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Abstract. The injective envelope I{A) of a C*-algebra A is a unique
minimal injective C*-algebra containing A. As a dynamical system version
of the injective envelope of a C*-algebra we show that for a <7*-dynamical
system {A, G, a) with G discrete there is a unique maximal C*-dynamical
system (B,G,β) "containing" {A,G,a) so that AxarGczBXβrGczI{AXccrG),
where A X arG is the reduced C*-crossed product of A by G. As applications
we investigate the relationship between the original action a on A and its
unique extension I(a) to I(A). In particular, a *-automorphism a of A is
quasi-inner in the sense of Kishimoto if and only if I{a) is inner.

1. Introduction. In [10], [12], [13] the author introduced the notion of
the injective envelope I(A) (resp. regular monotone completion A) of a (not
necessarily unital) C*-algebra A. (Note that a few authors call this A the
regular completion of A and use the confusing notation A instead of A.
But A was originally used by Wright [33] to denote the regular σ-comple-
tion of A, which is properly contained in A in general.) The algebra I(A)
is a unique minimal injective C*-algebra containing A1 as a C*-subalgebra
with the same unit, where A1 denotes the C*-algebra obtained by adjoining
a unit to A if A is non-unital and A Φ {0}, and denotes A itself otherwise.
On the other hand, A is a unique monotone complete C*-algebra such that A
is the monotone closure of A and each x e A8a (the self-adjoint part of A) is
the supremum in A8a of the set {a e A]a: a^x], where a C*-algebra B is called
monotone complete if each bounded increasing net in B8a has a supremum
in B8a, and the monotone closure of a C*-subalgebra C of B is the smallest
C*-subalgebra of B containing C which is closed under the formation of
suprema in B8a of bounded increasing nets. Moreover, A is realized as
the monotone closure of A in I(A) and we have canonically AcAc/(A).

The algebra I (A) or A, being monotone complete AW*, is more
tractable than the original C*-algebra A and is small enough to inherit
some properties of A. For example, I(A) or A is an AT7*-factor if and
only if A is prime [12, 7.1, 6.3], and if A is unital and simple, then any
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C*-subalgebra of I(A) containing A is also simple [15, 1.2(i)]. Moreover,
each *-automorphism a of A extends uniquely to a *-automorphism a of
A (resp. I(a) of I(A)) with I(a)\Ά = ά and so we have canonically Aut Ad
AutAcAutJ(A) as subgroups, where Aut A denotes the group of all
*-automorphisms of A.

Throughout the paper (unless stated otherwise) G denotes a fixed
discrete group, and for C*-dynamical systems (A, G, a) and (J5, G, β) the
notation (A, G, α)c(JB, G, β) means that A is a G-invariant C*-subalgebra
of B and β\A — a. For a C*-dynamical system (A, G, α), take the injec-
tive envelope I{AxarG) of the reduced C*-crossed product AxarG of A
by G and consider the C*-subalgebras of I(A x αrG) which are of the form
Bx βrG with (A, G, α)c(I?, G, /3). The main result of this paper (Theorem
3.4) states that there is a unique maximal C*-dynamical system (/G(A), G,
IG{a)) among such C*-dynamical systems (JB, G, β). By putting α̂  = (at)~
and I(ά)t=I(at), teG, we obtain C*-dynamical systems (A, G, α)c(/(A), G,
J(α)). We have (I(A), G, /(α))c(Jβ(A), G, JG(α)) and it follows that A x α r G c
I(A)xI(α)rGc/(AxarG) and Aχ- rGc(Ax a rG)~. This fact is crucial in later
discussions.

This paper is arranged as follows. In Section 2, Ia(A) is constructed
first as the "injective envelope" of A in the category of operator systems
on which G acts as unital complete order isomorphisms and unital com-
pletely positive G-module homomorphisms, and then in Section 3 the
maximality of (/G(A), G, IG(a)) in the above sense is established. In Section
7 we show that for a *-automorphism a of A its extension I(a) to /(A) is
inner if and only if a is quasi-inner in the sense of Kishimoto. In Section
8 some of the conditions in [26, 10.4] which characterize the ^automor-
phism with Connes spectrum equal to the full circle group are shown to
hold also in the nonseparable case. Finally in Section 10 a criterion is
given for the primeness of reduced C*-crossed products.

The reader is referred to [2] for the general theory of A IF*-algebras
and to [27] for that of automorphisms and crossed products of C*-algebras.

2. G-injective envelopes. The statements and proofs of the results
in this section parallel closely those in [11], if one replaces operator
systems and completely positive maps there by G-modules and G-morphisms
defined below, and so most of the proofs are omitted.

The terminologies in [5], [11] will be used without further explana-
tion. For an operator system V we denote the injective envelope of V
by I(V) and the group of all unital complete order isomorphisms of V
onto itself by AutF. For the same reason for the case of C*-algebras
we have AutFcAut J(F) as a subgroup.
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An operator system V is called a G-module if it is made into a
left G-module by a group homomorphism Ga 1ι-> (x t-» t x) e AutF. A
G-morphism is a unital completely positive G-module homomorphism
between G-modules. A G-morphism is called a G-ίsomorphism (resp. G-
monomorphism) if it is a complete order isomorphism (resp. complete
order injection). A G-submodule V of a G-module TF is a G-module con-
tained in W such that the inclusion map 7 ^ W is a G-monomorphism.
We consider the category of all G-modules and all G-morphisms and define
the injectivity of its object as follows. A G-module V is G-injective if
for any G-monomorphism κ\ W^> Z and any G-morphism φ:W-*V there is
a G-morphism φ: Z->V with φo/c = φ. A G-extension of a G-module Fis
a pair (TΓ, it) of a G-module TF and a G-monomorphism Λ:: V->W. The
G-extension (TΓ, £) is G-injective if TF is G-injective, and it is G-essential
(resp. G-rigid) if for any G-morphism φ:W->Z, φ is a G-monomorphism
whenever φo/c is (resp. for any G-morphism 0: TF —>TP, φo/c = K implies φ ==
id^, the identity map on TF).

DEFINITION 2.1. The G-injective envelope of a G-module is a G-
extension which is both G-injective and G-essential.

For an operator system VczB(H) with H a Hubert space the space
l°°(G, V) of all bounded functions of G into V is viewed as an operator
system on l2(G)®Hy and it becomes a G-module by the action (ί aθ(s) =
xit'ty, t, seG,xel°°(G, V).

LEMMA 2.2. With the above notations if V is an injective operator
system, then the G-module i°°(G, V) is G-injective.

PROOF. Let κ:W->Z (resp. φ\W-*l°°{Gy V)) be a G-monomorphism
(resp. G-morphism) and define a completely positive map ψ:W-^V by
ψ(x) = φ(x)(e) (e is the identity element of G). As F i s injective, there is
a completely positive map ψ: Z —>F with ψo/c = ψ. Then the map φ: Z -^
Ϊ°°(G, F), $(α?)(ί) = Ψ(t~ι-x), teG,xeZ, is a G-morphism with φo/c = φ.

REMARK 2.3. For any G-module VcB(H) the map j:V-+l°°(G, B(H)),
j(x)(t) = F'- x, xe F, ίeG, is a G-monomorphism with i(F)cϊ°°(G, F ) c
Z°°(G, B(H)), and Ϊ°°(G, J5(J5Γ)) is injective as an operator system (resp. G-
injective as a G-module). This shows that each G-module has a G-injective
G-extension. Moreover if F is G-injective, then there is an idempotent
G-morphism of l°°{GyB{H)) onto j(V) and so F is injective. Hence F is
G-injective if and only if F is injective and there is a G-morphism
φ: ί°°(G, V)-^V with φoj = id7.

