of $\Gamma$ with $W_{\phi} \circ \gamma=$ $\chi_{\phi}(\gamma) \circ W_{\phi}(\gamma \in \Gamma)$, and if $\phi$ is in $S(\Gamma)$, then $\Gamma^{\phi}=\chi_{\phi}(\Gamma)=W_{\phi} \Gamma W_{\phi}^{-1}$ is a Kleinian group. Furthermore, if $\phi$ is in $T(\Gamma)$, then $\Gamma^{\phi}$ is a quasi-Fuchsian group, i.e., a Kleinian group with two simply connected invariant components.

We shall show a relation between $S(\Gamma)$ and $T(\Gamma)$.
Theorem 2. Int $S(\Gamma)$, the interior of $S(\Gamma)$ on $B_{2}(L, \Gamma)$, is connected and is equal to $T(\Gamma)$.

In the proof of Theorem 2, the " $\lambda$-lemma" (cf. Mañé, Sad and Sullivan [13]) will play an important role.

Corollary. Let $\Delta$ be a simply connected invariant component of a finitely generated non-elementary Kleinian group $G$. Then $\Delta$ is a quasidisk if and only if there exists a constant $C_{2}>0$ such that every meromorphic function $f$ on $\Delta$ satisfying

$$
\begin{equation*}
\left|\{f, z\}_{\Delta}\right| \leqq C_{2} \rho_{\Delta}(z)^{2} \tag{1.2}
\end{equation*}
$$

and $\{f, g(z)\}_{A} g^{\prime}(z)^{2}=\{f, z\}_{\Delta}$ for all $g \in G$, is univalent, where $\{f, z\}_{\Delta}$ is the Schwarzian derivative of $f$ in $\Delta$ and $\rho_{\Delta}(z)|d z|$ is the Poincare metric on $\Delta$.

When $G=$ \{id.\}, Gehring [8] obtained a similar property of quasi-disks called the Schwarzian derivative property,

Furthermore, we shall obtain a geometric property of $T(\Gamma)$ which is an extension of a result in [19].

Theorem 3. Let $\Gamma, T(\Gamma)$ and $B_{2}(L, \Gamma)$ be as above, and let $H$ be a
hyperplane in $B_{2}(L, \Gamma)$. Then $H-H \cap \overline{T(\Gamma)}$ is connected and $\hat{\partial}(H-H \cap$ $\overline{T(\Gamma))}=H \cap \partial T(\Gamma)$, where $\hat{\partial}$ is the boundary operator considered in $H$. In particular, Ext $T(\Gamma)$, the exterior of $T(\Gamma)$ in $B_{2}(L, \Gamma)$, is connected and $\partial(\operatorname{Ext} T(\Gamma))=\partial T(\Gamma)$.

In the last part, we shall touch upon some results related to the above topics. In fact, we shall extend Theorem 1 to a finitely connected Jordan domain (Theorem 4) and we shall study some properties of Teichmüller spaces (Theorems 5 and 6). Especially, Theorem 5, which shows the complexity of boundaries of Teichmüller spaces in Bers' embedding, is a (strongly) negative answer to a conjecture of Bers [5].

## 2. Proof of Theorem 1.

Lemma 1. Let $\Delta(\neq \boldsymbol{C})$ be a simply connected domain in $\boldsymbol{C}$. Then there exists a constant $C_{3}>0$ such that for every harmonic function $u$ in $\Delta$ with the finite Dirichlet integral $D_{\Delta}(u)$,

$$
\begin{equation*}
\|u\|_{*, \Delta} \leqq C_{3} D_{\Delta}(u)^{1 / 2} \tag{2.1}
\end{equation*}
$$

holds.
Proof. From Reimann's theorem (cf. [18]) asserting the quasiconformal invariance of BMO, we may assume that $\Delta$ in the unit disk. For a fixed $r>0$ we consider a disk $B$ in $\Delta$ such that the center is $z_{0} \in \Delta$ and the hyperbolic diameter is not greater than $r$. Then we have for all $z$ in $B$

$$
\left|u(z)-u\left(z_{0}\right)\right| \leqq \mathrm{d}_{H}^{4}\left(z, z_{0}\right) \mathrm{D}_{\Delta}(u)^{1 / 2}
$$

where $\mathrm{d}_{H}^{4}\left(z, z_{0}\right)=\sup \left\{\left|v(z)-v\left(z_{0}\right)\right| ; v\right.$ is harmonic in $\Delta$ and $\left.\mathrm{D}_{\Delta}(v) \leqq 1\right\}$. It is known that $\mathrm{d}_{H}^{4}\left(z, z_{0}\right) \leqq \pi^{-1 / 2} \int_{z_{0}}^{z} \rho_{\Delta}(z)|d z| \leqq r \pi^{-1 / 2}$ (cf. Minda [15]). Hence

$$
\begin{aligned}
\frac{1}{|B|} \int_{B}\left|u(z)-u_{B}\right| d x d y & =\frac{1}{|B|} \int_{B}\left|u(z)-u\left(z_{0}\right)\right| d x d y \\
& \leqq \frac{1}{|B|} \int_{B} r\left(\mathrm{D}_{\Delta}(u) / \pi\right)^{1 / 2} d x d y=r\left(\mathrm{D}_{\Delta}(u) / \pi\right)^{1 / 2}
\end{aligned}
$$

Therefore, from [18, I-B, Hilfssatz 2] and its proof, we have the desired assertion (2.1).
q.e.d.

Lemma 2. Let $\Delta(\neq \boldsymbol{C})$ be a simply connected domain in $\boldsymbol{C}$ having the BMO extension property for $\mathrm{ABD}(\Delta)$. For $z_{1}, z_{2}$ in $\Delta$, set

$$
\mathrm{j}_{\Delta}\left(z_{1}, z_{2}\right)=\log \left(\frac{\left|z_{1}-z_{2}\right|}{\mathrm{d}\left(z_{1}, \partial \Delta\right)}+1\right)\left(\frac{\left|z_{1}-z_{2}\right|}{\mathrm{d}\left(z_{2}, \partial \Delta\right)}+1\right)
$$

where $\mathrm{d}(\cdot, \cdot)$ is the Euclidean distance. Then

$$
\begin{equation*}
\mathrm{h}_{\Delta}\left(z_{1}, z_{2}\right) \leqq(\pi / 2)\left(C_{1} C_{3} e^{2}\right)^{2}\left(\mathrm{j}_{\Delta}\left(z_{1}, z_{2}\right)+2\right)^{2}+\log 2, \tag{2.2}
\end{equation*}
$$

where $\mathrm{h}_{\Delta}(\cdot, \cdot)$ is the Poincaré distance in $\Delta$, and $C_{1}$ and $C_{3}$ are the constant as in (1.1) and (2.1), respectively.

