SMALL DEFORMATIONS OF CERTAIN COMPACT MANIFOLDS OF CLASS L

Asahiko Yamada

(Received January 31, 1985)

The notion of a manifold of Class L was introduced by Kato [6]. A manifold of Class L is a complex 3 -fold into which there exists an open embedding of a certain domain of P^{3}. The most significant property of Class L is that we can connect any two Class L manifolds complex analytically to obtain another Class L manifold.

We define a complex 3-fold $M=M(1)$ as follows. Let $\left[\zeta_{0}: \zeta_{1}: \zeta_{2}: \zeta_{3}\right]$ be the system of homogeneous coordinates of \boldsymbol{P}^{3}. Put

$$
l_{0}=\left\{\zeta_{0}=\zeta_{1}=0\right\}, l_{\infty}=\left\{\zeta_{2}=\zeta_{3}=0\right\} .
$$

We denote $\boldsymbol{P}^{3}-l_{0}-l_{\infty}$ by W. Let g be a holomorphic automorphism of W sending $\left[\zeta_{0}: \zeta_{1}: \zeta_{2}: \zeta_{3}\right.$] to $\left[\zeta_{0}: \zeta_{1}: \alpha \zeta_{2} . \alpha \zeta_{3}\right.$], where α is a complex number with $0<|\alpha|<1$. We define M to be the quotient space of W by $\langle g\rangle$, where $\langle g\rangle$ indicates the infinite cyclic group generated by g. Then M is shown to be a compact manifold of Class L. So we can construct $M(2)$, a new compact manifold of Class L by connecting two copies of M. We construct $M(n), n \in N$, inductively with n copies of M.

The main purpose of this paper is to determine all the small deformations of $M(n)$ for all $n \in N$. The result for M is that any small deformation of M is biholomorphic to $W /\left\langle g_{t}\right\rangle$ where g_{t} is a holomorphic automorphism of W defined by $g_{t}\left(\left[\zeta_{0}: \zeta_{1}: \zeta_{2}: \zeta_{3}\right]\right)=\left[\zeta_{0}+t_{1} \zeta_{1}: t_{2} \zeta_{0}+\left(1+t_{3}\right) \zeta_{1}\right.$: $\left.\left(\alpha+t_{4}\right) \zeta_{2}+t_{5} \zeta_{3}: t_{6} \zeta_{2}+\left(\alpha+t_{7}\right) \zeta_{3}\right]$, where $t_{i}(i=1, \cdots, 7)$ are complex numbers with $\left|t_{i}\right|$ small enough (Theorem 1). The result for $M(n), n \geqq 2$, is more complicated than that for M. The complete and effectively parametrized complex analytic family of the small deformations of $M(n)$ has $15 n-12$ parameters. The details are stated in Theorems 2 and 3.

This paper consists of three sections.
In §1, we give some definitions, for instance, the definitions of Class L, that of $M(n)$.

In §2, we investigate small deformations of M.
In $\S 3$, we study small deformations of $M(n), n \geqq 2$.
We have the following conjecture;

Conjecture. Let X_{1} and X_{2} be compact manifolds of Class L. Let $X_{1} \# X_{2}$ denote any manifold we obtain by connecting X_{1} and X_{2} complex analytically. Then we have

$$
\operatorname{dim} H^{2}\left(X_{1} \# X_{2}, \Theta\right)=\operatorname{dim} H^{2}\left(X_{1}, \Theta\right)+\operatorname{dim} H^{2}\left(X_{2}, \Theta\right)
$$

The author wrote this statement as Proposition in [10] but the proof contained a gap. The conjecture is ture if X_{1} is $M(n), X_{2}$ is M, and $X_{1} \# X_{2}$ is $M(n+1)$ for any $n \geqq 1$.

The author wishes to express his gratitude to Professor Masahide Kato for his competent aid.

§ 1. Definitions.

