ASYMPTOTIC ESTIMATES FOR MODULI OF EXTREMAL RINGS

Glen D. Anderson and Mavina K. Vamanamurthy

(Received November 12, 1984)

$$
\begin{aligned}
& \text { Abstract. For } n \geqq 2 \text { and } 0<a<1 \text { let } R_{n}(a) \text { denote the extremal ring } \\
& \text { domain consisting of the unit ball in } n \text {-space minus the closed slit }[-a, a] \\
& \text { along the } x_{1} \text {-axis. Significant lower and upper limits as } n \text { tends to } \infty \text { are } \\
& \text { obtained for the expressions } \\
& \qquad \bmod R_{n}(a)-n+\frac{1}{2} \log n
\end{aligned}
$$

and

$$
n^{1 / 2-n} \bmod R_{n}(a)^{n},
$$

where mod denotes the conformal modulus.

1. Introduction. In this paper we find asymptotic lower and upper limits as n tends to ∞ for the modulus of certain extremal rings in n space.

For $n \geqq 2$ and $0<a<1$ we let $R=R_{n}(a)$ denote the ring in \boldsymbol{R}^{n} consisting of the open unit ball B^{n} minus the closed slit $[-a, a]$ along the x_{1}-axis. The conformal capacity of R is defined to be

$$
\operatorname{cap} R=\inf _{u} \int_{R}|\nabla u|^{n} d \omega,
$$

where $u \in C^{1}(R), u=0$ on the slit $[-a, a]$, and $u=1$ on the boundary sphere S^{n-1}. The modulus of R is defined by

$$
\bmod R=\left(\sigma_{n-1} / \operatorname{cap} R\right)^{1 /(n-1)}, \quad \sigma_{n-1}=m_{n-1}\left(S^{n-1}\right) .
$$

The rings $R_{n}(\alpha)$ are extremal in the following sense: If R is any ring in \boldsymbol{R}^{n} consisting of the unit ball minus a continuum whose diameter is at least $2 a$, then $\bmod R \leqq \bmod R_{n}(a)(c f .[A n 1])$. This extremal property of the rings $R_{n}(a)$ makes them useful in the study of the distortion properties of quasiconformal mappings in n-space (cf. [G], [AVV]), and we therefore wish to obtain all possible information about these rings.

The asymptotic behavior of $R_{n}(a)$ has been studied as a tends to 0 and to 1 and as n tends to ∞. In particular, it has been shown [An2, Theorem 2, p. 7] that for each $a, 0<a<1$,

AMS (MOS) subject classification (1980). Primary 30C60.

$$
\begin{equation*}
A_{n}\left(K^{\prime} / \pi K\right)^{1 /(n-1)} \leqq \bmod R_{n}(a) \leqq A_{n}\left(\log \frac{1+a}{1-a}\right)^{1 /(1-n)} \tag{1}
\end{equation*}
$$

where K and K^{\prime} are the complete elliptic integrals of the first kind defined by

$$
\begin{align*}
& K=K(k)=\int_{0}^{1}\left[\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)\right]^{-1 / 2} d t, \tag{2}\\
& K^{\prime}=K\left(k^{\prime}\right), \quad k^{\prime}=\left(1-k^{2}\right)^{1 / 2}
\end{align*}
$$

with $k=a^{2}$ and where $A_{n}=I_{n}^{1 /(n-1)} J_{n}$ with

$$
\begin{equation*}
I_{n}=\int_{0}^{\pi / 2} \sin ^{n-2} t d t, \quad J_{n}=\int_{0}^{\pi / 2}(\sin t)^{(2-n) /(n-1)} d t \tag{3}
\end{equation*}
$$

Also for fixed $a, 0<a<1$, it is known [An2, Theorem 5, p. 18] that

$$
\lim _{n \rightarrow \infty}(1 / n) \bmod R_{n}(a)=1
$$

It is the purpose of this paper to make more precise the dependence of $R_{n}(a)$ upon the dimension n. Specifically, we shall prove the following theorems.

