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The notion of a manifold of Class L was introduced by Kato [6]. A
manifold of Class L is a complex 3-fold into which there exists an open
embedding of a certain domain of P®. The most significant property of
Class L is that we can connect any two Class L manifolds complex analy-
tically to obtain another Class L manifold.

We define a complex 3-fold M = M(1) as follows. Let [{: & &,: &5] be
the system of homogeneous coordinates of P®. Put

L=&=0=01l.={=5=0}.

We denote P — 1, — I, by W. Let g be a holomorphic automorphism of
W sending [{: &t &t &) to [&o: &t als. al;), where a is a complex number
with 0 < |a| < 1. We define M to be the quotient space of W by (g,
where {(g> indicates the infinite cyclic group generated by g. Then M is
shown to be a compact manifold of Class L. So we can construct M(2),
a new compact manifold of Class L by connecting two copies of M. We
construct M(n), n € N, inductively with »n copies of M.

The main purpose of this paper is to determine all the small defor-
mations of M(n) for all n € N. The result for M is that any small defor-
mation of M is biholomorphic to W/{g,> where g, is a holomorphic
automorphism of W defined by ¢,([Co: € & &) = [& + ¢80 6.8 + A + )0
(a + )G + tls tl, + (a + t)C], where ¢, (1 =1, -+, 7) are complex num-
bers with |¢,| small enough (Theorem 1). The result for M(n), n = 2, is
more complicated than that for M. The complete and effectively parame-
trized complex analytic family of the small deformations of M(n) has
157 — 12 parameters. The details are stated in Theorems 2 and 3.

This paper consists of three sections.

In §1, we give some definitions, for instance, the definitions of Class
L, that of M(n).

In §2, we investigate small deformations of M.

In §3, we study small deformations of M(n), n = 2.

We have the following conjecture;
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CONJECTURE. Let X, and X, be compact manifolds of Class L. Let
X, ¢ X, denote any manifold we obtain by connecting X, and X, complex
analytically. Then we have

dim H¥X, # X,, ©) = dim H*¥X,, 0) + dim H¥X,, ©) .

The author wrote this statement as Proposition in [10] but the proof
contained a gap. The conjecture is ture if X, is M(n), X, is M, and
X 2X,is M(n + 1) for any » = 1.

The author wishes to express his gratitude to Professor Masahide
Kato for his competent aid.

§1. Definitions.

1. The definition of Class L. For any positive real number r, we
define a domain U, in P® as

U, = {[G: & G Gl e P25 G + [G]° < r(IGf + G}

DEFINITION 1.1 ([6, p.1, Definition 1.1]). Let X be a complex manifold
of dimension 3. X is said to be of Class L if X contains a domain biholo-
morphic to U, in other words, if there exists a holomorphic open embedding
of U, into X.

To define the connecting operation of two Class L manifolds, we need
a holomorphic automorphism ¢ of P® defined by

o[ € i &) =[G i G C]
For any real number ¢ greater than 1, we define a domain N(¢) in P® by
Ne)=U, =T,
where — indicates the closure. Then the following is clear.

LEMMA 1.2. (i) For any positive real number r, U, is biholomorphic
to U,.
(ii) a(N(e)) = N(e).

Let X be a manifold of Class L. Then from Definition 1.1 and Lemma
1.2 there exists a holomorphic open embedding of U, into X.

DEFINITION 1.3 ([6, p. 8]). Let X, and X, be manifolds of Class L and
.U —-X,v=1,2

be holomorphic open embeddings. Writing X, — ¢,(U,.) as X} v =1, 2),
we define a complex manifold Z(X,, X, i, %,) = X}UX} by identifying a
point z, € 7,(N(e))Cc X} with the point 4,000 (x,) € X¥.
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REMARK 1. The complex structure of Z(X,, X, ., 7,) depends on the
open embeddings 4, and 7,. We shall see this fact later in §3.2.

REMARK 2. If X, and X, are compact, then X, # X, is also compact.
LEMMA 1.4. N(e) is of Class L.

PrROOF. For a real number )\, we define a holomorphic open embedding
7z of U, into P® by

T([Gor Gt G Go) = [Go 4+ NGar &+ NGt nG — G nG — G
Since £, # 0 or ¢, # 0 in U., we have
U = Un{+0HhuU.n{ =0} .
Taking a system of local coordinates
(@0, Yor 20) = (CufCoy CofCor Co/C0) In U.NA{E, # 0}
and
(@, Yo 21) = (G/E,, CofC Go/C) in U.N{E # 0},
we let
V,={(@®; ¥5 2) € U.N{C, = 0}; 2| <2} for 2=0,1.
Then it is clear that {V,, V} is also an open covering of U,. Since |z,| <
2 (+=0,1), we have
(Y — I+ 20 — @/N ) < [N+ 4o* + |@/N + 2
<e(|%o — IUNI + |20 — 2o/N[D)
Iy — NP+ 2o — INPDfe < lm/h + 6l + [ + 2,
<e(lyy — @M+ |2 — 1N])
when we take ) large enough. Thus we get (U, C N(e). O

LEMMA 1.5. X, # X, s of Class L.

Proor. X, # X, contains a domain biholomorphic to N(¢) which is
of Class L. Hence X, # X, is of Class L. O

2. Definition of the manifolds M(n). Here we are going to define
compact complex manifolds M(n) of which we shall study the small defor-
mations later. We have already defined [, l., W and g in Introduction.
Then we have:

PROPOSITION 1.6. <{g) acts on W properly discontinuously without
fixed points.
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ProOOF. It is easy to see that {(g) acts on W without fixed points. We
show that (g) acts properly discontinuouly on W. Let z be a real number
larger than 1 and v a natural number such that |a|* < 1/¢. Then for
any integer n with n = v, we have

g (NN Np) = @ .

Since any compact subsets K, and K, of W are contained in N(y) for a
suitable real number ¢ and since we can take a natural number v for p
so that the above equality holds, we have

${neZ; g(K)NK, #+ @} < 2v. 0
DErFINITION 1.7. Let W and {g) be as above. We define a complex
manifold M = M(1) as the quotient space of W by {g), i.e.
M= W[Kg) .
REMARK 1. M is compact because M is the image of compact N(y)
for p sufficiently large.

REMARK 2. M is diffeomorphic to S'x S?*x S® where S is the standard
m-sphere.