1. The definition of Class L. For any positive real number r, we define a domain U_{r} in \boldsymbol{P}^{3} as

$$
U_{r}=\left\{\left[\zeta_{0}: \zeta_{1}: \zeta_{2}: \zeta_{3}\right] \in \boldsymbol{P}^{3} ;\left|\zeta_{0}\right|^{2}+\left|\zeta_{1}\right|^{2}<r\left(\left|\zeta_{2}\right|^{2}+\left|\zeta_{3}\right|^{2}\right)\right\}
$$

Definition 1.1 ([6, p.1, Definition 1.1]). Let X be a complex manifold of dimension 3. X is said to be of Class L if X contains a domain biholomorphic to U_{1}, in other words, if there exists a holomorphic open embedding of U_{1} into X.

To define the connecting operation of two Class L manifolds, we need a holomorphic automorphism σ of P^{3} defined by

$$
\sigma\left(\left[\zeta_{0}: \zeta_{1}: \zeta_{2}: \zeta_{3}\right]\right)=\left[\zeta_{2}: \zeta_{3}: \zeta_{0}: \zeta_{1}\right]
$$

For any real number ε greater than 1 , we define a domain $N(\varepsilon)$ in \boldsymbol{P}^{3} by

$$
N(\varepsilon)=U_{\varepsilon}-\overline{U_{1 / \varepsilon}}
$$

where - indicates the closure. Then the following is clear.
LEMMA 1.2. (i) For any positive real number r, U_{r} is biholomorphic to U_{1}.
(ii) $\quad \sigma(N(\varepsilon))=N(\varepsilon)$.

Let X be a manifold of Class L. Then from Definition 1.1 and Lemma 1.2 there exists a holomorphic open embedding of U_{e} into X.

Definition 1.3 ([6, p. 3]). Let X_{1} and X_{2} be manifolds of Class L and

$$
i_{\nu}: U_{\varepsilon} \rightarrow X_{\nu}, \nu=1,2
$$

be holomorphic open embeddings. Writing $X_{\nu}-\overline{i_{\nu}\left(U_{1 / \varepsilon}\right)}$ as $X_{\nu}{ }^{\sharp}(\nu=1,2)$, we define a complex manifold $Z\left(X_{1}, X_{2}, i_{1}, i_{2}\right)=X_{1}^{*} \cup X_{2}^{*}$ by identifying a point $x_{1} \in i_{1}(N(\varepsilon)) \subset X_{1}^{*}$ with the point $i_{2} \circ \sigma \circ i_{1}^{-1}\left(x_{1}\right) \in X_{2}^{\ddagger}$.

Remark 1. The complex structure of $Z\left(X_{1}, X_{2}, i_{1}, i_{2}\right)$ depends on the open embeddings i_{1} and i_{2}. We shall see this fact later in §3.2.

Remark 2. If X_{1} and X_{2} are compact, then $X_{1} \# X_{2}$ is also compact.
Lemma 1.4. $N(\varepsilon)$ is of Class L.
Proof. For a real number λ, we define a holomorphic open embedding τ of U_{ε} into \boldsymbol{P}^{3} by

$$
\tau\left(\left[\zeta_{0}: \zeta_{1}: \zeta_{2}: \zeta_{3}\right]\right)=\left[\zeta_{0}+\lambda \zeta_{2}: \zeta_{1}+\lambda \zeta_{3}: \lambda \zeta_{2}-\zeta_{0}: \lambda \zeta_{3}-\zeta_{1}\right] .
$$

Since $\zeta_{0} \neq 0$ or $\zeta_{1} \neq 0$ in U_{ε}, we have

$$
U_{\varepsilon}=\left(U_{\epsilon} \cap\left\{\zeta_{0} \neq 0\right\}\right) \cup\left(U_{\epsilon} \cap\left\{\zeta_{1} \neq 0\right\}\right) .
$$

Taking a system of local coordinates

$$
\left(x_{0}, y_{0}, z_{0}\right)=\left(\zeta_{1} / \zeta_{0}, \zeta_{2} / \zeta_{0}, \zeta_{3} / \zeta_{0}\right) \quad \text { in } \quad U_{\varepsilon} \cap\left\{\zeta_{0} \neq 0\right\}
$$

and

$$
\left(x_{1}, y_{1}, z_{1}\right)=\left(\zeta_{0} / \zeta_{1}, \zeta_{2} / \zeta_{1}, \zeta_{3} / \zeta_{1}\right) \quad \text { in } U_{\varepsilon} \cap\left\{\zeta_{1} \neq 0\right\}
$$

we let

$$
V_{i}=\left\{\left(x_{i}, y_{i}, z_{i}\right) \in U_{\varepsilon} \cap\left\{\zeta_{i} \neq 0\right\} ;\left|x_{i}\right|<2\right\} \quad \text { for } \quad i=0,1 .
$$

