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ASYMPTOTIC ESTIMATES FOR MODULI OF EXTREMAL RINGS
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Abstract. For n ^ 2 and 0 < a < 1 let Rn(a) denote the extremal ring
domain consisting of the unit ball in w-space minus the closed slit [—a, a]
along the asi-axis. Significant lower and upper limits as n tends to oo are
obtained for the expressions

mod Rn(a) — n + — log n

and

n1/2-nmoάRn(a)n ,

where mod denotes the conformal modulus.

1. Introduction. In this paper we find asymptotic lower and upper
limits as n tends to oo for the modulus of certain extremal rings in n-
space.

For n7±2 and 0 < a < 1 we let R = Rn(a) denote the ring in Rn

consisting of the open unit ball Bn minus the closed slit [—a, a] along
the a^-axis. The conformal capacity of R is defined to be

capR = inf \ \Vu\ndω ,
u JR

where ueC\R), u = 0 on the slit [—a,a\, and u = 1 on the boundary-
sphere Sn~\ The modulus of R is defined by

mod R = (σ^/cap R)1'^ , σn.x = m^S*'1) .

The rings Rn(a) are extremal in the following sense: If R is any
ring in Rn consisting of the unit ball minus a continuum whose diameter
is at least 2α, then mod R ^ mod Rn(a) (cf. [Anl]). This extremal property
of the rings Rn(a) makes them useful in the study of the distortion
properties of quasiconformal mappings in w-space (cf. [G], [AW]), and
we therefore wish to obtain all possible information about these rings.

The asymptotic behavior of Rn(a) has been studied as a tends to 0
and to 1 and as n tends to oo. In particular, it has been shown [An2,
Theorem 2, p. 7] that for each α, 0 < a < 1,
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(1) AJίK'lπKY™ ύ mod Rn{a) ̂  An(\og Y ^

where K and Kr are the complete elliptic integrals of the first kind de-

fined by

K = KQc) = Γ [ ( l - *2)(1 - kΨ)]-1/2dt ,
( 2 ) Jo

K' = 2f(fc') , ft' = (1 - fc2)172

with ft = α2 and where An = 7i / ( n- 1 )Jn wi th

( 3 ) /n = {"* sin""2 tdt , J n = Γ / 2(sin t)*-n)/kn-"dt .
Jo Jo

Also for fixed α, 0 < a < 1, it is known [An2, Theorem 5, p. 18] that

lim(l/n)mod Rn(a) = 1 .
71—>OO

It is the purpose of this paper to make more precise the dependence
of Rn(a) upon the dimension n. Specifically, we shall prove the following
theorems.

THEOREM 1. For n^Z and 0 < a < 1 let Rn{a) denote the ring in
Rn consisting of the unit ball Bn minus the slit [—a, a] along the xraxis.
Then

(4) lim supjmod Rn{a) — n + — log n\

^ _ 1 + — log(2π) - log log-1 + α

2 1 - α

and

(5) lim inf jmod Rn(a) - n + — log n\ ^ - 1 + — log(2π) + \og(K'/πK)

where K and Kr are the elliptic integrals in (2) with k = α2.

THEOREM 2. For w ^ 3 and 0 < α < 1 let Rn(a) denote the ring in
Theorem 1. Then

(6) lim sup n1/2~n mod Rn(a)n ^ (l/Sϊ/βjflog -1 + α V'

and

(7 ) lim inf n1/2~n mod Rn(a)n ^ (\/2πle)(K'lπK) ,
n—>oo

where K and K' are the elliptic integrals in (2) with k = α2.
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We shall accomplish the proofs of these theorems by studying the
asymptotic behavior of the constant An, appearing in (1), as n tends
to oo.

We shall follow mostly standard notation, consistent with [AV].

2. Proof of Theorem 1. The proof of Theorem 1 will depend upon
a knowledge of the behavior of the constant An in (1) as a function of
n. Since An = Ilnn~ι)Jn, where In and Jn are the integrals in (3), we
begin by studying these.

LEMMA 1. For n ^ 3 let In = Γ^sin^ίdί. Then
Jo

(π/(2n - 2))1'2 < In < (π/(2n - 4))1/2 .