Taking real numbers B, v, § such that |a| < 8 < v <6 <1, we define
domains U, Uy, U, in W as follows:
U ={LeW |a|l(t!+ 161 <IGP+ 161 <o(&l” + &M},
Uy = e W; 7(IGI + |G <GP + &I < (&P + 16D
Uo = {Le W; (&I + G0 <IGE+ G < BULE + &G/ al} .
By the definition of U,, Uy, and U., we have
oUnNnU. =0, gU,NU.= Q.
This shows that M is a manifold we obtain by identifying {egU,N U,
with ¢7({) e U,Nng™*U.. in U,U Uy U U..
PRrOPOSITION 1.8. M 1is of Class L.
PrROOF. Let 7w be the natural projection of W to M. Since M con-

tains a domain 7(U,) which is biholomorphie to U, = N(1/7), the proposi-
tion is clear. O

We construct M(n) with n copies of M. We denote by M’ the j-th
copy of M. By Lemma 1.4 and Proposition 1.8, we have a holomorphic
open embedding ¢=zo7 of U, into M, where 7 is a map defined in the proof
of Lemma 1.4. We denote by ¢/ the holomorphic open embedding ¢ of U,
into M?. We define M(2) by Z(M*, M? ¢, ¢). We define Class L manifolds
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M(n) for n = 3 inductively. Suppose that M(n) is defined to be Z(M(n — 1),
M, ¢,_;, ¢*) with a holomorphic open embedding ¢,_, of U, into M(n — 1),
then we define

Mn + 1) = Z(M(n), M"*, ¢* |y ot, ) = Z(M(n), M**, ¢, |y o007, ")

where ¢*|y., (resp. ¢,_,|y.) is the restriction of ¢ (resp. ¢,_,) to N(e).

§2. Small deformations of .

1. Cohomology groups of M. Let W,, be a domain in W defined
by

Wa = (16 [* 4+ 1&) <[GI + [&F <7'(1&I1 + (&),

where 7 and 7’ are real number such that 7" > % > 0. Since the line
l,={{, = ¢ = 0} does not intersect W, we can cover W,, by the two
domains W,,-N{{, # 0} and W,,, N{{, =0} whose system of local coordinates
are

Xy = C1/Coy Yo = Cz/Co: % = Cs/Co in WW’ N {Co * 0}
and
X = Co/Cu Y, = Cz/Cu 2y = Ca/C1 in WW’ N {Cl +* O}

We remark that these two domains are Reinhardt domains on which
every holomorphic function can be expanded as a unique Laurent series
with respect to the system of local coordinates (x,, ¥, 2,), 7 = 0, 1. More-
over the two domains intersect hyperplanes {x, = 0}, {y, = 0}, {z, = 0} and
{x, = 0}, {y, = 0}, {#, = 0} respectively, so every holomorphic function on
each of the two domains admits a unique Taylor series expansion.

LEMMA 2.1. Let O be the tangent sheaf. Amn element of H'(Wy,, 6)
(resp. H(W, 0), resp. H°(P?, 0)) is expressed on Wy N{{, # 0} (resp. Wn
{€, # 0}, resp. P*N{L, # 0}) as follows:

(@, + by + ey + diz, + exd + fay, + 92,2,)0/0%,
+ (@ + bty + CYo + dozy + exY + FYS + 9Y020)0/0Y,
+ (ag + bty + csYy + dg2y + exy2, + SYozo + 923)0/02, ,
where a,, b, ¢, d;, e, f, g are complex numbers for i =1,2,3. Conversely,
a vector field on Wy N{C # 0} (resp. WN{¢, # 0}, resp. P°N{¢, += 0}) of
the above type is extended to an element of H'(W,,, ©) (resp. H (W, ©),
resp. H'(P3, ©))

ProOF. From the above remark, an element 6§ of H°(W,,, ©) is ex-
pressed in W, N{{; # 0} as
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0= Zzg?m,xéy?zz‘a/ﬂwi + Zzobfmwiyr‘zz‘a/ayi + Zgodmwiyrz:‘a/azi
,m,n_ ym,nz ,m,n

where al,., binn Cin. are complex numbers for 7 =0,1. Since the two
expressions above must coincide in W, N{{, # 0, {, # 0}, we have the
lemma for W,,, by the uniqueness of the Laurent expansion. The calcula-
tions for W and P° are completely the same as those for W,,. The
converse is clear. O

PROPOSITION 2.2. Amn element of H(M, @) is identified with an ele-
ment of H(WN{L, # 0}, ®) of the form

(@, + by, + Cx%)a/axo + (asy + bz, + cxoyo>a/ayo
+ (asy, + bsz, + €%42,)0/02,, @y b, c€C (1=1,2,3).
In particular, dim H'(M, ©) = T7.

ProOOF. It is easy to see that an element of H°(M, ©) is identified
with an element of H°(W, @) which is invariant under the action of {g),
i.e., with 8 € H'(W, ©) such that

(M) spbp = Oynipy for any meZ and any pe W.
Assume that 4 is the one mentioned in Lemma 2.1. Then
940 |Wﬂ(co¢0)

= <a1 + b, + —1—61% + lollzo + ex§ + lfovoyo + Lgocozo)i
a « a a 0%,

+ (az + by, + 'l—czyo + ldzzo + exy, + ‘lif Y + lzgyozo>a—a—
a a a «a oY

0

+ <as + b, + —l‘cayo + ldszo + exyz, + —1‘2f YoRo + ']—-ég%)a'a— .
a a a Qa 0%,

From the above equation it is obvious that the condition (9%)4,0, = Oynn
is equivalent to

eco=di=a,=b=a,=b=f=9g=0. O
PROPOSITION 2.3. H*M, 6) = 0.
Proor. By the Kodaira-Serre duality, we have
H¥M, 6) = H' (M, 2' R 2)

where 27 is the sheaf of germs of holomorphic p-forms. By [6, p. 7,
Proposition 2.3]: we have

HY(X, (2°™ @ (2)°™ ® (2°)®™) = 0

for a Class L manifold X if m,, m,, m,; are non-negative integers such that
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m, + m, + my; > 0. We conclude that H*(M, @) = 0. O
ProposiTION 2.4. H*M, ) = 0.
Again by the Kodaira-Serre duality,
H*M, 0) = H'(M, 2* Q 2°) .
We shall show here that H'(M, ' ® 2°) = 0. For that purpose, we first

have:

PROPOSITION 2.5. M 1is a holomorphic fibre bundle over P'X P with
elliptic curves as fibres.