We proceed to the proof of the unique existence of the G-injective
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envelope. Let Vc WaB(H) be two fixed G-modules with W G-injective
and containing Fas a G-submodule. A V-projection on Wis an idempotent
G-morphism φ:W —>Wwith φ\V — idF. A V-seminorm on Wis a seminorm
p on W such that p = ||^( )ll f° r some G-morphism 0:ίF—>T7with ^ | F =
idΓ. Define a partial ordering < (resp. <;) on the set of all F-projections
(resp. F-seminorms) on W by φ < ψ (resp. p ^ q) if and only if φoψ =
foφ = ^ (resp. p(a?) ^ g(a?) for all xe W).

LEMMA 2.4 (cf. [11, 3.4-3.7]). ( i ) Any decreasing net {p%) of V-
seminorms on W has a lower bound. Hence Zorn's lemma implies the
existence of a minimal V-seminorm on W.

(ii) There is a minimal V-projection on W.
(iii) A G-injective G-extension of V is G-essential if and only if it

is G-rigid.

PROOF. We sketch only the proof of (i). It is almost the same as
the one in [11, 3.4]; but the crucial point here is to show that the
completely positive map defining the lower bound is a G-module homo-
morphism. By 2.3 we may regard W as a G-submodule of £°°(G, B(H)).
If φi:W-+Wczleo(G,B(H)) corresponds to pi9 then a subnet of {φt} con-
verges in the point-cr-weak topology to a map φo'W—> l°°(G, B(H)), which
is a G-morphism since the action of G on £°°(G, B(H)) is σ-weakly con-
tinuous. Hence, composing φ0 with an idempotent G-morphism of Z°°(G,
B(H)) onto W, we obtain a G-morphism which gives the lower bound.

This lemma shows as in [11] that for a minimal F-projection φ on W
the pair (Im^jc) is the G-injective envelope of F, where Imφ = φ(W)
and /c is the inclusion map, and that Im^ is an injective C*-algebra
equipped with the multiplication o given by χoy — φ(xy), where W, being
injective, is viewed as a C*-algebra and xy is the product in W. Hence
we obtain the following result.

THEOREM 2.5 (cf. [11, 4.1]). Every G-module V has a G-injective
envelope, written (IG(V), fc), which is unique in the sense that for any
G-injective envelope (Z, λ) of V there is a G-isomorphism ψ: IG( V) —> Z
with ψo/c = λ.

Henceforth we shall identify F with its image ιc(V) and abbreviate
) to

REMARK 2.6. As in [11], IG(V) is characterized as a unique maximal
G-essential (resp. minimal G-injective) G-extension of F.

Let F be a G-module and I(V) the injective envelope of F as an
operator system. As AutFcAut/(F), we may regard I(V) together
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with the inclusion map V^I(V) as a G-extension of V. Comparing the
essentiality as operator systems and the G-essentiality, we see that I(V)
is a G-essential G-extension of V, hence that V(zI(V)(zIG(V) as G-sub-
modules. Moreover it follows easily that I(V) is unique among the G-
submodules of IG(V) which become the injective envelope of V.

3. Injective envelopes of C*-dynamical systems. Let (A, G, a) be
a C*-dynamical system. In this section, to simplify the notation we
assume that A is unital and denote again by a the action Iβ(a) of G on
the G-injective envelope IG(A) of A induced by a. But the results below
(except for the second part of 3.5 (i)) hold also in the non-unital case.
We call (7σ(A), G, a) the injective envelope of (A, G, a). We have

(A, G, a)a(A, G, α)c(7(A), G, α)c(7G(A), G, a) .

Following [14] we construct the monotone complete crossed products
associated with (A, G, a). Consider IG{A) as a C*-subalgebra, containing
the unit, of some B(H), represent each element x e B(H (g) l\G)) by a
matrix x — [xr,8] (r, seG) over B(H), and define operator systems IG(A) ®
B(l\G)), M(IG(A), G) on H(g)l\G) and maps τrα, λ as follows:

IG(A) <g) B(ί2(G)) = {α; G B(H(x) Ϊ2(G)): α;r,8 e Iβ(A) for all r, s e G} ,

IG(A) <g) B(ί2(G)): α4-i(ajr,.) - α?rt,.t for all r, s e G} ,

), G), τrα(^) = [δrι9ar-i(x)]9 x e 7σ(A) ,

λ: G ̂  Λf(7β(A), G), λ(ί) - [^-ir,el], t e G .

Similarly, define A ® B(ί2(G)), Λf(A, G) and so on as subspaces of B(H(g)
Ϊ2(G)). Then πa is a unital *-monomorphism with λ(ί)π«(a;)λ(t)* = πa(at(x)),
teG, xe IG(A); Iβ(A) (§) B(l\G)) is a monotone complete C*-algebra with
the multiplication

xoy = |\)-Σ αr,*»*,.] , », » e 7β(A) 0 B(l\G)) ,

where O-Σ* %r,tVt,s denotes the order limit in 7G(A) of the finite sums (and
need not coincide with the strong limit s-Σ« #r,*#«,• ίn B{H))\ and Af(7β(A),
G) [resp. Λf(A, G), M(7(A), G)] is its monotone closed C*-subalgebra [13],
[14]. Moreover, the reduced C*-crossed product AxarG is identified with
the C*-subalgebra of M(IG{A), G) generated by τrα(A)λ(G).

Regard IG(A) (g) B(l\G)) as a G-module by the action t-x = λ(ί)a?λ(ί)*,

ί e G , ^e7G(A)(g)5(i2(G)). Then ττ α (A)cAx α r GcM(A, G)cilf(7ff(A), G) are

G-submodules of 7G(A) ® B(l\G)), and τrα is a G-monomorphism.

LEMMA 3.1. Keep the above notation.
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( i ) The embedding A c ^ IG(A) is normal, that is, xt / x in A implies
Xi/x in IG(A), where Xi/x in a C*-algebra means that {#J is an
increasing net with supremum x.

(ii) The map πa: IG(A) —> M(IG(A), G) is normal.
(iii) For another C*-dynamical system (B, G, β) and a G-morphism

φ: A->B (that is, a unital completely positive map with φ(at(x)) = βt(Φ(%))>
teG,xeA) the map

$:A®B(l\G))-*B®B(l\G)),

φ(x) = [φ(xr,s)] , x = [xrj e i ® B(l\G))

is a unital completely positive map with φ(M(A,G))c.M(B,G) and
φ(AxarG)dBxβrG. Moreover, φ is a G-morphism, and it is a G-
monomorphism if and only if φ is.

PROOF, (i) The embedding A <=+ I(A) Λ l°°(G, I(A)) (see 2.3) is normal
by [12, 3.1] and the fact that j(I(A)) is clearly monotone closed in Z°°(G,
I(A)). Moreover, as Z°°(G, I(A)) is G-injective, we may take IG(A) so that
j(I(A))czIG(A)c:loo(Gf I(A)), from which the conclusion follows.

By definition, (ii) and (iii) are clear.

G-injectivity is characterized as follows. A similar result is known
[1] when A is W*f but G is not necessarily discrete.

LEMMA 3.2. For a C*-dynamical system (A, G, a) the G-module A is
G-injective if and only if M(A, G) is injective.

PROOF. This follows from [14, 3.1(ii)] and 2.3.

LEMMA 3.3. Let E be a unital C*-algebra which is also a G-module
and let C and D be G-invariant C*-subalgebras, containing the unit, of
E with CdDdE. Suppose that D is a G-essential G-extension of C and
that there are a faithful idempotent G-morphism p of E onto D (that
is, p(x) = 0 with xeE+ implies x = 0) and a G-morphism φ:D-*E with
φ\C = idc. Then φ = id^.

PROOF. The map poφ: Ό-^Ό is a G-morphism with poφ\C = idc. By
2.6 we have CcΰcJ β (C) and poφ extends to a G-morphism (ρ°φT: IG(C) -»
IG(C) with (ρ°φT\C = idc. Then (p°φT = id/σ(<7) and so poφ\D = id^. As
φ is unital and completely positive, for x e D we have φ(x*)φ(x) ^ φ(x*x)
and similarly for p. Hence x*x = p°φ(x*)poφ(χ) ^ p(Φ(x*)φ(x)) ̂  p°φ(x*x) =
x*x and p(Φ(x*)φ(x)) = x*x. As p is a D-module homomorphism [5, 3.1]
and is faithful, for xeD we have
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ρ((Φ(x) ~ x)*(φ(x) - x)) = p(Φ(x*)Φ(x)) - ρ°Φ(x*)x - x*poφ(x) + poφ(x*x)
= x*x — x*x — x*x + x*x = 0

and φ(x) = x.