Then it is clear that $\left\{V_{0}, V_{1}\right\}$ is also an open covering of U_{ε}. Since $\left|x_{i}\right|<$ $2(i=0,1)$, we have

$$
\begin{aligned}
\left(\left|y_{0}-1 / \lambda\right|^{2}+\left|z_{0}-x_{0} / \lambda\right|^{2}\right) / \varepsilon & <\left|1 / \lambda+y_{0}\right|^{2}+\left|x_{0} / \lambda+z_{0}\right|^{2} \\
& <\varepsilon\left(\left|y_{0}-1 / \lambda\right|^{2}+\left|z_{0}-x_{0} / \lambda\right|^{2}\right), \\
\left(\left|y_{1}-x_{1} / \lambda\right|^{2}+\left|z_{1}-1 / \lambda\right|^{2}\right) / \varepsilon & <\left|x_{1} / \lambda+y_{1}\right|^{2}+\left|1 / \lambda+z_{1}\right|^{2} \\
& <\varepsilon\left(\left|y_{1}-x_{1} / \lambda\right|^{2}+\left|z_{1}-1 / \lambda\right|^{2}\right)
\end{aligned}
$$

when we take λ large enough. Thus we get $\tau\left(U_{\varepsilon}\right) \subset N(\varepsilon)$.
Lemma 1.5. $X_{1} \# X_{2}$ is of Class L.
Proof. $X_{1} \# X_{2}$ contains a domain biholomorphic to $N(\varepsilon)$ which is of Class L. Hence $X_{1} \# X_{2}$ is of Class L.
2. Definition of the manifolds $M(n)$. Here we are going to define compact complex manifolds $M(n)$ of which we shall study the small deformations later. We have already defined l_{0}, l_{∞}, W and g in Introduction. Then we have:

Proposition 1.6. 〈g〉acts on W properly discontinuously without fixed points.

Proof. It is easy to see that $\langle g\rangle$ acts on W without fixed points. We show that $\langle g\rangle$ acts properly discontinuouly on W. Let μ be a real number larger than 1 and ν a natural number such that $|\alpha|^{\nu}<1 / \mu$. Then for any integer n with $n \geqq \nu$, we have

$$
g^{n}(N(\mu)) \cap N(\mu)=\varnothing
$$

Since any compact subsets K_{1} and K_{2} of W are contained in $N(\mu)$ for a suitable real number μ and since we can take a natural number ν for μ so that the above equality holds, we have

$$
\#\left\{n \in \boldsymbol{Z} ; g^{n}\left(K_{1}\right) \cap K_{2} \neq \varnothing\right\}<2 \nu .
$$

Definition 1.7. Let W and $\langle g\rangle$ be as above. We define a complex manifold $M=M(1)$ as the quotient space of W by $\langle g\rangle$, i.e.

$$
M=W /\langle g\rangle
$$

Remark 1. M is compact because M is the image of compact $N(\mu)$ for μ sufficiently large.

Remark 2. $\quad M$ is diffeomorphic to $S^{1} \times S^{2} \times S^{3}$ where S^{n} is the standard n-sphere.