PROOF. Let #: W— P'x P! be the holomorphic map sending [{,: {.: &,: ]
to ([&: &, [&:&)D. Then it is easy to see that (W, P'x P!, p) becomes a
holomorphic fibre bundle with C* = C — {0} as the fibres. Since p(g()) =
P(&) for any e W, p induces a map p: M — P'x P'. The action of {g)
on W induces the action of (&) on C*, the fibre of (W, P'x P', 7). This
means that the fibre of (M, P'x P!, p) is C*/{a), which is an elliptic
curve. O

From now on, we write S instead of P'x P* for simplicity and some-
times write 2%, 2% and so on to avoid confusion. Now we begin to
calculate H'(M, 2% ® 2%). By the Leray spectral sequence, we have

0— Ey—> H(WM, Q% R 2%) — E*—0
where E¢" = HY(S, R"p,(2% ® 2%)) and EY! = Ker(EY* — E*)c E**. Hence
we have an exact sequence
0— EY— H'(M, 2% ® %) — Eyt.
We need now to calculate E3° and E?'.

LEMMA 2.6.

2,1=0,1
i — 8 ’ b
Bpu=1"159.

Proor. (i) ¢=0.
(B'D+Cx) ay = H(07'(@, ¥), Ou) for any (x,y)eS.
Since p~'(z, ¥) is an elliptic curve, which is compact, we see (R'DyTy) w4 =
s wy+ From this we get R'p, 0y = .
(ii) 4=1. R'q.Zy is a line bundle because
dim H(p7'(z, ¥), ) = dim H(C*/{ay, 2) = 1

for any (¢, ¥) €S [1, p. 1561, Theoreme 4.12. (ii)]. From the cohomology
exact sequence
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0 = HXS, @s) — HYS, &%) — H'(S, Z) ,

it is sufficient to prove that the restriction of R'p,.”y to {0}xP' and
P'x {0} are trivial because R'p, is a line bundle and because {0}x P*
and P'x {0} generate H*S, Z). This follows from the fact that p~*({0} x P")
and p '(P'x{0}) are elliptic bundles with vanishing Chern numbers, by
Kodaira [9, p. 772, Theorem 12].

(iii) ¢ = 2. It is clear because the fibre is 1-dimensional. O

LEMMA 2.7.

L @ni=01,
Rip,(p.2%) = 0, i=2.

PrOOF. Since &, satisfies the condition (b) of [1, p. 149, Theoreme
4.10], we get

Rip(p*2%) = R'p.(p* 25 Q Ou) = 25 Q R'ps Ty .
The lemma follows from Lemma 2.6. O
LEMMA 2.8. We have an exact sequence
0" -y —> Oy —0.

Proor. In the following, we denote by & the fibre coordinate, induced
by the coordinate of C*. An element on the stalk of P*Q* at (x, ¥, &) has
the form

g (fide + 0:dy) @ by £or fy §1€ s oy 72 € Pt rogts -

Let @yt 2*2% ey — 2%, 0y De the module homomorphism sending
Sy (fide + g.dy) @by to X1, (fide + g:hidy) and B 60 D5, ewe —
Cx. v be the module homomorphism sending fdx + gdy + hdé/é to h,
where f, g and h are elements of @y ,,.. It is easy to see that a,,,,
and B, are defined independently of the choice of the local coordinates.
It is obvious that there exist sheaf homomorphisms a: p*Q% — 2% (resp.
B: Q% — Oy) whose restrictions to the stalk on (x, y, &) are «a,,. (resp.
Buwyea) Thus we have the exact sequence

0 p 2y S LB oy 0. O

LEMMA 2.9. We have an exact sequence
0—-02y— Rp, 2% > Ts—0.

ProOOF. Since (R'py2%),4, the stalk of R'p, 2 at (x, ), is isomorphic
to H'(p~'(x, ¥), 2i),
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é.(x, Y)dx + ¢,(x, Y)Y + J4(xx, Y)dE/E;
¢i(x7 y) € ﬁs,(m,y) (i = 1: 27 3) '

Let al,,): 250, — (B'Dx2%) .., be the map sending ¢,(z, y)dx + ¢u(x, ¥)dy
to ¢1(xr y)dx + ¢2(x’ y)dy and B’(z,v): (Rop*gfﬂ)(z,v) - ﬁs.(zm) be the map Sending
o.(x, Ydx + ¢, Ydy + ¢s(x, ¥)de/e to ¢i(x, y). It is easily checked that
Ay and B, ,, are well-defined. It is clear that there exist sheaf homo-
momorphisms «a': 2% — R*p,2% and g8': R'p,2% — & such that the restrie-
tion to the stalk at (z, ¥) of each homomorphism coincides with ai,,,
B,y respectively. Thus we have the exact sequence

(B'ps Qi) o, =

o 4
0— 2% — Rp, 2% - 0s—0. |
LeMMA 2.10. We have an exact sequence
0—-Qs— Rp 2% — Ts—0.
PrROOF. By Lemma 2.6 and Lemma 2.7, the long exact sequence
arising from the short exact sequence in Lemma 2.8 reduces to
0— Q5 — R'py2y — T
— Q% — R'p, 2y — Ts—0.
By Lemma 2.9, the lemma follows. O
LeMmA 2.11. p*Q% = 23%.
PrROOF. 2% ..., the stalk of 25 at (x, ¥, &), consists of elements
¢@, 9, E)dw N\ dy N dgle for ¢(@, Y, §) € Tu s -
On the other hand,

P*A =07 R Oy

pTlog

by definition, so p*Q%, ., consists of the elements

2 i@, vz A dy ® i@, v, §)

with 4 (®, ¥) € Ts w0 [3®& Yy &) € Ouyia,y.0-  There exists a sheaf homo-

morphism a” (resp. B"') of 2% (resp. p*Q%) to p*Q2% (resp. Q%) which sends

¢, ¥, &)dx A dy A defe (resp. 0 v, )dzAdy ® fr(w, ¥, £) to dx A

dy Q@ ¢(x, ¥, &) (resp. 5, yu(x, Yfi(@, ¥, Hdx A dy A dg/¢) on the stalk at

(@, ¥, £). Then it is easy to see a”oB" = id,ug, B"ca” = idgs. O
LEMMA 2.12. R'p, 2% Q 2% = R'p, (2% ® 2%), v =0, 1.

