INJECTIVE ENVELOPES OF C*-DYNAMICAL SYSTEMS*

MASAMICHI HAMANA

(Received September 10, 1984)

Abstract. The injective envelope I(A) of a C^* -algebra A is a unique minimal injective C^* -algebra containing A. As a dynamical system version of the injective envelope of a C^* -algebra we show that for a C^* -dynamical system (A, G, α) with G discrete there is a unique maximal C^* -dynamical system (B, G, β) "containing" (A, G, α) so that $A \times_{\alpha r} G \subset B \times_{\beta r} G \subset I(A \times_{\alpha r} G)$, where $A \times_{\alpha r} G$ is the reduced C^* -crossed product of A by G. As applications we investigate the relationship between the original action α on A and its unique extension $I(\alpha)$ to I(A). In particular, a *-automorphism α of A is quasi-inner in the sense of Kishimoto if and only if $I(\alpha)$ is inner.

1. Introduction. In [10], [12], [13] the author introduced the notion of the injective envelope I(A) (resp. regular monotone completion \overline{A}) of a (not necessarily unital) C^{*}-algebra A. (Note that a few authors call this \overline{A} the regular completion of A and use the confusing notation \hat{A} instead of \bar{A} . But \hat{A} was originally used by Wright [33] to denote the regular σ -completion of A, which is properly contained in \overline{A} in general.) The algebra I(A)is a unique minimal injective C^* -algebra containing A^1 as a C^* -subalgebra with the same unit, where A^1 denotes the C^{*}-algebra obtained by adjoining a unit to A if A is non-unital and $A \neq \{0\}$, and denotes A itself otherwise. On the other hand, \overline{A} is a unique monotone complete C^* -algebra such that \overline{A} is the monotone closure of A and each $x \in \overline{A}_{sa}$ (the self-adjoint part of \overline{A}) is the supremum in \overline{A}_{sa} of the set $\{a \in A_{sa}^1: a \leq x\}$, where a C*-algebra B is called monotone complete if each bounded increasing net in B_{sa} has a supremum in B_{sa} , and the monotone closure of a C^{*}-subalgebra C of B is the smallest C^* -subalgebra of B containing C which is closed under the formation of suprema in B_{sa} of bounded increasing nets. Moreover, \overline{A} is realized as the monotone closure of A in I(A) and we have canonically $A \subset \overline{A} \subset I(A)$.

The algebra I(A) or \overline{A} , being monotone complete AW^* , is more tractable than the original C^* -algebra A and is small enough to inherit some properties of A. For example, I(A) or \overline{A} is an AW^* -factor if and only if A is prime [12, 7.1, 6.3], and if A is unital and simple, then any

^{*} This work was announced in the US-Japan Seminar on Geometric Methods in Operator Algebras held at the Research Institute for Mathematical Sciences, Kyoto University on July 12, 1983.

 C^* -subalgebra of I(A) containing A is also simple [15, 1.2(i)]. Moreover, each *-automorphism α of A extends uniquely to a *-automorphism $\overline{\alpha}$ of \overline{A} (resp. $I(\alpha)$ of I(A)) with $I(\alpha) | \overline{A} = \overline{\alpha}$ and so we have canonically Aut $A \subset$ Aut $\overline{A} \subset$ Aut I(A) as subgroups, where Aut A denotes the group of all *-automorphisms of A.

Throughout the paper (unless stated otherwise) G denotes a fixed discrete group, and for C^* -dynamical systems (A, G, α) and (B, G, β) the notation $(A, G, \alpha) \subset (B, G, \beta)$ means that A is a G-invariant C^* -subalgebra of B and $\beta | A = \alpha$. For a C^* -dynamical system (A, G, α) , take the injective envelope $I(A \times_{\alpha r} G)$ of the reduced C^* -crossed product $A \times_{\alpha r} G$ of A by G and consider the C^* -subalgebras of $I(A \times_{\alpha r} G)$ which are of the form $B \times_{\beta r} G$ with $(A, G, \alpha) \subset (B, G, \beta)$. The main result of this paper (Theorem 3.4) states that there is a unique maximal C^* -dynamical system $(I_G(A), G, I_G(\alpha))$ among such C^* -dynamical systems (B, G, β) . By putting $\overline{\alpha}_t = (\alpha_t)^-$ and $I(\alpha)_t = I(\alpha_t), t \in G$, we obtain C^* -dynamical systems $(\overline{A}, G, \overline{\alpha}) \subset (I(A), G, I(\alpha))$. We have $(I(A), G, I(\alpha)) \subset (I_G(A), G, I_G(\alpha))$ and it follows that $A \times_{\alpha r} G \subset I(A \times_{\alpha r} G)$ and $\overline{A} \times_{\overline{\alpha r}} G \subset (A \times_{\alpha r} G)^-$. This fact is crucial in later discussions.

This paper is arranged as follows. In Section 2, $I_{G}(A)$ is constructed first as the "injective envelope" of A in the category of operator systems on which G acts as unital complete order isomorphisms and unital completely positive G-module homomorphisms, and then in Section 3 the maximality of $(I_{G}(A), G, I_{G}(\alpha))$ in the above sense is established. In Section 7 we show that for a *-automorphism α of A its extension $I(\alpha)$ to I(A) is inner if and only if α is quasi-inner in the sense of Kishimoto. In Section 8 some of the conditions in [26, 10.4] which characterize the *-automorphism with Connes spectrum equal to the full circle group are shown to hold also in the nonseparable case. Finally in Section 10 a criterion is given for the primeness of reduced C^* -crossed products.

The reader is referred to [2] for the general theory of AW^* -algebras and to [27] for that of automorphisms and crossed products of C^* -algebras.

2. G-injective envelopes. The statements and proofs of the results in this section parallel closely those in [11], if one replaces operator systems and completely positive maps there by G-modules and G-morphisms defined below, and so most of the proofs are omitted.

The terminologies in [5], [11] will be used without further explanation. For an operator system V we denote the injective envelope of V by I(V) and the group of all unital complete order isomorphisms of V onto itself by AutV. For the same reason for the case of C^{*}-algebras we have Aut $V \subset \text{Aut } I(V)$ as a subgroup.

INJECTIVE ENVELOPES OF C*-DYNAMICAL SYSTEMS

An operator system V is called a G-module if it is made into a left G-module by a group homomorphism $G \ni t \mapsto (x \mapsto t \cdot x) \in \operatorname{Aut} V$. Α G-morphism is a unital completely positive G-module homomorphism between G-modules. A G-morphism is called a G-isomorphism (resp. Gmonomorphism) if it is a complete order isomorphism (resp. complete order injection). A G-submodule V of a G-module W is a G-module contained in W such that the inclusion map $V \hookrightarrow W$ is a G-monomorphism. We consider the category of all G-modules and all G-morphisms and define the injectivity of its object as follows. A G-module V is G-injective if for any G-monomorphism $\kappa: W \to Z$ and any G-morphism $\phi: W \to V$ there is a G-morphism $\hat{\phi}: Z \to V$ with $\hat{\phi} \circ \kappa = \phi$. A G-extension of a G-module V is a pair (W, κ) of a G-module W and a G-monomorphism $\kappa: V \to W$. The G-extension (W, κ) is G-injective if W is G-injective, and it is G-essential (resp. G-rigid) if for any G-morphism $\phi: W \to Z, \phi$ is a G-monomorphism whenever $\phi \circ \kappa$ is (resp. for any G-morphism $\phi: W \to W, \phi \circ \kappa = \kappa$ implies $\phi = \phi$ id_w , the identity map on W).

DEFINITION 2.1. The *G*-injective envelope of a *G*-module is a G-extension which is both *G*-injective and *G*-essential.

For an operator system $V \subset B(H)$ with H a Hilbert space the space $l^{\infty}(G, V)$ of all bounded functions of G into V is viewed as an operator system on $l^2(G) \otimes H$, and it becomes a G-module by the action $(t \cdot x)(s) = x(t^{-1}s), t, s \in G, x \in l^{\infty}(G, V).$

LEMMA 2.2. With the above notations if V is an injective operator system, then the G-module $l^{\infty}(G, V)$ is G-injective.

PROOF. Let $\kappa: W \to Z$ (resp. $\phi: W \to l^{\infty}(G, V)$) be a *G*-monomorphism (resp. *G*-morphism) and define a completely positive map $\psi: W \to V$ by $\psi(x) = \phi(x)(e)$ (e is the identity element of G). As V is injective, there is a completely positive map $\hat{\psi}: Z \to V$ with $\hat{\psi} \circ \kappa = \psi$. Then the map $\hat{\phi}: Z \to l^{\infty}(G, V), \hat{\phi}(x)(t) = \hat{\psi}(t^{-1} \cdot x), t \in G, x \in Z$, is a *G*-morphism with $\hat{\phi} \circ \kappa = \phi$.

REMARK 2.3. For any G-module $V \subset B(H)$ the map $j: V \to l^{\infty}(G, B(H))$, $j(x)(t) = t^{-1} \cdot x, x \in V, t \in G$, is a G-monomorphism with $j(V) \subset l^{\infty}(G, V) \subset l^{\infty}(G, B(H))$, and $l^{\infty}(G, B(H))$ is injective as an operator system (resp. Ginjective as a G-module). This shows that each G-module has a G-injective G-extension. Moreover if V is G-injective, then there is an idempotent G-morphism of $l^{\infty}(G, B(H))$ onto j(V) and so V is injective. Hence V is G-injective if and only if V is injective and there is a G-morphism $\phi: l^{\infty}(G, V) \to V$ with $\phi \circ j = id_{V}$.

We proceed to the proof of the unique existence of the G-injective

envelope. Let $V \subset W \subset B(H)$ be two fixed G-modules with W G-injective and containing V as a G-submodule. A V-projection on W is an idempotent G-morphism $\phi: W \to W$ with $\phi | V = \operatorname{id}_{v}$. A V-seminorm on W is a seminorm p on W such that $p = ||\phi(\cdot)||$ for some G-morphism $\phi: W \to W$ with $\phi | V = \operatorname{id}_{v}$. Define a partial ordering \prec (resp. \leq) on the set of all V-projections (resp. V-seminorms) on W by $\phi \prec \psi$ (resp. $p \leq q$) if and only if $\phi \circ \psi = \psi \circ \phi = \phi$ (resp. $p(x) \leq q(x)$ for all $x \in W$).

LEMMA 2.4 (cf. [11, 3.4–3.7]). (i) Any decreasing net $\{p_i\}$ of V-seminorms on W has a lower bound. Hence Zorn's lemma implies the existence of a minimal V-seminorm on W.

(ii) There is a minimal V-projection on W.

(iii) A G-injective G-extension of V is G-essential if and only if it is G-rigid.

PROOF. We sketch only the proof of (i). It is almost the same as the one in [11, 3.4]; but the crucial point here is to show that the completely positive map defining the lower bound is a G-module homomorphism. By 2.3 we may regard W as a G-submodule of $l^{\infty}(G, B(H))$. If $\phi_i: W \to W \subset l^{\infty}(G, B(H))$ corresponds to p_i , then a subnet of $\{\phi_i\}$ converges in the point- σ -weak topology to a map $\phi_0: W \to l^{\infty}(G, B(H))$, which is a G-morphism since the action of G on $l^{\infty}(G, B(H))$ is σ -weakly continuous. Hence, composing ϕ_0 with an idempotent G-morphism of $l^{\infty}(G, B(H))$ onto W, we obtain a G-morphism which gives the lower bound.