Taking real numbers β, γ, δ such that $|\alpha|<\beta<\gamma<\delta<1$, we define domains U_{0}, U_{W}, U_{∞} in W as follows:

$$
\begin{aligned}
& U_{0}=\left\{\zeta \in W ;|\alpha|\left(\left|\zeta_{2}\right|^{2}+\left|\zeta_{3}\right|^{2}\right)<\left|\zeta_{0}\right|^{2}+\left|\zeta_{1}\right|^{2}<\delta\left(\left|\zeta_{2}\right|^{2}+\left|\zeta_{3}\right|^{2}\right)\right\} \\
& U_{W}=\left\{\zeta \in W ; \gamma\left(\left|\zeta_{2}\right|^{2}+\left|\zeta_{3}\right|^{2}\right)<\left|\zeta_{0}\right|^{2}+\left|\zeta_{1}\right|^{2}<\left(\left|\zeta_{2}\right|^{2}+\left|\zeta_{3}\right|^{2}\right) / \gamma\right\} \\
& U_{\infty}=\left\{\zeta \in W ;\left(\left|\zeta_{2}\right|^{2}+\left|\zeta_{3}\right|^{2}\right) / \delta<\left|\zeta_{0}\right|^{2}+\left|\zeta_{1}\right|^{2}<\beta\left(\left|\zeta_{2}\right|^{2}+\left|\zeta_{3}\right|^{2}\right) /|\alpha|^{2}\right\}
\end{aligned}
$$

By the definition of U_{0}, U_{w}, and U_{∞}, we have

$$
g U_{0} \cap U_{\infty} \neq \varnothing, \quad g U_{W} \cap U_{\infty}=\varnothing
$$

This shows that M is a manifold we obtain by identifying $\zeta \in g U_{0} \cap U_{\infty}$ with $g^{-1}(\zeta) \in U_{0} \cap g^{-1} U_{\infty}$ in $U_{0} \cup U_{W} \cup U_{\infty}$.

Proposition 1.8. M is of Class L.
Proof. Let π be the natural projection of W to M. Since M contains a domain $\pi\left(U_{W}\right)$ which is biholomorphic to $U_{W}=N(1 / \gamma)$, the proposition is clear.

We construct $M(n)$ with n copies of M. We denote by M^{j} the j-th copy of M. By Lemma 1.4 and Proposition 1.8, we have a holomorphic open embedding $\iota=\pi \circ \tau$ of U_{ε} into M, where τ is a map defined in the proof of Lemma 1.4. We denote by c^{j} the holomorphic open embedding ι of U_{s} into M^{j}. We define $M(2)$ by $Z\left(M^{1}, M^{2}, \iota^{1}, \iota^{2}\right)$. We define Class L manifolds
$M(n)$ for $n \geqq 3$ inductively. Suppose that $M(n)$ is defined to be $Z(M(n-1)$, $M^{n}, \iota_{n-1}, \iota^{n}$) with a holomorphic open embedding ι_{n-1} of U_{ε} into $M(n-1)$, then we define

$$
M(n+1)=Z\left(M(n), M^{n+1},\left.\iota^{n}\right|_{N(\varepsilon)} \circ \tau, \iota^{n+1}\right)=Z\left(M(n), M^{n+1},\left.\iota_{n-1}\right|_{N(\varepsilon)} \circ \sigma \circ \tau, \iota^{n+1}\right)
$$

where $\left.\iota^{n}\right|_{N(\varepsilon)}\left(\right.$ resp. $\left.\left.\iota_{n-1}\right|_{N(\varepsilon)}\right)$ is the restriction of $\iota^{n}\left(\right.$ resp. $\left.\iota_{n-1}\right)$ to $N(\varepsilon)$.

§2. Small deformations of M.

1. Cohomology groups of M. Let $W_{\eta \eta^{\prime}}$ be a domain in W defined by

$$
W_{\eta \eta^{\prime}}=\left\{\eta\left(\left|\zeta_{2}\right|^{2}+\left|\zeta_{3}\right|^{2}\right)<\left|\zeta_{0}\right|^{2}+\left|\zeta_{1}\right|^{2}<\eta^{\prime}\left(\left|\zeta_{2}\right|^{2}+\left|\zeta_{3}\right|^{2}\right)\right\}
$$

where η and η^{\prime} are real number such that $\eta^{\prime}>\eta>0$. Since the line $l_{0}=\left\{\zeta_{0}=\zeta_{1}=0\right\}$ does not intersect W, we can cover $W_{\text {加 }}$ by the two domains $W_{\eta \eta^{\prime}} \cap\left\{\zeta_{0} \neq 0\right\}$ and $W_{\eta \eta^{\prime}} \cap\left\{\zeta_{1} \neq 0\right\}$ whose system of local coordinates are