Proor. By Lemma 2.11,
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R'p. (2 ® 24) = R'p, (2% ® p*2%) .
Since £2% has the property (b) of [1, p. 149, Theoreme 4.10],
Rip (2 @ p*2%) = R'p. 25 @ 25 . U
LEMMA 2.13. H'(S, R'p, (2% @ 2%)) = 0.

PROOF. Tensoring 2% with the exact sequence of Lemma 2.9, we
have an exact sequence

0-2R% > Rp 2 Q%> T Q2 —0
because 2% is locally free. By Lemma 2.12, the above sequence changes
into an exact sequence

0— 25 ® 2% — R'p (2 ® 2) »> 25—-0.
From this exact sequence, we get a cohomology exact sequence
- — H'(S, 25 ® 2%) — H'(S, R'p«(2i @ 25))
— H'(S, Q%) — - .
The lemma follows since H(S, 2% ® 2% = HS, 2%) = 0. O
LemMMA 2.14. H(S, R'p,(2% ® 25%)) = 0.

PrRoOFr. Tensoring £%, which is locally free, with the exact sequence
of Lemma 2.10 and applying Lemma 2.12, we get an exact sequence

025 ® 2% — Rp, (25 @ 2%) — 25—-0.
This gives a cohomology exact sequence
0— H(S, 25 ® 2%) — H(S, B'p(2i & 23))
— H(S, 2%) — -+ .

Since H(S, 2% ® 23%) = H'(S, 2%) = 0, we have H'(S, R'p,(2% & 2%)) = 0.
O

By Lemma 2.18 and Lemma 2.14, Proposition 2.4 is clear.
ProrosiTION 2.15. dim H'(M, 0) = 1T.

By the Riemann-Roch theorem, we have

2( 1y dim H*(M, 6) = L6, — P, + —1—01 _
2 24
From the results we have already got, we get
1 19 1

dim H*(M, 0) =7 — -2—03 + 24<:lc2 -2—ci‘ .
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Now we shall calculate the relevant Chern numbers of M.
LEMMA 2.16. ¢; = 0.
PROOF. Since M is diffeomorphic to S*x S*x S° this is clear. O
LEmMMA 2.17. ¢, = 0.
PrROOF. By the Riemann-Roch theorem,
66, = 2433 (=1 dim H'(M, 2) .
Since M is compact, dim H°(M, <) = 1. To calculate dim H'(M, &), we
use the Leray spectral sequence and get
0—-Ey— HWM, &) — Ey*—0,
where
Eii = HYS, Rip,2), E3* = Ker(Ey' — E}°) .
By Lemma 2.6,
Ey' = H'S, R'p,@) = H'(S, 75) =0 .
Hence
Eyt = EY* = H(S, &%) .
On the other hand,
E}y° = HS, R'p,&y) = H(S, &) = 0.
Therefore
dim H'(M, ) = dim H(S, 75) = 1.

As for H*(M, ©), again by the Leray spectral sequence, H*(M, ) has
a filtration with succesive quotients E%°, E¥* and E%2. We have E% = 0
because the fibres of p are of dimension 1. Next we have Ei' =0
because

E}' = Ker(EY* — EY)CEy = HY(S, Rp,2) = HY(S, 7)) = 0.
We also have E%° = 0 since
7 = HXS, R'p, @) = H¥S, Ts) =0.
Therefore H*(M, <) = 0. Furthermore H*(M, 7)) = H'(M, 2*) = 0. |
LeEMMA 2.18. ¢} =0.
PrROOF. It is clear because M is diffeomorphic to S'x S2x S2. O

By the above three lemmas, we have Proposition 2.15.



110 A. YAMADA

2. Small deformations of M. Put
W=P3_l0_loo,
B={t=(=y,t, -+, t)eC;|t,] <d,1=1,2, e, T}

where ¢ is a sufficiently small positive real number. For te B, we define
a holomorphic automorphism g, of W by

9:([C0: €2 &2 Ga])
= [Co + .8 .G + (1 + )l (o + t4)C2 + tyGst tels + (¢ + t'/)Cz] .
In particular, g, = g.
Let § be a holomorphic automorphism of Wx B defined by
g@& t) = (.0, t)

and @ the projection of Wx B to the second factor. Obviously we have
wo§ = @, hence we have the induced map _# = (Wx B)/{§> — B which
we also denote by @

THEOREM 1. (_#, B, @) is the complex analytic family which is
complete and effectively parametrized at the origin. A complex manifold
N is a small deformation of M if and only if N 1is biholomorphic to
W/{g,> for some t e B.

PROOF. (_#, B, w) is easily seen to be a complex analytic family.
Let 1 ={U, Uy, U.} be the open covering of M defined in §1.2. We
define 6(0/ot,) e Z*(1, ®) for 1 =1,2, ---, 7 as follows:

(at )mew) = 0(; )(me U.)=0,

(5

(UﬂUm)——xo(xoa + oyl +zoa>

) 0%, Y, 0%,
o(2-)tn Um>=aixo, <at3>(U”U°°)‘”°aio’
0<£s4 (U"mU""):%ai%’ <at5>(UnU°° :E'aa—o
(att,)(UﬂUw)— & ai,,’ ( >(UOUm “Eaizo’

with respect to the system of local coordinates (x,, ¥, 2,) = (£/C &o/Co, Co/Co)-
Here 6(0/0t,)(U,N Uy) means the value of 6(6/0¢t;) on UyN Uy. Then it is
easy to see that [0(9/ot)] (1 =1,2, ---,7) are linearly independent in
H'(U, ©), where [6(d/ot;)] denotes the cohomology class represented by
0(a/ot;). Indeed, suppose >, a;[0(3/ot,)] = 0 for complex numbers «a,.
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This is equivalent to the existence of an element ve H(U,U U, U U., )
such that

i=1

7
> a10<a—i->(Uoﬂ U.) = ’U]Uomro° - 9*'0|Uom7m .
1

Writing this equation explicitly, we have

0 0 0 0 0
* °< °6x° Y 0Y, z°az0> % 0, ally 0%,
1 0 0 0 0
+ =4 aYy,— + 20— + QY— + 20—
o { Yo . (2674 7, sYo % (2402 92 }

= (1 — l/a)(ey, + diz, + fey, + gxozo)‘é?v—

0

+ {1 — a)a; + bwy) + A1 — 1/a)(fy, + gyozo)}%

0

+ {1 — a)as + byxy) + (1 — 1/a)(fyo2, + gzo)}—a% .

