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ASYMPTOTIC ESTIMATES FOR MODULI OF EXTREMAL RINGS
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Abstract. For =2 and 0<a <1 let R,(a) denote the extremal ring
domain consisting of the unit ball in n-space minus the closed slit [—a, a]
along the x;-axis. Significant lower and upper limits as # tends to o are
obtained for the expressions

mod R,(a) — n + % log n
and
n**"*mod R,(a)" ,

where mod denotes the conformal modulus.

1. Introduction. In this paper we find asymptotic lower and upper
limits as n tends to o for the modulus of certain extremal rings in n-
space.

For n =2 and 0 <a <1 we let R= R,(a) denote the ring in R"
consisting of the open unit ball B" minus the closed slit [—a, a] along
the z,-axis. The conformal capacity of R is defined to be

cap R = infS |Vu|"dw ,
% R

where u € C*(R), v = 0 on the slit [—a,a], and # =1 on the boundary
sphere S**. The modulus of R is defined by

mOd R = (an—l/ca'p R)l/(n—l) ’ o'n—l = mn—l(Sn—l) .

The rings R (a) are extremal in the following sense: If R is any
ring in R consisting of the unit ball minus a continuum whose diameter
is at least 2a, then mod R < mod R,(a) (cf. [Anl]). This extremal property
of the rings R,(a) makes them useful in the study of the distortion
properties of quasiconformal mappings in n-space (cf. [G], [AVV]), and
we therefore wish to obtain all possible information about these rings.

The asymptotic behavior of R,(a) has been studied as a tends to 0
and to 1 and as » tends to «. In particular, it has been shown [An2,
Theorem 2, p. 7] that for each a, 0 <a <1,
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(1~n)
(1) A(K'[zK)"" < mod R,(a) < A,,(log -‘1‘ ta )1“ ,

where K and K’ are the complete elliptic integrals of the first kind de-
fined by

K = K(k) = Sl[(]_ — )1 — k2t2)]—1/zdt ,
K' = Kk , E=0-—k"

with k& = a* and where A4, = IV J_ with

(2)

(3) I,L = Sxﬂ sin™ 2 tdt , Jn — Sm(sin t)(2—n)/(n_1)dt .
0

0

Also for fixed a, 0 < a < 1, it is known [An2, Theorem 5, p. 18] that
lim(1/n)mod R, (a) = 1.

It is the purpose of this paper to make more precise the dependence
of R, (a) upon the dimension n. Specifically, we shall prove the following
theorems.

THEOREM 1. For n =83 and 0 < a <1 let R,(a) denote the ring in
R" consisting of the unit ball B® minus the slit [—a, a] along the x,-axis.
Then

(4) lim sup {mod R.(a) — n + —21— log n}

n—00

+ a

< -1+ %log(Zn:) — log log i

and
(5) lim inf{mod Ru(a) — n + % log n} > -1+ % log(2) + log(K'/zK)

where K and K' are the elliptic integrals in (2) with k = a’.

THEOREM 2. For n =8 and 0 < a <1 let R,(a) denote the ring in
Theorem 1. Then

(6) lim sup n**~" mod R, (a)" < (/' %/e)(log i +a )“l
and
() lim inf 7*~" mod R,(a)" = (/2x/e)(K'/zK) ,

n—rco

where K and K’ are the elliptic integrals in (2) with k = a’.
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We shall accomplish the proofs of these theorems by studying the
asymptotic behavior of the constant A,, appearing in (1), as » tends
to oo,

We shall follow mostly standard notation, consistent with [AV].

2. Proof of Theorem 1. The proof of Theorem 1 will depend upon
a knowledge of the behavior of the constant A, in (1) as a function of
n. Since A, = I¥"YJ  where I, and J, are the integrals in (3), we
begin by studying these.