Proof. For $z_{1}, z_{2}$ in $\Delta$ there exists a harmonic function $u$ such that $\mathrm{D}_{\Delta}(u)=1, u\left(z_{1}\right)=0$ and $u\left(z_{2}\right)=\mathrm{d}_{H}^{4}\left(z_{1}, z_{2}\right)$. Since $\Delta$ is conformally equivalent to the unit disk, it is well known (cf. Minda [15]) that

$$
\begin{equation*}
u\left(z_{2}\right)^{2}=\mathrm{d}_{H}^{A}\left(z_{1}, z_{2}\right)^{2}=(2 / \pi) \log \cosh \mathrm{h}_{\Delta}\left(z_{1}, z_{2}\right) \leqq(2 / \pi)\left(\mathrm{h}_{\Delta}\left(z_{1}, z_{2}\right)-\log 2\right) . \tag{2.3}
\end{equation*}
$$

Furthermore, $u$ is $\operatorname{Re} f$ for some $f \in \operatorname{ABD}(\Delta)$, because $u$ is harmonic on a neighbourhood of $\bar{\Delta}$ when $\Delta$ is the unit disk. Hence $u$ has an extension $U \in \operatorname{BMO}(C)$ satisfying (1.1). Let $B_{j}$ be the disk of radius $\mathrm{d}\left(z_{j}, \partial \Delta\right)$ centered at $z_{j}(j=1,2)$. From Lemma 1 and the argument in Gehring [9, Chap. III, 10.2], we have

$$
\begin{aligned}
\left|U_{B_{1}}-U_{B_{2}}\right| & \leqq\left(e^{2} \mathrm{j}_{\Delta}\left(z_{1}, z_{2}\right)+2 e^{2}\right)\|U\|_{*, c} \leqq C_{1} e^{2}\left(\mathrm{j}_{\Delta}\left(z_{1}, z_{2}\right)+2\right)\|u\|_{*, \Delta} \\
& \leqq C_{1} C_{3} e^{2}\left(\mathrm{j}_{\Delta}\left(z_{1}, z_{2}\right)+2\right) \mathrm{D}_{\Delta}(u)^{1 / 2}=C_{1} C_{3} e^{2}\left(\mathrm{j}_{\Lambda}\left(z_{1}, z_{2}\right)+2\right)
\end{aligned}
$$

On the other hand, $U_{B_{1}}=u\left(z_{1}\right)=0$ and $U_{B_{2}}=u\left(z_{2}\right)$, because $B_{1}$ and $B_{2}$ are contained in $\Delta$. Therefore,

$$
\begin{equation*}
0 \leqq u\left(z_{2}\right) \leqq C_{1} C_{3} e^{2}\left(\mathrm{j}_{\Delta}\left(z_{1}, z_{2}\right)+2\right) \tag{2.4}
\end{equation*}
$$

By (2.3) and (2.4) we have the desired inequality (2.2).
Proof of Theorem 1. We shall show that $\Delta$ has the hyperbolic segment property, that is, there exist constants $A$ and $B$ such that for every $z_{1}, z_{2}$ in $\Delta\left(z_{1} \neq z_{2}\right)$ and for all $z \in \alpha$

$$
\begin{equation*}
l(\alpha) \leqq A\left|z_{1}-z_{2}\right| \quad \text { and } \quad \min _{j=1,2} l\left(\alpha_{i}\right) \leqq B \mathrm{~d}(z, \partial \Delta) \tag{2.5}
\end{equation*}
$$

where $\alpha$ is the hyperbolic segment from $z_{1}$ to $z_{2}, l(\alpha)$ is the Euclidean length of $\alpha$ and $\alpha_{j}(j=1,2)$ are components of $\alpha-\{z\}$. If this is done, Theorem 1 is proved, because a simply connected domain with the hyperbolic segment property is a quasi-disk ([9, Chap. III]).

Set $r=\min \left(\sup _{z \in \alpha} \mathrm{~d}(z, \partial \Delta), 2\left|z_{1}-z_{2}\right|\right)$. First, we suppose that $r \leqq$ $\max _{j=1,2} \mathrm{~d}\left(z_{j}, \partial \Delta\right)$. Let $m_{j}(j=1,2)$ be the largest integers for which $2^{m_{j}} \mathrm{~d}\left(z_{j}, \partial \Delta\right) \leqq r$ and let $w_{j}(j=1,2)$ be the nearest point on $\alpha$ from $z_{j}$ satisfying $\mathrm{d}\left(w_{j}, \partial \Delta\right)=2^{m_{j}} \mathrm{~d}\left(z_{i}, \partial \Delta\right)$. Obviously, we may assume that $\mathrm{d}\left(w_{1}, \partial \Delta\right) \leqq \mathrm{d}\left(w_{2}, \partial \Delta\right)$. Then there exist constants $B_{1}, B_{2}$ which do not depend on $\alpha$ and the following inequalities hold.

$$
\begin{align*}
& l\left(\alpha\left(z_{j}, w_{j}\right)\right) \leqq B_{1} \mathrm{~d}\left(w_{j}, \partial \Delta\right) \\
& l\left(\alpha\left(z_{j}, z\right)\right) \leqq B_{1} \mathrm{~d}(z, \partial \Delta) \text { for all } z \in \alpha\left(z_{i}, w_{j}\right) \tag{2.6}
\end{align*}
$$

and

$$
\begin{align*}
& l\left(\alpha\left(w_{1}, w_{2}\right)\right) \leqq B_{2} \mathrm{~d}\left(w_{1}, \partial \Delta\right),  \tag{2.7}\\
& \mathrm{d}\left(w_{2}, \partial \Delta\right) \leqq B_{2} \mathrm{~d}(z, \partial \Delta) \text { for all } z \in \alpha\left(w_{1}, w_{2}\right),
\end{align*}
$$

where $\alpha\left(z, z^{\prime}\right)\left(z, z^{\prime} \in \alpha\right)$ stands for the open subarc of $\alpha$ from $z$ to $z^{\prime}$.
Our proofs of the inequalities (2.6) and (2.7) are slight modifications of those for the inequalities (4) and (9) given in [9, Chap. III, 11.3]. But for completeness, we shall give them.

