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1. Introduction and main results. A simply connected domain in
the Riemann sphere C is called a quasi-disk if it is the image of the unit
disk by a quasiconformal automorphism of the sphere. Since Ahlfors'
investigation [2] in 1963, several characteristic properties of quasi-disks
have been studied by many authors. As a result, quasi-disks are related
to various topics in analysis. A bird's eye view of these studies are
given in Gehring [9]. Among them, the topics with which we are con-
cerned in this article are the BMO extension property and the Schwarzian
derivative property.

Let W be a domain in C. Then feL\0C(W) belongs to BMO(TF) if

- M \f-fB\dxdy < +oo ,

where B is a disk in W with 5 c W, \B\ = [ dxdy and fB= {Bl'Λ fdxdy.
Let ^ be a subclass of BMO(TF). We say that W has the BMO

extension property for ^~ if there exists a constant Cx > 0 such that
for every fejf there is an FeBM.O(C) with F\W = f and

Jones [11] has shown that a simply connected domain Δ (ΦC) in C
is a quasi-disk if and only if Δ has the BMO extension property for
BMO(J) (see also Gehring [9]).

In the first part, we shall strengthen the "if" part of Jones' result.

THEOREM 1. Let Δ (Φ C) be a simply connected domain in C. If Δ
has the BMO extension property for ABD(zf), then Δ is a quasi-disk,
where ABD(J) is the space of all bounded holomorphic functions in Δ
with finite Dirichlet integrals.

In the second part, we shall investigate Teichmuller spaces of
Fuchsian groups and the Schwarzian derivative property, independently
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of Theorem 1. Let Γ be a finitely generated Fuchsian group of the first
kind acting on the upper half plane U and let T(Γ) be the Teichmϋller
space of Γ. It is well known (cf. Bers [4]) that dim T(Γ) < + °° and
T(Γ) can be idenified with a bounded domain in the Banach space B2(L, Γ)
of all holomorphic functions φ on the lower half plane L which satisfy

φ(7(z))Ύ'(z)2 = φ{z) for all 7 e Γ and

For every φ in B2(L, Γ) there exists a meromorphic function ffl^
defined on L such that the Schwarzian derivative {Wφ, z} of Wφ on L is
equal to φ(z) and TF, satisfies the condition

Wφ(z) = (z + ί)-1 + O(\z + i\) a s z -> - i .

We denote by S(Γ) the set of all φ in B2(L,Γ) such that ψ , is
univalent on L. It is known that S(Γ) is closed and contains T(Γ) U dT(Γ).
For every 0 in B2(L, Γ), Wφ yields a homomorphism Xφ of Γ with WΦ°Ύ =
X*(y) ° W* ( T G Γ ) , and if ^ is in S(Γ), then Γ^ - XΦ(Γ) = WφΓWφ

ι is a
Kleinian group. Furthermore, if φ is in T{Γ), then Γ^ is a quasi-Fuchsian
group, i.e., a Kleinian group with two simply connected invariant com-
ponents.

We shall show a relation between S(Γ) and T(Γ).

THEOREM 2. Int S(Γ), the interior of S(Γ) on B2(L, Γ), is connected
and is equal to T(Γ).

In the proof of Theorem 2, the "λ-lemma" (cf. Mane, Sad and Sullivan
[13]) will play an important role.

COROLLARY. Let Δ be a simply connected invariant component of a
finitely generated non-elementary Kleinian group G. Then Δ is a quasi-
disk if and only if there exists a constant C2 > 0 such that every mero-
morphic function f on Δ satisfying

(1.2) \{f,z}Δ\^C2pM

and {/, g{z)}Δg'(z)2 — {/, z}Δ for all g e G, is univalent, where {/, z}Δ is the
Schwarzian derivative of f in Δ and pΔ(z)\dz\ is the Poincare metric on Δ.

When G = {id.}, Gehring [8] obtained a similar property of quasi-disks
called the Schwarzian derivative property,

Furthermore, we shall obtain a geometric property of T(Γ) which is
an extension of a result in [19].