This lemma shows as in [11] that for a minimal V-projection ϕ on W the pair (Im ϕ , κ) is the G-injective envelope of V, where Im $\phi = \phi(W)$ and κ is the inclusion map, and that Im ϕ is an injective C*-algebra equipped with the multiplication \circ given by $x \circ y = \phi(xy)$, where W, being injective, is viewed as a C*-algebra and xy is the product in W. Hence we obtain the following result.

THEOREM 2.5 (cf. [11, 4.1]). Every G-module V has a G-injective envelope, written $(I_G(V), \kappa)$, which is unique in the sense that for any G-injective envelope (Z, λ) of V there is a G-isomorphism $\psi: I_G(V) \to Z$ with $\psi \circ \kappa = \lambda$.

Henceforth we shall identify V with its image $\kappa(V)$ and abbreviate $(I_{g}(V), \kappa)$ to $I_{g}(V)$.

REMARK 2.6. As in [11], $I_G(V)$ is characterized as a unique maximal G-essential (resp. minimal G-injective) G-extension of V.

Let V be a G-module and I(V) the injective envelope of V as an operator system. As Aut $V \subset \operatorname{Aut} I(V)$, we may regard I(V) together

with the inclusion map $V \hookrightarrow I(V)$ as a *G*-extension of *V*. Comparing the essentiality as operator systems and the *G*-essentiality, we see that I(V) is a *G*-essential *G*-extension of *V*, hence that $V \subset I(V) \subset I_{d}(V)$ as *G*-submodules. Moreover it follows easily that I(V) is unique among the *G*-submodules of $I_{d}(V)$ which become the injective envelope of *V*.

3. Injective envelopes of C^* -dynamical systems. Let (A, G, α) be a C^* -dynamical system. In this section, to simplify the notation we assume that A is unital and denote again by α the action $I_G(\alpha)$ of G on the G-injective envelope $I_G(A)$ of A induced by α . But the results below (except for the second part of 3.5 (i)) hold also in the non-unital case. We call $(I_G(A), G, \alpha)$ the *injective envelope* of (A, G, α) . We have

$$(A, G, \alpha) \subset (\overline{A}, G, \alpha) \subset (I(A), G, \alpha) \subset (I_{G}(A), G, \alpha)$$
.

Following [14] we construct the monotone complete crossed products associated with (A, G, α) . Consider $I_G(A)$ as a C^* -subalgebra, containing the unit, of some B(H), represent each element $x \in B(H \otimes l^2(G))$ by a matrix $x = [x_{r,s}]$ $(r, s \in G)$ over B(H), and define operator systems $I_G(A) \otimes B(l^2(G))$, $M(I_G(A), G)$ on $H \otimes l^2(G)$ and maps π_{α} , λ as follows:

$$\begin{split} I_{G}(A) &\otimes B(l^{2}(G)) = \{ x \in B(H \otimes l^{2}(G)) \colon x_{r,s} \in I_{G}(A) \text{ for all } r, s \in G \} , \\ M(I_{G}(A), G) &= \{ x \in I_{G}(A) \ \bar{\otimes} \ B(l^{2}(G)) \colon \alpha_{t^{-1}}(x_{r,s}) = x_{rt,st} \text{ for all } r, s \in G \} , \\ \pi_{a} \colon I_{G}(A) \to M(I_{G}(A), G), \ \pi_{a}(x) &= [\delta_{r,s}\alpha_{r^{-1}}(x)], \ x \in I_{G}(A) , \\ \lambda \colon G \to M(I_{G}(A), G), \ \lambda(t) &= [\delta_{t^{-1}r,s}1], \ t \in G . \end{split}$$

Similarly, define $A \otimes B(l^2(G))$, M(A, G) and so on as subspaces of $B(H \otimes l^2(G))$. Then π_{α} is a unital *-monomorphism with $\lambda(t)\pi_{\alpha}(x)\lambda(t)^* = \pi_{\alpha}(\alpha_t(x))$, $t \in G, x \in I_G(A)$; $I_G(A) \otimes B(l^2(G))$ is a monotone complete C*-algebra with the multiplication

$$x \circ y = \left[O - \sum_t x_{r,t} y_{t,s}
ight], \quad x, y \in I_G(A) \ ar{\otimes} \ B(l^2(G)) \ ,$$

where $O - \sum_t x_{r,t} y_{t,s}$ denotes the order limit in $I_G(A)$ of the finite sums (and need not coincide with the strong limit $s - \sum_t x_{r,t} y_{t,s}$ in B(H)); and $M(I_G(A), G)$ [resp. $M(\overline{A}, G), M(I(A), G)$] is its monotone closed C*-subalgebra [13], [14]. Moreover, the reduced C*-crossed product $A \times_{\alpha r} G$ is identified with the C*-subalgebra of $M(I_G(A), G)$ generated by $\pi_{\alpha}(A)\lambda(G)$.

Regard $I_{G}(A) \otimes B(l^{2}(G))$ as a G-module by the action $t \cdot x = \lambda(t)x\lambda(t)^{*}$, $t \in G$, $x \in I_{G}(A) \otimes B(l^{2}(G))$. Then $\pi_{\alpha}(A) \subset A \times_{\alpha r} G \subset M(A, G) \subset M(I_{G}(A), G)$ are G-submodules of $I_{G}(A) \otimes B(l^{2}(G))$, and π_{α} is a G-monomorphism.

LEMMA 3.1. Keep the above notation.

(i) The embedding $A \hookrightarrow I_{a}(A)$ is normal, that is, $x_{i} \nearrow x$ in A implies $x_{i} \nearrow x$ in $I_{a}(A)$, where $x_{i} \nearrow x$ in a C*-algebra means that $\{x_{i}\}$ is an increasing net with supremum x.

(ii) The map $\pi_{\alpha}: I_{\mathcal{G}}(A) \to M(I_{\mathcal{G}}(A), G)$ is normal.

(iii) For another C^{*}-dynamical system (B, G, β) and a G-morphism $\phi: A \to B$ (that is, a unital completely positive map with $\phi(\alpha_t(x)) = \beta_t(\phi(x))$, $t \in G, x \in A$) the map

$$\widetilde{\phi}: A \otimes B(l^2(G)) \to B \otimes B(l^2(G)),$$

 $\widetilde{\phi}(x) = [\phi(x_{r,s})], \quad x = [x_{r,s}] \in A \otimes B(l^2(G))$

is a unital completely positive map with $\tilde{\phi}(M(A,G)) \subset M(B,G)$ and $\tilde{\phi}(A \times_{\alpha r} G) \subset B \times_{\beta r} G$. Moreover, $\tilde{\phi}$ is a G-morphism, and it is a G-monomorphism if and only if ϕ is.

PROOF. (i) The embedding $A \hookrightarrow I(A) \xrightarrow{j} l^{\infty}(G, I(A))$ (see 2.3) is normal by [12, 3.1] and the fact that j(I(A)) is clearly monotone closed in $l^{\infty}(G, I(A))$. Moreover, as $l^{\infty}(G, I(A))$ is G-injective, we may take $I_{g}(A)$ so that $j(I(A)) \subset I_{g}(A) \subset l^{\infty}(G, I(A))$, from which the conclusion follows.

By definition, (ii) and (iii) are clear.

G-injectivity is characterized as follows. A similar result is known [1] when A is W^* , but G is not necessarily discrete.

LEMMA 3.2. For a C*-dynamical system (A, G, α) the G-module A is G-injective if and only if M(A, G) is injective.

PROOF. This follows from [14, 3.1(ii)] and 2.3.

LEMMA 3.3. Let E be a unital C*-algebra which is also a G-module and let C and D be G-invariant C*-subalgebras, containing the unit, of E with $C \subset D \subset E$. Suppose that D is a G-essential G-extension of C and that there are a faithful idempotent G-morphism ρ of E onto D (that is, $\rho(x) = 0$ with $x \in E^+$ implies x = 0) and a G-morphism $\phi: D \to E$ with $\phi | C = \mathrm{id}_c$. Then $\phi = \mathrm{id}_p$.

PROOF. The map $\rho \circ \phi: D \to D$ is a *G*-morphism with $\rho \circ \phi | C = \mathrm{id}_c$. By 2.6 we have $C \subset D \subset I_G(C)$ and $\rho \circ \phi$ extends to a *G*-morphism $(\rho \circ \phi)^{\uparrow}: I_G(C) \to I_G(C)$ with $(\rho \circ \phi)^{\uparrow} | C = \mathrm{id}_c$. Then $(\rho \circ \phi)^{\uparrow} = \mathrm{id}_{I_G(C)}$ and so $\rho \circ \phi | D = \mathrm{id}_D$. As ϕ is unital and completely positive, for $x \in D$ we have $\phi(x^*)\phi(x) \leq \phi(x^*x)$ and similarly for ρ . Hence $x^*x = \rho \circ \phi(x^*)\rho \circ \phi(x) \leq \rho(\phi(x^*)\phi(x)) \leq \rho \circ \phi(x^*x) = x^*x$ and $\rho(\phi(x^*)\phi(x)) = x^*x$. As ρ is a *D*-module homomorphism [5, 3.1] and is faithful, for $x \in D$ we have

$$\rho((\phi(x) - x)^*(\phi(x) - x)) = \rho(\phi(x^*)\phi(x)) - \rho \circ \phi(x^*)x - x^*\rho \circ \phi(x) + \rho \circ \phi(x^*x)$$

= $x^*x - x^*x - x^*x + x^*x = 0$

and $\phi(x) = x$.

THEOREM 3.4. For C*-dynamical systems (A, G, α) and (B, G, β) with $(A, G, \alpha) \subset (B, G, \beta)$ we have $A \times_{\alpha r} G \subset B \times_{\beta r} G \subset I(A \times_{\alpha r} G)$ if and only if $(B, G, \beta) \subset (I_G(A), G, \alpha)$. In particular, $A \times_{\alpha r} G \subset \overline{A} \times_{\alpha r} G \subset I(A) \times_{\alpha r} G \subset I(A) \times_{\alpha r} G \subset I(A) \times_{\alpha r} G$.

PROOF. Recall that the injective envelope of an operator system is characterized as a maximal essential extension and similarly for the G-injective envelope (see 2.6).

Necessity: It suffices to show that if $B \times_{\beta r} G$ is an essential extension of $A \times_{\alpha r} G$, then B is a G-essential G-extension of A, that is, a Gmorphism $\phi: B \to C$ with C a G-module is a G-monomorphism whenever $\phi | A$ is. Lemma 3.1(iii) shows the existence of a completely positive map $\tilde{\phi} | B \times_{\beta r} G: B \times_{\beta r} G \to C \times_{\iota r} G$, where $\iota_t(x) = t \cdot x, t \in G, x \in C$. If $\phi | A$ is a Gmonomorphism, then $\tilde{\phi} | A \times_{\alpha r} G$ is a complete order injection and so is $\tilde{\phi} | B \times_{\beta r} G$ by hypothesis. Hence ϕ is a G-monomorphism.

Sufficiency: It suffices to show that $A \times_{ar} G \subset I_d(A) \times_{ar} G \subset I(A \times_{ar} G)$. As $A \times_{ar} G \subset I_d(A) \times_{ar} G \subset M(I_d(A), G)$ with $M(I_d(A), G)$ injective, we may take $I(A \times_{ar} G)$ so that $A \times_{ar} G \subset I(A \times_{ar} G) \subset M(I_d(A), G)$. The identity map on $A \times_{ar} G$ extends to a completely positive map $\psi: I_d(A) \times_{ar} G \to I(A \times_{ar} G)$. The map $\rho: M(I_d(A), G) \to \pi_a(I_d(A)), \rho(x) = \pi_a(x_{e,e}), x = [x_{r,s}] \in M(I_d(A), G)$ is a faithful idempotent G-morphism onto $\pi_a(I_d(A))$. Applying 3.3 to the G-modules $\pi_a(A) \subset \pi_a(I_d(A)) \subset M(I_d(A), G)$ and the maps $\phi = \psi | \pi_a(I_d(A))$ and ρ , we see that ϕ is the identity map on $\pi_a(I_d(A))$, hence that ψ is a $\pi_a(I_d(A))$ -module homomorphism [5, 3.1]. As $I_d(A) \times_{ar} G$ is generated by $\pi_a(I_d(A))$ and $\lambda(G), \psi$ fixes $I_d(A) \times_{ar} G$ elementwise and so $I_d(A) \times_{ar} G \subset I(A \times_{ar} G)$.