In showing the inequality (2.6), we may assume that $j=1$ and $m_{1} \geqq 1$. Now, we take points $z_{1}=\zeta_{1}, \zeta_{2}, \cdots, \zeta_{m_{1}}, \zeta_{m_{1}+1}=w_{1}$ on $\alpha\left(z_{1}, w_{1}\right)$ so that $\zeta_{k}$ is the nearest point from $z_{1}$ on $\alpha\left(z_{1}, w_{1}\right)$ satisfying $\mathrm{d}\left(\zeta_{k}, \partial \Delta\right)=2^{k-1} \mathrm{~d}\left(z_{1}, \partial \Delta\right)$. Then fix $k$ and set $t=l\left(\alpha\left(\zeta_{k}, \zeta_{k+1}\right)\right)\left(\mathrm{d}\left(\zeta_{k}, \partial \Delta\right)\right)^{-1}$. We have

$$
\begin{align*}
t & \leqq\left(\mathrm{~d}\left(\zeta_{k}, \partial \Delta\right)\right)^{-1} \int_{\alpha\left(\zeta_{k}, \zeta_{k+1}\right)}|d z| \leqq 2 \int_{\alpha\left(\zeta_{k}, \zeta_{k+1}\right)}(\mathrm{d}(z, \partial \Delta))^{-1}|d z|  \tag{2.8}\\
& \leqq 4 \mathrm{~h}_{\Delta}\left(\zeta_{k}, \zeta_{k+1}\right),
\end{align*}
$$

because $(2 \mathrm{~d}(z, \partial \Delta))^{-1} \leqq \rho_{\Delta}(z)$ and $\mathrm{d}(z, \partial \Delta) \leqq \mathrm{d}\left(\zeta_{k+1}, \partial \Delta\right)=2 \mathrm{~d}\left(\zeta_{k}, \partial \Delta\right)$ for $z \in$ $\alpha\left(\zeta_{k}, \zeta_{k+1}\right)$. Hence

$$
\begin{align*}
\mathrm{j}_{\Delta}\left(\zeta_{k}, \zeta_{k+1}\right) & =\log \left(\frac{\left|\zeta_{k}-\zeta_{k+1}\right|}{\mathrm{d}\left(\zeta_{k}, \partial \Delta\right)}+1\right)\left(\frac{\left|\zeta_{k}-\zeta_{k+1}\right|}{\mathrm{d}\left(\zeta_{k+1}, \partial \Delta\right)}+1\right)  \tag{2.9}\\
& \leqq 2 \log \left(\frac{\left|\zeta_{k}-\zeta_{k+1}\right|}{\mathrm{d}\left(\zeta_{k}, \partial \Delta\right)}+1\right) \leqq 2 \log (t+1)
\end{align*}
$$

By (2.2), (2.8) and (2.9) we have

$$
t / 4 \leqq \mathrm{~h}_{\Delta}\left(\zeta_{k}, \zeta_{k+1}\right) \leqq(\pi / 2)\left(C_{1} C_{3} e^{2}\right)^{2}\left(\mathrm{j}_{\Delta}\left(\zeta_{k}, \zeta_{k+1}\right)+2\right)^{2}+\log 2
$$

and

$$
\begin{equation*}
t \leqq 8 \pi\left(C_{1} C_{3} e^{2}\right)^{2}(\log (t+1) e)^{2}+4 \log t \tag{2.10}
\end{equation*}
$$

Obviously, the range of $t$ satisfying (2.10) is bounded and depends only on $C_{1}$ and $C_{3}$. Therefore, there exist constants $C_{4}$ and $C_{5}$ depending only on $C_{1}$ and $C_{3}$ such that $t \leqq C_{4}$ and $\mathrm{h}_{4}\left(\zeta_{k}, \zeta_{k+1}\right) \leqq C_{5}$. Thus we have

$$
\begin{align*}
& l\left(\alpha\left(\zeta_{k}, \zeta_{k+1}\right)\right) \leqq C_{4} \mathrm{~d}\left(\zeta_{k}, \partial \Delta\right) \\
& \mathrm{d}\left(\zeta_{k+1}, \partial \Delta\right) \leqq \mathrm{d}(z, \partial \Delta) \exp \left(2 C_{5}\right) \quad \text { for } \quad z \in \alpha\left(\zeta_{k}, \zeta_{k+1}\right) \tag{2.11}
\end{align*}
$$

By using the Gehring-Palka inequality (cf. [9, Chap. III, p. 84 and p. 88]) we have

$$
0<\log \mathrm{d}\left(\zeta_{k+1}, \partial \Delta\right)(\mathrm{d}(z, \partial \Delta))^{-1} \leqq 2 \mathrm{~h}_{\Delta}\left(z, \zeta_{k+1}\right)
$$

Hence $l\left(\alpha\left(z_{1}, w_{1}\right)\right)=\sum_{k=1}^{m_{1}} l\left(\alpha\left(\zeta_{k}, \zeta_{k+1}\right)\right) \leqq C_{4} \sum_{k=1}^{m_{1}} \mathrm{~d}\left(\zeta_{k}, \partial \Delta\right)=C_{4}\left(2^{m_{1}}-1\right) \mathrm{d}\left(z_{1}, \partial \Delta\right) \leqq$ $C_{4} \mathrm{~d}\left(w_{1}, \partial \Delta\right)$. Let $z \in \alpha\left(z_{1}, w_{1}\right)$. Then $z \in \alpha\left(\zeta_{k}, \zeta_{k+1}\right)$ for some $k$ and $l\left(\alpha\left(z_{1}, z\right)\right) \leqq$ $\sum_{i=1}^{k} l\left(\alpha\left(\zeta_{i}, \zeta_{i+1}\right)\right) \leqq C_{4} \sum_{i=1}^{k} \mathrm{~d}\left(\zeta_{i}, \partial \Delta\right) \leqq C_{4} \mathrm{~d}(z, \partial \Delta) \exp \left(2 C_{5}\right)$. This completes the proof of (2.6).