THEOREM 3.4. For C*-dynamίcal systems (A, G, a) and (B, G, β) with
(A, G, α)c(J5, G, β) we have AxarGaBx βrGaI(AxarG) if and only if
(B, G, β)a(IG(A), G, a). In particular, AxarGczAxarGc:I(A)xarGcz
IG(A)XarGczI(AxarG).

PROOF. Recall that the injective envelope of an operator system is
characterized as a maximal essential extension and similarly for the G-
injective envelope (see 2.6).

Necessity: It suffices to show that if BxβrG is an essential extension
of AxarG, then B is a G-essential G-extension of A, that is, a G-
morphism φ: B—>C with C a G-module is a G-monomorphism whenever
φ\A is. Lemma 3.1(iii) shows the existence of a completely positive map
φ\BxβrG: BxβrG-+CxίrG, where ct(x) = t x, teG, xeC. If # | A is a G-

monomorphism, then φ\AxarG is a complete order injection and so is
φ\BxβrG by hypothesis. Hence φ is a G-monomorphism.

Sufficiency: It suffices to show that AxarGaIG(A)xarG(zI(AxarG).
As AxarG(zIG{A)xarG(zM(IG(A),G) with M(Iσ(A), G) injective, we may
take /(A x αrG) so that A xα rGc/(A x arG)cM(Ia(A), G). The identity map
on A x arG extends to a completely positive map ψ: IG(A) x arG —> I(A x arG).
The map p: M(IG{A), G) -> πa(IG(A)), p{x) = ττβ(ajf,.), a; - [xr>8] e M{IG{A), G) is

a faithful idempotent G-morphism onto πa(IQ(A)). Applying 3.3 to the
G-modules πa(A)aπa(IG(A))c:M(IG(A), G) and the maps φ = α/r|πa(IG(A)) and
|0, we see that φ is the identity map on πJJG{A)), hence that ψ is a
ττα(/G(A))-module homomorphism [5, 3.1]. As IG(A)xarG is generated by
πa(IG(A)) and λ(G), ^ fixes IG(A)xαrG element wise and so JG(A)xα rGc
/(AxαrG).

COROLLARY 3.5. (i) Let (A,G,a) and (Bf G, β) be C*-dynamial
systems with (A, G, α)c(B, G, β)a(IG(A), G, α). TΛeti Axα rG is prime if
and only if BxβrG is prime, and the simplicity of AxarG implies that
of J5x^rG.

(ii) For a C*-dynamical system (A, G, α), ττα(A)cAxαrG is the mono-
tone closure of πa(A) in {AxarG)~ and so Axα rGc(Axα rG)~.

PROOF, (i) As Ax α r Gcβχ^ r GcI(Ax α r G), the assertions follow from
[12, 6.3, 7.1] and [15, 1.2(i)].

(ii) As in the proof of 3.4 we may assume that Axα rGc/ ( ?(A)xα rGc
I(AxarG)aM(IG(A), G). As πa\ IG(A) -+M(IG(A), G) is normal, so is
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πa: Iσ(A) —> I(AxarG); hence πa(A) is the monotone closure of πa(A) in
/(AxβfG). As (AxαrG)" is the monotone closure of AxarG in I(AxarG),
we have Ax arGa(Ax arG)~.

COROLLARY 3.6. Let {A, G, a) be a C*-dynamical system with G
compact abelian. Then the regular monotone completion (AxaG)~ of the
C*-crossed product AxaG is realized as a monotone closed C*-subalgebra
of the monotone complete C*-algebra A®B(U(G)).

PROOF. Note that as G and its dual G are amenable, we may suppress
the letter "r" in AxarG and so on. Takai's duality theorem [27, 7.9.3]
asserts that (AxaG)xzG=A®C{L\G)). As G is discrete, Corollary 3.5(ii)
shows that {AxaG)~ is realized as the monotone closure of πz(AxaG) =
AxaG in ((AxaG)xϊGT ^ (A®C(L\G))Γ = A®B{U{G)) ([15, 3.1 (i)],
[13, 2.5, 6.7]).

REMARK 3.7. Corollary 3.6 is false for a general locally compact
group G. Indeed, consider the C*-dynamical system (C, Z, c), where C is
the 1-dimensional C*-algebra with the trivial action c. Then Z = T,
CxcZ= C(Γ), and C(Γ)~, being identified with the non-TF*, ATF*-algebra
of bounded Borel functions on T modulo the sets of first category [8], is
not a monotone closed C*-subalgebra (ΫF*-subalgebra) of the ΫF*-algebra

REMARK 3.8. Here we discuss the difference between injectivity and
G-injectivity. Let {A, G, a) be a C*-dynamical system. If G is not amenable,
then we have IG{A) Φ I(A) in general (that is, I(A) is injective, but not
G-injective). Indeed, for the C*-dynamical system (C, G, ή with the trivial
action e the G-module l°°(G) = Z°°(G, C) is G-injective, and IG{C) = C = I(C)
if and only if there is a G-morphism φ: Ϊ°°(G) —> C with φoj = idc by 2.3,
that is, G is amenable. On the other hand, we have IG{A) = I(A) if I(A)
is TF* and G is amenable (see 3.2).

4. A non-injective maximal regular extension. A reqular extension
of a unital C*-algebra A [12, 1.1] is a unital C*-algebra B containing A
as a C*-subalgebra with the same unit so that each element x e Bsa is the
supremum of {aeA8a:a ^ x}. There is a unique maximal regular exten-
sion, written A, of A, we have A c i c A c / ( 4 ) , and A is a monotone
complete C*-algebra [12, 3.1]. In this section we give an example of a
C*-algebra A for which A is non-injective, that is, A Φ I(A). This A
serves also as an example of a non-injective, non-tF*, AT7*-factor of type
III, whose existence was first shown in [13, 4.9].

The next lemma follows immediately from [12, 2.6] and [23, p. 83,
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Lemma 2].

LEMMA 4.1. Let B be a unital C*-algebra and A its C*-subalgebra
containing the unit. Then B is a regular extension of A if and only
if j*(K) £ S(A) for any weak* closed convex subset K £ S(B), where j *
is the transpose of the inclusion map j ; A<^ B and S(C), with C a C*-
algebra, denotes the state space of C.

LEMMA 4.2. Let (A, G, a) be a C*-dynamical system with A unital
and G discrete. IfCl^A, then AxarG is not a regular extension of
C*(G), where C*(G) = CxcrGczAxarG with c = a\Cl.

PROOF. We show that (*) there is a weak* closed convex subset K
of S(AxarG) such that j*\K: K-+ S(Cί(G)) is one-to-one and onto, where
j is as in 4.1. If AxarG were a regular extension of Cί(G), then
Lemma 4.1 would imply that K= S(AxarG), hence that AxarG = C}(G),
a contradiction [27, 7.7.9].

To see (*) let P(G, A*) be the set of all functions Φ:G->A* such
that ||Φ(e)|| = 1 and Σ u Φ(tτHs)(at^(aTas)) ^ 0 for any finite t,eG and
a, e A. By [35, 2.19, 4.24(i)] the map / h-> Φf, Φf(t)(a) = /(πα(α)λ(£)), t e G,
a G A gives an affine homeomorphism of S(A x aG) with the weak* topology
onto P(G, A*) with the point-weak* topology, and it maps S(AxarG)
(regarded as a subset of S(A x aG)) onto the subset Pr(G, A*) of P(G, A*)
consisting of elements Φ such that Φt-*Φ in the point-weak* topology
for some net {ΦJ in P(G, A*) consisting of elements with finite support.
Similarly, P(G) = P(G, C*) and Pr(G) = Pr{G, C*) are defined and satisfy
the above property. Hence we may and shall identify S(AxaG) and
P{G, A*), and so on. Let Φ be a state extension to P(G, A*) = S(AxaG)
of the function G θ t ^ 1 e C in P(G) = S(C*(G)). Then Φ(t)(l) = 1 for all
teG and if = ff Φ: f GPr(G)}cPr(G, A*) [35, 4.24(ii)] satisfies (•).