PROOF. This is Lemma 1 of [AV]. •

REMARK. In the sequel we shall frequently need to use the facts
that

( 8 ) log c < n(c1/n - 1)< c - 1

and

(9) &>n - 1

for c > 1 and n ^ 2.

LEMMA 2. For n ^ 3 let Jn = Γ V n t ) 1 2 " " 1 ^ " ^ * . Then
J

n - 1 + Iog2 - (n - I)"1 < Jn < n - 1+ Iog2 - ^ Iog2 - l)(n - I)"1 .

In particular, n — l<Jn<n for n^3, and Jn — n increases to — 1 + log2
as n tends to oo.

PROOF. By an elementary estimate and by (8) with c = esc t we
have

Jn - n + 1 - log 2 = Γ/2(l - cos ί)((sin t)<2-»>/<»-υ - esc t)dt
Jo

(l - cosί)(sinO(2"n)/(n"υ(l - (sin t)ι/{ι~n))dt

(l - cos t)(l - (sint )ί/a-n))dt

< (n - l ) " 1 ! ^ ! - cosί)logsinί(ίί = ( l - — Iog2)(n - I)-1 .

Thus the upper bound is established.



536 G. D. ANDERSON AND M. K. VAMANAMURTHY

Again using elementary estimates and (8) we obtain

Jn - n + 1 - log 2 = (""(I - cos t)(sin t)<*-»>/<»-»(i - (sin t)inι~n))dt
Jo

> (n - lΓ'Γ'V - cos ί)(csc ί)(l - esc t)dt
Jo

> -{n - l ^ Γ V ~ cos £)csc2 tdt = -(w - I)"1 ,
JJo

and the lower bound follows.
The fact that Jn — n is increasing in n follows from the integral

form of Jn — n + 1 — log 2, while the limit is a consequence of the
estimates we have found for Jn. •

LEMMA 3. For n ^ 3 let An — IH{n 1]Jn, where In and Jn are as in
(3). Then

lim(An - n + -^ log n) = - 1 + — log(2ττ) = -0.081 .
n \ 2 / 2

/w /αc£, /or w ^ 3,

An ^ n - 1 + log 2 - l(7r/2)1/(2*-2) log(n - 2) + (w/(2n - 2))log(ττ/2)

and

An ^ (π/(2n - 2))1/(2n~2)(log2 - (w - I)"1) - (n - 2)"1log(n - 1) .

PROOF. First,

(10) An = Ii/{n-ι\Jn — n + 1) + (n — l)/n / ( n"υ ,

where

(11) lim ti/{n-1](Jn - n + 1) = log 2
71

by Lemmas 1 and 2. Next, applying the inequality e~x > 1 — x, x > 0,
with a? = (2w — 2)~1log(w — 1) and using (10) along with Lemma 1, we

* obtain

(12) An > I i / ( l | -V« - rc + 1) + (πί2)1/{tn-2)(n - 1 - i - log(w - 1)) .
V 2 /

Thus we have

+ (n - 1 - -J-log(n - l))((π/2)1/(2Λ-2) - 1) .
\ 2 /
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From (13) and Lemmas 1 and 2 we conclude that

(14) lim inf (AΛ - n + λ log n) ^ - 1 + ±-log(2π) .
n \ 2 / 2

Next, by Lemma 1 and the inequality e~x < (1 + x)~\ x > 0, with

(15) α? =

we may write

(16) (n - l)IJ' ( n-1 }

It is easy to see that (16) implies the inequality

(n - 1)JJ'(»-1} - n + 1 + 4"log(n - 2)

x)~\n -

+ i-((τr/2)1/(2"-2) - l)log(Λ - 2) + (n - I)-1 Iog2(% - 2) ,

with ^ as in (15). Then by employing (9) with c = (π/2)1/2 and letting n
tend to oo we have

(17) lim sup{(w - l)PJ{n-ι) - n + 1 + i log(n - 2)1 ^ i-log(π/2) .

Therefore, by (10) and (11) we have from (17),

(18) limβupJA, - n + 1 + ^-log(n - 2)1 ^ i-log(2jr) .