In proving (2.7), we may assume that $w_{1} \neq w_{2}$. If $r=\sup _{z \in \alpha} \mathrm{~d}(z, \partial \Delta)$, we set $t=l\left(\alpha\left(w_{1}, w_{2}\right)\right)\left(\mathrm{d}\left(w_{1}, \partial \Delta\right)\right)^{-1}$. Then we have

$$
t=\left(\mathrm{d}\left(w_{1}, \partial \Delta\right)\right)^{-1} \int_{\alpha\left(w_{1}, w_{2}\right)}|d z| \leqq 2 \int_{\alpha\left(w_{1}, w_{2}\right)}(\mathrm{d}(z, \partial \Delta))^{-1}|d z| \leqq 4 \mathrm{~h}_{\Delta}\left(w_{1}, w_{2}\right)
$$

because $\mathrm{d}(z, \partial \Delta) \leqq r<2 \mathrm{~d}\left(w_{1}, \partial \Delta\right)$. Hence

$$
t<4 \mathrm{~h}_{4}\left(w_{1}, w_{2}\right) \leqq 8 \pi\left(C_{1} C_{3} e^{2}\right)^{2}(\log (t+1) e)^{2}+4 \log 2
$$

and by the same argument as in the proof of (2.11) we obtain (2.7) in this case. If $r=2\left|z_{1}-z_{2}\right|$, then by (2.6)

$$
\left|w_{1}-w_{2}\right| \leqq l\left(\alpha\left(z_{1}, w_{1}\right)\right)+l\left(\alpha\left(z_{1}, w_{2}\right)\right)+\left|z_{1}-z_{2}\right| \leqq\left(3 B_{1}+1\right) \mathrm{d}\left(w_{1}, \partial \Delta\right),
$$

because $\mathrm{d}\left(w_{2}, \partial \Delta\right) \leqq r<2 \mathrm{~d}\left(w_{1}, \partial \Delta\right)$. Therefore $\mathrm{j}_{\Delta}\left(w_{1}, w_{2}\right) \leqq 2 \log \left(3 B_{1}+2\right)$, and $\mathrm{h}_{\Delta}\left(w_{1}, w_{2}\right) \leqq 2 \pi\left(C_{1} C_{3} e^{2}\right)^{2}\left(\log \left(3 B_{1}+2\right) e\right)^{2}+\log 2$ by (2.2).

For each $z \in \alpha\left(w_{1}, w_{2}\right)$ we have $\mathrm{h}_{\Delta}\left(w_{1}, w_{2}\right) \geqq \mathrm{h}_{\Delta}\left(z, w_{j}\right) \geqq 2^{-1} \mid \log \mathrm{d}(z$, $\partial \Delta)\left(\mathrm{d}\left(w_{j}, \partial \Delta\right)\right)^{-1} \mid \quad(j=1,2)$ by using the Gehring-Palka inequality again. Hence

$$
\mathrm{d}\left(w_{2}, \partial \Delta\right) \exp \left(-2 C_{8}\right) \leqq \mathrm{d}(z, \partial \Delta) \leqq \mathrm{d}\left(w_{1}, \partial \Delta\right) \exp \left(2 C_{8}\right)
$$

where $C_{6}=2 \pi\left(C_{1} C_{3} e^{2}\right)^{2}\left(\log \left(3 B_{1}+2\right) e\right)^{2}+\log 2$. Thus we have the second inequality of (2.7). From this

$$
\begin{aligned}
l\left(\alpha\left(w_{1}, w_{2}\right)\right) & \leqq \int_{\alpha\left(w_{1}, w_{2}\right)} \mathrm{d}\left(w_{1}, \partial \Delta\right)(\mathrm{d}(z, \partial \Delta))^{-1}|d z| \exp \left(2 C_{6}\right) \\
& \leqq 2 \mathrm{~d}\left(w_{1}, \partial \Delta\right) \mathrm{h}_{\Delta}\left(w_{1}, w_{2}\right) \exp \left(2 C_{8}\right) \leqq 2 C_{8} \mathrm{~d}\left(w_{1}, \partial \Delta\right) \exp \left(2 C_{8}\right)
\end{aligned}
$$

This completes the proof of (2.7).
By the definitions of $r$ and $w_{j}(j=1,2)$ and by assumption $\max _{j=1,2}\left\{\mathrm{~d}\left(z_{j}, \partial \Delta\right), \mathrm{d}\left(w_{j}, \partial \Delta\right)\right\} \leqq r$. Hence we have

$$
\begin{aligned}
l(\alpha) & \leqq l\left(\alpha\left(z_{1}, w_{1}\right)\right)+l\left(\alpha\left(z_{2}, w_{2}\right)\right)+l\left(\alpha\left(w_{1}, w_{2}\right)\right) \leqq\left(2 B_{1}+B_{2}\right) \mathrm{d}\left(w_{2}, \partial \Delta\right) \\
& \leqq\left(2 B_{1}+B_{2}\right) r \leqq 2\left(2 B_{1}+B_{2}\right)\left|z_{1}-z_{2}\right|
\end{aligned}
$$

by (2.6) and (2.7). This establishes the first inequality of (2.5). As for the second inequality, if $z \in \alpha$, then either $z \in \alpha\left(z_{j}, w_{j}\right)$ and

$$
\min _{j=1,2} l\left(\alpha\left(z_{j}, z\right)\right) \leqq l\left(\alpha\left(z_{j}, z\right)\right) \leqq B_{1} \mathrm{~d}(z, \partial \Delta)
$$

by (2.6), or $z \in \alpha\left(w_{1}, w_{2}\right)$ and

$$
\min _{j=1,2} l\left(\alpha\left(z_{j}, z\right)\right) \leqq l(\alpha) / 2 \leqq\left(2 B_{1}+B_{2}\right) \mathrm{d}\left(w_{2}, \partial \Delta\right) / 2 \leqq B_{2}\left(2 B_{1}+B_{2}\right) \mathrm{d}(z, \partial \Delta) / 2
$$

by (2.7). Hence we have also obtained the second inequality of (2.5).
Next, we suppose that $r<\mathrm{d}\left(z_{1}, \partial \Delta\right)$. Then $r=2\left|z_{1}-z_{2}\right|$. For any $z$ on the Euclidean line segment $\beta$ from $z_{1}$ to $z_{2}$ we have $\mathrm{d}(z, \partial \Delta) \geqq \mathrm{d}\left(z_{1}\right.$, $\partial \Delta) / 2 \geqq\left|z_{1}-z_{2}\right|$, and hence

$$
\mathrm{h}_{\Delta}\left(z_{1}, z_{2}\right) \leqq \int_{\beta} 2(\mathrm{~d}(z, \partial \Delta))^{-1}|d z| \leqq 4\left|z_{1}-z_{2}\right| / \mathrm{d}\left(z_{1}, \partial \Delta\right) \leqq 2
$$