THEOREM 3. Let Γ, T(Γ) and B2(Lf Γ) be as above, and let H be a
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hyper plane in B2(L, Γ). Then H — Hf] T(Γ) is connected and d(H — HΠ
T(Γ)) — Hf)dT(Γ), where 9 is the boundary operator considered in H.
In particular, Ext T(Γ), the exterior of T(Γ) in B2(L, Γ), is connected
and 3(Ext T{Γ)) = dT(Γ).

In the last part, we shall touch upon some results related to the
above topics. In fact, we shall extend Theorem 1 to a finitely connected
Jordan domain (Theorem 4) and we shall study some properties of
Teichmϋller spaces (Theorems 5 and 6). Especially, Theorem 5, which
shows the complexity of boundaries of Teichmϋller spaces in Bers' em-
bedding, is a (strongly) negative answer to a conjecture of Bers [5].

2. Proof of Theorem 1.

LEMMA 1. Let Δ (φC)be a simply connected domain in C. Then
there exists a constant C3 > 0 such that for every harmonic function u
in A with the finite Dirichlet integral DΔ(u),

(2.1) \\u\V,Δ^C,DΔ{n)^

holds.

PROOF. From Reimann's theorem (cf. [18]) asserting the quasi-
conformal in variance of BMO, we may assume that A in the unit disk.
For a fixed r > 0 we consider a disk B in A such that the center is
zoe A and the hyperbolic diameter is not greater than r. Then we have
for all z in B

where di(z, z0) = sup{\v(z) — v(zo)\; v is harmonic in A and Dj(v) ^ 1}. It

is known that di(z, z0) ^ π~ιn [ pΔ(z)\dz\ ^ rπ~1/2 (cf. Minda [15]). Hence

-—• \ \u(z) - uB\dxdy = —j-- I \u(z) - u(zQ)\dxdy
\Jΰ\ JB \β\ JB

^ J L ( r(DΔ(u)/πY/2dxdy = r(D,(u)/τr)1/2 .
\B\ JB

Therefore, from [18, I-B, Hilfssatz 2] and its proof, we have the desired
assertion (2.1). q.e.d.

LEMMA 2. Let A (ΦC) be a simply connected domain in C having
the BMO extension property for ABD(J). For zlf z2 in A, set

Lfe, *) = log
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where d( , •) is the Euclidean distance. Then

(2.2) h,fe, z2) ^ (πβχCAeΎOΛz^ z2) + 2)2 + log 2 ,

where hj( , •) is the Poincare distance in A, and Cx and C3 are the constant
as in (1.1) and (2.1), respectively.

PROOF. For z19 z2 in A there exists a harmonic function u such that
ΌΔ(u) = 1, ufa) — 0 and u{z2) = di(zlf z2). Since A is conformally equivalent
to the unit disk, it is well known (cf. Minda [15]) that

(2.3) u(z2Y = άί(zl9 z2)
2 = (2/τr) log cosh hΔ(zlf z2) ^ (2/π)(hA(zlf z2) - log 2) .

Furthermore, u is R e / for some fe ABD(zί), because w is harmonic on a
neighbourhood of I when z/ is the unit disk. Hence u has an extension
£7eBM0(C) satisfying (1.1). Let Bά be the disk of radius ά(zjf dA) cen-
tered at Zj (j = 1, 2). From Lemma 1 and the argument in Gehring [9,
Chap. Ill, 10.2], we have

UBl - UB2\ ^ (e2j,fe, z2) + 2e2)|| U\\..c ύ C.βUfe, z2) + 2)\\u\\.,*

, z2) + 2)DJ(^)1/2 - CA^Q'jfe, z2) + 2) .

On the other hand, UBl = u(zλ) = 0 and [/^ = w(«2), because Bι and
JB2 are contained in A. Therefore,

(2.4) 0 ^ u(z2) ^ CAβXJjfe, 22) + 2) .

By (2.3) and (2.4) we have the desired inequality (2.2).