$$
x_{0}=\zeta_{1} / \zeta_{0}, y_{0}=\zeta_{2} / \zeta_{0}, z_{0}=\zeta_{3} / \zeta_{0} \quad \text { in } \quad W_{\eta \eta^{\prime}} \cap\left\{\zeta_{0} \neq 0\right\}
$$

and

$$
x_{1}=\zeta_{0} / \zeta_{1}, y_{1}=\zeta_{2} / \zeta_{1}, z_{0}=\zeta_{3} / \zeta_{1} \quad \text { in } \quad W_{n n^{\prime}} \cap\left\{\zeta_{1} \neq 0\right\}
$$

We remark that these two domains are Reinhardt domains on which every holomorphic function can be expanded as a unique Laurent series with respect to the system of local coordinates (x_{i}, y_{i}, z_{i}), $i=0,1$. Moreover the two domains intersect hyperplanes $\left\{x_{0}=0\right\},\left\{y_{0}=0\right\},\left\{z_{0}=0\right\}$ and $\left\{x_{1}=0\right\},\left\{y_{1}=0\right\},\left\{z_{1}=0\right\}$ respectively, so every holomorphic function on each of the two domains admits a unique Taylor series expansion.

Lemma 2.1. Let Θ be the tangent sheaf. An element of $H^{0}\left(W_{\eta \eta^{\prime}}, \Theta\right)$ (resp. $H^{0}(W, \Theta)$, resp. $H^{0}\left(\boldsymbol{P}^{3}, \Theta\right)$) is expressed on $W_{\eta \eta} \cap\left\{\zeta_{0} \neq 0\right\}$ (resp. $W \cap$ $\left\{\zeta_{0} \neq 0\right\}$, resp. $\boldsymbol{P}^{3} \cap\left\{\zeta_{0} \neq 0\right\}$) as follows:

$$
\begin{aligned}
& \left(a_{1}+b_{1} x_{0}+c_{1} y_{0}+d_{1} z_{0}+e x_{0}^{2}+f x_{0} y_{0}+g x_{0} z_{0}\right) \partial / \partial x_{0} \\
& \quad+\left(a_{2}+b_{2} x_{0}+c_{2} y_{0}+d_{2} z_{0}+e x_{0} y_{0}+f y_{0}^{2}+g y_{0} z_{0}\right) \partial / \partial y_{0} \\
& \quad+\left(a_{3}+b_{3} x_{0}+c_{3} y_{0}+d_{3} z_{0}+e x_{0} z_{0}+f y_{0} z_{0}+g z_{0}^{2}\right) \partial / \partial z_{0}
\end{aligned}
$$

where $a_{i}, b_{i}, c_{i}, d_{i}, e, f, g$ are complex numbers for $i=1,2,3$. Conversely, a vector field on $W_{n \eta^{\prime}} \cap\left\{\zeta_{0} \neq 0\right\}$ (resp. $W \cap\left\{\zeta_{0} \neq 0\right\}$, resp. $P^{3} \cap\left\{\zeta_{0} \neq 0\right\}$) of the above type is extended to an element of $H^{\circ}\left(W_{\eta n^{\prime}}, \Theta\right)$ (resp. $H^{\circ}(W, \Theta)$, resp. $\left.H^{0}\left(\boldsymbol{P}^{3}, \Theta\right)\right)$

Proof. From the above remark, an element θ of $H^{0}\left(W_{\eta \eta^{\prime}}, \Theta\right)$ is expressed in $W_{\eta \eta^{\prime}} \cap\left\{\zeta_{i} \neq 0\right\}$ as

$$
\theta=\sum_{l, m, n \geq 0} a_{l m n}^{i} x_{i}^{l} y_{i}^{m} z_{i}^{n} \partial / \partial x_{i}+\sum_{l, m, n \geq 0} b_{l m n}^{i} x_{i}^{l} y_{i}^{m} z_{i}^{n} \partial / \partial y_{i}+\sum_{l, m, n \geq 0} c_{l m n}^{i} x_{i}^{l} y_{i}^{m} z_{i}^{n} \partial / \partial z_{i}
$$

where $a_{l_{m n}}^{i}, b_{l_{n} n}^{i}, c_{l_{m n}}^{i}$ are complex numbers for $i=0,1$. Since the two expressions above must coincide in $W_{\eta \eta^{\prime}} \cap\left\{\zeta_{0} \neq 0, \zeta_{1} \neq 0\right\}$, we have the lemma for $W_{\eta \eta^{\prime}}$ by the uniqueness of the Laurent expansion. The calculations for W and P^{3} are completely the same as those for $W_{\eta \eta^{\prime}}$. The converse is clear.