By the Gehring-Palka inequality, we have

$$
l(\alpha) \leqq e^{4} \mathrm{~d}\left(z_{1}, \partial \Delta\right) \int_{\alpha}(\mathrm{d}(z, \partial \Delta))^{-1}|d z| \leqq 2 e^{4} d\left(z_{1}, \partial \Delta\right) \mathrm{h}_{\Delta}\left(z_{1}, z_{2}\right) \leqq 8 e^{4}\left|z_{1}-z_{2}\right|
$$

For $z \in \alpha, \quad l\left(\alpha\left(z_{1}, z\right)\right) \leqq l(\alpha) \leqq 4 e^{4} \mathrm{~d}\left(z_{1}, \partial \Delta\right) \leqq 4 e^{8} \mathrm{~d}(z, \partial \Delta)$. This establishes (2.5) in the case where $r<\mathrm{d}\left(z_{1}, \partial \Delta\right)$. Similarly we obtain (2.5) in the case where $r<\mathrm{d}\left(z_{2}, \partial \Delta\right)$. Hence we completely proved (2.5).

## 3. Proofs of Theorem 2 and Corollary.

Proof of Theorem 2. Žuravlev [21] showed that $T(\Gamma)$ is equal to the component of $\operatorname{Int} S(\Gamma)$ containing the origin. Hence it suffices to show that Int $S(\Gamma)$ has no other component than $T(\Gamma)$. Let $S$ be such a component of Int $S(\Gamma)$. Then for each $\phi \in S, \Gamma^{\phi}=\chi_{\phi}(\Gamma)=W_{\phi} \Gamma\left(W_{\phi}\right)^{-1}$ is a Kleinian group with a simply connected invariant component $W_{\phi}(L)$. Indeed, let $\Omega_{\phi}$ be a component of containing $W_{\phi}(L)$. Suppose that there exists a point $p$ in $\Omega_{\phi}-W_{\phi}(L)$. Then for any $\varepsilon>0, N_{\varepsilon}(p)=\{z \in \boldsymbol{C}$; $|z-p|<\varepsilon\}$ is not containd in $W_{\phi}(L) \cup\{p\}$ because $W_{\phi}(L)$ is simply connected. This implies that $N_{\varepsilon}(p)$ contains infinitely many points of $\Omega_{\phi}-$ $W_{\phi}(L)$ for any $\varepsilon>0$ and the Riemann surface $\Omega_{\phi} / \Gamma^{\phi}$ contains infinitely many points which are not contained in $W_{\phi}(L) / \Gamma^{\phi}$ conformally equivalent to $L / \Gamma$. However, $L / \Gamma$ is a Riemann surface of conformally finite type and, by Ahlfors' finiteness theorem, so is $\Omega_{\phi} / \Gamma^{\phi}$. This is absurd because $L / \Gamma \cong W_{\phi}(L) / \Gamma^{\phi}$. Thus $\Omega_{\phi}=W_{\phi}(L)$. Clearly, $W_{\phi}(L)$ is invariant under $\Gamma^{\phi}$. Hence $W_{\phi}(L)$ is a simply connected invariant component of $\Gamma^{\phi}$.

Therefore $\Gamma^{\phi}$ has one or two simply connected invariant components by a theorem of Accola (cf. [4], [14]). Namely, $\Gamma^{\phi}$ is a quasi-Fuchsian group or a b-group.

If $\Gamma^{\phi}$ is a quasi-Fuchsian group, then the limit set $\Lambda\left(\Gamma^{\phi}\right)$ of $\Gamma^{\phi}$ is a quasi-circle (Maskit [14]). Therefore, $W_{\phi}$ has a quasiconformal extension to $\hat{\boldsymbol{C}}$ by a theorem in Ahlfors [3] and $\phi$ belongs to $T \cap B_{2}(L, \Gamma)$, where $T$ is the universal Teichmüller space. On the other hand, Kra [12] showed that $T(\Gamma)=T \cap B_{2}(L, \Gamma)$ if $\Gamma$ is a finitely generated Fuchsian group of the first kind. Thus, $\phi$ is in $T(\Gamma)$. But this is a contradiction. Hence $\Gamma^{\phi}$ is a $b$-group.

Since a function (trace $\left.\chi_{\phi}(\gamma)\right)^{2}$ for a fixed $\gamma \in \Gamma$ is analytic on $B_{2}(L, \Gamma)$ and $\Gamma$ consists of countable number of elements, there exists a $\phi$ in $S$ such that (trace $\left.\chi_{\phi}(\gamma)\right)^{2} \neq 4$ for every non-parabolic element $\gamma$ in $\Gamma$, namely, a $b$-group $\Gamma^{\phi}$ is not a cusp. Therefore, $\Gamma^{\phi}$ is a totally degenerate group with $\Omega\left(\Gamma^{\phi}\right)=W_{\phi}(L)$ by Maskit [14, Theorem 4], where $\Omega\left(\Gamma^{\phi}\right)$ is the region of discontinuity of $\Gamma^{\phi}$. From now on, we shall consider such $\phi$ and $\Gamma^{\phi}$.