LEMMA 1. For n >3 let I, = Sm sin"?tdt. Then

(7/@2n — 2))* < I, < (x/@2n — 4))"* .
Proor. This is Lemma 1 of [AV]. O

REMARK. In the sequel we shall frequently need to use the facts
that

(8) loge<nc™—-—1)<c¢c—1
and
(9) ¢/ — 1 < (log¢)/(n — log ¢)

for ¢ >1 and n = 2.

/2
LEMMA 2. For n =3 let J, = S "(sin £)="/5-0g¢.  Then
0
. n—l+log2—('n,—1)“<J,,<'n—1+10g2—<%10g2—1)(11,—1)‘1 .

In particular, n —1<J,<n for n=3, and J, —n increases to —1 +log2
as n tends to co.

PrROOF. By an elementary estimate and by (8) with ¢ =csect we
have

J —m+1—log2= Sma — cos £)((sin £)-"/" _ cse t)dt
= {1 = cos t)(sin &)*--7(1 — (sin ty0-")d
0
< Sma — cos £)(1 — (sint JV4-")dt
/2 . T
< (n— 1)-IS (1 — cos t)log sin tdt = (1 ~ Zlog 2>(n 1),
0

Thus the upper bound is established.
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Again using elementary estimates and (8) we obtain
/2
J,—m+1—log2 = S (1 — cos t)(sin £)*~™/"=1(1 — (sin t)V*")d¢t
0

> (n — 1)‘1S:/2(1 — cos t)(esc t)(1 — cse t)dt

/2
0

> —(n — 1)“S (1 — cost)esc’tdt = —(m — 1)1,

and the lower bound follows.

The fact that J, — n is increasing in = follows from the integral
form of J,—n + 1 —log2, while the limit is a consequence of the
estimates we have found for J,. O

LEMMA 3. For n=8 let A, = IV VJ,, where I, and J, are as in
(3). Then

i 1 =141 - —
hnm<An —n+ 5 log n> = —1+ 2 log(@m) = —0.08L--- .
In fact, for n = 3,
A, €n—1+1log2— —;—(7:/2)‘/ =2 log(n — 2) + (n/(2n — 2))log(x/2)

and
A, = (w/2n — 2))"*P(log2 — (n — 1)) — (n — 2)log(n — 1) .
Proor. First,

10) A, =TIV —q + 1) + (n — DIV
where
(11) lim /9], — 5 + 1) = log 2

by Lemmas 1 and 2. Next, applying the inequality e*>1— 2, 2 > 0,
with ¢ = @2n — 2)'log(n — 1) and using (10) along with Lemma 1, we
obtain

12) A, > IV, —n + 1) + (77:/2)‘/‘2"‘2’<n —1— _21_ log(n — 1)) )

Thus we have

13) A, —m+1+ —%-log(n — 1) > [V, — p + 1)

1 1/(en—2) ___
+ <n —1—log(n — 1)>((rc/2) 1.
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From (13) and Lemmas 1 and 2 we conclude that

(14) lim mf(A —n+ i log n) 14+ llog(zn)

Next, by Lemma 1 and the inequality e < (1 + )%, 2 > 0, with
(15) z = (2n — 2)"'log(n — 2)
we may write

(16) (n — DIV < (n = 1)L + @) (/272 .
It is easy to see that (16) implies the inequality
n— DIV — g+ 1+ %—log(n —2)
<A -2+ 2) (e — 1)(z/2)V*> — 1)
+ %—((n/2)‘/ =2 — Dlog(n — 2) + (n — 1) log*(n — 2),

with 2 as in (15). Then by employing (9) with ¢ = (z/2)"* and letting n
tend to « we have

an  lim sup{(n RN (Y P —;—log(n - 2)} < %10g(1r/2) :

Therefore, by (10) and (11) we have from (17),

(18) lim sup {A,, 41+ -%log(n — 2)} < -;—log(Zn:) .