PROOF OF THEOREM 1. We shall show that A has the hyperbolic
segment property, that is, there exist constants A and B such that for
every zlf z2 in A {zx Φ z2) and for all zea

(2.5) l(a) ^ A\ z1 - z2 \ and min Z(α,) ^ Bd(z, dA) ,
J=l,2

where α is the hyperbolic segment from z1 to z2, l(a) is the Euclidean
length of a and aά (j = 1, 2) are components of α — {z}. If this is done,
Theorem 1 is proved, because a simply connected domain with the hyper-
bolic segment property is a quasi-disk ([9, Chap. III]).

Set r = min(supseαd(z, dA), 2\z1 — z2\). First, we suppose that r <;
max i = 1 ) 2 d(zjf dA). Let mό (j = 1, 2) be the largest integers for which
2miά(zj, dA) 5g r and let ws (j = 1, 2) be the nearest point on a from sy

satisfying d(wjf dA) = 2wίd(z7 , 3J). Obviously, we may assume that
ά(w19 dA) ^ d(^2, 3J). Then there exist constants Blf B2 which do not
depend on a and the following inequalities hold.
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j , w,)) ^ B.diwj, dΔ) ,

l(a(zjf z)) ^ 5id(z, dΔ) for all z e a{zjy w3) ,

and

l(a(w19 w2)) ^ B2d(w19

d(w2, dΔ) ^ B2ά(z, dΔ) for all z e a(wlf w2) ,

where a(z, z') (z, zr e a) stands for the open subarc of a from z to z'.
Our proofs of the inequalities (2.6) and (2.7) are slight modifications

of those for the inequalities (4) and (9) given in [9, Chap. Ill, 11.3]. But
for completeness, we shall give them.

In showing the inequality (2.6), we may assume that j — 1 and mx ^ 1.
Now, we take points z1 = d, ζ2, , ζm i, ζmi+i = v>i on a(zlf wλ) so that ζfc

is the nearest point from z± on a(zlf wλ) satisfying d(ζ*, dΔ) = 2*"1d(21, dΔ).
Then fix k and set t = l(a(ζk, ζfc+1))(d(ζfc, dΔ))~\ We have

(2.8) t ^ (d(ζfc, dΔ))-1 \ \dz\£2\ (d(z, dΔ))-'\ dz \

because (2ά(z, dΔ))-1 ^ ^(2) and d(z, 9J) ^ d(ζ t + 1, dΔ) = 2d(ζfc, 3J) for z e
α(ζfc, ζ fc+1). Hence

(2.9) L(ζ c ) - l o g ί 1 ^ " " ^ + 1 ) ( ' ζ ; ~^ ^ + 1 ) ( ; ; +
ά(ζk,dΔ) /\d(ζk+1,dΔ)

L + l ) ^ 2 log(ί + 1) .
d(ζk,dΔ)

By (2.2), (2.8) and (2.9) we have

ί/4 ^ h,(ζfc, ζfc+1) ^ {πmiPfljγQ&t, ζk+1) + 2)2 + log 2

and

(2.10) t ^ β^CCiCββ^αogίί + l)β)2 + 4 log t .

Obviously, the range of t satisfying (2.10) is bounded and depends only
on C1 and C3. Therefore, there exist constants C4 and C5 depending only
on CΊ and C3 such that ί ^ C4 and hj(ζ&, ζfc+1) ^ C5. Thus we have

d(ζ 9zί) ^ dfe 3J)exp(2Q for « 6 α(ζfc, ζk+1) .

By using the Gehring-Palka inequality (cf. [9, Chap. Ill, p. 84 and p. 88])
we have

0 < log d(ζ fc+1, dΔ)(ά(zf dΔ))-1 ^ 2hΔ(z, ζh+1) .
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Hence l(a(zl9 wx)) - ΣΓiiί(α(C*, C*+1))^C4ΣΓiid(ζ fc, dΔ) = Ci(2^-
CidίWi, 3J). Let 3 e αfe, wj . Then z e α(ζfc, ζfc+1) for some k and Z(α(2i, 2)) ^
Σ*-i ί(α(Ci, Cm)) ^ C4 Σ t i d(ζ£, 34) ^ C4d(z, 3J)exp(2C5). This completes the
proof of (2.6).