PROPOSITION 4.3. If G is a countable, non-amenable, ICC ( — infinite
conjugacy class) group, then the maximal regular extension C?(G)~ of the
reduced group C*-algebra Cf(G) is a non-injective, non-W*, σ-finite,
monotone complete AW*-factor of type III.

PROOF. Theorem 3.4 says that Cr*(G)c7G(C)xίrGcJ(C*(G)). As G is
non-amenable, Remark 3.8 and Lemma 4.2 show that I(Cΐ(Gfj) is not a
regular extension of C?(G), that is, Cf(G)~ is not injective. As G is countable
and ICC and so C*(G) generates a W*-factor in its regular representation,
C?(G) is a separable prime C*-algebra. As C*(G)~<z(IC*(G)), [12, 6.3, 7.1]
and the proof of [12, 3.8] show that Cf(G)~ is a monotone complete AW*-
factor with a faithful state, hence that it is ίj-finite. As Cjf(G)" = Cί(G)~
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is non-W* [34, Theorem N] and is monotone closed in C?(G)~, G?(G)~ is
also non-TΓ*. Hence by [32, Corollary], C*(G)~ is of type III.

5. G-invariant hereditary C*-subalgebras. We say that a projection
of the regular monotone completion 1 of a C*-algebra A is open [13] if
it is a supremum in A8a of some positive increasing net in A and that a
closed two-sided ideal / of A is regular [15] if J11 = J, where S1 = {xe

A : x y = : y X = 0 for a l i y 6 S} for S c A and S11 = (S 1) 1. Let (A, G, a) be
a C*-dynamical system. As in [27] we write J%fa(A) for the set of all
non-zero G-invariant hereditary C*-subalgebras of A and 3ίfB(A) for the
subset of έ%f\A) consisting of B such that the closed two-sided ideal of
A generated by B is essential. For Be^f\A) denote by R(B) the smal-
lest regular ideal of A containing B and by &a{A) the set of all non-zero
G-invariant regular ideals of A. We say that an element in IG(A) is G-
invariant if it is invariant under the action Iβ(a).

The following is a dynamical system version of [13, 6.5].

PROPOSITION 5.1. Let {A, G, a) be a C*-dynamical system.
( i ) For Be£έfa(A) consider the C*-dynamical system (B,G,a\B).

Then the supremum pB in A of each positive increasing approximate
unit for B is a G-invariant open projection of A such that B = pBApB

and IG(B) = pBIG(A)pB.
(ii) The correspondence 5 H pB given by (i) maps <§έfa(A) onto the

set of all non-zero G-invariant open projections of A. By restricting
this correspondence to &\A) we obtain a bijection of &\A) onto the
set of all non-zero G-invariant central projections of A.

(iii) For B e £(f\A) the central support C{pB) of pB in A coincides
with pR{B). Hence B is in £ίfB(A) if and only if C{pB) = 1.

For the proof of the second equality in (i) we need the next lemma.

LEMMA 5.2. Let D be a monotone complete C*-algebra, C its monotone
closed C*-subalgebra containing the unit, and p a projection of C such
that the central support C(p) of p in C is 1. Let φ: pDp —> pDp be a
completely positive map with φ\pCp — i d ^ . Then for each family {v^
of non-zero partial isometries of C such that

( * ) pe {Vi} , ViV* ^ p for all i and O-Σ v*Vi = 1 »

the map φ: D —• D given by

( ** ) $(X) = O-Σ vTφζVtXVfiVi

is a unique completely positive map such that

(***) φ\pDp=:φ and φ\C = idc ,



INJECTIVE ENVELOPES OF C*-DYNAMICAL SYSTEMS 473

where O-Σ denotes the order limit of the finite sums.

PROOF OF LEMMA 5.2. As C(p) = 1, a standard argument using the
comparability theorem [2, p. 80, Corollary] shows the existence of the
family {vj satisfying (*). If xe D and an index j are fixed and i ranges
over a finite subset of indices, then by the Schwarz inequality,

ΣιΦ(v&vϊ)*φ(vixvf) ^ φfvp^Σi vfv^xvf) ^ φ(v3.χ*xvj) ^ | |# | | 2

hence by [13, 1.5], O-Σi vtφ(ViXvf) = xjf say, exists. A similar argument
shows the existence of O-^axav0, that is, the right hand side of (**).
Thus φ exists and is clearly completely positive. If ψ: Z) —> D is a com-
pletely positive map satisfying (***), then ψ is a C-module homomorphism
[5, 3.1] and so for each xeD and each family {vt} satisfying (*),

ψ(x) = (

= O Σ ΐφ(i)ά

Hence the uniqueness of φ follows.

PROOF OF PROPOSITION 5.1. By [13, 6.5] there is a unique open pro-
jection pB of A such that B — pBApB. To see the G-invariance of pB

note that each at, teG, maps a positive increasing approximate unit for
B to another such. Conversely if p is a G-in variant open projection of
A, then Af]pAp is a G-invariant hereditary C*-subalgebra of A with
(Af]pAp)~ = pAp [15, l.l(v)]. Moreover by [15, 1.3(iii)] an ideal J of A
is regular if and only if J — A Π hA for some central projection ft of I .
These show (i), except for the second equality, and (ii).

(iii) As pR{B) is a central projection of A majorizing pB, we have
C(pB) ^ PR{B)' Moreover, as Af)C(pB)A is a regular ideal containing B,
it follows that R(B)aAf)C(pB)A, hence that pR{B) ^C(pB). As a closed
two-sided ideal J of A is essential if and only if J1 = {0}, BeJ%fa(A) is in
£έfB

a{A) if and only if R(B) = A.
We show the equality IG(B) = pBIG{A)pB in (i). As AcAc/ G ( i ) , we

have Iβ(A) = IG(A) and Iβ(B) = IG(B) = IG(pBApB). Hence it suffices to
show that if A is monotone complete and p is a G-invariant projection of
Af then IG(pAp) — pIG(A)p. The central support C(p) of p in A, being
the supremum of upu* with % unitaries in A, is also G-invariant and it
is immediate to see that IG(C(p)A) = C(p)JG(A) (modify the argument in
[12, 6.2]). Thus we may also assume that C(p) = 1. As pApapIG{A)p
and pIG{A)p, being a direct summand of Ia(A), is G-injective, we need
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only show that if φ: pIG(A)p —•pIG(A)p is a G-morphism with φ \ pAp =
iάpAp, then φ is the identity of pIG(A)p. We apply Lemma 5.1 to I0(A),
A, p and φ. Take a family {vt} of non-zero partial isometries in A satis-
fying (*) and define φ: IG{A) —> IG(A) by (**). Then φ\A = idA and φ is a
G-morphism. Indeed, for each t e G the family {at(vt)} also satisfies (*)
and so the uniqueness of φ shows that for xeIG(A),

As φ is a G-morphism, it follows that

k = O-Σ aMIoW
i

As Iff(A) is a G-rigid G-extension of A, φ is the identity on IG(A) and ^ =
is the identity on pIG{A)p.

6. The center of the G-injective envelope. In what follows, the
center of a C*-algebra A is denoted by Z(A), and for a C*-dynamical
system {A, G, a) and a G-invariant C*-subalgebra B of A the fixed point
subalgebra of B under the action α|Z? is denoted by BG. Now we study
the algebra Z(IG(A))σ. In the next lemmas {A, G, a) denotes a fixed C*-
dynamical system.