COROLLARY 3.5. (i) Let (A, G, α) and (B, G, β) be C^{*}-dynamial systems with $(A, G, \alpha) \subset (B, G, \beta) \subset (I_G(A), G, \alpha)$. Then $A \times_{\alpha r} G$ is prime if and only if $B \times_{\beta r} G$ is prime, and the simplicity of $A \times_{\alpha r} G$ implies that of $B \times_{\beta r} G$.

(ii) For a C*-dynamical system (A, G, α), $\pi_{\alpha}(\overline{A}) \subset \overline{A} \times_{\alpha r} G$ is the monotone closure of $\pi_{\alpha}(A)$ in $(A \times_{\alpha r} G)^{-}$ and so $\overline{A} \times_{\alpha r} G \subset (A \times_{\alpha r} G)^{-}$.

PROOF. (i) As $A \times_{\alpha r} G \subset B \times_{\beta r} G \subset I(A \times_{\alpha r} G)$, the assertions follow from [12, 6.3, 7.1] and [15, 1.2(i)].

(ii) As in the proof of 3.4 we may assume that $A \times_{\alpha r} G \subset I_G(A) \times_{\alpha r} G \subset I(A \times_{\alpha r} G) \subset M(I_G(A), G)$. As $\pi_a: I_G(A) \to M(I_G(A), G)$ is normal, so is

 $\pi_{\alpha}: I_{G}(A) \to I(A \times_{\alpha r} G);$ hence $\pi_{\alpha}(\overline{A})$ is the monotone closure of $\pi_{\alpha}(A)$ in $I(A \times_{\alpha r} G)$. As $(A \times_{\alpha r} G)^{-}$ is the monotone closure of $A \times_{\alpha r} G$ in $I(A \times_{\alpha r} G),$ we have $\overline{A} \times_{\alpha r} G \subset (A \times_{\alpha r} G)^{-}$.

COROLLARY 3.6. Let (A, G, α) be a C^{*}-dynamical system with G compact abelian. Then the regular monotone completion $(A \times_{\alpha} G)^{-}$ of the C^{*}-crossed product $A \times_{\alpha} G$ is realized as a monotone closed C^{*}-subalgebra of the monotone complete C^{*}-algebra $\overline{A} \otimes B(L^2(G))$.

PROOF. Note that as G and its dual \hat{G} are amenable, we may suppress the letter "r" in $A \times_{\alpha r} G$ and so on. Takai's duality theorem [27, 7.9.3] asserts that $(A \times_{\alpha} G) \times_{\hat{\alpha}} \hat{G} \cong A \otimes C(L^2(G))$. As \hat{G} is discrete, Corollary 3.5(ii) shows that $(A \times_{\alpha} G)^-$ is realized as the monotone closure of $\pi_{\hat{\alpha}}(A \times_{\alpha} G) \cong$ $A \times_{\alpha} G$ in $((A \times_{\alpha} G) \times_{\hat{\alpha}} \hat{G})^- \cong (A \otimes C(L^2(G)))^- = \overline{A} \otimes B(L^2(G))$ ([15, 3.1(i)], [13, 2.5, 6.7]).

REMARK 3.7. Corollary 3.6 is false for a general locally compact group G. Indeed, consider the C^{*}-dynamical system (C, Z, ι), where C is the 1-dimensional C^{*}-algebra with the trivial action ι . Then $\hat{Z} = T$, $C \times_{\iota} Z = C(T)$, and $C(T)^-$, being identified with the non-W^{*}, AW^{*}-algebra of bounded Borel functions on T modulo the sets of first category [8], is not a monotone closed C^{*}-subalgebra (W^{*}-subalgebra) of the W^{*}-algebra $C \otimes B(l^2(Z)) \cong B(l^2(Z))$.

REMARK 3.8. Here we discuss the difference between injectivity and G-injectivity. Let (A, G, α) be a C^* -dynamical system. If G is not amenable, then we have $I_G(A) \neq I(A)$ in general (that is, I(A) is injective, but not G-injective). Indeed, for the C^* -dynamical system (C, G, ι) with the trivial action ι the G-module $l^{\infty}(G) = l^{\infty}(G, C)$ is G-injective, and $I_G(C) = C = I(C)$ if and only if there is a G-morphism $\phi: l^{\infty}(G) \to C$ with $\phi \circ j = \mathrm{id}_C$ by 2.3, that is, G is amenable. On the other hand, we have $I_G(A) = I(A)$ if I(A)is W^* and G is amenable (see 3.2).

4. A non-injective maximal regular extension. A regular extension of a unital C*-algebra A [12, 1.1] is a unital C*-algebra B containing A as a C*-subalgebra with the same unit so that each element $x \in B_{sa}$ is the supremum of $\{a \in A_{sa}: a \leq x\}$. There is a unique maximal regular extension, written \tilde{A} , of A, we have $A \subset \bar{A} \subset \tilde{A} \subset I(A)$, and \tilde{A} is a monotone complete C*-algebra [12, 3.1]. In this section we give an example of a C*-algebra A for which \tilde{A} is non-injective, that is, $\tilde{A} \neq I(A)$. This \tilde{A} serves also as an example of a non-injective, non-W*, AW^* -factor of type III, whose existence was first shown in [13, 4.9].

The next lemma follows immediately from [12, 2.6] and [23, p. 83,

Lemma 2].

LEMMA 4.1. Let B be a unital C*-algebra and A its C*-subalgebra containing the unit. Then B is a regular extension of A if and only if $j^*(K) \subsetneq S(A)$ for any weak* closed convex subset $K \gneqq S(B)$, where j^* is the transpose of the inclusion map $j: A \hookrightarrow B$ and S(C), with C a C*algebra, denotes the state space of C.

LEMMA 4.2. Let (A, G, α) be a C^{*}-dynamical system with A unital and G discrete. If $C1 \subsetneq A$, then $A \times_{\alpha r} G$ is not a regular extension of $C_r^*(G)$, where $C_r^*(G) = C \times_{\iota r} G \subset A \times_{\alpha r} G$ with $\iota = \alpha | C1$.

PROOF. We show that (*) there is a weak* closed convex subset K of $S(A \times_{\alpha r} G)$ such that $j^* | K: K \to S(C_r^*(G))$ is one-to-one and onto, where j is as in 4.1. If $A \times_{\alpha r} G$ were a regular extension of $C_r^*(G)$, then Lemma 4.1 would imply that $K = S(A \times_{\alpha r} G)$, hence that $A \times_{\alpha r} G = C_r^*(G)$, a contradiction [27, 7.7.9].

To see (*) let $P(G, A^*)$ be the set of all functions $\Phi: G \to A^*$ such that $\|\Phi(e)\| = 1$ and $\sum_{i,j} \Phi(t_i^{-1}t_j)(\alpha_{t_i^{-1}}(a_i^*a_j)) \geq 0$ for any finite $t_i \in G$ and $a_i \in A$. By [35, 2.19, 4.24(i)] the map $f \mapsto \Phi_f, \Phi_f(t)(a) = f(\pi_a(a)\lambda(t)), t \in G$, $a \in A$ gives an affine homeomorphism of $S(A \times_a G)$ with the weak* topology onto $P(G, A^*)$ with the point-weak* topology, and it maps $S(A \times_a G)$ (regarded as a subset of $S(A \times_a G)$) onto the subset $P_r(G, A^*)$ of $P(G, A^*)$ consisting of elements Φ such that $\Phi_i \to \Phi$ in the point-weak* topology for some net $\{\Phi_i\}$ in $P(G, A^*)$ consisting of elements with finite support. Similarly, $P(G) = P(G, C^*)$ and $P_r(G) = P_r(G, C^*)$ are defined and satisfy the above property. Hence we may and shall identify $S(A \times_a G)$ and $P(G, A^*)$, and so on. Let Φ be a state extension to $P(G, A^*) = S(A \times_a G)$ of the function $G \ni t \mapsto 1 \in C$ in $P(G) = S(C^*(G))$. Then $\Phi(t)(1) = 1$ for all $t \in G$ and $K = \{\psi \cdot \Phi: \psi \in P_r(G)\} \subset P_r(G, A^*)$ [35, 4.24(ii)] satisfies (*).

PROPOSITION 4.3. If G is a countable, non-amenable, ICC (=infinite conjugacy class) group, then the maximal regular extension $C_r^*(G)^{\sim}$ of the reduced group C^{*}-algebra $C_r^*(G)$ is a non-injective, non-W^{*}, σ -finite, monotone complete AW^{*}-factor of type III.

PROOF. Theorem 3.4 says that $C_r^*(G) \subset I_G(C) \times_{\iota r} G \subset I(C_r^*(G))$. As G is non-amenable, Remark 3.8 and Lemma 4.2 show that $I(C_r^*(G))$ is not a regular extension of $C_r^*(G)$, that is, $C_r^*(G)^\sim$ is not injective. As G is countable and ICC and so $C_r^*(G)$ generates a W^* -factor in its regular representation, $C_r^*(G)$ is a separable prime C*-algebra. As $C_r^*(G)^\sim \subset (IC_r^*(G))$, [12, 6.3, 7.1] and the proof of [12, 3.8] show that $C_r^*(G)^\sim$ is a monotone complete AW^* factor with a faithful state, hence that it is σ -finite. As $C_r^*(G)^- = C_r^*(G)^\sim$

is non- W^* [34, Theorem N] and is monotone closed in $C^*_r(G)^\sim$, $G^*_r(G)^\sim$ is also non- W^* . Hence by [32, Corollary], $C^*_r(G)^\sim$ is of type III.

5. G-invariant hereditary C^* -subalgebras. We say that a projection of the regular monotone completion \overline{A} of a C^* -algebra A is open [13] if it is a supremum in \overline{A}_{sa} of some positive increasing net in A and that a closed two-sided ideal J of A is regular [15] if $J^{\perp\perp} = J$, where $S^{\perp} = \{x \in$ A: xy = yx = 0 for all $y \in S\}$ for $S \subset A$ and $S^{\perp\perp} = (S^{\perp})^{\perp}$. Let (A, G, α) be a C^* -dynamical system. As in [27] we write $\mathscr{H}^{\alpha}(A)$ for the set of all non-zero G-invariant hereditary C^* -subalgebras of A and $\mathscr{H}^{\alpha}_{B}(A)$ for the subset of $\mathscr{H}^{\alpha}(A)$ consisting of B such that the closed two-sided ideal of A generated by B is essential. For $B \in \mathscr{H}^{\alpha}(A)$ denote by R(B) the smallest regular ideal of A containing B and by $\mathscr{R}^{\alpha}(A)$ the set of all non-zero G-invariant regular ideals of A. We say that an element in $I_G(A)$ is Ginvariant if it is invariant under the action $I_G(\alpha)$.

The following is a dynamical system version of [13, 6.5].

PROPOSITION 5.1. Let (A, G, α) be a C^{*}-dynamical system.