Theorem 1. For $n \geqq 3$ and $0<a<1$ let $R_{n}(a)$ denote the ring in \boldsymbol{R}^{n} consisting of the unit ball B^{n} minus the slit $[-a, a]$ along the x_{1}-axis. Then

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\{\bmod & \left.R_{n}(a)-n+\frac{1}{2} \log n\right\} \tag{4}\\
& \leqq-1+\frac{1}{2} \log (2 \pi)-\log \log \frac{1+a}{1-a}
\end{align*}
$$

and
(5) $\quad \liminf _{n \rightarrow \infty}\left\{\bmod R_{n}(a)-n+\frac{1}{2} \log n\right\} \geqq-1+\frac{1}{2} \log (2 \pi)+\log \left(K^{\prime} / \pi K\right)$
where K and K^{\prime} are the elliptic integrals in (2) with $k=a^{2}$.
Theorem 2. For $n \geqq 3$ and $0<a<1$ let $R_{n}(a)$ denote the ring in Theorem 1. Then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} n^{1 / 2-n} \bmod R_{n}(a)^{n} \leqq(\sqrt{2 \pi} / e)\left(\log \frac{1+a}{1-a}\right)^{-1} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} n^{1 / 2-n} \bmod R_{n}(a)^{n} \geqq(\sqrt{2 \pi} / e)\left(K^{\prime} / \pi K\right), \tag{7}
\end{equation*}
$$

where K and K^{\prime} are the elliptic integrals in (2) with $k=a^{2}$.

We shall accomplish the proofs of these theorems by studying the asymptotic behavior of the constant A_{n}, appearing in (1), as n tends to ∞.

We shall follow mostly standard notation, consistent with [AV].
2. Proof of Theorem 1. The proof of Theorem 1 will depend upon a knowledge of the behavior of the constant A_{n} in (1) as a function of n. Since $A_{n}=I_{n}^{1 /(n-1)} J_{n}$, where I_{n} and J_{n} are the integrals in (3), we begin by studying these.

Lemma 1. For $n \geqq 3$ let $I_{n}=\int_{0}^{\pi / 2} \sin ^{n-2} t d t$. Then

$$
(\pi /(2 n-2))^{1 / 2}<I_{n}<(\pi /(2 n-4))^{1 / 2}
$$

Proof. This is Lemma 1 of [AV].
Remark. In the sequel we shall frequently need to use the facts that

$$
\begin{equation*}
\log c<n\left(c^{1 / n}-1\right)<c-1 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
c^{1 / n}-1<(\log c) /(n-\log c) \tag{9}
\end{equation*}
$$

for $c>1$ and $n \geqq 2$.
Lemma 2. For $n \geqq 3$ let $J_{n}=\int_{0}^{\pi / 2}(\sin t)^{(2-n) /(n-1)} d t$. Then

$$
n-1+\log 2-(n-1)^{-1}<J_{n}<n-1+\log 2-\left(\frac{\pi}{2} \log 2-1\right)(n-1)^{-1}
$$

In particular, $n-1<J_{n}<n$ for $n \geqq 3$, and $J_{n}-n$ increases to $-1+\log 2$ as n tends to ∞.

Proof. By an elementary estimate and by (8) with $c=\csc t$ we have

$$
\begin{aligned}
J_{n}- & n+1-\log 2=\int_{0}^{\pi / 2}(1-\cos t)\left((\sin t)^{(2-n) /(n-1)}-\csc t\right) d t \\
& =\int_{0}^{\pi / 2}(1-\cos t)(\sin t)^{(2-n) /(n-1)}\left(1-(\sin t)^{1 /(1-n)}\right) d t \\
& <\int_{0}^{\pi / 2}(1-\cos t)\left(1-(\sin t)^{1 /(1-n)}\right) d t \\
& <(n-1)^{-1} \int_{0}^{\pi / 2}(1-\cos t) \log \sin t d t=\left(1-\frac{\pi}{2} \log 2\right)(n-1)^{-1}
\end{aligned}
$$

Thus the upper bound is established.