As stated in the proof of 5.1, the following lemma follows from a
slight modification of the proof of [12, 6.2].

LEMMA 6.1. For a G-invariant central projection h of Iσ(A), con-
sider the C*-dynamical system (hA, G, IG(ά)\hA). Then the G-injective
envelope IG(hA) of hA is hIG(A) together with the inclusion map hA ^+
hIG(A).

LEMMA 6.2. We have Z(I(A))czZ(IG(A)).

PROOF. The map j : I(A) -> ί°°(G, I(A)) (see 2.3) is both a G-mono-
morphism and a unital *-monomorphism with £°°(G, I (A)) G-injective.
Hence there is a minimal i(/(A))-projection φ on £°°(G, /(A)) so that IG(A) =
IG(I(A)) is identified with Im φ. Noting the multiplication in Im φ and
the fact that j maps Z{I{A)) into the center of Z°°(G, /(A)), we see that

LEMMA 6.3 (cf. [10, 4.3], [12, 6.3]). We have Z{I{A)f = Z{IG{A)f =
(A' Π IG{A))G, where A'n/<?(A) denotes the relative commutant of A in

) .

PROOF. The inclusions Z(I(A))β(zZ{Iβ{A))ac{A'C\I0{A)f are clear.
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Let u be a unitary in (A'nIσ(A))σ. Then Ad^: IG(A) -> IG(A), (Adu)(x) =
uxu*,xeIG(A) is a G-morphism with Adu\A = idA, and so Adu is the
identity on IG(A) and ueZ(IG(A)). Hence Z(IG(A))G = (A'f)IG(A))G.

Let h be a projection in Z(IG(A))G. Then as in the proof of [12, 6.3]
there is a unique minimal projection hx in Z(I(A)) majorizing h. By the
uniqueness /̂  is also G-invariant, and noting 6.1, the same argument as
in the proof of [12, 6.3] shows that h = h,e Z(IG(A))G. Hence Z(I(A))G =
Z(IG(A))G.

PROPOSITION 6.4. Let (A, G, a) and (B, G, β) be two C*-dynamical
systems with (A, G, a)cz(B, G, β)a(IG(A), G, IG(a)).

( i ) We haveZ(A)aZ(B); if in addition AdB, then Z(B)G = Z(IG(A))G.
In particular, Z(A)G = Z{I(A))G = Z{IG{A))G.

(ii) A is G-prime if and only if B is G-prίme.
(iii) If A is unital and G-simple, then B is G-simple.

PROOF. ( i ) The first inclusion follows from [10, 4.3] and 6.2. If
A c ΰ , then Z{I{A)) = Z(A)cZ{B) [12, 6.3] and by 6.3, Z{IG{A))G = Z(I(A))Gcz
Z(B)GdZ(IG(A))G.

(ii) If J and K are mutually orthogonal non-zero G-invariant closed
two-sided ideals of A, then JLL and KLL are also such regular ideals of
A. Hence A is G-prime if and only if A has no nontrivial G-invariant
regular ideal, that is, if and only if Z(IG(A))G = Cl by (i) and 5.1. More-
over, note that IG(A) = IG{B).

(iii) Modify the proof of [15, 1.2] slightly.

7. Quasi-inner *-automorphisms. In this section we investigate the
relationship between a *-automorphism a of a C*-algebra A and its unique
extensions a and I(a) to A and /(A), respectively.

LEMMA 7.1. Let {A, G, a) be a C*-dynamical system with G a locally
compact abelian group. Let I(AxaG) be the injective envelope of the C*-
crossed product A x αG, I{a) the unique extension to I{A x aG) of the dual
action a of G on AxaG (see [27, 7.8.3]), and Z the center of I(AxaG).
Denote by Γ( ) and ΓB( ) the Connes and Borchers spectra, respectively
(see [27, 8.8]).

( i ) Let Be £έfB"(A). Then Γ(a \ B) = Ker(/(α) | Z), and aσeG belongs
to ΓB(a\B) if and only if for any neighborhood Ω of σ there are a non-zero
projection h of Z and a σλeΩ such that the supremum V {I(ά)τ(h): τeG}
in the projection lattice of I(AxaG) equals 1 and hl(ά)σi(h) Φ 0.

(ii) // B19 B2e£$fa(A) with R(B,) = R(B2) (in particular, if B2 is
the closed two-sided ideal of A generated by Bj), then Γ(a\B1) = Γ(a\B2)
and ΓB(a\Bλ) = ΓB(a\B2).
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(iii) If in addition G is discrete (hence Γ(I(a)), Γ(a) and so on make
sense), then Γ(I(a)) = Γ(a) = Γ(a) and ΓB(I(a)) = ΓB(ά) = ΓB(a).

PROOF, (i) As Be£έfB

a(A), the C*-crossed product BxalBG = C, say,
regarded as a C*-subalgebra of AxaG, is an α-invariant hereditary C*-
subalgebra which generates an essential closed two-sided ideal of AxaG.
By 5.1 we have /(C) = pcI(AxaG)pc for an /(α)-invariant projection pG

of I(AxaG) with central support C(pc) = 1- The center of I(C) equals
pcZ and the map x h-> pcx gives a ^isomorphism of J£ onto pcZ [2, p. 37,
Corollary 2].

As (α|BΓ = α|C, it follows from [25, 5.4] or [27, 8.11.8] that for
σeG we have σ£Γ(a\B) if and only if J-άσ(J) = {0} for some non-zero
closed two-sided ideal J of C. As J α^J) = {0} implies JL1--ao(JLL) = {0},
the latter condition is equivalent to J-άσ(J) = {0} for some non-zero
regular ideal J of C, which in turn is equivalent to h I(ά)tt(h) = 0 for
some non-zero projection h of pσZ [15]. From the first paragraph this
is the case if and only if h*I(q)σ(h) = 0 for some non-zero projection h
of Z. Thus σ£Γ(a\B) if and only if I{a)σ\Z Φ id*.

To see the second assertion we use the following characterization of
the Borchers spectrum by Kishimoto [21, 1.1] (with n — Y). A σeG
belongs to ΓB(a \ B) if and only if for each neighborhood Ω of a there are
a non-zero closed two-sided ideal J of C which generates an α-invariant
essential closed ideal and a axeQ such that J-άσi(J) Φ {0}. Then the
argument proceeds exactly as for Γ(a\B). We may take the above J a s
a regular ideal, and if I(J) = hpcI(C) with h a projection of Z, then the
condition that J generates an α-invariant essential ideal of C is equivalent
to V {I(a)τ{h): reG} = l, and so on.

(ii) By (i) we have Γ(a\B) = Γ(a) and ΓB(a\A) = ΓB(a) for Be
£$fB\A). As Bt e £έ?B

a(R{B%)), i = 1, 2, the conclusion follows.
(iii) By 3.4 we have AxaGdI(A)xaGc:I(AxaG). As I{aT\AxaG =

α and /(<$) is a unique extension of ά, it follows that I(I(aT) — I{a) and
/(/(A)xβG) - I(AxaG). Hence (iii) follows from (i) with B = A.

REMARK 7.2. From (ii) we see that in [26, 3.3, 3.4] the separability
of the C*-dynamical system can be dropped, that is, for any C*-dynamical
system (A, G, a) with G a locally compact abelian group and any B e

w e h a v e Γ(a)aΓ(a|B)(zΓB(a\B)aΓB(a) a n d ΓD{ά) = (U {Γ(a\I):Ie

THEOREM 7.3. Let (A, G, a) be a C*-dynamical system with G discrete
abelian and let (A, G, a) and (I(A), G, I(a)) be the C*-dynamical systems
canonically associated with it. For teG the following conditions are
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ψ equivalent:
( i ) teΓB(aV;
(ii) There are a Be 3ffB(A) and a G-invariant *-derivation δ of

B such that at\B = exp<5;
(iii) άt — Ad u for some unitary u in AG;
(iv) I(ά)t = Adu for some unitary u in I(A)G.