(i) For $B \in \mathscr{H}^{\alpha}(A)$ consider the C*-dynamical system $(B, G, \alpha | B)$. Then the supremum p_B in \overline{A} of each positive increasing approximate unit for B is a G-invariant open projection of \overline{A} such that $\overline{B} = p_B \overline{A} p_B$ and $I_G(B) = p_B I_G(A) p_B$.

(ii) The correspondence $B \mapsto p_B$ given by (i) maps $\mathscr{H}^{\alpha}(A)$ onto the set of all non-zero G-invariant open projections of \overline{A} . By restricting this correspondence to $\mathscr{R}^{\alpha}(A)$ we obtain a bijection of $\mathscr{R}^{\alpha}(A)$ onto the set of all non-zero G-invariant central projections of \overline{A} .

(iii) For $B \in \mathscr{H}^{\alpha}(A)$ the central support $C(p_B)$ of p_B in \overline{A} coincides with $p_{R(B)}$. Hence B is in $\mathscr{H}^{\alpha}_B(A)$ if and only if $C(p_B) = 1$.

For the proof of the second equality in (i) we need the next lemma.

LEMMA 5.2. Let D be a monotone complete C*-algebra, C its monotone closed C*-subalgebra containing the unit, and p a projection of C such that the central support C(p) of p in C is 1. Let $\phi: pDp \rightarrow pDp$ be a completely positive map with $\phi | pCp = id_{pCp}$. Then for each family $\{v_i\}$ of non-zero partial isometries of C such that

(***) $\hat{\phi} \mid pDp = \phi \quad and \quad \hat{\phi} \mid C = \mathrm{id}_{c}$,

where $O-\sum$ denotes the order limit of the finite sums.

PROOF OF LEMMA 5.2. As C(p) = 1, a standard argument using the comparability theorem [2, p. 80, Corollary] shows the existence of the family $\{v_i\}$ satisfying (*). If $x \in D$ and an index j are fixed and i ranges over a finite subset of indices, then by the Schwarz inequality,

$$\sum_{i} \phi(v_i x v_j^*)^* \phi(v_i x v_j^*) \leq \phi \left(v_j x^* \left(\sum_{i} v_i^* v_i \right) x v_j^* \right) \leq \phi(v_j x^* x v_j) \leq \|x\|^2 ;$$

hence by [13, 1.5], $O-\sum_i v_i^*\phi(v_ixv_j^*) = x_j$, say, exists. A similar argument shows the existence of $O-\sum_j x_j v_j$, that is, the right hand side of (**). Thus $\hat{\phi}$ exists and is clearly completely positive. If $\psi: D \to D$ is a completely positive map satisfying (***), then ψ is a C-module homomorphism [5, 3.1] and so for each $x \in D$ and each family $\{v_i\}$ satisfying (*),

$$\begin{split} \psi(x) &= \left(O - \sum_{i} v_i^* v_i\right) \psi(x) \left(O - \sum_{j} v_j^* v_j\right) = O - \sum_{i,j} v_i^* \psi(v_i x v_j^*) v_j \\ &= O - \sum_{i,j} v_i^* \phi(v_i x v_j^*) v_j \end{split}$$

Hence the uniqueness of $\hat{\phi}$ follows.

PROOF OF PROPOSITION 5.1. By [13, 6.5] there is a unique open projection p_B of \overline{A} such that $\overline{B} = p_B \overline{A} p_B$. To see the *G*-invariance of p_B note that each $\alpha_i, t \in G$, maps a positive increasing approximate unit for *B* to another such. Conversely if *p* is a *G*-invariant open projection of \overline{A} , then $A \cap pAp$ is a *G*-invariant hereditary C^* -subalgebra of *A* with $(A \cap pAp)^- = p\overline{A}p$ [15, 1.1(v)]. Moreover by [15, 1.3(iii)] an ideal *J* of *A* is regular if and only if $J = A \cap hA$ for some central projection *h* of \overline{A} . These show (i), except for the second equality, and (ii).

(iii) As $p_{R(B)}$ is a central projection of \overline{A} majorizing p_B , we have $C(p_B) \leq p_{R(B)}$. Moreover, as $A \cap C(p_B)A$ is a regular ideal containing B, it follows that $R(B) \subset A \cap C(p_B)A$, hence that $p_{R(B)} \leq C(p_B)$. As a closed two-sided ideal J of A is essential if and only if $J^{\perp} = \{0\}, B \in \mathscr{H}^{\alpha}(A)$ is in $\mathscr{H}^{\alpha}_{B}(A)$ if and only if R(B) = A.

We show the equality $I_{g}(B) = p_{B}I_{g}(A)p_{B}$ in (i). As $A \subset \overline{A} \subset I_{g}(A)$, we have $I_{g}(A) = I_{g}(\overline{A})$ and $I_{g}(B) = I_{g}(\overline{B}) = I_{g}(p_{B}\overline{A}p_{B})$. Hence it suffices to show that if A is monotone complete and p is a G-invariant projection of A, then $I_{g}(pAp) = pI_{g}(A)p$. The central support C(p) of p in A, being the supremum of upu^{*} with u unitaries in A, is also G-invariant and it is immediate to see that $I_{g}(C(p)A) = C(p)I_{g}(A)$ (modify the argument in [12, 6.2]). Thus we may also assume that C(p) = 1. As $pAp \subset pI_{g}(A)p$ and $pI_{g}(A)p$, being a direct summand of $I_{g}(A)$, is G-injective, we need

only show that if $\phi: pI_G(A)p \to pI_G(A)p$ is a G-morphism with $\phi | pAp = \mathrm{id}_{pAp}$, then ϕ is the identity of $pI_G(A)p$. We apply Lemma 5.1 to $I_G(A)$, A, p and ϕ . Take a family $\{v_i\}$ of non-zero partial isometries in A satisfying (*) and define $\hat{\phi}: I_G(A) \to I_G(A)$ by (**). Then $\hat{\phi} | A = \mathrm{id}_A$ and $\hat{\phi}$ is a G-morphism. Indeed, for each $t \in G$ the family $\{\alpha_t(v_i)\}$ also satisfies (*) and so the uniqueness of $\hat{\phi}$ shows that for $x \in I_G(A)$,

$$\hat{\phi}(x) = O_{-\sum_{i,j}} \alpha_t(v_i^*) \phi(\alpha_t(v_i) x \alpha_t(v_j^*)) \alpha_t(v_j)$$
 .

As ϕ is a *G*-morphism, it follows that

$$egin{aligned} & \hat{\phi}(I_{G}(lpha)_{t}(x)) = O_{-\sum\limits_{i,j}} lpha_{t}(v_{i}^{*})I_{G}(lpha)_{t}(\phi(v_{i}xv_{j}^{*}))lpha_{t}(v_{j}) \ & = I_{G}(lpha)_{t}(O_{-\sum\limits_{i,j}} v_{i}^{*}\phi(v_{i}xv_{j}^{*})v_{j}) = I_{G}(lpha)_{t}(\hat{\phi}(x)) \end{aligned}$$

As $I_{G}(A)$ is a G-rigid G-extension of A, $\hat{\phi}$ is the identity on $I_{G}(A)$ and $\phi = \hat{\phi} | pI_{G}(A)p$ is the identity on $pI_{G}(A)p$.

6. The center of the G-injective envelope. In what follows, the center of a C*-algebra A is denoted by Z(A), and for a C*-dynamical system (A, G, α) and a G-invariant C*-subalgebra B of A the fixed point subalgebra of B under the action $\alpha | B$ is denoted by B^{c} . Now we study the algebra $Z(I_{c}(A))^{c}$. In the next lemmas (A, G, α) denotes a fixed C*-dynamical system.

As stated in the proof of 5.1, the following lemma follows from a slight modification of the proof of [12, 6.2].

LEMMA 6.1. For a G-invariant central projection h of $I_G(A)$, consider the C*-dynamical system $(hA, G, I_G(\alpha)|hA)$. Then the G-injective envelope $I_G(hA)$ of hA is $hI_G(A)$ together with the inclusion map $hA \hookrightarrow hI_G(A)$.

LEMMA 6.2. We have $Z(I(A)) \subset Z(I_G(A))$.

PROOF. The map $j: I(A) \to l^{\infty}(G, I(A))$ (see 2.3) is both a G-monomorphism and a unital *-monomorphism with $l^{\infty}(G, I(A))$ G-injective. Hence there is a minimal j(I(A))-projection ϕ on $l^{\infty}(G, I(A))$ so that $I_{G}(A) = I_{G}(I(A))$ is identified with Im ϕ . Noting the multiplication in Im ϕ and the fact that j maps Z(I(A)) into the center of $l^{\infty}(G, I(A))$, we see that $j(Z(I(A))) \subset Z(I_{G}(A))$.

LEMMA 6.3 (cf. [10, 4.3], [12, 6.3]). We have $Z(I(A))^{d} = Z(I_{d}(A))^{d} = (A' \cap I_{d}(A))^{d}$, where $A' \cap I_{d}(A)$ denotes the relative commutant of A in $I_{d}(A)$.

PROOF. The inclusions $Z(I(A))^{g} \subset Z(I_{g}(A))^{g} \subset (A' \cap I_{g}(A))^{g}$ are clear.

Let u be a unitary in $(A' \cap I_G(A))^{d}$. Then $\operatorname{Ad} u: I_G(A) \to I_G(A)$, $(\operatorname{Ad} u)(x) = uxu^*$, $x \in I_G(A)$ is a G-morphism with $\operatorname{Ad} u \mid A = \operatorname{id}_A$, and so $\operatorname{Ad} u$ is the identity on $I_G(A)$ and $u \in Z(I_G(A))$. Hence $Z(I_G(A))^{d} = (A' \cap I_G(A))^{d}$.

Let h be a projection in $Z(I_G(A))^{d}$. Then as in the proof of [12, 6.3] there is a unique minimal projection h_1 in Z(I(A)) majorizing h. By the uniqueness h_1 is also G-invariant, and noting 6.1, the same argument as in the proof of [12, 6.3] shows that $h = h_1 \in Z(I_G(A))^{d}$. Hence $Z(I(A))^{d} = Z(I_G(A))^{d}$.

PROPOSITION 6.4. Let (A, G, α) and (B, G, β) be two C^{*}-dynamical systems with $(A, G, \alpha) \subset (B, G, \beta) \subset (I_{G}(A), G, I_{G}(\alpha))$.

(i) We have $Z(A) \subset Z(B)$; if in addition $\overline{A} \subset B$, then $Z(B)^{G} = Z(I_{G}(A))^{G}$. In particular, $Z(\overline{A})^{G} = Z(I(A))^{G} = Z(I_{G}(A))^{G}$.

(ii) A is G-prime if and only if B is G-prime.

(iii) If A is unital and G-simple, then B is G-simple.

PROOF. (i) The first inclusion follows from [10, 4.3] and 6.2. If $\overline{A} \subset B$, then $Z(I(A)) = Z(\overline{A}) \subset Z(B)$ [12, 6.3] and by 6.3, $Z(I_G(A))^G = Z(I(A))^G \subset Z(B)^G \subset Z(I_G(A))^G$.

(ii) If J and K are mutually orthogonal non-zero G-invariant closed two-sided ideals of A, then $J^{\perp\perp}$ and $K^{\perp\perp}$ are also such regular ideals of A. Hence A is G-prime if and only if A has no nontrivial G-invariant regular ideal, that is, if and only if $Z(I_G(A))^g = C1$ by (i) and 5.1. Moreover, note that $I_G(A) = I_G(B)$.

(iii) Modify the proof of [15, 1.2] slightly.

7. Quasi-inner *-automorphisms. In this section we investigate the relationship between a *-automorphism α of a C*-algebra A and its unique extensions $\overline{\alpha}$ and $I(\alpha)$ to \overline{A} and I(A), respectively.