Here, we note the following fact called the " $\lambda$-lemma".
Proposition (Mañé, Sad and Sullivan [13]). Let $A$ be a subset of $C$ and $\left\{i_{\lambda}\right\}$ be a family of injections of $A$ into $\hat{C}$, where $\lambda$ is in the unit disk $D$. Furthermore, let $i_{\lambda}(z)$ be analytic with respect to $\lambda \in D$ for each $z \in A$ and $i_{0}(z) \equiv z$. Then $i_{\lambda}$ for each $\lambda \in D$ is automatically a quasiconformal mapping on $\bar{A}$, that is, $i_{\lambda}$ is a homeomorphism of $\bar{A}$ into $\hat{C}$ with

$$
\sup _{z \in \bar{A}} \varlimsup_{r \rightarrow 0} \frac{\inf \left\{\delta\left(i_{\lambda}(z), i_{\lambda}\left(z^{\prime}\right)\right): \delta\left(z, z^{\prime}\right)=r, z^{\prime} \in \bar{A}\right\}}{\sup \left\{\delta\left(i_{\lambda}(z), i_{\lambda}\left(z^{\prime}\right)\right): \delta\left(z, z^{\prime}\right)=r, z^{\prime} \in \bar{A}\right\}}<+\infty,
$$

where $\delta(\cdot, \cdot)$ is the spherical distance in $\hat{\boldsymbol{C}}$.
We proceed to prove Theorem 2. Since $\phi$ is in $S$, there exists a constant $r>0$ such that $\left\{\psi \in B_{2}(L, \Gamma):\|\psi-\phi\|<r\right\}$ is contained in Int $S(\Gamma)$. For each $\lambda \in D$ we set $\phi_{\lambda}=\phi+\lambda\left(\psi_{0}-\phi\right)$ and $i_{\lambda}=W_{\phi_{\lambda}} \circ\left(W_{\phi}\right)^{-1}$ on $W_{\phi}(L)$, where $\psi_{0}$ is in $B_{2}(L, \Gamma)$ with $0<\left\|\psi_{0}-\phi\right\|<r$. Then $i_{\lambda}$ is conformal on $W_{\phi}(L)=\Omega\left(\Gamma^{\phi}\right)$ and satisfies the condition of the above proposition for $A=\Omega\left(\Gamma^{\phi}\right)$. Hence $i_{\lambda}$ for each $\lambda \in D$ can be extended to $\overline{\Omega\left(\Gamma^{\phi}\right)}=\hat{\boldsymbol{C}}$ quasiconformally. On the other hand, $i_{\lambda}$ is a $\Gamma^{\phi}$-compatible quasiconformal mapping and $\Gamma^{\phi}$ is a finitely generated Kleinian group. Thus, the Beltrami differential of $i_{2}$ vanishes almost everywhere on $\Lambda\left(\Gamma^{\phi}\right)$ from Sullivan's theorem in [20]. This implies that $i_{\lambda}$ is conformal on $\hat{\boldsymbol{C}}$ for each $\lambda \in D$ and $\left\{i_{\lambda}, z\right\}=0$ on $\boldsymbol{C}$. But this is absurd because $\left\{i_{\lambda}, z\right\}=\lambda\left(\psi_{0}-\phi\right)\left(W_{\phi}^{-1}(z)\right)$. $\left(\left(W_{\phi}^{-1}\right)^{\prime}(z)\right)^{2} \neq 0$ for $\lambda \neq 0$. Therefore, we complete the proof of Theorem 2.

Proof of Corollary. We may assume that $\infty \in \Delta$. Let $h$ be a conformal mapping of $L$ onto $\Delta$ satisfying $h(z)=(z+i)^{-1}+O(|z+i|)$ as $z \rightarrow-i$. Then $\Gamma=h^{-1} G h$ is a finitely generated Fuchsian group of the first kind and $\{h, z\}$ is in $B_{2}(L, \Gamma)$ by Nehari's theorem in [16]. So, if all $f$ satisfying (1.2) are schlicht on $\Delta$, then $\{f \circ h, z\}=\{f, h(z)\}\left(h^{\prime}(z)\right)^{2}+\{h, z\}$ is in $S(\Gamma)$, and $\{h, z\}$ is in Int $S(\Gamma)$ because $\{f, h(z)\}\left(h^{\prime}(z)\right)^{2}$ is in $B_{2}(L, \Gamma)$ and $\sup _{w \in \Delta} \rho_{\Delta}(w)^{-2}|\{f, w\}|=\left\|\{f, h(z)\}\left(h^{\prime}(z)\right)^{2}\right\|$. Hence $\{h, z\}$ is in $T(\Gamma)$ from Theorem 2, that is, $h(L)=\Delta$ is a quasi-disk.

Conversely, if $\Delta$ is a quasi-disk, then $\Delta$ has the Schwarzian derivative property (cf. [8], [9]). Hence all $f$ satisfying (1.2) are schlicht on $\Delta$.
4. Proof of Theorem 3. Suppose that $H-H \cap \overline{T(\Gamma)}$ is not connected. Then there exists a bounded component of $H-H \cap \overline{T(\Gamma)}$ in $H$, say $V$, because $H \cap \overline{T(\Gamma)}$ is bounded in $H$. Obviously, $\hat{\partial} V \subset S(\Gamma)$ and therefore we can show that $V$ is contained in $S(\Gamma)$ by the same argument as in the proof of [19, Theorem 2]. For convenience, we shall sketch the proof.

For each $\phi \in B_{2}(L, \Gamma)$ we set $w_{\phi}(z)=2 i W_{\phi}\left(i(1-z)(1+z)^{-1}\right)$ on $\{|z|>1\}$. Then $w_{\phi}$ is schlicht on $\{|z|>r\}$ for some $r \geqq 1$. So, we can define the Grunsky coefficients $b_{i j}(\phi)(i, j=1,2, \cdots)$, namely,

$$
\log \frac{w_{\phi}(z)-w_{\phi}(\zeta)}{z-\zeta}=-\sum_{i, j=1}^{\infty} b_{i j}(\phi) z^{-i \zeta} \zeta^{-j}
$$

holds on $|z|,|\zeta|>r$. It is known (cf. [17]) that $w_{\phi}$ is schlicht on $|z|>1$ if and only if

$$
\begin{equation*}
\left|\sum_{i, j=1}^{\infty} b_{i j}(\phi) \lambda_{i} \lambda_{j}\right| \leqq \sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{2} / n \tag{4.1}
\end{equation*}
$$

holds for an arbitrary sequence $\left\{\lambda_{n}\right\}$ of complex numbers.
Let $\phi$ be in $\hat{\partial} V$. Then $w_{\phi}$ is schlicht on $|z|>1$. Hence we have

$$
\begin{equation*}
\left|\sum_{i, j=1}^{N} b_{i j}(\phi) \lambda_{i} \lambda_{j}\right| \leqq \sum_{n=1}^{N}\left|\lambda_{n}\right|^{2} / n \tag{4.2}
\end{equation*}
$$

for an arbitrary natural number $N$. Since $b_{i j}(\phi)$ is analytic with respect to $\phi \in B_{2}(L, \Gamma)$, we can verify that (4.2) holds for all $\phi$ in $V$ by the maximum principle, and (4.1) holds for every $\phi$ in $V$. So, $V$ is contained in $S(\Gamma)$.