Then we have a; =0 for 1 =1,2, --.,7. This shows the linear indepen-
dence of [0(9/ot)] (1 =1,2, --+, 7). Lastly it is easy to see that p,(:) =
#([6(-)]), where ¢ is the inclusion map of H'(, &) to H'(M, ©) and p, is
the Kodaira-Spencer map. The above result shows that p, is bijective
because H'(M, ©) is 7-dimensional. |

§3. Small deformations of M(n)(n = 2).

1. Cohomology groups of M(n).
PROPOSITION 3.1. H3(M, ©) = 0.
Proor. By the Kodaira-Serre duality,
HM(n), ) = H'(M(n), 2' Q 2°) .
But by [7, p. 7, Proposition 2.3]
H(X, (218%™ @ (29" @ (2°)®™) = 0
for any Class L manifold X and for non-negative integers m,, m,, m, such
that m, + m, + m; > 0. |
PROPOSITION 3.2. dim H°(M(n), ) = 3(n = 2).

Proor. We first prove the assertion for n = 2. We have defined
M@2) by Z(M', M* ¢, ). We denote by ¢ the inverse mapping of ¢ con-
sidered as a mapping of N(e) to ¢«(N(e))Cn(Uy)CM. Then s = fogo()™
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of ¢/(N(e))CM* to (N(e))C M* is expressed in terms of the local coordinates
induced by the homogeneous coordinates in P® as

s([Co: Cx: Cz: Cs]) = [ﬂCo + ”sz /4‘61 + ”cs: - (”Co + #Cz): - (”Cl + #Ca)] s

where £t =1+ 2\, vy =1 — A% In the above, 7 and ¢ are mappings defined
at the end of §1. By the Mayer-Vietoris exact sequence of cohomology
groups with coefficient in @, we see that an element of H°(M(2), ) is
identified with an element »e H((M')% ©) such that s,(v|iwe,) is the
restriction of an element v’ of H°((M®*% 0©) to A(N(e)), i.e., v |ewe, =
8V |awey). On &(N(E) N, # 0}), v has the form

(@, + ax, + dxo)—ai— + (.Y + b2 + dxoyo)ga— + (eY + €2, + dxozo)b‘%'

0 0 0

because H°((M")}, ©) = H(M*, @). So does v' on the similar domain. In
the following, we denote the coordinates and coefficients concerned with
M?* by letters with primes, for instance, {’, a’. Calculating 4\*{s,(v |1y e)) —
v | 2w} In terms of the local coordinates x,, ¥, 2, and 2, ¥, 2, We have

{(tfa, — Ve, — d\ay) + (tfa, — Yie, + Vb, — d\az)x; + pv(a, — ¢)¥,
+ pv(a, — )z + Vb, + pi2d — AN )x + pvbacy, + p(b,
+ d)xizo}o/oxy + {pwb, + pv(b, + d)xy + (¢ + vH)b, — A1)y,
+ (b, + v'd — A\b)zo + (v, + fd — AN )woys + pwbye
+ (b, + d)yeze}o/6ys + {pw(e; — a,) + e, — a)a, + (e,
— via, — ANy, + (e, — via, + v*b, — dNe)zo + (Vb + p°d
— Ad)xz, + pbyeze + p(b, + d)203}0/07, .

Thus the equation s,(v|awe,) = v |ewe, 18 equivalent to the relations
among coefficients

G=0=C=C, G=0q=0C=C0C,
by=bi=0, b=b=—-d=—d.

This concludes dim H°(M(2), ) = 3.

We now prove the assertion for n» = 3. It is easy to check that an
element, v = (a + bx, + cx2)o/ox, + (—cz, + cxY,)0/0Y, + (ay, + bz, +
C%,2,)0/02,, of H°(N(e), ®) is o.-invariant and r.-invariant, i.e., g, v = v
and 7,v = v. Since M(3) = Z(M(2), M?, |y °7, ¢) and ¢ = wor, the above
facts imply that every element of H°(M(2)}, ©) has the extension to M(3)
and to M(n) for any n = 4. O

ProposITION 3.3. dim H(M(n), ®) = 15n — 12.
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We first note that the embedding ¢ of U,.CP® into M is naturally
extended to an automorphism z of P® when we consider M as a manifold
obtained by identification of { € U,Ng~*(U,) with ¢g({) eg(U,)N U, in U,U
U,UU.cP: Here U, U, U, have already been defined in §1. 2. We
denote U,U U, U U, by M(Q), Ung (U.) by NQ1),, and g(U,)N U, by N(1),.
P? — M(1) has two connected components: K(1), containing [, and K(1),
containing l.,. From now on, we denote g by g..

Assume that M(n), N(n),, K(n); 1 =1 < 2n), and ¢.,,1 <5 < n) are
defined for n so that M(n), N(n),, K(n); are subsets in P® and that each
dw; 1S a holomorphic automorphism of P° which induces an isomorphism
of N(n),;_, to N(n),; for any 1 < j < n. Assume also that M(n) is con-
structed by identification of (e N(n),;_, with g.,;({) e N(n),; 1 =5 =n)
in M(n) and that the embedding ¢,:U, — M(n) lifts to an open embedding
into M(n) and extends to an automorphism ¢, of P, We define M(n + 1)
by ;*(M(n)) — Uiz oot ((K(1),), and N(n + 1), (resp. K(n + 1),) by
(7Y (N(n),) (resp. ;' (K(n),) for 1 =1 =2n and by oot '(N(1),_,,) (resp.
0ot (K(1),_,,) for i =2n + 1,2n + 2. We also define g,.,; by ¢:'0g ;00
for 1 < 7 <n and by get 'og,ycto0 for j =n + 1. Then we can easily
see that every ¢..,,; is an automorphism of P® which induces an iso-
morphism of N(n + 1),;_, to N(n + 1),; and that we obtain M(n + 1) by

i
identifying (e N(n + 1),;_, with g4.,;({) e N(n + 1),; in M(n + 1) for
1=sj=sn+1.

LeMMA 3.4. If & e H\(M(n), 8) is the lifting of ve H*(M(n), 6), then
7=0.