LEMMA 7.1. Let (A, G, α) be a C^{*}-dynamical system with G a locally compact abelian group. Let $I(A \times_{\alpha} G)$ be the injective envelope of the C^{*}crossed product $A \times_{\alpha} G$, $I(\hat{\alpha})$ the unique extension to $I(A \times_{\alpha} G)$ of the dual action $\hat{\alpha}$ of \hat{G} on $A \times_{\alpha} G$ (see [27, 7.8.3]), and Z the center of $I(A \times_{\alpha} G)$. Denote by $\Gamma(\cdot)$ and $\Gamma_{B}(\cdot)$ the Connes and Borchers spectra, respectively (see [27, 8.8]).

(i) Let $B \in \mathscr{H}_B^{\alpha}(A)$. Then $\Gamma(\alpha | B) = \operatorname{Ker}(I(\widehat{\alpha}) | Z)$, and a $\sigma \in \widehat{G}$ belongs to $\Gamma_B(\alpha | B)$ if and only if for any neighborhood Ω of σ there are a non-zero projection h of Z and a $\sigma_1 \in \Omega$ such that the supremum $\bigvee \{I(\widehat{\alpha})_{\tau}(h): \tau \in \widehat{G}\}$ in the projection lattice of $I(A \times_{\alpha} G)$ equals 1 and $hI(\widehat{\alpha})_{\sigma_1}(h) \neq 0$.

(ii) If $B_1, B_2 \in \mathscr{H}^{\alpha}(A)$ with $R(B_1) = R(B_2)$ (in particular, if B_2 is the closed two-sided ideal of A generated by B_1), then $\Gamma(\alpha | B_1) = \Gamma(\alpha | B_2)$ and $\Gamma_B(\alpha | B_1) = \Gamma_B(\alpha | B_2)$.

(iii) If in addition G is discrete (hence $\Gamma(I(\alpha))$, $\Gamma(\overline{\alpha})$ and so on make sense), then $\Gamma(I(\alpha)) = \Gamma(\overline{\alpha}) = \Gamma(\alpha)$ and $\Gamma_B(I(\alpha)) = \Gamma_B(\overline{\alpha}) = \Gamma_B(\alpha)$.

PROOF. (i) As $B \in \mathscr{H}_{B}^{\alpha}(A)$, the C*-crossed product $B \times_{\alpha|B} G = C$, say, regarded as a C*-subalgebra of $A \times_{\alpha} G$, is an $\hat{\alpha}$ -invariant hereditary C*subalgebra which generates an essential closed two-sided ideal of $A \times_{\alpha} G$. By 5.1 we have $I(C) = p_{c}I(A \times_{\alpha} G)p_{c}$ for an $I(\hat{\alpha})$ -invariant projection p_{c} of $I(A \times_{\alpha} G)$ with central support $C(p_{c}) = 1$. The center of I(C) equals $p_{c}Z$ and the map $x \mapsto p_{c}x$ gives a *-isomorphism of Z onto $p_{c}Z$ [2, p. 37, Corollary 2].

As $(\alpha | B)^{\uparrow} = \hat{\alpha} | C$, it follows from [25, 5.4] or [27, 8.11.8] that for $\sigma \in \hat{G}$ we have $\sigma \notin \Gamma(\alpha | B)$ if and only if $J \cdot \hat{\alpha}_{\sigma}(J) = \{0\}$ for some non-zero closed two-sided ideal J of C. As $J \cdot \hat{\alpha}_{\sigma}(J) = \{0\}$ implies $J^{\perp \perp} \cdot \hat{\alpha}_{\sigma}(J^{\perp \perp}) = \{0\}$, the latter condition is equivalent to $J \cdot \hat{\alpha}_{\sigma}(J) = \{0\}$ for some non-zero regular ideal J of C, which in turn is equivalent to $h \cdot I(\hat{\alpha})_{\sigma}(h) = 0$ for some non-zero projection h of $p_{c}Z$ [15]. From the first paragraph this is the case if and only if $h \cdot I(\hat{\alpha})_{\sigma}(h) = 0$ for some non-zero projection h of Z. Thus $\sigma \notin \Gamma(\alpha | B)$ if and only if $I(\hat{\alpha})_{\sigma}|Z \neq \mathrm{id}_{Z}$.

To see the second assertion we use the following characterization of the Borchers spectrum by Kishimoto [21, 1.1] (with n = 1). A $\sigma \in \hat{G}$ belongs to $\Gamma_B(\alpha | B)$ if and only if for each neighborhood Ω of σ there are a non-zero closed two-sided ideal J of C which generates an $\hat{\alpha}$ -invariant essential closed ideal and a $\sigma_1 \in \Omega$ such that $J \cdot \hat{\alpha}_{\sigma_1}(J) \neq \{0\}$. Then the argument proceeds exactly as for $\Gamma(\alpha | B)$. We may take the above J as a regular ideal, and if $I(J) = hp_C I(C)$ with h a projection of Z, then the condition that J generates an $\hat{\alpha}$ -invariant essential ideal of C is equivalent to $\bigvee \{I(\hat{\alpha})_r(h): \tau \in \hat{G}\} = 1$, and so on.

(ii) By (i) we have $\Gamma(\alpha | B) = \Gamma(\alpha)$ and $\Gamma_B(\alpha | A) = \Gamma_B(\alpha)$ for $B \in \mathscr{H}^{\alpha}_B(A)$. As $B_i \in \mathscr{H}^{\alpha}_B(R(B_i))$, i = 1, 2, the conclusion follows.

(iii) By 3.4 we have $A \times_{\alpha} G \subset I(A) \times_{\alpha} G \subset I(A \times_{\alpha} G)$. As $I(\alpha)^{\uparrow} | A \times_{\alpha} G = \hat{\alpha}$ and $I(\hat{\alpha})$ is a unique extension of $\hat{\alpha}$, it follows that $I(I(\alpha)^{\uparrow}) = I(\hat{\alpha})$ and $I(I(A) \times_{\alpha} G) = I(A \times_{\alpha} G)$. Hence (iii) follows from (i) with B = A.

REMARK 7.2. From (ii) we see that in [26, 3.3, 3.4] the separability of the C*-dynamical system can be dropped, that is, for any C*-dynamical system (A, G, α) with G a locally compact abelian group and any $B \in$ $\mathscr{H}^{\alpha}(A)$ we have $\Gamma(\alpha) \subset \Gamma(\alpha | B) \subset \Gamma_{B}(\alpha | B) \subset \Gamma_{B}(\alpha)$ and $\Gamma_{D}(\alpha) = (\cup \{\Gamma(\alpha | I): I \in \mathcal{J}^{\alpha}(A)\})^{-}$.

THEOREM 7.3. Let (A, G, α) be a C^{*}-dynamical system with G discrete abelian and let $(\overline{A}, G, \overline{\alpha})$ and $(I(A), G, I(\alpha))$ be the C^{*}-dynamical systems canonically associated with it. For $t \in G$ the following conditions are

equivalent:

(i) $t \in \Gamma_B(\alpha)^{\perp}$;

(ii) There are a $B \in \mathscr{H}_B^{\alpha}(A)$ and a G-invariant *-derivation δ of B such that $\alpha_t | B = \exp \delta$;

(iii) $\bar{\alpha}_t = \operatorname{Ad} u$ for some unitary u in \bar{A}^{a} ;

(iv) $I(\alpha)_t = \operatorname{Ad} u$ for some unitary u in $I(A)^{\mathfrak{G}}$.

PROOF. As \hat{G} is compact, the implication (i) \Rightarrow (ii) follows from [26, 4.3].

(ii) \Rightarrow (iii). By 5.1 we have $\overline{B} = p_B \overline{A} p_B$ for a *G*-invariant projection p_B of \overline{A} with $C(p_B) = 1$. The *-derivation δ extends uniquely to an inner *-derivation $\overline{\delta} = \operatorname{ad}(ih), h \in \overline{B}_{sa}$, of \overline{B} [16, Theorem 2.1]. If we take the minimal generator for $\overline{\delta}$ as h (see [16, Lemma 3.1]), then the *G*-invariance of $\overline{\delta}$ and the uniqueness of the minimal generator show that h is *G*-invariant. Hence $\overline{\alpha}_t | p_B \overline{A} p_B = (\alpha_t | B)^- = (\exp \delta)^- = \exp \overline{\delta} = \operatorname{Ad}(\exp(ih))$ and $\exp(ih)$ is a *G*-invariant unitary in $p_B \overline{A} p_B$. As $C(p_B) = 1$, it follows from [13, 5.2] that $\overline{\alpha}_t = \operatorname{Ad} u$ for a unique unitary u in \overline{A} such that $p_B u = u p_B = \exp(ih)$. As $\overline{\alpha}_t = \overline{\alpha}_s \circ \overline{\alpha}_t \circ \overline{\alpha}_{s^{-1}} = \operatorname{Ad}(\overline{\alpha}_s(u))$ and $p_B \overline{\alpha}_s(u) = \overline{\alpha}_s(u) p_B = \exp(ih)$ for all $s \in G$, the uniqueness of u shows that $\overline{\alpha}_s(u) = u$ for all $s \in G$.

It is clear that $(iii) \Rightarrow (iv)$.

 $(iv) \Rightarrow (i).$ It follows from [27, 8.9.7] and 7.1 that $(iv) \Rightarrow t \in \Gamma_B(I(\alpha))^{\perp} = \Gamma_B(\alpha)^{\perp}.$

Following Kishimoto [21], [22] we say that a *-automorphism α of a C^* -algebra A is quasi-inner if $\Gamma_B(\alpha) = \{1\} \subset T = \hat{Z}$ and it is properly outer if $\Gamma_B(\alpha|J) \neq \{1\}$ for each non-zero α -invariant closed two-sided ideal J of A, where $\Gamma_B(\alpha)$ denotes the Borchers spectrum of the action $Z \ni n \mapsto \alpha^n \in \text{Aut } A$. (Note that the word "freely acting" originally used in [21] was renamed "properly outer" in [22].) As in the W^* -case there is for any *-automorphism α of A the largest α -invariant closed two-sided ideal J (resp. K) such that $\alpha|J$ (resp. $\alpha|K$) is quasi-inner (resp. properly outer), $J \cap K = \{0\}$ and J + K is essential in A ([22], see also 7.5 below). Note that the proper outerness in the above sense implies the proper outerness in the sense of Elliott [8] and they are equivalent when A is separable [26, 6.6].

THEOREM 7.4. For a *-automorphism α of a C*-algebra A the following conditions are equivalent:

(i) α is quasi-inner;

(ii) There are a $B \in \mathscr{H}_{B}^{\alpha}(A)$ and a *-derivation δ of B such that $\alpha | B = \exp \delta$;

- (iii) $\bar{\alpha}$ is inner;
- (iv) $I(\alpha)$ is inner.

PROOF. Apply 7.3 to the action $Z \ni n \mapsto \alpha^n \in \text{Aut } A$, and note that in this situation the G-invariance of δ in 7.3 (or u) follows automatically.

REMARK 7.5. For a *-automorphism α of a C*-algebra A let $p(\alpha)$ be the largest $I(\alpha)$ -invariant projection in I(A) such that $I(\alpha) | p(\alpha)I(A)p(\alpha)$ is inner. Then $p(\alpha)$ is a central projection in \overline{A} ([13, 5.1], [12, 6.3]) and $A \cap p(\alpha)A$ (resp. $A \cap (1 - p(\alpha))A$) is the largest closed two-sided ideal of A such that $\alpha | A \cap p(\alpha)A$ is quasi-inner (resp. $\alpha | A \cap (1 - p(\alpha))A$ is properly outer). Indeed, if $\alpha | J$ is quasi-inner for some α -invariant closed two-sided ideal J of A, then $I(\alpha) | p_J I(A) = I(\alpha | J)$ is inner and so $p_J \leq p(\alpha), J \subset A \cap$ $p(\alpha)A$. Moreover $I(\alpha | A \cap p(\alpha)A) = I(\alpha) | p(\alpha)I(A)$, and similarly for $A \cap$ $(1 - p(\alpha))A$.