For a non-parabolic element $\gamma \in \Gamma$, (trace $\left.\chi_{\phi}(\gamma)\right)^{2}-4$ is analytic in $B_{2}(L, \Gamma)$ and does not vanish identically on $H$, because $H \cap T(\Gamma) \neq \varnothing$. Therefore, $\left.\left\{\phi \in V \text {; (trace } \chi_{\phi}(\gamma)\right)^{2}-4=0\right\}$ is a nowhere dense subset of $V$, and by the same argument as in the proof of Theorem 2 we can take such a $\phi$ in $V$ that (trace $\left.\chi_{\phi}(\gamma)\right)^{2} \neq 4$ for every non-parabolic element $\gamma \in \Gamma$. Since $\phi$ is in $S(\Gamma)-T(\Gamma), \Gamma^{\phi}$ is a totally degenerate Kleinian group. By using Proposition (the $\lambda$-lemma) and Sullivan' theorem [20] again as in the proof of Theorem 2 for a small disk in $V$ centered at $\phi$, we have a contradiction. Since we have already shown that $\hat{\partial}\left(H-H_{\emptyset} \cap\right.$ $\overline{T(\Gamma)}) \supset H \cap \partial T(\Gamma)$ in [19, Theorem 2], we have $\hat{\partial}(H-H \cap \overline{T(\Gamma))}=H \cap \partial T(\Gamma)$ by a general relation $\hat{\partial}(H-H \cap \overline{T(\Gamma)}) \subset H \cap \partial T(\Gamma)$. Thus, we complete the proof of Theorem 3.

## 5. Remarks.

(1) Let $W$ be a bounded domain in $C$ whose boundary consists of a
finite number of mutually disjoint closed Jordan curves, say $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}$, and let $W_{j}(j=1,2, \cdots, N)$ be a domain in $\hat{\boldsymbol{C}}$ with $\partial W_{j}=\alpha_{j}$ and $W_{j} \supset W$. Then we have the following:

Theorem 4. If $W$ has the BMO extension property for $\cup_{j=1}^{N} \operatorname{ABD}\left(W_{j}\right) \mid W$, then $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}$ are all quasi-circles.

Proof. From the hypothesis, there exists a constants $C_{1}>0$ such that for every $g \in \cup_{j=1}^{N} \operatorname{ABD}\left(W_{j}\right)$ there exists a $G \in \operatorname{BMO}(\boldsymbol{C})$ with $G \mid W=$ $g \mid W$ and

$$
\begin{equation*}
\|G\|_{*, c} \leqq C_{1}\|g \mid W\|_{*, W} \tag{5.1}
\end{equation*}
$$

We may take $g$ as an arbitrary function in $\operatorname{ABD}\left(W_{j}\right)$ for a fixed $j$ ( $1 \leqq$ $j \leqq N$ ). Let $\beta_{j}$ be a circle in $C-W_{j}$ and let $\Delta_{j}$ be the component of $\hat{\boldsymbol{C}}-\beta_{j}$ containing $W_{j}$. We define a function $\widetilde{G}$ in $\Delta_{j}$ by

$$
\widetilde{G}(z)= \begin{cases}G(z), & z \in \Delta_{j}-W_{j}  \tag{5.2}\\ g(z), & z \in W_{j}\end{cases}
$$

Set $d_{j}=\min \left\{\mathrm{h}_{A_{j}}\left(\alpha_{j}, \alpha_{k}\right): k \neq j\right\}$, where $\mathrm{h}_{\Delta_{j}}(\cdot, \cdot)$ is the hyperbolic distance in $\Delta_{j}$. Then $d_{j}>0$ and for every disk $B$ in $\Delta_{j}$ whose hyperbolic diameter is not greater than $d_{j}$, we have

$$
\frac{1}{|B|} \int_{B}\left|\widetilde{G}-\widetilde{G}_{B}\right| d x d y=\frac{1}{|B|} \int_{B}\left|g-g_{B}\right| d x d y \leqq\|g\|_{*, W_{j}}
$$

if $\bar{B}$ is contained in $W_{j}$, and

$$
\begin{aligned}
\frac{1}{|B|} \int_{B}\left|\widetilde{G}-\widetilde{G}_{B}\right| d x d y & =\frac{1}{|B|} \int_{B}\left|G-G_{B}\right| d x d y \leqq\|G\|_{*, c} \\
& \leqq C_{1}\|g \mid W\|_{*, W} \leqq C_{1}\|g\|_{*, W_{j}}
\end{aligned}
$$

if $B \cap\left(\Delta_{j}-W_{j}\right) \neq \varnothing$. Therefore, from [18, I-B, Hilfssatz 2] and its proof we conclude that $\widetilde{G}$ belongs to $\operatorname{BMO}\left(\Delta_{j}\right)$ and

$$
\begin{equation*}
\|\widetilde{G}\|_{*, \Lambda_{j}} \leqq C\left(d_{j}, C_{1}\right)\|g\|_{*, W_{j}} \tag{5.3}
\end{equation*}
$$

where $C\left(d_{j}, C_{1}\right)$ is a constant depending only on $d_{j}$ and $C_{1}$. On the other hand, $\Delta_{j}$ is a (quasi-)disk. Hence there exists a constant $C_{1}^{\prime}$ not depending on $\widetilde{G}$ such that $\widetilde{G}$ has an extension $G_{j} \in \operatorname{BMO}(\boldsymbol{C})$ satisfying

$$
\begin{equation*}
\left\|G_{j}\right\|_{*, c} \leqq C_{1}^{\prime}\|\widetilde{G}\|_{*, L_{j}} \leqq C_{1}^{\prime} C\left(d_{j}, C_{1}\right)\|g\|_{*, W_{j}} \tag{5.4}
\end{equation*}
$$