~

ProOOF. Since ¥ is the lifting, it satisfies the conditions
ﬁiN(n)gj = (g(n)j)*'l7|1v(n)2j_1 , 1275 n.

Let |y, decompose into au; + by (1 =1 < n) where a, is the re-
striction of an element @.,; of H(K(n);UN(n), ©) and b, is the
restriction of F(n,ieH (P® — K(n),, ®). This decomposition is possible and
unique by the Mayer-Vietoris exact sequence for the pair (P® — K(n),,
K(n),U N(n);). Then the relations among @, and b, are as follows:

Cmzi = (GmD)sbmzict s Oz = (Gimi)xBmyzj-1 s

for 175 n.
Let L(n):= M(n) — U%, N(n),. Consider the commutative diagram of
cohomology groups with coefficients in 6:
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— H (M) — & B (N(n)) > Hyo (M) —

| —

2n 0
— 0 — iEI_BIH‘(N(n)iUK(n)i)—=L—>Hi<m(P”) —0—

The first row is the local cohomology exact sequence for the pair (M(n),
L(n)) and the second is that for the pair (P?, L(n)).
By the relations among @, and b,

0 = 0,(a(9)) = 5L<§ (@ + b(ﬂ)i)) = 31,(3@1 @ (ny2jo1 T 1@1 (g(mi)*b(n)za‘—l))

= ;.5151,(0/(1:)21'—1) + ;.Elal,«g(n)j)*b(mzj—l) .

By the commutativity of the diagram above, the last line of the above
equation is equal to

0(3( & Tunies) + 52 (B (@ )ebians)
= p°5L<<JG:31 Cmyzi—a T é (g(n)j)*b(n)2.1'—l>> .

Since 6, and p are isomorphisms, we have

iD=

n ~
A ny2j_1 T+ @ (g(n)j)*b(n)zj_1 =0.
j=

J

Since all the terms on the left are from the distinct components of
@, H(N(n),U K(n);), we have

T inyzics = (Gim)xOmzir = 0
for =1, .-+, n. This is equivalent to
By = b =0,7=1, ++,2n.

Hence we have a(v) = 0. The proof of the lemma is complete once we
show that « is injective, i.e., the following sequence is exact:

~ 2n i
0 — H(M(n)) — EPI H'(N(n);) > Him(M(n)) — 0.
First consider the commutative diagram

0 — H(Mn) —> & H(N(n)) —> Hiu(Mln) —> -

I T |

0— H'(P?) —> ZEZ:B1 H°(N(n),U K(n),) — Hiw(P?%—0.
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Both /r@vs are the local cohomology exact sequences in view of facts
H;.,(M(n)) = H),,(P?) =0 and H'(P®) = 0. We are done since any holo-
morphic vector field on Jl,/Ez/) (resp. N(n),) can be extended uniquely to
one on P? (resp. N(n),U K(n),). ' O

LEMMA 3.5. The restrictions of any element of H'(M(n), ©) to
tui(N(E)), ¢,(U), and ¢,(N(€)) are zero.

ProoF. Consider the following commutative diagram

B N
H'(M(n), 6) — H'(M(n), 6)

l l

H'(ta u(N(), 6) — H(eo (N(&)), 6) .

Since B is the zero map, we have the conclusion for ¢,_,(N(¢)). The other
two are obvious because ¢,(N(¢)) e, (U,)Ce,_(N(e)). O

LEMMA 3.6. The following sequence 1is exact:
0 — H(M(n), ©) — H'(M(n), ©) D H(.(U.), 0)
— H°(N(¢), @) — 0.

PROOF. As is already proved, H'(M(n), ©) is isomorphic to H*(M(n)}, 6)
by the restriction map, and so is H(¢,(U.), ®) to H(N(e), O). O

LeEMMA 3.7. H'(M(n), ©) is isomorphic to the subgroup H'(M(n), ©) in
HYM(n), ©) consisting of elements whose restrictions to ¢,(N(e)) are zero.

PrROOF. By the above lemma, we have an exact sequence:

0 — H'(M(n), 6) > H(M(n)', 6) @ H'(c,(U.), 6)
— H'(N(e), ©) .

By Lemma 3.5, the first factor of the image of an element of H'(M(n), )
is contained in H'(M(n), @)% and the second component of the image is
zero. So the restriction map of H'(M(n), ©) to H'(M(n)t, ©) induces a map
of HYM(n), ®) to H'(M(n), ©)}. The above exact sequence proves the
injectivity of the map.

The surjectivity is proved by chasing the sequence. A pair of an
element of H(M(n), ) and zero of H'(¢,(U.)) is mapped to zero in H*(N(g),
). By the exactness of the sequence, there exists an element of H'(M(n),
©) mapped to the pair. O

Proor oF PROPOSITION 3.3. We first claim that Im (H'(M(n), ©) —

H'(M(n — 1)}, ) H(M™, 0)) is isomorphic to H'(M(n — 1), 6) ® H'(M", 6).
The image is contained in H'M(n — 1), 0} @ H'(M", 6)* by Lemma 3.5.
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Conversely any pair in H'(M(n — 1), 0)* @ H'(M", ©)* is the image of an
element of H'(M(n), ©) because the image of the pair in H'(N(¢), 0) is zero.
Hence the image of H'M(n), ©) is equal to H(M(n — 1), ©)* H'(M", O)?
and isomorphic to H'M(n — 1), 0) @ H'(M", ©) by Lemma 3.7.

By the above claim, we have an exact sequence

0 — Coker (H(M(n — 1)}, ) @ H(M™, ©) — H'(N(e), 6)
— H'(M(n), ) - H(M(n — 1), ©) @ H(M", ©) — 0 .