COROLLARY 7.6. For a C^{*}-algebra A the subset q-Inn A of Aut A consisting of all quasi-inner *-automorphisms of A is a normal subgroup of Aut A; indeed, we have

 $q\operatorname{-Inn} A = \operatorname{Aut} A \cap \operatorname{Inn} \overline{A} = \operatorname{Aut} A \cap \operatorname{Inn} I(A)$,

where as before we regard $\operatorname{Aut} A \subset \operatorname{Aut} \overline{A} \subset \operatorname{Aut} I(A)$ and $\operatorname{Inn} \overline{A}$ denotes the inner *-automorphism group of \overline{A} . Hence if we write $\operatorname{Out} A =$ $\operatorname{Aut} A/q\operatorname{-Inn} A$, then we have

Out $A \subset \text{Out } \overline{A} \subset \text{Out } I(A)$.

COROLLARY 7.7. If A is a monotone complete C^{*}-algebra and u is a unitary in I(A) such that $uAu^* = A$, then $u \in A$.

PROOF. Put $\alpha = \operatorname{Ad} u | A \in \operatorname{Aut} A$. As $I(\alpha) = \operatorname{Ad} u$ is inner, $\alpha = \overline{\alpha}$ is also inner, that is, $\operatorname{Ad} u | A = \alpha = \operatorname{Ad} v | A$ for some unitary v in A. Hence v^*u belongs to the relative commutant of A in I(A), which equals Z(A) ([10, 4.3], [12, 6.3]), and $u = vv^*u \in A$.

COROLLARY 7.8 (Saitô and Wright [28]). If A is a simple C^{*}-algebra and α is a *-automorphism A, then $I(\alpha)$ or $\overline{\alpha}$ is inner if and only if α is inner in the multiplier algebra M(A).

PROOF. As A is simple, α is inner in M(A) if and only if $\Gamma_B(\alpha) = \Gamma(\alpha) = \{1\}$ ([24] or [27, 8.9.10]). Hence 7.4 applies.

REMARK. See [29] for a slightly more general result.

COROLLARY 7.9. If A is a C^{*}-algebra which contains an essential GCR-ideal and α is a ^{*}-automorphism of A, then the following conditions are equivalent:

(i) α is quasi-inner;

(ii) $\alpha(J) = J$ for each regular ideal J of A;

(iii) $\alpha | J$ is universally weakly inner for some essential α -invariant closed two-sided ideal J of A.

PROOF. (i) \Leftrightarrow (ii). By [15, 2.3], A contains an essential GCR-ideal if and only if \overline{A} is a type I AW^* -algebra. (In this case $I(A) = \overline{A}$.) By [19], $\overline{\alpha}$ is inner if and only if it fixes the center of \overline{A} elementwise. By [15] the latter condition is equivalent to (ii).

(i) \Rightarrow (iii). By 7.4, (i) implies that $\alpha | B = \exp \delta$ for some $B \in \mathscr{H}_B^{\alpha}(A)$ and some *-derivation δ of B. The closed two-sided ideal J of A generated by B is α -invariant and essential. If A^{**} is the enveloping von Neumann algebra of A, then $B^{**} = pA^{**}p$ for some projection p of A^{**} and $J^{**} = C(p)A^{**}$, where C(p) is the central support of p in A^{**} . If α^{**} is the bitranspose of α , then that $\alpha^{**} | pA^{**}p = (\alpha | B)^{**} = \exp \delta^{**}$ is inner implies that so is $(\alpha | J)^{**} = \alpha^{**} | C(p)A^{**}$, that is, (iii).

(iii) \Rightarrow (i). If J is as in (iii), then clearly $\alpha(K) = K$ for each regular ideal K of J and so $\alpha | J$ is quasi-inner by the equivalence (i) \Leftrightarrow (ii). But as $\overline{J} = R(J)^- = \overline{A}$ by 5.1 and $(\alpha | J)^- = \overline{\alpha}$, this implies (i).

8. A decomposition of *-automorphisms. Let α be a *-automorphism of a C^* -algebra A and denote, as before, by $\Gamma(\alpha)$ and $\Gamma_B(\alpha)$ the Connes and Borchers spectra of the action $Z \ni n \mapsto \alpha^n \in \text{Aut } A$, respectively. Kishimoto showed in [21, 3.1] that there are the largest α -invariant closed two-sided ideals $I_k, k \in \mathbb{N} \cup \{\infty\}$, of A such that $\Gamma(\alpha | I_k) = \Gamma_B(\alpha | I_k) =$ T_k , where T_k is the subgroup of T of order k if $k \in \mathbb{N}$ and $T_{\infty} = T$, and that the sequence $\{I_k\}$ is mutually orthogonal and generates an essential ideal of A. If $p_k(\alpha)$ is the $\overline{\alpha}$ -invariant central projection of \overline{A} such that $\overline{I}_k = p_k(\alpha)\overline{A}$ and $I(I_k) = p_k(\alpha)I(A)$, then we have $I_k = A \cap p_k(\alpha)A$, since I_k is regular by the maximality and 7.1(ii), and $\{p_k(\alpha)\}$ is an orthogonal sequence with supremum 1. Note also that $p_1(\alpha)$ is the projection $p(\alpha)$ in 7.5.

We characterize the sequence $\{p_k(\alpha)\}$ by the action on A or on I(A) of the extended *-automorphisms $\bar{\alpha}$ or $I(\alpha)$. For similar results in the W^* -case see [3], [4]. (Note that as Connes points out in [7], the result in [3] requires a slight modification.)

PROPOSITION 8.1. For a *-automorphism α of a C*-algebra A let $p_k(\alpha)$ be as above. Then $p_k(\alpha)$ is the largest projection p in the fixed point algebra $\overline{A}^{\overline{\alpha}}$ (resp. $I(A)^{I(\alpha)}$) such that (*) $\overline{\alpha}^n | q \overline{A} q = \operatorname{Ad} u$ for some $n \in \mathbb{Z}$, some non-zero subprojection q of p in $\overline{A}^{\overline{\alpha}}$ and some unitary u in $q \overline{A}^{\overline{\alpha}} q$ if and only if $n \equiv 0 \pmod{k}$ (when $k = \infty$, if and only if n = 0) (resp. the same property with $\overline{\alpha}$ and \overline{A} replaced by $I(\alpha)$ and I(A)). If $p_k(\alpha) = 0$ for some k, then the property is vacuously satisfied.

PROOF. We prove only the statement for $\bar{\alpha}$, since the case of $I(\alpha)$ is treated similarly. By 7.3, (*) is equivalent to the condition $\Gamma_B(\bar{\alpha} | q\bar{A}q)^{\perp} = kZ$ (={0} if $k = \infty$) for each non-zero subprojection q of p in $\bar{A}^{\bar{\alpha}}$. If q is a non-zero subprojection of $p_k(\alpha)$ in $\bar{A}^{\bar{\alpha}}$, then

$$egin{aligned} m{T}_k &= arGamma(lpha \,|\, I_k) = arGamma(arlpha \,|\, p_k(lpha)ar A) {\subset} arGamma(arlpha \,|\, qar A q) {\subset} arGamma_{B}(arlpha \,|\, qar A q) {\subset} arGamma_{B}(arlpha \,|\, p_k(lpha)ar A) \ &= arGamma_{B}(lpha \,|\, I_k) = m{T}_k \end{aligned}$$

by 7.1 and 7.2 and so $\Gamma_B(\overline{\alpha} | q\overline{A}q)^{\perp} = T_k^{\perp} = kZ$. Hence $p_k(\alpha)$ satisfies (*). If a projection p in $\overline{A}^{\overline{\alpha}}$ satisfies (*) and $p \cdot p_j(\alpha) \neq 0$, then as $p \cdot p_j(\alpha) \leq p$ and $p \cdot p_j(\alpha) \leq p_j(\alpha)$, we have $\Gamma_B(\overline{\alpha} | p \cdot p_j(\alpha) \overline{A}p \cdot p_j(\alpha))^{\perp} = kZ = jZ$ and j = k. Thus $p \cdot p_j(\alpha) = 0$ for each $j \neq k$ and $p \leq 1 - \sum_{j \neq k} p_j(\alpha) = p_k(\alpha)$.

In some equivalent conditions in [26, 10.4] for aperiodic *-automorphisms we can drop the separability of the C^* -algebra.

PROPOSITION 8.2. For a *-automorphism α of a C*-algebra A the following conditions are equivalent:

(i) $\Gamma(\alpha) = T$.

(ii) There is no $B \in \mathscr{H}^{\alpha}(A)$ such that $\alpha^n | B = \exp \delta$ for some $n \neq 0$ and some α -invariant *-derivation δ of B.

(iii) For each $n \in N$ the *-automorphism α^n is properly outer.

(iv) For each $\varepsilon > 0$, each $n \in N$ and each $B \in \mathscr{H}^{\alpha}(A)$ there is an $x \in B^+$ with ||x|| = 1 such that $||x\alpha^k(x)|| < \varepsilon$ for $1 \leq k \leq n$.

PROOF. By 7.2 we have $\Gamma(\alpha) = \bigcap \{\Gamma_B(\alpha | B) : B \in \mathscr{H}^{\alpha}(A)\}$. Hence (i) is equivalent to $\Gamma_B(\alpha | B) = T$ for each $B \in \mathscr{H}^{\alpha}(A)$, which in turn is equivalent to $\Gamma_B(\alpha | B)^{\perp} = \{0\}$ for each $B \in \mathscr{H}^{\alpha}(A)$. For if $\Gamma_B(\alpha | B) \neq T$, then $\Gamma_B(\alpha | B)$ is a finite union of finite subgroups of T [27, 8.8.5] and so $\Gamma_B(\alpha | B)^{\perp} \neq \{0\}$. Moreover, the reverse implication is clear. Thus 7.3 shows that (i) \Leftrightarrow (ii).

(iii) \Rightarrow (i). If $\Gamma(\alpha) \neq T$, then $k \in \Gamma_B(\alpha | B)^{\perp}$ for some $B \in \mathscr{H}^{\alpha}(A)$ and $k \neq 0$ and so α^k is not properly outer by 7.3.

(i) \Rightarrow (iii). If α^n is not properly outer for some $n \in N$, then the central projection p in \overline{A} inducing the inner part of $\overline{\alpha}^n$ is non-zero and $\overline{\alpha}^n | p\overline{A} = \operatorname{Ad} u$ for some unitary u in $p\overline{A}$. The maximality of p and the fact that $\overline{\alpha}^n | \overline{\alpha}(p)\overline{A} = \operatorname{Ad} \overline{\alpha}(u)$ and similarly for $\overline{\alpha}^{-1}$ show that $\overline{\alpha}(p) = p$. Now we use the argument in [26, 10.1]. It follows readily that $u, \overline{\alpha}(u), \dots, \overline{\alpha}^{(n-1)}(u)$ are unitaries in $p\overline{A}$ implementing $\overline{\alpha}^n | p\overline{A}$ and that they commute mutually. If we put $v = u\overline{\alpha}(u) \cdots \overline{\alpha}^{(n-1)}(u)$, then $\overline{\alpha}^{n^2} | p\overline{A} = \operatorname{Ad} v$ and $\overline{\alpha}(v) = v$. By 7.3, $n^2 \in \Gamma_B(\overline{\alpha} | p\overline{A})^{\perp} = \Gamma_B(\alpha | A \cap pA)^{\perp}$ and $A \cap pA$ is a

non-zero α -invariant regular ideal of A. Hence $\Gamma(\alpha) \neq T$.