In proving (2.7), we may assume that wιΦw2. If r = supze«d(z, dΔ),
we set t = l(a(wί9 w2))(d(w19 dΔ))~\ Then we have

t = (d(wlf 3J))-1 ( I d21 ^ 2 ί (d(z, SJ))- 1 !^ ! ^ 4hj(w19 w8) ,

because d(z, dΔ) ^ r < 2d(wlf 3J). Hence

ί < 4hj(wlf w2) ^ βπCCxCβe^Oogίt + l)e)2 + 4 log 2

and by the same argument as in the proof of (2.11) we obtain (2.7) in
this case. If r = 2\z1 — z2\, then by (2.6)

\ W l - w2\^ l(a(zlf wλ)) + l(a(z19 w2)) + \z, - z2\ ^ ( 3 ^ + l)d(wlf dΔ) ,

because ά(wif dΔ) <> r < 2ά(wλ, dΔ). Therefore jΔ(wί9 w2) ^ 2 log(3B1 + 2),

and hj(wlf ^ 2) ^ 2τr(C1C3e
2)2(log(3β1 + 2)e)2 + log 2 by (2.2).

For each z e a(wlf w2) we have hΛ(w19 w2) ^ hj(z, w3) ^ 2~1|log d(z,
3J)(d(^ , dΔ))"ι\ (j = 1, 2) by using the Gehring-Palka inequality again.
Hence

d(w2f 3J)exp(-2C6) ^ ά(z9 dΔ) ^ d(wlf az/)exp(2Cβ) ,

where Cβ = 2π(C1C3e
2)2(log(3B1 + 2)e)2 + log 2. Thus we have the second

inequality of (2.7). From this

l(a(wly w2)) ^ ( d(w19 dΔ)(d(z9

^ 2d(wί9 dΔ)hj(wlf w2)exp(2Cβ) ^ 2 ^ ^ ^ 3J)exp(2Cβ) .

This completes the proof of (2.7).
By the definitions of r and wβ (i = 1,2) and by assumption

max i=1>2 {d(2y, 3J), d(wy, 3J)} ^ r. Hence we have

2, w2)) + Z(a(w!, w2)) ^ {2BX + B?)d(w2, 3z/)

B2)\Zι - z2\ ,

by (2.6) and (2.7). This establishes the first inequality of (2.5). As for
the second inequality, if z e α, then either 2 e α ^ , w3) and

min Z(α(«y, 2)) ^ Z(a(«y, 2)) ^ ^ ( z , dΔ)
3=1,2

by (2.6), or z e α(wx, w2) and

min
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by (2.7). Hence we have also obtained the second inequality of (2.5).
Next, we suppose that r < ά(zlf dΔ). Then r — 2\z1 — z2 |. For any

z on the Euclidean line segment β from z1 to z2 we have ά(z, dΔ) ^ dfo,
dΔ)/2 ^ \zλ — z2\, and hence

hj(s l f z2) ^ \ 2(d(z, dΔ))~ι\dz\ ^ 4\zx - z2\/d(zlf dJ)£2.

By the Gehring-Palka inequality, we have

l(a) ^ e4ά(zlf dΔ) \ (d(z, dΔ))~ι\dz\ ^ 2e4dfe, S^hjfo, z2) ^ δ e 4 ^ - z2| .
Jα

For z e α, ϊ(αfe, z)) ̂  ϊ(α) ̂  4e4d(zx, dΔ) ^ 4e8d(z, 3J). This establishes
(2.5) in the case where r < ά{zl9 dΔ). Similarly we obtain (2.5) in the
case where r < d(z2, dΔ). Hence we completely proved (2.5).