Since $G_{j}\left|W_{j}=\widetilde{G}\right| W_{j}=g$ from (5.2), the inequality (5.4) implies that $W_{j}$ has the BMO extension property for $\operatorname{ABD}\left(W_{j}\right)$. Thus $\alpha_{j}$ must be a quasi-circle from Theorem 1, if $\infty \notin W_{j}$. If $\infty \in W_{j}$, then we consider a certain Möbius transformation $A$ such that $A\left(W_{j}\right) \nexists \infty$. By using the
conformal invariance of BMO, we have also the assertion in this case.
Note. Since $\mathrm{BMO}(W) \supset \mathrm{ABD}(W) \supset \cup_{j=1}^{N} \mathrm{ABD}\left(W_{j}\right) \mid W$, we see that if $W$ has the BMO extension property for $\operatorname{ABD}(W)(\mathrm{BMO}(W))$, then $\alpha_{1}, \cdots, \alpha_{N}$ are all quasi-circles. Conversely, if $\alpha_{1}, \cdots, \alpha_{N}$ are all quasi-circles, then $W$ has the BMO extension property for $\operatorname{BMO}(W)$ (Mr. Y. Gotoh, oral communication).
(2) Bers conjectured that for every $\phi \in \partial T(\Gamma)$, there are complex manifold $M$ isomorphic to a product of Teichmüller spaces, with $\phi \in M \subset$ $\partial T(\Gamma)$ and a quasiconformal deformation $\Gamma^{\psi}$ of $\Gamma^{\phi}$ for every $\psi$ in $M$ (cf. [5, p. 296]).

Abikoff ([1, §5, Corollary]) showed that the conjecture is affirmative when $\Gamma^{\phi}$ is a regular $b$-group. In contrast with this result we have the following theorem for $\phi \in \partial T(\Gamma)$ corresponding to a totally degenerate group, which is a strongly negative answer to the conjecture.

Theorem 5. For each $\phi$ corresponding to a totally degenerate group there exists no complex manifold in $\overline{T(\Gamma)}$ containing $\phi$.

Proof. If such a complex manifold exists, then there is a holomorphic injection $f$ of the unit disk in $C$ into $\overline{T(\Gamma)}$ with $f(0)=\phi$. Set $i_{\lambda}(z)=W_{f(\lambda)} \circ W_{\phi}^{-1}(z)$ on $\Omega\left(\Gamma^{\phi}\right)$ for $\lambda \in D$. By the same argument as in the proof of Theorem 2, we have $\left\{i_{\lambda}, z\right\}=0$ on $C$ for all $\lambda \in D$ and this yields a contradiction, because $f(\lambda) \neq \phi$ for $\lambda \in D-\{0\}$.
(3) We shall suppose that $\Gamma$ has no elliptic transformation and $\operatorname{dim} T(\Gamma)=1$. Then Bers [6] showed that all modular transformation of $T(\Gamma)$ can be extended to $\partial T(\Gamma)$ continuously. Since $\overline{T(\Gamma)}$ is compact and the complement is connected in $B_{2}(L, \Gamma)(\cong C)$ from Theorem 3, we have the following from Mergelyan's theorem (cf. [7]).

Theorem 6. Let $\Gamma$ be as above and consider $T(\Gamma)$ as a bounded domain in $\boldsymbol{C}$. Then every modular transformation can be approximated uniformly on $\overline{T(\Gamma)}$ by polynomials.

## References

[1] W. Abikoff, On boundaries of Teichmüller spaces and on Kleinian groups, III, Acta Math. 134 (1975), 212-237.
[2] L. V. Ahlfors, Quasiconformal reflections, ibid. 109 (1963), 291-301.
[3] L. V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand, New York, 1966.
[4] L. Bers, On boundaries of Teichmüller spaces and on Kleinian groups, I, Ann. of Math. (2) 91 (1970), 570-600.
[5] L. Bers, Uniformization, moduli, and Kleinian groups, Bull. London Math. Soc. 4 (1972), 257-300.
[6] L. Bers, The action of the modular group on the complex boundary, Riemann Surfaces and Related Topics: Proceeding of the 1978 Stony Brook Conference, Ann. of Math. Studies 97, 1981, 33-52.
[7] T. Gamelin, Uniform Algebras, Princeton-Hall, Inc., Englewood Cliffs, N. J.,1969.
[8] F. W. Gerring, Univalent functions and the Schwarzian derivatives, Comment. Math. Helv. 52 (1977), 561-572.
[9] F. W. Gerring, Characteristic properties of quasidisks, Séminaire de Mathématiques Supérieures, Les Presses de l'Université de Montréal, 1982.
[10] F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. d'Analyse Math. 36 (1979), 50-74.
[11] P. W. Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), 41-66.
[12] I. Kra, On Teichmüller spaces for finitely generate Fuchsian groups, Amer. J. Math. 91 (1969), 67-74.
[13] R. Mañé, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. scient. Ec. Norm. Sup. 16 (1983), 193-217.
[14] B. Maskit, On boundaries of Teichmüller spaces and on Kleinian groups, II, Ann. of Math. (2) 91 (1970), 607-639.
[15] C. D. Minda, Extremal length and harmonic functions on Riemann surfaces, Trans. Amer. Math. Soc. 171 (1972), 1-22.
[16] Z. Nehari, Schwarzian derivatives and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551.
[17] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
[18] H. M. Reimann and T. Rychener, Funktionen beshränkter mittelerer Oszillation, Lecture Notes in Math. 487, Springer-Verlag, Berlin, Heidelberg, New York, 1975.
[19] H. Shiga, On analytic and geometric properties of Teichmüller spaces, J. Math. Kyoto Univ. 24 (1984), 441-452.
[20] D. Sullivan, On the ergodic theory of infinity of an arbitrary discrete group of hyperbolic motions, Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, Ann. of Math. Studies, 97 (1981), 465-496.
[21] I. V. Žuravlev, Univalent functions and Teichmüller spaces, Soviet Math. Dokl. 21 (1980), 252-255.

Department of Mathematics
Kyoto University
Куото 606
Japan


[^0]:    Partly supported by the Grants-in-Aid for Encouragement of Young Scientists, The Ministry of Education, Science and Culture, Japan.