(iii) \Leftrightarrow (iv). This follows from the fact that Kishimoto's result [21, 2.1] shows that [26, 7.1] holds also in the nonseparable case (see the proof of [26, 10.4]).

COROLLARY 8.3. For a *-automorphism α of a C*-algebra A let I_{∞} be as above. Then I_{∞} is the largest α -invariant hereditary C*-subalgebra B of A such that $\alpha^n | B$ is properly outer for each $n \in N$.

9. Tensor products and *-automorphisms. In this section we show two results on *-automorphisms of minimal C^* -tensor products. For C^* -algebras A and B we denote by $A \otimes B$ the minimal C^* -tensor product of A and B.

The following is an analogue of the result of Kallman [18] and that of Wassermann [31] in the setting of quasi-inner and properly outer *automorphisms.

THEOREM 9.1. Let A and B be C*-algebras and let $\alpha \otimes \beta$ be the *automorphism of $A \otimes B$ induced by *-automorphisms α of A and β of B. Let $p(\alpha), p(\beta)$ and $p(\alpha \otimes \beta)$ be the projections of I(A), I(B) and $I(A \otimes B)$ inducing the inner parts of $I(\alpha), I(\beta)$ and $I(\alpha \otimes \beta)$ respectively (see 7.5).

(i) We have $p(\alpha \otimes \beta) = p(\alpha) \otimes p(\beta)$ in $I(A) \otimes I(B) \subset I(A \otimes B)$.

(ii) $\alpha \otimes \beta$ is quasi-inner if and only if both α and β are quasi-inner.

(iii) $\alpha \otimes \beta$ is properly outer if and only if either α or β is properly outer.

PROOF. As $A \otimes B \subset I(A) \otimes I(B) \subset I(A \otimes B)$ [13, 6.7] and $I(\alpha \otimes \beta) | A \otimes B = \alpha \otimes \beta = I(\alpha) \otimes I(\beta) | A \otimes B$, we have $I(\alpha \otimes \beta) = I(I(\alpha) \otimes I(\beta))$. This and 7.4 show that replacing α, β, A and B by $I(\alpha), I(\beta), I(A)$ and I(B), we may assume that A and B are injective C*-algebras and so $\alpha | p(\alpha)A$ and $\beta | p(\beta)B$ are inner. Then $\alpha \otimes \beta = \sum_{i,j} (\alpha \otimes \beta) | (p_i \otimes q_j)(A \otimes B)$, where $p_1 = p(\alpha), p_2 = 1 - p(\alpha), q_1 = p(\beta)$ and $q_2 = 1 - p(\beta)$, and $(\alpha \otimes \beta) | (p_1 \otimes q_1)(A \otimes B)$ is inner. If the sufficiency of (iii) were proved, then all the remaining assertions would follow. Hence it suffices to show that if α is properly outer, then so is $\alpha \otimes \beta$. The required property is equivalent to $I(\alpha \otimes \beta)$ being freely acting (see [18, 13]). Let $x \in I(A \otimes B)$ and $xy = I(\alpha \otimes \beta)(y)x$ for all $y \in I(A \otimes B)$. Regard B as a C*-subalgebra of some B(K) with K a Hilbert space and regard $A \otimes B \subset A \otimes B(K)$ (see Section 3 or [13]). As $A \otimes B(K)$ is injective [13, 3.10], we may take the injective envelope $I(A \otimes B)$ so that $A \otimes B \subset I(A \otimes B) \subset A \otimes B(K)$.

If $L_g: A \overline{\otimes} B(K) \to A$ is the left slice map defined for $g \in B(K)_*$ [13], then for each $a \in A$,

$$L_g(x)a = L_g(x(a \otimes 1)) = L_g(I(\alpha \otimes \beta)(a \otimes 1)x) = \alpha(a)L_g(x)$$
,

and $L_g(x) = 0$ for each g; hence x = 0 as desired. (Note that the product of two elements in $I(A \otimes B)$ need not coincide with that as elements of $A \otimes B(K)$, but so do they if one of the elements belongs to $A \otimes B$, since $I(A \otimes B)$ is obtained as the image of a minimal $(A \otimes B)$ -projection on $A \otimes B(K)$, which is an $(A \otimes B)$ -module homomorphism. Hence the above calculation is justified.)

The following is an analogue of the result of Sakai [30].

THEOREM 9.2. Let A be a C*-algebra and let σ be the flip automorphism of the two-fold tensor product $A \otimes A$, that is, the *-automorphism defined by $\sigma(x \otimes y) = y \otimes x$, $x, y \in A$. Then σ is quasi-inner if and only if the injective envelope I(A) is a type I W*-factor. This is the case if and only if $C(H) \subset A \subset B(H)$ for some Hilbert space H [15].

PROOF. As in 9.1 we may assume that A is injective.

Sufficiency: Suppose that A = B(H) for some Hilbert space H. Then $C(H \otimes H) = C(H) \otimes C(H) \subset A \otimes A \subset B(H \otimes H)$ and so $I(A \otimes A) = B(H \otimes H)$ [15, 3.1]. If we define the unitary U in $B(H \otimes H)$ by $U(\xi \otimes \eta) = \eta \otimes \xi$, $\xi, \eta \in H$, then $\operatorname{Ad} U|A \otimes A = \sigma$ and $I(\sigma) = \operatorname{Ad} U$; hence σ is quasi-inner.

Necessity: Suppose that σ is quasi-inner, that is, $I(\sigma) \in \operatorname{Aut} I(A \otimes A)$ is inner. As in [30, Lemma 2] we see that A is an AW^* -factor. Indeed, let Z be the center of A. Then $Z \otimes Z$ is contained in the center of $I(A \otimes A)$ by [10, 4.3]; hence for each $x, y \in Z$ we have $x \otimes y = I(\sigma)(x \otimes y) =$ $\sigma(x \otimes y) = y \otimes x$. But this shows that Z is 1-dimensional. Next we show that A contains a minimal projection. Let $\{\pi_i, H_i\}$ be a family of inequivalent irreducible *-representations of A such that the direct sum $\{\pi, H\}$ of the family is faithful. We identify A with its image $\pi(A)$ and regard $A \subset B(H), A \otimes A \subset A \otimes B(H) \subset B(H \otimes H)$. If e_i is the projection onto H_i , then we have

$$A'' = \bigoplus e_i B(H)e_i$$
 and $A' = \bigoplus Ce_i (C^*\text{-sum } [2, p. 52])$,

where the double prime (resp. prime) denotes the double commutant (resp. commutant). As in 9.1 we take the injective envelope $I(A \otimes A)$ so that $A \otimes A \subset I(A \otimes A) \subset A \overline{\otimes} B(H)$. By assumption there is a unitary u in $I(A \otimes A)$ such that $I(\sigma)(x) = (\operatorname{Ad} u)(x) = u \circ x \circ u^*$ for $x \in I(A \otimes A)$, where \circ denotes the multiplication in $I(A \otimes A)$. Note that for the reason stated in 9.1 we have $x \circ y = xy$ if x or y belongs to $A \otimes A$.

Hence, with U as above and $x \in A \otimes A$ we have $UxUu = \sigma(x) \circ u = u \circ x = ux$ and so $Uu \in (A \otimes A)' = A' \otimes A' = \bigoplus_{i,j} C(e_i \otimes e_j)$. Hence $u = U(\bigoplus \lambda_{ij}(e_i \otimes e_j))$, $\lambda_{ij} \in C$. We have $\lambda_{ij} \neq 0$ for some i, j. Let ζ_1 and ζ_2 be unit vectors in e_iH and e_jH respectively and let $g \in B(H)_*$ be defined by $g = (\cdot\zeta_2, \zeta_1)$. Computation shows that $L_g(u) = \lambda_{ij}(\cdot, \zeta_1)\zeta_2 \in A$. Hence A contains the minimal projection $(\cdot, \zeta_1)\zeta_1$ and it is a type I W*-factor.

REMARK. By a similar technique we can show that for any C^* -algebra A the projection $p(\sigma)$ of $I(A \otimes A)$ inducing the inner part of $I(\sigma)$ is given by $p(\sigma) = \sum h_i \otimes h_i$, where h_i runs through all central projections h in I(A) such that hI(A) is a type I W^* -factor, hence that σ is properly outer if and only if I(A) has no non-zero atomic part.

10. Prime reduced C^* -crossed products. In [20, 3.1] Kishimoto gave a criterion for the simplicity of the reduced C^* -crossed product of a C^* algebra by a discrete (not necessarily abelian) *-automorphism group (see also [9], [21, 2.3]). Now we present a primeness version of his result.

Let A be a C^{*}-algebra and B its C^{*}-subalgebra. Following Choda and Watatani [4] we say that a *-automorphism α of A is B-subfreely acting on A if $ab = b\alpha(a)$ for all $a \in A$ with $b \in B$ implies b = 0.

THEOREM 10.1. Let (A, G, α) be a C^{*}-dynamical system with G any discrete group. For $t \in G$ put $G(t) = \{s \in G: st = ts\}$ and let $\overline{A}^{G(t)}$ be the fixed point subalgebra of \overline{A} under the action $\overline{\alpha} | G(t)$. If A is G-prime and $\overline{\alpha}_t$ is $\overline{A}^{G(t)}$ -subfreely acting on \overline{A} for each $t \in G \setminus \{e\}$ (in particular if α_t is properly outer for each $t \in G \setminus \{e\}$), then the reduced C^{*}-crossed product $A \times_{\alpha r} G$ is prime. Conversely, if in addition G is finite, then the primeness of $A \times_{\alpha r} G = A \times_{\alpha} G$ implies that A is G-prime and $\overline{\alpha}_t$ is $\overline{A}^{G(t)}$ -subfreely acting on \overline{A} for each $t \in G \setminus \{e\}$. The same is true if one replaces $\overline{\alpha}$ and \overline{A} by $I(\alpha)$ and I(A).

LEMMA 10.2. Let B be a monotone complete C^{*}-algebra and C its C^{*}subalgebra. Let $D = m - cl_B C$ be the monotone closure of C in B.

(i) The supremum in B of any positive increasing approximate unit for C is a projection of B which serves as a unit for D.

(ii) If E is a hereditary C^{*}-subalgebra of C, then there is a unique projection p of D such that $m-cl_B E = pDp$. If in particular E is a closed two-sided ideal of C, then the projection p is a central projection of D.

PROOF. As in [13] we write $x_i \to x$ (O) in B if a net $\{x_i\}$ in B orderconverges to $x \in B$, and we freely use the computation rules for order convergence in [13, 1.2] or [17, 2.1]. (i) If $\{a_i\}$ is a positive increasing approximate unit for C, then $a_i \nearrow p$ (O) in B for some $p \in D^+$. For each $x \in C$ we have x = xp, since $xa_i \rightarrow x$ in norm and $xa_i \rightarrow xp$ (O). In particular, $a_i = a_ip \rightarrow p^2$ (O) and so $p^2 = p$. Moreover, x = xp for all $x \in D$ since D = m-cl_BC.