3. Proofs of Theorem 2 and Corollary.

PROOF OF THEOREM 2. Zuravlev [21] showed that T(Γ) is equal to
the component of Int S(Γ) containing the origin. Hence it suffices to
show that Int SCO has no other component than T(Γ). Let S be such a
component of IntS(Γ). Then for each φeS, Γφ = XΦ(Γ) = WφΓ{Wφ)~ι is
a Kleinian group with a simply connected invariant component WΦ(L).
Indeed, let Ωφ be a component of containing WΦ(L). Suppose that there
exists a point p in Ωφ — WΦ{L). Then for any ε > 0, Nε(p) = {zeC;
I z — VI < ε} is not containd in WΦ(L) U {p} because WΦ(L) is simply con-
nected. This implies that Nε(p) contains infinitely many points of Ωφ —
WΦ(L) for any ε > 0 and the Riemann surface ΩφjΓ

φ contains infinitely
many points which are not contained in WΦ(L)/ΓΦ conformally equivalent
to L/Γ. However, L/Γ is a Riemann surface of conformally finite type
and, by Ahlfors' finiteness theorem, so is Ωφ/Γφ. This is absurd because
L/Γ = WΦ(L)/Γφ. Thus Ωφ= WΦ(L). Clearly, WΦ(L) is invariant under
Γφ. Hence WΦ(L) is a simply connected invariant component of Γ*.

Therefore Γφ has one or two simply connected invariant components
by a theorem of Accola (cf. [4], [14]). Namely, Γφ is a quasi-Fuchsian
group or a δ-group.

If Γφ is a quasi-Fuchsian group, then the limit set Λ(ΓΦ) of Γφ is a
quasi-circle (Maskit [14]). Therefore, Wφ has a quasiconformal extension
to C by a theorem in Ahlfors [3] and φ belongs to TnB2(L, Γ), where T
is the universal Teichmϋller space. On the other hand, Kra [12] showed
that T(Γ) = Tf)B2(L,Γ) if Γ is a finitely generated Fuchsian group of
the first kind. Thus, φ is in T(Γ). But this is a contradiction. Hence
Γφ is a 6-group.
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Since a function (trace XΦ(Ύ))2 for a fixed 7 6 Γ is analytic on B2(L, Γ)
and Γ consists of countable number of elements, there exists a φ in S
such that (trace XΦ(Ύ))2 Φ 4 for every non-parabolic element Ύ in Γ, namely,
a δ-group /^ is not a cusp. Therefore, Γφ is a totally degenerate group
with Ω(ΓΦ) = WΦ(L) by Maskit [14, Theorem 4], where Ω(ΓΦ) is the region
of discontinuity of Γφ. From now on, we shall consider such φ and Γφ.

Here, we note the following fact called the "λ-lemma".

PROPOSITION (Mane, Sad and Sullivan [13]). Let A be a subset of C
A

and {ix} be a family of injections of A into C, where X is in the unit
disk D. Furthermore, let iλ{z) be analytic with respect to XeD for each
zeA and io(z) Ξ= Z. Then iλ for each XβD is automatically a quasi-
conformal mapping on A, that is, iλ is a homeomorphism of A into C
with

π p I S ί n f { δ ( i * { z ) > ^ z ' ) ) : δ{z' z>) = r ' z ' e A } < +00 ,
zei r-+° suv{δ(iλ(z), iχ{z'))\ 8{z, z') = r, z' e A}

where <5( , •) is the spherical distance in C.

We proceed to prove Theorem 2. Since φ is in S, there exists a con-
stant r > 0 such that {ψeB2(L, Γ): \\ψ - φ\\ < r) is contained in IntS(Γ).
For each λ e D we set φλ = φ + X(ψ0 - Φ) and iλ = WΦλ o (Wφ)~ι on WΦ(L),
where ψ0 is in B2(L, Γ) with 0 < | | ^ 0 — 1̂1 < ^ Then iλ is conformal on
WΦ(L) = Ω(JΓ*) and satisfies the condition of the above proposition for
A = Ω(ΓΦ). Hence iλ for each XeD can be extended to Ω(ΓΦ) = C quasi-
conformally. On the other hand, iλ is a /^-compatible quasiconformal
mapping and Γφ is a finitely generated Kleinian group. Thus, the Beltrami
differential of iλ vanishes almost everywhere on Λ(ΓΦ) from Sullivan's
theorem in [20]. This implies that iλ is conformal on C for each XeD
and {iλ, z) = 0 on C. But this is absurd because {iλ1 z) = X(ψ0 — Φ)(Wj\z))
{(WΦ

ι)'{z))2 Φ 0 for X Φ 0. Therefore, we complete the proof of Theorem 2.