If n = 2, the dimension of the cokernel is 4 because dim H(M(2), @) = 3,
dim H(M(1)%, ©) = 7, dim H°(N(g), ®) = 15. Therefore

dim H*(M(2)) = dim (H*(M") @ H'(M*) + 4 =14+ 4 =18,
which proves the assertion for n = 2. If n = 3, we see that the cokernel
is 8 dimensional, because dim H'(M(n), ®) = dim H*(M(n — 1)}, 0) = 3,
dim H*(M™, &) = 7, and dim H°(N(¢)) = 15. Then by induction on n, we
have
dim H'(M(n), ®) = dim (H'(M(n — 1), ©) D H'(M, 0)) + 8
=15(n —1)— 124+ 7+ 8 =15n — 12 O
ProPOSITION 3.8 H*M(n),®) =0 (n = 2)
Proor. By the Riemann-Roch theorem, we have

3 — 15n + 12 + dim H*(M(n), O)
- %cf[M(n)] - gclcz [M(0)] + éca[Mm)] :

Due to [6, p. 6, Proposition 2.2], we have
CI[X1 % Xz] = CI[X1] + CI[X2] - cl[Pa] .
for any Class L manifolds X, and X,, where ¢; is the Chern number. Hence
alM(n)] = nel[M] — (n — De[P°] = —(n — L)e:[ P?]
because ¢;[M] = 0. Therefore, with the well-known fact on the cohomology
groups of P® with coefficients in 6, we have
dim H*(M(n), ®) = 16m — 15 — (n — 1)>,(—1)* dim H(P?, O)
=15 —-15—-(n—-1)15—-0+0—-0)=0. O

2. Small deformations of M(2). Let 6 be a sufficiently small positive

real number and B(t') a domain in C* defined by
Bt ={t'= (@, t: ts, t)eCh |t <6 (1=1,2,8,4)},

Let U/ = {Uj, Uj, UL}, the j-the copy of 1, be the open covering of
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M? for je N. We define a holomorphic open embedding s,. of ¢(N(e))C
n(Uy)cM* into n(U%)cM*cC M? by
8e([Cor €t Gt o)
= [P‘Co + G, py, + vy (F‘t; - v)§ + P‘t;‘; + (vt — e,
+ ”t;Ca: ﬂts’xCo + ()at; - )¢ + Dt;C2 + (Vt; e ,U)Ca]

where # =1+ A and v =1 — ). In the above, the local coordinates on
w(Ui,) are taken as those of P® since n(Uj) is isomorphic to Ui. We
restrict s; to A(N(e)) Nsi'(¢*(N(e))) which we shall simply denote by s;.
Then s, becomes a holomorphic open embedding of (N(e)) N si'(¢A(N(g)))
into Uz. Note that s, = s = fogo(") .

Now we construct a complex manifold _#(2) as follows. First take
two copies of (# B, w), (#7, B, w?) for j=1,2. We write (z%, ¢;) a
pqint of _#7. Let n? be the natural projection of Wx B’ to A7 and
mi; be the restriction of 77 to Wx{t’}. From Theorem 1, M;; = (w?)7}(t7)
contains a domain 77;(Uj) biholomorphic to Uj, which contains ziz(U,.).
Put 7%= _#¢ — (c(U,)x B). We define _7Z(2)=_#%xB*xB(t)U
A¥x B'x B(t") by identifying

((xt, tY), 85, t) e T (c(N(e)) x BYX B*x B{t'YC _#"*x B*x B(t")
with
(2, T2, T, T) e T(T(N(e)) X B) X B*x Bt"YC _#"*x B*x B(t')
if and only if
w=s@), =1t =1t =1.
We define the projection w of _#Z(2) to B'x B*x B(t') by
m/: ((xl’ tl)’ tzi t’) }_—) (tl, t2’ t’)
and
w: (@ ), th t)— (t, t t) .
Then it is clear that (_#Z(2), B'x B*x B(t'), @) becomes a complex analytic
family.

THEOREM 2. (#Z(2), B'xB*xB('), w) 1is the complete, effectively

parametrized complex analytic family of small deformations of M(2).

PrROOF. (W) = {Uj, U4, — o(U,,.), UL} is a covering of (M¢). We
denote Ui, — ¢(U,.) by (U%)* for simplicity. We take (2) = (W)U U
as a covering of M(2). We define a linear map 6: T,(B'x B*x B(t’)) —
Z'0(2), ©) as follows: 6(d/ot!) is equal to the vector field listed in the
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proof of Theorem 1 on Uin U and takes the value zero on other inter-
sections of any distinet two members of U(Q2) for ¢ =1, ---,7 and j =
1,2. As for 6(o/ot’), we define

6/at)((Up) N (U)h) = 8/0ys

600/t ) (Ui ) N (Uw)}) = :0/0Ys

6(0/ot:)(U3i ) 0 (U3)) = d/oz, ,

6(0/ot)(Uw) N (Ui)h) = aid/oz ,
and 6(9/ot;) takes the value zero on other intersections for k =1, 2, 3, 4.
Then it is easy to see that i([#(-)]) = o,(-) where 7 is the inclusion of
H'(1(2), ©) to HY(M(2),0) and p, is the Kodaira-Spencer map. [6(d/0t])]

and [0(9/0t;)] are linearly independent. Indeed, suppose that we have an
equation

g{ al0(3/3t1) + g a20(3/082) + kg B.003/3t) = v

where v is an element of C°(1(2), ® and ai, B, are complex numbers.
By Theorem 1, we have af = 0 for all ¢, 5. So the above equation reduces
to the equation

ki‘, B.0(0/0t) = s, vt — v*,
=1

where v’ belongs to H°((M’)*, @) for 5 =1,2. Using the calculation in
the proof of Proposition 3.2, the above equation becomes
B:0/0Ys 4 B:x10/0Ys + £:0/62; + B.:0/024
= {(tfa, — v'e, — M\ay) + ((Pa, — Ve, + Vb, — 4\ as)x,

+ (e, — c)ys + pv(a, — e)zo + (Vb + fd — AN )ag’

+ by, + pv(b, + d)xeze}o/oxy + {pwb, + pw(b, + d)xg

+ (22 + v9)b, — )Y, + (1%, + Vid — ANz + (Vb + p£d

— ANd)wys + by + (b, + d)yized/oy, + {ple, — ay)

+ pye, — ay)xy + (M, — via, — 4\’er)Ys

+ (tfe, — Yia, + v°b, — d\'cy)zy + (W'D, + pfd — ANd )2z,

+ by, + (b, + d)z:*10/07,
where a,, b,, ¢, d, ai, b;, c;, and d' are complex numbers. This shows us
that all B, vanish and the image of [A(-)] spans an 18-dimensional vector

subspace in H'(11(2), ®), which in turn is a subspace of 18-dimentional
H'(M(2), ©). Hence p,(-) = #([6(-)]) is bijective. O

3. Small deformations of M(n)(n = 3). We construct the complete,
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effectivzly parametrized complex analytic family _#(n) of small deforma-
tions of M(n) inductively. Let