(ii) By (i) the supremum p in B of a positive increasing approximate unit $\{b_i\}$ for E is a projection of D. As $E \ni b_i x b_i \rightarrow pxp \in pCp \subset pDp$ (O) for each $x \in C$, it follows that $pCp \subset m\text{-cl}_B E$, hence that $pDp = p(m\text{-cl}_B C)p =$ $m\text{-cl}_B pCp \subset m\text{-cl}_B E$ [13, 2.4]. The reverse inclusion is clear since pDpcontains E and is monotone closed in B.

If E is a closed two-sided ideal of C, then for each $x \in C_{sa}$ we have $E \ni xb_i x \rightarrow xpx \in m\text{-cl}_B E = pDp$ and (1-p)xpx(1-p) = 0. Hence px(1-p) = 0, $px = pxp = (pxp)^* = (px)^* = xp$ and so p commutes with each element of $m\text{-cl}_B C = D$.

Let (B, G, β) be a C^{*}-dynamical system with B monotone complete and G discrete. As in Section 3 define the monotone complete crossed product M(B, G) as a monotone closed C^{*}-subalgebra of the monotone complete C^{*}-algebra $B \otimes B(l^2(G))$, and the maps π and λ .

LEMMA 10.3. Keep the above notation.

(i) For $x = [x_{r,s}] \in M(B, G)$ consider the following conditions:

(a) x belongs to the center of M(B, G);

(b) x commutes with $\pi(B)\lambda(G)$ elementwise;

(c) $x_{tr,ts} = x_{r,s}$ for all r, s, $t \in G$ and $ax_{r,s} = x_{r,s}\beta_{s^{-1}r}(a)$ for all r, $s \in G$ and $a \in B$;

(d) $x_{r,e} \in B^{G(r)}$ for all $r \in G$ and $ax_{r,e} = x_{r,e}\beta_r(a)$ for all $r \in G$ and $a \in B$. Then we have (a) \Leftrightarrow (b) \Leftrightarrow (c) \Rightarrow (d).

(ii) If β_t is $B^{G(t)}$ -subfreely acting on B for each $t \in G \setminus \{e\}$ and G acts ergodically on the center of B, then M(B, G) is a monotone complete AW^* -factor.

(iii) If there is a $t \in G \setminus \{e\}$ such that the conjugacy class of t is finite and β_t is not $B^{G(t)}$ -subfreely acting on B, then M(B, G) is not an AW^* -factor.

PROOF. (i) We omit the proof of $(a) \Leftrightarrow (b) \Leftrightarrow (c)$, since the corresponding proof for the W^* -crossed product works also in this situation.

(c) \Rightarrow (d). Note that $\beta_t(x_{r,e}) = x_{rt^{-1},t^{-1}} = x_{trt^{-1},e} = x_{r,e}$ for all $t \in G(r)$.

(ii) If $x \in M(B, G)$ is central, then (d) shows that $x_{r,e} = 0$ for all $r \in G \setminus \{e\}$ and $x_{e,e}$ is a G-invariant central element of B. Thus x is a scalar multiple of the unit.

(iii) Let $\{s_j t s_j^{-1} : 1 \leq j \leq n\}$ be the finite conjugacy class of t, where $s_j t s_j^{-1} \neq s_k t s_k^{-1}$ if $j \neq k$. By hypothesis there is a non-zero $b \in B^{G(t)}$ such

that $ab = b\beta_i(a)$ for all $a \in B$. Put $x = \sum_j \pi(\beta_{s_j}(b))\lambda(s_j t s_j^{-1})$. For each $r \in G$ and j we have $rs_j t(rs_j)^{-1} = s_k t s_k^{-1}$ for some k and $s_k^{-1} rs_j \in G(t)$, so that $\beta_{rs_j}(b) = \beta_{s_k}(b)$. Hence

$$egin{aligned} \lambda(r)x &= \sum_{j} \lambda(r) \pi(eta_{sj}(b)) \lambda(r^{-1}) \lambda(rs_j ts_j^{-1}) \ &= iggl[\sum_{j} \pi(eta_{rsj}(b)) \lambda(rs_j t(rs_j)^{-1})iggr] \lambda(r) = x \lambda(r) \end{aligned}$$

and for each $a \in \beta$,

$$egin{aligned} \pi(a)x &= \sum_{j} \pi(eta_{s_{j}}(eta_{s_{j}^{-1}}(a)b))\lambda(s_{j}ts_{j}^{-1}) \ &= \sum_{j} \pi(eta_{s_{j}}(beta_{t}\circeta_{s_{j}^{-1}}(a)))\lambda(s_{j}ts_{j}^{-1}) = x\pi(a) \;. \end{aligned}$$

Thus x is a nontrivial central element of M(B, G).

PROOF OF THEOREM 10.1. We prove only the statement for $\bar{\alpha}$ and \bar{A} , since the proof for $I(\alpha)$ and I(A) proceeds similarly. The *G*-primeness of *A* is equivalent to the *G*-primeness of \bar{A} , or to saying that *G* acts ergodically on the center of \bar{A} (see 6.5(ii)). The proper outerness of α_t is equivalent to that of $\bar{\alpha}_t$ (see 7.5), which implies that $\bar{\alpha}_t$ is $\bar{A}^{\alpha(t)}$ -subfreely acting on \bar{A} , since on a monotone complete C^* -algebra proper outerness is equivalent to being freely acting. Moreover by 3.6(i), $A \times_{\alpha\tau} G$ is prime if and only if $\bar{A} \times_{\alpha\tau} G$ is prime.

Hence, by replacing (A, G, α) by $(\overline{A}, G, \overline{\alpha})$ we may assume that A is monotone complete. Then $A \times_{\alpha r} G$ is identified with the C*-subalgebra of M(A, G) generated by $\pi(A)\lambda(G)$ and Lemma 10.3(ii) shows that if A is G-prime and α_t is $A^{\sigma(t)}$ -subfreely acting on A for each $t \in G \setminus \{e\}$, then M(A, G) is a monotone complete AW^* -factor. If $A \times_{\alpha r} G$ is not prime, then there is a nontrivial regular ideal J of $A \times_{\alpha r} G$ and m-cl J =p(m-cl $A \times_{\alpha r} G)$ for some nontrivial central projection p of M(A, G) by 10.2 and 10.3(i), a contradiction.

Clearly the primeness of $A \times_{\alpha r} G$ implies the G-primeness of A whether G is finite or not. If G is finite, then $A \times_{\alpha r} G = M(A, G)$ and the second assertion follows from 10.3(iii).

References

- C. ANANTHARAMAN-DELAROCHE, Action moyennable d'un groupe localement compact sur une algèbre de von Neumann, Math. Scand. 45 (1979), 289-304.
- [2] S. K. BERBERIAN, Baer *-rings (Die Grundlehren der Mathematischen Wissenschaften 195), Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- [3] H.J. BORCHERS, Characterization of inner *-automorphisms of W*-algebras, Publ. Res. Inst. Math. Sci. 10 (1974), 11-49.

- [4] H. CHODA AND Y. WATATANI, Subfreely acting automorphisms of operator algebras, Math. Japon. 26 (1981), 223-232.
- [5] M.-D. CHOI, A Schwarz inequality for positive linear maps on C*-algebras, Illinois J. Math. 18 (1974), 565-574.
- [6] M.-D. CHOI AND E. G. EFFROS, Injectivity and operator spaces, J. Funct. Anal. 24 (1977), 156-209.
- [7] A. CONNES, Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Norm. Sup. 8 (1975), 383-420.
- [8] J. DIXMIER, Sur certains espaces considérés par M. H. Stone, Summa Bras. Math. 2 (1951), 151-181.
- [9] G.A. ELLIOTT, Some simple C*-algebras constructed as crossed products with discrete outer automorphism groups, Publ. Res. Inst. Math. Sci. 16 (1980), 299-311.
- [10] M. HAMANA, Injective envelopes of C*-algebras, J. Math. Soc. Japan 31 (1979), 181-197.
- [11] M. HAMANA, Injective envelopes of operator systems, Publ. Res. Inst. Math. Sci. 15 (1979), 773-785.
- [12] M. HAMANA, Regular embeddings of C*-algebras in monotone complete C*-algebras, J. Math. Soc. Japan 33 (1981), 159-183.
- [13] M. HAMANA, Tensor products for monotone complete C*-algebras, I, Japan. J. Math. (N.S.) 8 (1982), 259-283.
- [14] M. HAMANA, Tensor products for monotone complete C*-algebras, II, Japan. J. Math. (N.S.) 8 (1982), 285-295.
- [15] M. HAMANA, The centre of the regular monotone completion of a C*-algebra, J. London Math. Soc. (2) 26 (1982), 522-530.
- [16] M. HAMANA, T. OKAYASU AND K. SAITÔ, Extensions of derivations and automorphisms from C*-algebras to their injective envelopes, Tôhoku Math. J. 34 (1982), 277-287.
- [17] R. V. KADISON AND G. K. PEDERSEN, Equivalence in operator algebras, Math. Scand. 27 (1970), 205-222.
- [18] R. R. KALLMAN, A generalization of free action, Duke Math. J. 36 (1969), 781-789.
- [19] I. KAPLANSKY, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-858.
- [20] A. KISHIMOTO, Outer automorphisms and reduced crossed products of simple C*-algebras, Comm. Math. Phys. 81 (1981), 429-435.
- [21] A. KISHIMOTO, Freely acting automorphisms of C*-algebras, Yokohama Math. J. 30 (1982), 39-47.
- [22] A. KISHIMOTO, On automorphisms of C^* -algebras (in Japanese), The 20th Functional Analysis Symposium of the Math. Soc. Japan, July, 1982.
- [23] H.E. LACEY, The isometric theory of classical Banach spaces (Die Grundlehren der Mathematischen Wissenschaften 208), Springer-Verlag, Berlin-Heidelberg-New York, 1974.
- [24] D. OLESEN, Inner automorphisms of simple C*-algebras, Comm. Math. Phys. 44 (1975), 175-190.
- [25] D. OLESEN AND G. K. PEDERSEN, Applications of the Connes spectrum to C*-dynamical systems, J. Funct. Anal. 30 (1978), 179-197.
- [26] D. OLESEN AND G. K. PEDERSEN, Applications of the Connes spectrum to C*-dynamical systems, III, J. Funct. Anal. 45 (1982), 357-390.
- [27] G. K. PEDERSEN, C*-algebras and their automorphism groups (London Mathematical Society Monographs 14), Academic Press, London, 1979.
- [28] K. SAITÔ AND J. D. M. WRIGHT, Outer automorphisms of regular completions, J. London Math. Soc. (2) 27 (1983), 150-156.
- [29] K. SAITÔ AND J. D. M. WRIGHT, Outer automorphisms of injective C*-algebras, Math. Scand. 54 (1984), 40-50.

- [30] S. SAKAI, Automorphisms and tensor products of operator algebras, Amer. J. Math. 97 (1975), 889-896.
- [31] S. WASSERMANN, Tensor products of *-automorphisms of C*-algebras, Bull. London Math. Soc. 7 (1975), 65-70.
- [32] J. D. M. WRIGHT, On semifinite AW*-algebras, Math. Proc. Camb. Phil. Soc. 79 (1975), 443-445.
- [33] J. D. M. WRIGHT, Regular σ -completions of C*-algebras, J. London Math. Soc. (2) 12 (1976), 299-309.
- [34] J. D. M. WRIGHT, Wild AW*-algebras and Kaplansky-Rickart algebras, J. Londan Math. Soc. (2) 13 (1976), 83-89.
- [35] G. ZELLER-MEIER, Produits croisés d'une C*-algèbre par un groupe d'automorphismes, J. Math. Pures Appl. 47 (1968), 101-239.

DEPARTMENT OF MATHEMATICS FACULTY OF EDUCATION TOYAMA UNIVERSITY TOYAMA, 930 JAPAN