Proposition 2.2. An element of $H^{0}(M, \Theta)$ is identified with an element of $H^{0}\left(W \cap\left\{\zeta_{0} \neq 0\right\}, \Theta\right)$ of the form

$$
\begin{aligned}
& \left(a_{1}+b_{1} x_{0}+c x_{0}^{2}\right) \partial / \partial x_{0}+\left(a_{2} y_{0}+b_{2} z_{0}+c x_{0} y_{0}\right) \partial / \partial y_{0} \\
& \quad+\left(a_{3} y_{0}+b_{3} z_{0}+c x_{0} z_{0}\right) \partial / \partial z_{0}, a_{i}, b_{i}, c \in \boldsymbol{C} \quad(i=1,2,3) .
\end{aligned}
$$

In particular, $\operatorname{dim} H^{0}(M, \Theta)=7$.
Proof. It is easy to see that an element of $H^{0}(M, \Theta)$ is identified with an element of $H^{\circ}(W, \Theta)$ which is invariant under the action of $\langle g\rangle$, i.e., with $\theta \in H^{0}(W, \theta)$ such that

$$
\left(g^{n}\right)_{* p} \theta_{p}=\theta_{g^{n}(p)} \quad \text { for any } \quad n \in \boldsymbol{Z} \text { and any } p \in W .
$$

Assume that θ is the one mentioned in Lemma 2.1. Then

$$
\begin{aligned}
&\left.g_{*} \theta\right|_{W \cap\left\{b_{0} \neq 0\right\}} \\
&=\left(a_{1}+b_{1} x_{0}+\frac{1}{\alpha} c_{1} y_{0}+\frac{1}{\alpha} d_{1} z_{0}+e x_{0}^{2}+\frac{1}{\alpha} f x_{0} y_{0}+\frac{1}{\alpha} g x_{0} z_{0}\right) \frac{\partial}{\partial x_{0}} \\
&+\left(a_{2}+b_{2} x_{0}+\frac{1}{\alpha} c_{2} y_{0}+\frac{1}{\alpha} d_{2} z_{0}+e x_{0} y_{0}+\frac{1}{\alpha^{2}} f y_{0}^{2}+\frac{1}{\alpha^{2}} g y_{0} z_{0}\right) \alpha \frac{\partial}{\partial y_{0}} \\
&+\left(a_{3}+b_{3} x_{0}+\frac{1}{\alpha} c_{3} y_{0}+\frac{1}{\alpha} d_{3} z_{0}+e x_{0} z_{0}+\frac{1}{\alpha^{2}} f y_{0} z_{0}+\frac{1}{\alpha^{2}} g z_{0}^{2}\right) \alpha \frac{\partial}{\partial z_{0}} .
\end{aligned}
$$

From the above equation it is obvious that the condition $\left(g^{n}\right)_{* p} \theta_{p}=\theta_{g^{n}(p)}$ is equivalent to

$$
c_{1}=d_{1}=a_{2}=b_{2}=a_{3}=b_{3}=f=g=0 .
$$

Proposition 2.3. $H^{3}(M, \Theta)=0$.
Proof. By the Kodaira-Serre duality, we have

$$
H^{3}(M, \Theta)=H^{0}\left(M, \Omega^{1} \otimes \Omega^{3}\right)
$$

where Ω^{p} is the sheaf of germs of holomorphic p-forms. By [6, p. 7, Proposition 2.3]: we have

$$
H^{0}\left(X,\left(\Omega^{1}\right)^{\otimes m_{1}} \otimes\left(\Omega^{2}\right)^{\otimes m_{2}} \otimes\left(\Omega^{3}\right)^{\otimes m_{3}}\right)=0
$$