PROOF. AS G is compact, the implication (i) ==> (ii) follows from [26,

4.3].
(ii) => (iii). By 5.1 we have B = pBApB for a G-invariant projection

pB of A with C(pB) — 1. The *-derivation δ extends uniquely to an inner
^derivation δ = ad(ife), h e B8aj of B [16, Theorem 2.1]. If we take the
minimal generator for I as λ (see [16, Lemma 3.1]), then the G-
invariance of δ and the uniqueness of the minimal generator show that h
is G-invariant. Hence at | pBApB = (at \ B)~ = (exp δ)~ = exp δ = Ad(exp(ife))
and exp(i^) is a G-invariant unitary in pBApB. As C(pB) = 1, it follows
from [13, 5.2] that at — kAu for a unique unitary u in A such that
pBu = upB = exp(ίh). As αt = αs°α t © αs-i = Ad(ά8(u)) and pBά8(u) =
(Xa{u)pB = exp(ife) for all s G G, the uniqueness of u shows that αs(%) = t6
for all s e G.

It is clear that (iii) => (iv).
(iv)=*(i). It follows from [27, 8.9.7] and 7.1 that (iv)=>ίe

ΓB{I{ά)Y = ΓB{aY.

Following Kishimoto [21], [22] we say that a *-automorphism a of a
C*-algebra A is quasi-inner if Γs(α) = { l } c Γ = Z and it is properly
outer if Γ5(α | J) ^ {1} for each non-zero α-invariant closed two-sided ideal
J of A, where ΓB(a) denotes the Borchers spectrum of the action Za
wh-+αneAut A. (Note that the word "freely acting" originally used in
[21] was renamed "properly outer" in [22].) As in the ΐ^*-case there is
for any *-automorphism a of A the largest α-in variant closed two-sided
ideal J (resp. K) such that a\J (resp. a\K) is quasi-inner (resp. properly
outer), JΠK = {0} and J + K is essential in A ([22], see also 7.5 below).
Note that the proper outerness in the above sense implies the proper
outerness in the sense of Elliott [8] and they are equivalent when A is
separable [26, 6.6].

THEOREM 7.4. For a *-automorphism a of a C*-algebra A the follow-
ing conditions are equivalent:

( i ) a is quasi-inner',
(ii) There are a Be§(fB{A) and a *-derivation δ of B such that

a\B — expδ;
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(iii) a is inner;
(iv) I(a) is inner.

PROOF. Apply 7.3 to the action Z3n\-+ane Aut A, and note that in
this situation the G-invariance of δ in 7.3 (or u) follows automatically.

REMARK 7.5. For a *-automorphism a of a C*-algebra A let p{ά) be
the largest /(α)-invariant projection in I(A) such that I(a) \ p(a)I(A)p(a)
is inner. Then p{a) is a central projection in A ([13, 5.1], [12, 6.3]) and
A Π p(a)A (resp. A Π (1 — p(a))A) is the largest closed two-sided ideal of
A such that a \ A Γ) p(a)A is quasi-inner (resp. a | A ΓΊ (1 — p(/x))A is properly
outer). Indeed, if a\ J is quasi-inner for some α-invariant closed two-sided
ideal J of A, then I(a)\pjI(A) = 7(α| J) is inner and so p^ <̂  j>(α), JcAfΊ
p(α)A. Moreover I(a\AΓ\p(a)A) = I(a)\p(a)I(A), and similarly for An
(1 - p(a))A.

COROLLARY 7.6. For a C*-algebra A the subset q-lrm A of Aut A
consisting of all quasi-inner *-automorphisms of A is a normal subgroup
of Aut A; indeed, we have

q-Irm A = Aut A Π Inn A = Aut A Π Inn I(A) ,

where as before we regard Aut Ad Aut A c Aut I(A) and Inn A denotes
the inner *-automorphism group of A. Hence if we write Out A =
Aut A/q-Irm A, then we have

Out A c Out A c Out /(A) .

COROLLARY 7.7. If A is a monotone complete C*-algebra and u is a
unitary in I(A) such that uAu* = A, then ueA.

PROOF. Put a = Ad u \ A e Aut A. As I{a) — Ad u is inner, a — a is
also inner, that is, Ad u\ A = a = Ad v\ A for some unitary v in A. Hence
v*u belongs to the relative commutant of A in /(A), which equals Z(A)
([10, 4.3], [12, 6.3]), and u = vv*ueA.

COROLLARY 7.8 (Saitδ and Wright [28]). If A is a simple C*-algebra
and a is a ""-automorphism A, then I(a) or a is inner if and only if a
is inner in the multiplier algebra M(A).

PROOF. AS A is simple, a is inner in M(A) if and only if ΓB(a) =
Γ(ά) = {1} ([24] or [27, 8.9.10]). Hence 7.4 applies.

REMARK. See [29] for a slightly more general result.

COROLLARY 7.9. // A is a C*-algebra which contains an essential
GCR-ideal and a is a ""-automorphism of A, then the following conditions
are equivalent:
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( i ) a is quasi-inner;
(ii) a{J) = J for each regular ideal J of A;
(iii) a IJ is universally weakly inner for some essential a-invariant

closed two-sided ideal J of A.

PROOF. (i)*=>(ii). By [15, 2.3], A contains an essential GCR-ideal if
and only if A is a type I AT7*-algebra. (In this case I(A) = A.) By
[19], a is inner if and only if it fixes the center of A elementwise. By
[15] the latter condition is equivalent to (ii).

(i)=>(iii). By 7.4, (i) implies that α|I? = exp<5 for some Be£^B

a{A)
and some *-derivation δ of B. The closed two-sided ideal J of A generated
by B is α-invariant and essential. If A** is the enveloping von Neumann
algebra of A, then 1?** = pA**p for some projection p of A** and J** =
C(p)A**, where C(p) is the central support of p in A n , If α** is the
bitranspose of a, then that α**|pA**p = (a\B)** — exp<5** is inner implies
that so is (α|J)** = α**|C(p)A**, that is, (iii).

(iii) => (i). If J is as in (iii), then clearly a(K) = K for each regular
ideal K oί J and so a\J is quasi-inner by the equivalence (i) <=> (ii). But
as J= R(J)~ = A by 5.1 and (a\J)~ = a, this implies (i).

8. A decomposition of *-automorphisms. Let a be a *-automorphism
of a C*-algebra A and denote, as before, by Γ(a) and ΓB{a) the Connes
and Borchers spectra of the action Zsn\-* ane Aut A, respectively.
Kishimoto showed in [21, 3.1] that there are the largest α-invariant
closed two-sided ideals Ik, k e NU {°°}, of A such that Γ(a\Ik) — ΓB{a\Ik) =
Tk, where Tk is the subgroup of T of order k if keN and Too = T, and
that the sequence {Ik} is mutually orthogonal and generates an essential
ideal of A. If pk(ά) is the ά-invariant central projection of A such that
Ik = Vk(oί)A and I(Ik) = pk(a)I(A), then we have Ik = A Π pk(a)A, since Ik is
regular by the maximality and 7.1(ii), and {pk(ά}} is an orthogonal sequence
with supremum 1. Note also that p^ά) is the projection p(a) in 7.5.

We characterize the sequence {pk(ά}} by the action on A or on /(A)
of the extended *-automorphisms a or I(a). For similar results in the
T7*-case see [3], [4]. (Note that as Connes points out in [7], the result
in [3] requires a slight modification.)

PROPOSITION 8.1. For a *-automorphism a of a C*-algebra A let pk(a)
be as above. Then pk(a) is the largest projection p in the fixed point
algebra Aa (resp. I{A)I{a)) such that (*) άn\qAq = Aάu for some neZ,
some non-zero subprojection q of p in Aa and some unitary u in qAaq
if and only if n = 0 (mod k) {when k = °°, if and only if n = 0) (resp. the
same property with a and A replaced by I(a) and I(A)). If pk{a) = 0
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for some k, then the property is vacuously satisfied.