The desired limit follows from (14) and (18).
Finally, by (1), Lemma 3, and the limit limw(c1/n — 1) = logc, c > 1,

we have

lim sup I mod Rn(a) — n Λ log n\

/ 1
^ lim(An _ Λ + i-

\ 2
(A n Λ + log n)(\og
\ 2 A 1 —

= - 1 + ^-log(2π) - log log
2

^log(2π) log log .
2 1 — a

The lower limit in the theorem follows similarly. •

Theorem 1 has a straightforward application to the Grotzsch ring
in R\
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COROLLARY 1. For n ^ 3 and 0 < b < 1, let RG>n(b) denote the Grotzsch
ring in Rn consisting of the unit ball Bn minus the slit [0, b] along the
xraxis. Then

mod RG>n(b) — n + — log w [ <̂  —1 + — log(2τr) — log logί ^ )
2 J 2 \1 — b '

and

lim inf {mod JBβϊW(δ) - n + — log n\ ^ - 1 + — log(2ττ) + log(2ϋΓ7τrίO ,
n ( 2 ) 2

where K and K' are the elliptic integrals in (2) with k = 6.

PROOF. There is a conformal mapping, that is, a Mδbius transfor-
mation [Ah], of RG,n(b) onto the ring Rn(a) of Theorem 1 with b =
2α/(l + α2). Then we have

(1 + 6)/(l - 6) = ((1 + α)/(l - α))2 ,

hence

K\a2)IK{a2) = 2K\b)IK{b)

by [LV, pp. 60, 61]. •

REMARK. The bounds for An in Lemma 3 may be combined with
the estimates in (1) to obtain bounds for mod Rn(a) (or mod RG,n(b)) in
terms of easily understood functions of n and a (or 6).

3. Proof of Theorem 2. For the proof of Theorem 2 we require
the asymptotic behavior of A^, where An is the constant in (1). We
achieve this by proving some lemmas.

LEMMA 4. \\mx^{Γ{x + l))1/aj = e~r = 0.5614- , where Γ is Euler's
Gamma function and Ί is Euler's constant

7 = limf Σ — ~ log m) = 0.5772- .
m \fc=l k '

PROOF.

lim — logΓ(a; + 1) = Γ'(l)/Γ(l) = - ?

by lΉδpitaΓs Rule and [R, p. 11]. •

LEMMA 5. For n ^ 3 let Jn = Γ (sinί)(2""n)/<n"1)ίiί. ΓΛβ^

PROOF. By the change of variable x = sin21 and the fact that
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Γ(l/2) = l /T, we may write Jn as

Jn = 1 Γ(1 - α:)-1/2a;(3-27l)/(2n-2)d^ = (i/T/2)Γ(l/(2n - 2))/Γ(n/(2n - 2))
2 Jo

[S, #607, p. 461]. By Legendre's duplication formula [R, p. 24] and the
factorial property Γ(z + 1) = zΓ{z) we then have

Thus

\1 \Ltb "T" Λ.))

with t = 1/(2w - 2). The limit then follows by use of Lemma 4. •

LEMMA 6. An

n ~ i/Sπw""^- 1, ^/tere An = /i/(n~1} J n is ίΛe constant in
(1); ίfeαί is, lim?ι1/2-nA: = \/2πe-\

PROOF. By Lemmas 1 and 5,

lim(w - l)Pn(JJ(n - l)) i ( -» = 2τr .

Hence

Taking square roots and using the fact that lim AJn = 1 by Lemma 3,
we arrive at the desired asymptotic formula. •

Finally, Theorem 2 follows immediately from (1) and Lemma 6.

COROLLARY 2. For 0 < b < 1 let RG,nQ>) denote the Grotzsch ring
consisting of the unit ball Bn minus the slit [0, b] along the xraxis.
Then

lim sup n1/2~n mod RG>n(b)n ύ g

1 — 6
and

lim inf n1/2~n mod RG,n(b)n ^ (2]/2Ϊ/e)(K'/πK) ,
n

where K and Kf are the elliptic integrals in (2) with k = b.

PROOF. This Corollary follows from Theorem 2 and the proof of
Corollary 1. •
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