Again using elementary estimates and (8) we obtain

$$
\begin{aligned}
J_{n}- & n+1-\log 2=\int_{0}^{\pi / 2}(1-\cos t)(\sin t)^{(2-n) /(n-1)}\left(1-(\sin t)^{1 /(1-n)}\right) d t \\
> & (n-1)^{-1} \int_{0}^{\pi / 2}(1-\cos t)(\csc t)(1-\csc t) d t \\
& >-(n-1)^{-1} \int_{0}^{\pi / 2}(1-\cos t) \csc ^{2} t d t=-(n-1)^{-1},
\end{aligned}
$$

and the lower bound follows.
The fact that $J_{n}-n$ is increasing in n follows from the integral form of $J_{n}-n+1-\log 2$, while the limit is a consequence of the estimates we have found for J_{n}.

Lemma 3. For $n \geqq 3$ let $A_{n}=I_{n}^{1 /(n-1)} J_{n}$, where I_{n} and J_{n} are as in (3). Then

$$
\lim _{n}\left(A_{n}-n+\frac{1}{2} \log n\right)=-1+\frac{1}{2} \log (2 \pi)=-0.081 \cdots
$$

In fact, for $n \geqq 3$,

$$
A_{n} \leqq n-1+\log 2-\frac{1}{2}(\pi / 2)^{1 /(2 n-2)} \log (n-2)+(n /(2 n-2)) \log (\pi / 2)
$$

and

$$
A_{n} \geqq(\pi /(2 n-2))^{1 /(2 n-2)}\left(\log 2-(n-1)^{-1}\right)-(n-2)^{-1} \log (n-1)
$$

Proof. First,

$$
\begin{equation*}
A_{n}=I_{n}^{1 /(n-1)}\left(J_{n}-n+1\right)+(n-1) I_{n}^{1 /(n-1)} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\lim _{n} I_{n}^{1 /(n-1)}\left(J_{n}-n+1\right)=\log 2 \tag{11}
\end{equation*}
$$

by Lemmas 1 and 2. Next, applying the inequality $e^{-x}>1-x, x>0$, with $x=(2 n-2)^{-1} \log (n-1)$ and using (10) along with Lemma 1, we obtain

$$
\begin{equation*}
A_{n}>I_{n}^{1 /(n-1)}\left(J_{n}-n+1\right)+(\pi / 2)^{1 /(2 n-2)}\left(n-1-\frac{1}{2} \log (n-1)\right) \tag{12}
\end{equation*}
$$

Thus we have

$$
\begin{align*}
& A_{n}-n+1+\frac{1}{2} \log (n-1)>I_{n}^{1 /(n-1)}\left(J_{n}-n+1\right) \tag{13}\\
& \quad+\left(n-1-\frac{1}{2} \log (n-1)\right)\left((\pi / 2)^{1 /(2 n-2)}-1\right)
\end{align*}
$$

From (13) and Lemmas 1 and 2 we conclude that

$$
\begin{equation*}
\liminf _{n}\left(A_{n}-n+\frac{1}{2} \log n\right) \geqq-1+\frac{1}{2} \log (2 \pi) \tag{14}
\end{equation*}
$$

Next, by Lemma 1 and the inequality $e^{-x}<(1+x)^{-1}, x>0$, with

$$
\begin{equation*}
x=(2 n-2)^{-1} \log (n-2) \tag{15}
\end{equation*}
$$

we may write

$$
\begin{equation*}
(n-1) I_{n}^{1 /(n-1)}<(n-1)(1+x)^{-1}(\pi / 2)^{1 /(2 n-2)} . \tag{16}
\end{equation*}
$$

It is easy to see that (16) implies the inequality

$$
\begin{aligned}
& (n-1) I_{n}^{1 /(n-1)}-n+1+\frac{1}{2} \log (n-2) \\
& < \\
& \quad(1-x)(1+x)^{-1}(n-1)\left((\pi / 2)^{1 /(2 n-2)}-1\right) \\
& \quad+\frac{1}{2}\left((\pi / 2)^{1 /(2 n-2)}-1\right) \log (n-2)+(n-1)^{-1} \log ^{2}(n-2)
\end{aligned}
$$

with x as in (15). Then by employing (9) with $c=(\pi / 2)^{1 / 2}$ and letting n tend to ∞ we have

$$
\begin{equation*}
\lim _{n} \sup \left\{(n-1) I_{n}^{1 /(n-1)}-n+1+\frac{1}{2} \log (n-2)\right\} \leqq \frac{1}{2} \log (\pi / 2) \tag{17}
\end{equation*}
$$