B ={"=@&' -+, t)eC% |t!/|<dé (=1, ---,8)}.
We define a holomorphic open embedding 7,.. of " |y, oz(N(e)) T M(n — 2)*N
M*cM(n — 1) into *(N(e))c M™* by

’rt”([Co: Cl: sz Cs])
=M1 =t — M+ @+ )G + 68 A + A+ 8D
— /G + A — G ML + 88 + MG+ (=1 4+ )8 + 6/C:
AC + ML+ 88+ G — A+ )]
with respect to the system of local coordinates induced by the homo-
geneous coordinates of P3.
We have already constructed _# (2) in §3. 2. _#(2) contains

w(z(N(e)) X B) x B*x B(t') such that

w(tot(U,) X BY) X B*x B(t") N M(2) = *or(U)C M* N M* .
Here M(2) is identified with the fibre @ '(0). Assume that _#Z(n) is
constructed with the parameter space B(n) and that _#(n) contains
" |xe°ot(U) X B(n) with the property
(*)n (" y@ot(U) X Bn)) N M(n) = ¢*|yor(U)CTMn — 1* 0 M* .
We denote _Z (n) —(¢" |y, 0T (Uye) X B(n)) by _#(n)?. We construct _#Z(n+1)
from _#(n)t and _#Z"""* by identifying

((x’ t), tn+1, t”) c %(n)ﬁx Bn+1 X B(t")

with
(@, T, T, 1) e ™" x B(n) X B(t")
if and only if
gt = ,rt“(x)’ — 'E, tn+1 — i"n+1, t" — ’f’n .
It is clear that _#Z(n + 1) contains ¢**'|yo7(U,) X B(n + 1) with the pro-
perty (x),;,. Hence we get _#(n) for any ne€ N. We project _.Z(n + 1)
onto B(n + 1) = B(n)x B**'x B(t"") by
w': ((x, t), t"*, t7) = (@, t**, t”)
w: (@™ ), 6 ) - (¢, T ) .
Then (_#Z(n + 1), B(n + 1), @) is a complex analytic family with @ ~*(0) =
Mn + 1).
THEOREM 3. (Z(n), B'X - XB"XBt')XB(t")x ++- X B("), @) is the

~
n—2
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complete, effectively parametrized complex analytic family of small de-
Jormations of M(n).

ProOF. We define the covering W(n) of M(n) inductively. We have
already defined (1) = 1 and 1(2) in the proof of Theorem 2. Put

(U = U — lywot(U)
(Ui =U% — Elywet(U) -
We define 11(3) to be
(U, (U, UL, U, (UP), Unpuns .

The former set is for M(2)* and the latter is for M*. Then |y, z(U,)C
M(2)*N M* intersects only (U#)* and U¥%. Assume that W(n) is defined
so that

any distinct three of U (») do not intersect and ¢*|y.oz(U.)C

(=), M(n — 1)*0 M intersects only (Ug~%* and Upfof W(n).

Put

(U= = (U — T meroeor (T
(Ul;l'g)# =Up — ¢ IN(s)oT( U,.,) .

We define U(n)?* to be
Wn) — (Ui, Uph) U{((Ug 299, (U,

and Wn + 1) to be UW(n)*U A%, Then U(n + 1) has the propety (**),4,.
Therefore U(n) is defined for any n € N with the property (xx),.

Now we proved that (_# (n), B™, w) is the complete, effectively
parametrized family of small deformation of M(n) by induction. We have
already shown that

H'((2), 6) = H'(M(2), 6) ,
0, To(B(2)) = H'(M(2), 6)

Assume (x*x), and that 6™: T,(B(n)) — Z'*(W(n), ®) is defined so that
1([6"™(-)]) = 0,(+), where ¢ is the inclusion map of H'(l(n), O) in H'(M(n), 6).
We define 6 of Ty(B(n+1)) to Z*((n+1), ) as follows. Let 6"+(9/ot)
take the same value as 0™ (3/ot{™”) on the intersections of any distinct two
members of 1(n)* and take zero on other intersections, where t{® is the
parameter of B(n) for ¢ =1, .-+, 16n — 12. Let 6"+ (d/ot;*") take the
value 0 (9/ot,) on the intersection of any distinct two of (11"*')* and take
zero on other intersections, for 1 =1, ---, 7. As for 6"*V(9/ot;), let

(xxx%),
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0"t (0/ot ) (Ut N Upt™) = yo(®60/0%, + ¥:0/0Y, + 2:0/020) »
00/t )(UpH N Uyt = 2y(x,0/0%, + Y00/0Ys + 240/02,) ,
0" (0/ot)((Uph N Upt™) = y,0/0u, ,

6 (0/6t)(Usf* N Upt™) = 2,0/0, ,

6"+ (@/ots (U N Uzt™) = 6/oy, ,

6" @/ots ) (U N Upt) = w,0/0y, ,

6+ (@/ot)(Ushn Upt™) = 8/oz, ,

6+ (0/0ts)((Ush) N Uit = 2,0/0%, ,

and 6"*V(9/ot,’) take zero on other intersection of any distinet two of

N(n + 1). In the following, we write 6 instead of ™™ for simplicity.
Suppose that we have v e C°'(U(n + 1), ©®) such that

15n—12 7 R
> a0(0/0t™) + >, B.0(0/otr ) + 3, v.0(0/ot)) = ov .
i=1 i=1 i=1
By induction hypothesis, the above equality reduces to
> 7.000/0t)) = rev” — v
i=1

where v' € H'(M™, 0), v"" € H'(M(n)}, ) and r = r,. Using the calculations
in the proof of Propositions 3.2, we have

(V1Yo + Vo20)(X,0/0%, + Y0/0Y, + 2:0/020) + VYoYs0/0%, + V.2,0/0%, + V50/0Y,
+ Y4,0/0Yy + V:0/02, + Ve%,0/02,
={a —a, + (b — a)x, + (¢ — d)x3}o/ox, + {b:Y, + (—c — by)z,
+ (¢ — d)x,yo}0/0y, + {(@ — ey, + (b — ¢)z, + (¢ — d)x,2,)0/02, .

This asserts that [6(d/ati™)], - -, [6(d/atis_1)], [6(a/at:™)], - - -, [6(3/ot7 )],
[60/otN)], ---, [6(d/ots)] are linearly independent. It is easily seen that
that p,(-) = #([6(:)]). Since dim HM(n + 1), ©®) = 15n + 3, p, is bijec-
tive. O
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