PROOF. We prove only the statement for a, since the case of I{a)
is treated similarly. By 7.3, (*) is equivalent to the conditionΓB(ά\qAq)L =
kZ ( = {0} if k = oo) for each non-zero subprojection q of p in Aa. If q is
a non-zero subprojection of pk(ά) in Aa, then

Tk = Γ(a\Ik) = Γ(a\pk(a)A)dΓ(ά\qAq)c:ΓB(ά\qAq)c:ΓB(ά\pk(a)A)

= ΓB{a\Ik) = Tk

by 7.1 and 7.2 and so ΓB(cί\qAq)L = 7ΐ = &Z. Hence pA(α) satisfies (*).
If a projection p in Aα satisfies (*) and p-pά(a) Φ 0, then as p-pά(a) ^ p
and p Pj(ά) ^ Py(α), we have Γj^δlp p^αJAp pyCα))1 = kZ = jZ and j 1 =
fc. Thus p Pjiά) = 0 for each j Φ k and p 5S 1 — Σy

In some equivalent conditions in [26,10.4] for aperiodic *-automorphisms
we can drop the separability of the C*-algebra.

PROPOSITION 8.2. For a *-automorphism a of a C*-algebra A the
following conditions are equivalent:

( i ) Γ{a) = T.
(ii) There is no Be £έ?a(A) such that an\B = expδ for some n Φ 0

and some a-invariant ^-derivation δ of B.
(iii) For each neN the *-automorphism an is properly outer.
(iv) For each ε > 0, each neN and each Beβ^a(A) there is an

xeB+ with \\x\\ = 1 such that \\xak(x)\\ < ε for 1 <; k ^ n.

PROOF. By 7.2 we have Γ(a) = f){ΓB(a\B): Beβέ?a(A)}. Hence (i)
is equivalent to ΓB(a\B) = T for each BeJ%fa(A), which in turn is equi-
valent to /Vαl.B)1 = {0} for each Be^fa{A). For if ΓB(a\B) Φ T, then
ΓB(a\B) is a finite union of finite subgroups of T [27, 8.8.5] and so
ΓB(a\B)L Φ {Q). Moreover, the reverse implication is clear. Thus 7.3
shows that (i) <=> (ii).

(iii)=>(i). If Γ(a) Φ T, then keΓB(a\B)L for some BeSίf\A) and
k Φ 0 and so ak is not properly outer by 7.3.

(i)=*(iii). If an is not properly outer for some neN, then the
central projection p in A inducing the inner part of an is non-zero and
άn\pA — PΛu for some unitary u in pA. The maximality of p and the
fact that άn\ά(p)A = Aάά(u) and similarly for a~ι show that a(p) = p.
Now we use the argument in [26, 10.1]. It follows readily that u, a(u),
•••jά^'W are unitaries in pA implementing άn\pA and that they com-
mute mutually. If we put v = ua(u) a{n~l\u), then άn2\pA = Aάv
and ά{v) = v. By 7.3, n2eΓB(ά\pA)L = ΓB(a\Af]pA)L and AflpA is a
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non-zero a-invariant regular ideal of A. Hence Γ(a) Φ T.
(iii) <=> (iv). This follows from the fact that Kishimoto's result [21,

2.1] shows that [26, 7.1] holds also in the nonseparable case (see the
proof of [26, 10.4]).

COROLLARY 8.3. For a *-automorphism a of a C*-algebra A let loo
be as above. Then loo is the largest a-invariant hereditary C*-subalgebra
B of A such that an\B is properly outer for each neN.

9. Tensor products and ^-automorphisms. In this section we show
two results on *-automorphisms of minimal C*-tensor products. For C*-
algebras A and B we denote by A (x) B the minimal C*-tensor product of
A and B.

The following is an analogue of the result of Kallman [18] and that
of Wassermann [31] in the setting of quasi-inner and properly outer *-
automorphisms.

THEOREM 9.1. Let A and B be C*-algebras and let a (g) β be the *-
automorphism of A® B induced by *-automorphisms a of A and β of
B. Let p(ά), p(β) and p(a (g) β) be the projections of I(A), I{B) and
I(A®B) inducing the inner parts of I(ά), I(β) and I(α(g)/3) respectively
(see 7.5).

( i ) We have p(a (x) β) = p{a) (g) p{β) in I(A) (g) I{B)(zI(A (g) B).
(ii) a(x) β is quasi-inner if and only if both a and β are quasi-

inner.
(iii) a (§) β is properly outer if and only if either a or β is pro-

perly outer.

PROOF. AS A (x) BcI(A) <g) J(B)c J(A <g> B) [13, 6.7] and I(a (g) β) \ A (x)
B = a (g) β = I(a) (g) I(β) \ A ® B, we have I(a (g) β) = I(I{a) (g) I(β)). This
and 7.4 show that replacing α, β, A and B by /(α), I(β), I(A) and J(J5),
we may assume that A and B are injective C*-algebras and so a\p(a)A
and β\ p(β)B are inner. Then a (g) β = Σu (a 0 β)\(Pi (g) qά)(A ® B), where
Pi = P(α), P% = 1 - P(α), ϊi = p(β) and q2 = 1 - p(/3), and (α (g) ̂ ) | (px ®
qΐ)(A (g) J?) is inner. If the sufficiency of (iii) were proved, then all the
remaining assertions would follow. Hence it suffices to show that if a
is properly outer, then so is a (g) β. The required property is equivalent
to I(α(g)/3) being freely acting (see [18, 13]). Let xeI(A(g)B) and
xy = i(a(g)β)(y)χ for all yeI(A®B). Regard B as a C*-subalgebra
of some B(K) with K a Hubert space and regard A (x) BaA®B(K) (see
Section 3 or [13]). As A®B(K) is injective [13, 3.10], we may take
the injective envelope I(A®B) so that A® BaI(A® B)cA® B{K).
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If Lg: A ® B{K) --> A is the left slice map defined for g e B(K)* [13], then
for each aeA,

Lg{x)a = Lg(x(a ® 1)) = Lg(I(a ® β)(a ® l)x) = a{a)Lg(x) ,

and Lg(x) — 0 for each g; hence x = 0 as desired. (Note that the product
of two elements in I(A ® I?) need not coincide with that as elements of
A®B(K), but so do they if one of the elements belongs to A ® B, since
I(A (x) B) is obtained as the image of a minimal (A ® ^-projection on
A®B{K), which is an (A®B)-module homomorphism. Hence the above
calculation is justified.)

The following is an analogue of the result of Sakai [30].

THEOREM 9.2. Let A be a C*-algebra and let σ be the flip auto-
morphism of the two-fold tensor product A® A, that is, the *-automorphism
defined by σ{x ® y) = y ® x, x, y e A. Then σ is quasi-inner if and only
if the injective envelope I(A) is a type I W*-factor. This is the case if
and only if C(H)(zAc:B(H) for some Hilbert space H [15].

PROOF. As in 9.1 we may assume that A is injective.
Sufficiency: Suppose that A — B(H) for some Hilbert space H. Then

C(H(g)H) = C(H) (x) C(H)dA <g) AaB(H® H) and so I(A ®A) = B(H®H)
[15, 3.1]. If we define the unitary U in B(H®H) by U(ξ®η) = y®ξ,
ξ,ηeH, then AάU\A® A = σ and I(σ) = AdU; hence σ is quasi-inner.