The desired limit follows from (14) and (18).
Finally, by (1), Lemma 3, and the limit lim n(¢"* — 1) = loge, ¢ > 1,
we have

lim sup {mod R,(a) —n + —;-log 'n}

= lim(An —n+ —;—log ’n><log 1+ a>1/“ w

—a

 tim{n — L tog m)((log L£2)" ™ _ 1)

= -1+ —1—Iog(2n) log log lta .
2 1—a
The lower limit in the theorem follows similarly. ]

Theorem 1 has a straightforward application to the Grotzsch ring
in R~
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COROLLARY 1. For n=3 and 0<b<1, let R ,(b) denote the Grotzsch
ring in R" consisting of the unit ball B* minus the slit [0, b] along the
2.-ax1s. Then

1
2

. o1 3 140\
hmnsup{mod R, ,0b) —n + Elog n} < -1+ b>

log(2%) — log log( 1

and

lim inf{mod R (b) —m + -;- log n} > 1+ %log(2rc) + log@K’[zK) ,

where K and K' are the elliptic integrals in (2) with k = b.

Proor. There is a conformal mapping, that is, a Mobius transfor-
mation [Ah], of R;.(b) onto the ring R,(a) of Theorem 1 with b =
2a/(1 + a?). Then we have

1+b)/1 =05 =1+ a1 -a),
hence
K'(a®)/K(a*) = 2K'(b)/ K(b)
by [LV, pp. 60, 61]. O
REMARK. The bounds for A, in Lemma 38 may be combined with

the estimates in (1) to obtain bounds for mod R,(a) (or mod R, (b)) in
terms of easily understood functions of » and a (or b).

3. Proof of Theorem 2. For the proof of Theorem 2 we require
the asymptotic behavior of A", where A, is the constant in (1). We
achieve this by proving some lemmas.

LemMA 4. lim,,(I"(x + 1))Y* = ¢ 7 = 0.5614---, where I' is FEuler’s
Gamma function and v is Euler’s constant

v = lim(i% — logm) = 0.5772--. .

m k=1
Proor.
1in(r)1%log @ +1)=I"Q)/ra) = —vy
by I’Hopital’s Rule and [R, p. 11]. O

LEMMA 5. For n =3 let J, = Sm (sin £)-"/5=0gt Then
lim (J,/(n—1))* = 2. ’

Proor. By the change of variable z = sin’¢ and the fact that
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r'1/2) =v' 7, we may write J, as
J, = %Sl(l — )l — (7 1) (1)(2n — 2))/T'(n/(2n — 2))
0

[S, £#607, p. 461]. By Legendre’s duplication formula [R, p.24] and the
factorial property I'(z + 1) = zI'(2) we then have

4Jn — 21/(n—1)F2(1/(2’I’b — 2)) .

I'lf(n — 1))
Thus
T fn — Dyt = 2t + D
(Taltn = 1)~ = 2
with ¢ = 1/(2n — 2). The limit then follows by use of Lemma 4. N

LEMMA 6. A? ~V 2xn" e, where A, = I¥""J, is the constant in
(1); that is, limn'?"Ar =1/ 27e".

PrOOF. By Lemmas 1 and 5,
lim(n — )IXJ,/(n — 1))* " =2r .
Hence
lim AX"Vp?~" = 21e? .
Taking square roots and using the fact that limA,/n =1 by Lemma 3,
we arrive at the desired asymptotic formula. O

Finally, Theorem 2 follows immediately from (1) and Lemma 6.

COROLLARY 2. For 0<b<1 let R;,Db) denote the Grotzsch ring
consisting of the unit ball B™ minus the slit [0, b] along the x,-axis.
Then

lim sup 72~ mod R, ,(b)" < (21/'27z/e)(1og i + 2)’

and
lim inf #'2=" mod R, .(b)* = (21 2x/e)(K'|zK) ,
where K and K' are the elliptic integrals in (2) with k = b.

Proor. This Corollary follows from Theorem 2 and the proof of
Corollary 1. O
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