PROOF OF COROLLARY. We may assume that OOGJ, Let h be a
conformal mapping of L onto zf satisfying h(z) = (z + i)'1 + OQz + i\) as
z—> — i. Then 7"1 = fc"1^ is a finitely generated Fuchsian group of the
first kind and {h, z) is in B2(Lf Γ) by Nehari's theorem in [16]. So, if all
/ satisfying (1.2) are schlicht on Δ, then {f<>h, z] = {/, h{z)}{h\z))2 + {h, z)
is in S(Γ), and {h, z} is in Int S(Γ) because {/, h{z)}\h\z)f is in J52(L, Γ)
and suvweJpj(w)~2\{f, w}\ = \\{f, h{z)}(h'(z))2\\. Hence {h, z) is in T{Γ) from
Theorem 2, that is, h(L) = J is a quasi-disk.

Conversely, if J is a quasi-disk, then Δ has the Schwarzian derivative
property (cf. [8], [9]). Hence all / satisfying (1.2) are schlicht on Δ.
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4. Proof of Theorem 3. Suppose that H — Hn T(Γ) is not connected.
Then there exists a bounded component of H — Hf] T(Γ) in H, say V9

because Hf] T(Γ) is bounded in H. Obviously, 3FcS(Γ) and therefore
we can show that V is contained in S(Γ) by the same argument as in
the proof of [19, Theorem 2]. For convenience, we shall sketch the
proof.

F o r e a c h φ e B 2 ( L , Γ) w e s e t wφ(z) = 2iWφ(ί(l - z ) ( l + z)~ι) on {\z\ > 1}.
Then wφ is schlicht on {\z\ > r) for some r ^ 1. So, we can define the
Grunsky coefficients bi5{φ) (ί, j = 1, 2, • )» namely,

log
z — ς ί>i= i

holds on \z\, | ζ | > r. It is known (cf. [17]) that wφ is schlicht on | s | > 1
if and only if

(4.1)

holds for an arbitrary sequence {λn} of complex numbers.
Let φ be in dV. Then wΦ is schlicht on \z\ > 1. Hence we have

N N

(4.2)
i,3=l n = l

for an arbitrary natural number N. Since biS(φ) is analytic with respect
to φeB2(L,Γ), we can verify that (4.2) holds for all φ in V by the
maximum principle, and (4.1) holds for every φ in V. So, V is contained
in S(Γ).

For a non-parabolic element 7 6 Γ, (trace Z/7))2 — 4 is analytic in
B2(L, Γ) and does not vanish identically on H, because Hf]T(Γ)Φ0.
Therefore, {φ e V; (trace X*(7))2 — 4 = 0} is a nowhere dense subset of V,
and by the same argument as in the proof of Theorem 2 we can take
such a φ in V that (trace XΦ{Ί)f Φ 4 for every non-parabolic element
7 6Γ. Since ^ is in S(Γ) — T(Γ), Γφ is a totally degenerate Kleinian
group. By using Proposition (the λ-lemma) and Sullivan' theorem [20]
again as in the proof of Theorem 2 for a small disk in V centered at φ,
we have a contradiction. Since we have already shown that d(H —
ΊχΓ))nHf)dT(Γ) in [19, Theorem 2L_we have d(H - Hf] 2\77) = HndT(Γ)
by a general relation d(H - HnT(Γ))<zHndT(Γ). Thus, we complete
the proof of Theorem 3.

5. Remarks.

(1) Let W be a bounded domain in C whose boundary consists of a
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finite number of mutually disjoint closed Jordan curves, say au a2, , aN,

and let W5 (j = 1, 2, , N) be a domain in C with 3TF,- = aά and T ^ o W.