Necessity: Suppose that σ is quasi-inner, that is, I(σ) e Aut I(A ® A)
is inner. As in [30, Lemma 2] we see that A is an APF*-factor. Indeed,
let Z be the center of A. Then Z®Z is contained in the center of
I(A®A) by [10, 4.3]; hence for each x, yeZ we have x®y = I(σ)(x®y) =
σ(x®y) = y®x. But this shows that Z is 1-dimensional. Next we show
that A contains a minimal projection. Let {πίf i ϊ j be a family of in-
equivalent irreducible ^representations of A such that the direct sum
{π, H) of the family is faithful. We identify A with its image π(A) and
regard AaB(H), A® AczA® B(H)dB(H® H). If et is the projection
onto Hif then we have

A" = © eβiff)^ and A' = 0 Ce, (C*-sum [2, p. 52]) ,

where the double prime (resp. prime) denotes the double commutant (resp.
commutant). As in 9.1 we take the injective envelope I(A®A) so
that A ® AaI(A ® A)aA ® B(H). By assumption there is a unitary
u in I(A®A) such that I(σ)(x) = (Ad u)(x) = u<>χou* for xeI(A®A),
where o denotes the multiplication in I(A®A). Note that for the
reason stated in 9.1 we have χoy = xy if x or y belongs to A® A.
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Hence, with U as above and xeA® A we have UxUu = σ(x)°u = u<>χ =
ux and so Uu e (A (g) A)r = A' (g) A' = ©^Cfo (x) β, ). Hence w = ?7(φ
^•(e* ® βy))> \j € C We have λ<y ^ 0 for some i, j . Let ζx and ζ2 be unit
vectors in ejl and e^iϊ respectively and let g e B(H)* be defined by r̂ =
( ζ2, Ci). Computation shows that L,(te) = λ^ C , d)C2e A. Hence A con-
tains the minimal projection ( , d)d and it is a type I W*-factor.

REMARK. By a similar technique we can show that for any C*-algebra
A the projection p(σ) of /(A (x) A) inducing the inner part of I(σ) is given
by p(σ) = ^hi0hif where Λ< runs through all central projections h in
/(A) such that hI{A) is a type I W*-iactor, hence that <τ is properly outer
if and only if I(A) has no non-zero atomic part.

10. Prime reduced C*-crossed products. In [20, 3.1] Kishimoto gave
a criterion for the simplicity of the reduced C*-crossed product of a C*-
algebra by a discrete (not necessarily abelian) *-automorphism group (see
also [9], [21, 2.3]). Now we present a primeness version of his result.

Let A be a C*-algebra and B its C*-subalgebra. Following Choda
and Watatani [4] we say that a *-automorphism a of A is B-subfreely
acting on A if ab = ba(a) for all ae A with b eB implies 6 = 0.

THEOREM 10.1. Let (A, G, a) be a C*-dynamical system with G any
discrete group. For teG put G(t) = {seG: st = ts} and let AGU) be the
fixed point subalgebra of A under the action a\G(t). If A is G-prime
and άt is AG{t)-subfreely acting on A for each teG\{e} (in particular if
at is properly outer for each teG\{e}), then the reduced C*-crossed
product AxarG is prime. Conversely, if in addition G is finite, then
the primeness of AxarG = AxaG implies that A is G-prime and άt is
AGU)-subfreely acting on A for each teG\{e}. The same is true if one
replaces a and A by I(a) and I(A).

LEMMA 10.2. Let B be a monotone complete C*-algebra and C its C*-
subalgebra. Let D = m-cl̂  C be the monotone closure of C in B.

(i) The supremum in B of any positive increasing approximate
unit for C is a projection of B which serves as a unit for D.

(ii) If E is a hereditary C*-subalgebra of C, then there is a unique
projection p of D such that m-dB E — pDp. If in particular E is a
closed two-sided ideal of C, then the projection p is a central pro-
jection of D.

PROOF. AS in [13] we write xt—*x (O) in B if a net {#J in B order-
converges to xeB, and we freely use the computation rules for order
convergence in [13, 1.2] or [17, 2.1].
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(i) If {α J is a positive increasing approximate unit for C, then at /
p (0) in B for some peD+. For each x e C we have x = xp, since χat —• a?
in norm and xa^xp (0). In particular, at = α,p —> p2 (0) and so p2 = p.
Moreover, x — xp for all xeD since D = m-clBC.

(ii) By (i) the supremum p in B of a positive increasing approximate
unit {bt} for £7 is a projection of D. As EBbjXbi-^ pxpepCpapDp (0)
for each a? e C, it follows that pCpczm-c\B E, hence that pDp = p(m-c\B C)p =
m-c\BpCpczm-c\BE [13, 2.4]. The reverse inclusion is clear since pDp
contains E and is monotone closed in B.

If i? is a closed two-sided ideal of C, then for each x e C8a we have
E3xbix-*xpxem-c\BE=pDp and (1 —p)&jra?(l —p)=0. Hence pa?(l —p)=0,
px = pίcp = (pίcp)* = (px)* = cup and so p commutes with each element
of m-clβ C = D.

Let (B, G, β) be a C*-dynamical system with B monotone complete
and G discrete. As in Section 3 define the monotone complete crossed
product M(B, G) as a monotone closed C*-subalgebra of the monotone
complete C*-algebra J5(x) B(12(G)), and the maps π and λ.

LEMMA 10.3. Keep the above notation.
( i ) For x = [Xr)8\

 € M{B9 G) consider the following conditions:
(a) x belongs to the center of M(B, G);
(b) x commutes with π(B)X(G) elementwise;
(c) %tr,t8 — # r , 8 f o r a l l r, s , t e G a n d a x r y 8 = x r t S β 8 - i r ( a ) f o r a l l r, s e G

a n d a e B ;
( d ) xr>e 6B G { r ) for allreG and axr>e = xr>eβr(a) for allreG and aeB.
Then we have (a) <=> (b) » (c) => (d).
(ii) // βt is Bσ{t)-subfreely acting on B for each teG\{e} and G

acts ergodically on the center of B, then M(β, G) is a monotone complete
AW*-factor.

(iii) // there is a teG\ {e} such that the conjugacy class of t is
finite and βt is not BGU)-subfreely acting on B, then M(B, G) is not an
AW*-factor.

PROOF. ( i ) We omit the proof of (a) <=> (b) <=> (c), since the cor-
responding proof for the TΓ*-crossed product works also in this situation.

(c) => (d). Note that βt(xr>e) = &r*-i,*-i = xtrt-κ = χr,e for all t e G{r).
(ii) If xeM(B,G) is central, then (d) shows that xr>e = 0 for all

reG\{e} and xe>e is a G-invariant central element of B. Thus a; is a
scalar multiple of the unit.

(iii) Let {Sjtsj1:1 5g j ^ n) be the finite conjugacy class of t, where
Sjtsj1 Φ SktSk1 if j Φ Jc. By hypothesis there is a non-zero b e BG{t) such
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that ab = bβt(ά) for all aeB. Put x=ΣΛj^(βsjQ>))x(sjtsj1). For each r e
G and j we have rsjtirsj)'1 = Sktsζ1 for some k and s^rs,- e G(ί), so that
βr.,0) = βnφ). Hence

and for each aeβ,

π(a)x =

Thus a; is a nontrivial central element of M(B, G).

PROOF OF THEOREM 10.1. We prove only the statement for a and
A, since the proof for I(a) and I(A) proceeds similarly. The G-primeness
of A is equivalent to the G-primeness of A, or to saying that G acts
ergodically on the center of A (see 6.5(ii)). The proper outerness of at

is equivalent to that of at (see 7.5), which implies that at is AG(t)-subfreely
acting on A, since on a monotone complete C*-algebra proper outerness
is equivalent to being freely acting. Moreover by 3.6(i), Axα rGisprime
if and only if Axα rG is prime.

Hence, by replacing (A, G, a) by (A, G, a) we may assume that A is
monotone complete. Then Axα rG is identified with the C*-subalgebra of
M(A, G) generated by ττ(A)λ(G) and Lemma 10.3(ii) shows that if A is
G-prime and at is AG(ί)-subfreely acting on A for each teG\{e}, then
M{A, G) is a monotone complete AT7*-factor. If AxarG is not prime,
then there is a nontrivial regular ideal J of A x arG and m-cl J =
p(m-cl AxαrG) for some nontrivial central projection p of M(A, G) by 10.2
and 10.3(i), a contradiction.

Clearly the primeness of A x arG implies the G-primeness of A whether
G is finite or not. If G is finite, then AxarG = M(A, G) and the second
assertion follows from 10.3(iii).
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