Therefore, by (10) and (11) we have from (17),

$$
\begin{equation*}
\lim _{n} \sup \left\{A_{n}-n+1+\frac{1}{2} \log (n-2)\right\} \leqq \frac{1}{2} \log (2 \pi) \tag{18}
\end{equation*}
$$

The desired limit follows from (14) and (18).
Finally, by (1), Lemma 3, and the $\operatorname{limit} \lim n\left(c^{1 / n}-1\right)=\log c, c>1$, we have

$$
\begin{aligned}
& \lim _{n} \sup \left\{\bmod R_{n}(a)-n+\frac{1}{2} \log n\right\} \\
& \quad \leqq \lim \left(A_{n}-n+\frac{1}{2} \log n\right)\left(\log \frac{1+a}{1-a}\right)^{1 /(1-n)} \\
& \quad+\lim \left(n-\frac{1}{2} \log n\right)\left(\left(\log \frac{1+a}{1-a}\right)^{1 /(1-n)}-1\right) \\
& \quad=-1+\frac{1}{2} \log (2 \pi)-\log \log \frac{1+a}{1-a} .
\end{aligned}
$$

The lower limit in the theorem follows similarly.
Theorem 1 has a straightforward application to the Grötzsch ring in \boldsymbol{R}^{n}.

Corollary 1. For $n \geqq 3$ and $0<b<1$, let $R_{G, n}(b)$ denote the Grötzsch ring in \boldsymbol{R}^{n} consisting of the unit ball B^{n} minus the slit $[0, b]$ along the x_{1}-axis. Then

$$
\lim _{n} \sup \left\{\bmod R_{G, n}(b)-n+\frac{1}{2} \log n\right\} \leqq-1+\frac{1}{2} \log (2 \pi)-\log \log \left(\frac{1+b}{1-b}\right)^{1 / 2}
$$

and

$$
\liminf _{n}\left\{\bmod R_{G, n}(b)-n+\frac{1}{2} \log n\right\} \geqq-1+\frac{1}{2} \log (2 \pi)+\log \left(2 K^{\prime} / \pi K\right),
$$

where K and K^{\prime} are the elliptic integrals in (2) with $k=b$.
Proof. There is a conformal mapping, that is, a Möbius transformation [Ah], of $R_{G, n}(b)$ onto the ring $R_{n}(a)$ of Theorem 1 with $b=$ $2 a /\left(1+a^{2}\right)$. Then we have

$$
(1+b) /(1-b)=((1+a) /(1-a))^{2}
$$

hence

$$
K^{\prime}\left(a^{2}\right) / K\left(a^{2}\right)=2 K^{\prime}(b) / K(b)
$$

by [LV, pp. 60, 61].
Remark. The bounds for A_{n} in Lemma 3 may be combined with the estimates in (1) to obtain bounds for $\bmod R_{n}(a)\left(\right.$ or $\left.\bmod R_{G, n}(b)\right)$ in terms of easily understood functions of n and a (or b).
3. Proof of Theorem 2. For the proof of Theorem 2 we require the asymptotic behavior of A_{n}^{n}, where A_{n} is the constant in (1). We achieve this by proving some lemmas.

Lemma 4. $\lim _{x \rightarrow 0}(\Gamma(x+1))^{1 / x}=e^{-r}=0.5614 \cdots$, where Γ is Euler's Gamma function and γ is Euler's constant

$$
\gamma=\lim _{m}\left(\sum_{k=1}^{m} \frac{1}{k}-\log m\right)=0.5772 \cdots
$$

Proof.

$$
\lim _{x \rightarrow 0} \frac{1}{x} \log \Gamma(x+1)=\Gamma^{\prime}(1) / \Gamma(1)=-\gamma
$$

by l'Hôpital's Rule and [R, p. 11].
Lemma 5. For $n \geqq 3$ let $J_{n}=\int_{0}^{\pi / 2}(\sin t)^{(2-n) /(n-1)} d t$. Then $\lim \left(J_{n} /(n-1)\right)^{n-1}=2$.