Then we have the following:

THEOREM 4. If W has the BMO extension property for UjU ABD( TΓy) | TΓ,
£/&ew alf a2, , aN are all quasi-circles.

PROOF. From the hypothesis, there exists a constants C1 > 0 such
that for every ge UJU ABD(Wy) there exists a GeBMO(C) with
5r IW and

We may take g as an arbitrary function in AED^Wj) for a fixed j (1 ̂

j £ N). Let /8y be a circle in C — Tί̂  and let Δά be the component of

C — βs containing Wjt We define a function G in 4y by

(5.2) δ(«)
l ( ) « e Wd.

Set dj = min{ήΔj(aj9 ak):k Φ j}, where h j ^ , •) is the hyperbolic distance
in Δj. Then dβ > 0 and for every disk B in Δά whose hyperbolic diameter
is not greater than dάf we have

^\ \g-gB\dxdy^\\g\\.,Wj4 ( \GGB\dxdy ^
\B\ JB \B\

if B is contained in Wjt and

±\ \G - GB\dxdy £ \\G\\.,C\ \GGB\dxdy
\B\ JB \B\

if BΠ(Δj - Wά) Φ 0 . Therefore, from [18, I-B, Hilfssatz 2] and its proof
we conclude that G belongs to BMCKz/,-) and

(5.3) ^ ^

where C(djf CJ is a constant depending only on dά and Cx. On the other
hand, Δά is a (quasi-)disk. Hence there exists a constant C[ not depending
on G such that G has an extension G^eBMCKC) satisfying

(5.4) HG lUc ̂  C ί | | G | | M . ^ CJC(dy, Cd\\g\\..Wi .

Since Gy|TΓy = G\Wό = ̂  from (5.2), the inequality (5.4) implies that
Wά has the BMO extension property for ABD(Wy). Thus α y must be a
quasi-circle from Theorem 1, if °o £ W3 . If °° 6 W5 , then we consider a
certain Mobius transformation A such that A(W3)$°o. By using the
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conformal invariance of BMO, we have also the assertion in this case.

NOTE. Since BMO(W)Z)ASD(W)ZD\JUABD(Wd)\Wf we see that if W
has the BMO extension property for ABΌ(W) (BM0(T7)), then alf ---,aN

are all quasi-circles. Conversely, if a19 •• ,aN are all quasi-circles, then
W has the BMO extension property for BMO(TΓ) (Mr. Y. Gotoh, oral
communication).

( 2 ) Bers conjectured that for every φedT(Γ), there are complex
manifold M isomorphic to a product of Teichmϋller spaces, with φeMd
dT(Γ) and a quasiconformal deformation Γ* of Γφ for every ψ in M (cf.
[5, p. 296]).

Abikoff ([1, § 5, Corollary]) showed that the conjecture is affirmative
when Γφ is a regular δ-group. In contrast with this result we have the
following theorem for φedT(Γ) corresponding to a totally degenerate
group, which is a strongly negative answer to the conjecture.

THEOREM 5. For each φ corresponding to a totally degenerate group
there exists no complex manifold in T{Γ) containing φ.

PROOF. If such a complex manifold exists, then there is a holo-
morphic injection / of the unit disk in C into T{Γ) with /(0) = φ. Set
iλ{z) — Wf{λ) © Wφ\z) on Ω(ΓΦ) for λ e D . By the same argument as in
the proof of Theorem 2, we have {ix, z] = 0 on C for all λ 6 D and this
yields a contradiction, because /(λ) Φ φ for xeD — {0}.

(3) We shall suppose that Γ has no elliptic transformation and
dim T(Γ) = 1. Then Bers [6] showed that all modular transformation of
T(Γ) can be extended to dT(Γ) continuously. Since T(Γ) is compact and
the complement is connected in B2(L, Γ) (= C) from Theorem 3, we have
the following from Mergelyan's theorem (cf. [7]).

THEOREM 6. Let Γ be as above and consider T(Γ) as a bounded
domain in C. Then every modular transformation can be approximated
uniformly on T(Γ) by polynomials.
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