Proof. By the change of variable $x=\sin ^{2} t$ and the fact that
$\Gamma(1 / 2)=\sqrt{\pi}$, we may write J_{n} as

$$
J_{n}=\frac{1}{2} \int_{0}^{1}(1-x)^{-1 / 2} x^{(3-2 n) /(2 n-2)} d x=(\sqrt{\pi} / 2) \Gamma(1 /(2 n-2)) / \Gamma(n /(2 n-2))
$$

[S, \#607, p. 461]. By Legendre's duplication formula [R, p. 24] and the factorial property $\Gamma(z+1)=z \Gamma(z)$ we then have

$$
4 J_{n}=2^{1 /(n-1)} \frac{\Gamma^{2}(1 /(2 n-2))}{\Gamma(1 /(n-1))}
$$

Thus

$$
\left(J_{n} /(n-1)\right)^{n-1}=2 \frac{(\Gamma(t+1))^{1 / t}}{(\Gamma(2 t+1))^{1 /(2 t)}}
$$

with $t=1 /(2 n-2)$. The limit then follows by use of Lemma 4.
Lemma 6. $A_{n}^{n} \sim \sqrt{2 \pi} n^{n-1 / 2} e^{-1}$, where $A_{n}=I_{n}^{1 /(n-1)} J_{n}$ is the constant in (1); that is, $\lim n^{1 / 2-n} A_{n}^{n}=\sqrt{2 \pi} e^{-1}$.

Proof. By Lemmas 1 and 5,

$$
\lim (n-1) I_{n}^{2}\left(J_{n} /(n-1)\right)^{2(n-1)}=2 \pi
$$

Hence

$$
\lim A_{n}^{2(n-1)} n^{3-2 n}=2 \pi e^{-2} .
$$

Taking square roots and using the fact that $\lim A_{n} / n=1$ by Lemma 3, we arrive at the desired asymptotic formula.

Finally, Theorem 2 follows immediately from (1) and Lemma 6.
Corollary 2. For $0<b<1$ let $R_{G, n}(b)$ denote the Grötzsch ring consisting of the unit ball B^{n} minus the slit $[0, b]$ along the x_{1}-axis. Then

$$
\lim _{n} \sup n^{1 / 2-n} \bmod R_{G, n}(b)^{n} \leqq(2 \sqrt{2 \pi} / e)\left(\log \frac{1+b}{1-b}\right)^{-1}
$$

and

$$
\liminf _{n} n^{1 / 2-n} \bmod R_{G, n}(b)^{n} \geqq(2 \sqrt{2 \pi} / e)\left(K^{\prime} / \pi K\right),
$$

where K and K^{\prime} are the elliptic integrals in (2) with $k=b$.
Proof. This Corollary follows from Theorem 2 and the proof of Corollary 1.

References

[Ah] L. V. Ahlfors, Möbius Transformations in Several Dimensions, University of Minnesota Lecture Notes, Minneapolis, 1981.
[An1] G.D. Anderson, Symmetrization and extremal rings in space, Ann. Acad. Sci. Fenn. Ser. AI 438 (1969), 1-24.
[An2] G.D. Anderson, Extremal rings in n-space for fixed and varying n, Ann. Acad. Sci. Fenn. Ser. AI 575 (1974), 1-21.
[AV] G.D. Anderson and M. K. Vamanamurthy, Estimates for the asymptotic order of a Grötzsch ring constant, Tôhoku Math. J. 34 (1982), 133-139.
[aVV] G.D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Dimension-free quasiconformal distortion in n-space (to appear).
[G] F.W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353-393.
[LV] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Grundlehren der math. Wissenschaften 126, Springer-Verlag, New York-Heidelberg-Berlin, 1973.
[R] E.D. Rainville, Special Functions, Macmillan, New York, 1960.
[S] S. M. Selby, (ed.), Standard Mathematical Tables, 21st edition, Chemical Rubber Co., Cleveland, 1973.

Michigan State University East Lansing, Michigan 48824
U.S.A.
and University of Auckland
Auckland,
New Zealand