for a Class L manifold X if m_{1}, m_{2}, m_{3} are non-negative integers such that
$m_{1}+m_{2}+m_{s}>0$. We conclude that $H^{3}(M, \Theta)=0$.
Proposition 2.4. $\quad H^{2}(M, \Theta)=0$.
Again by the Kodaira-Serre duality,

$$
H^{2}(M, \Theta)=H^{1}\left(M, \Omega^{1} \otimes \Omega^{3}\right)
$$

We shall show here that $H^{1}\left(M, \Omega^{1} \otimes \Omega^{3}\right)=0$. For that purpose, we first have:

Proposition 2.5. $\quad M$ is a holomorphic fibre bundle over $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ with elliptic curves as fibres.

Proof. Let $\widetilde{p}: W \rightarrow \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ be the holomorphic map sending $\left[\zeta_{0}: \zeta_{1}: \zeta_{2}: \zeta_{3}\right]$ to ($\left.\left[\zeta_{0}: \zeta_{1}\right],\left[\zeta_{2}: \zeta_{3}\right]\right)$. Then it is easy to see that ($W, \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}, \widetilde{p}$) becomes a holomorphic fibre bundle with $\boldsymbol{C}^{*}=\boldsymbol{C}-\{0\}$ as the fibres. Since $\widetilde{p}(g(\zeta))=$ $\tilde{p}(\zeta)$ for any $\zeta \in W, \tilde{p}$ induces a map $p: M \rightarrow \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. The action of $\langle g\rangle$ on W induces the action of $\langle\alpha\rangle$ on \boldsymbol{C}^{*}, the fibre of ($W, \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}, \widetilde{p}$). This means that the fibre of $\left(M, \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}, p\right)$ is $\boldsymbol{C}^{*} \mid\langle\alpha\rangle$, which is an elliptic curve.

From now on, we write S instead of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ for simplicity and sometimes write $\Omega_{M}^{1}, \Omega_{s}^{1}$ and so on to avoid confusion. Now we begin to calculate $H^{1}\left(M, \Omega_{M}^{1} \otimes \Omega_{M}^{3}\right)$. By the Leray spectral sequence, we have

$$
0 \rightarrow E_{2}^{1,0} \rightarrow H^{1}\left(M, \Omega_{M}^{1} \otimes \Omega_{M}^{3}\right) \rightarrow E_{3}^{0,1} \rightarrow 0
$$

where $E_{2}^{q, r}=H^{q}\left(S, R^{r} p_{*}\left(\Omega_{M}^{1} \otimes \Omega_{M}^{3}\right)\right)$ and $E_{3}^{0,1}=\operatorname{Ker}\left(E_{2}^{0,1} \rightarrow E_{2}^{2,0}\right) \subset E^{0,1}$. Hence we have an exact sequence

$$
0 \rightarrow E_{2}^{1,0} \rightarrow H^{1}\left(M, \Omega_{M}^{1} \otimes \Omega_{M}^{3}\right) \rightarrow E_{2}^{0,1}
$$

We need now to calculate $E_{2}^{1,0}$ and $E_{2}^{0,1}$.
Lemma 2.6.

$$
R^{i} p_{*} \mathcal{O}_{M}=\left\{\begin{array}{l}
\mathcal{O}_{s}, i=0,1 \\
0, \quad i \geqq 2
\end{array}\right.
$$

PROOF. (i) $i=0$.

$$
\left(R^{0} p_{*} \mathcal{O}_{H}\right)_{(x, y)}=H^{0}\left(p^{-1}(x, y), \mathcal{O}_{M}\right) \quad \text { for any } \quad(x, y) \in S
$$

Since $p^{-1}(x, y)$ is an elliptic curve, which is compact, we see $\left(R^{0} p_{*} \mathcal{O}_{\mu}\right)_{(x, y)}=$ $\mathcal{O}_{S,(x, y)}$. From this we get $R^{0} p_{*} \mathcal{O}_{M}=\mathcal{O}_{S}$.
(ii) $i=1 . \quad R^{1} q_{*} \mathcal{O}_{M}$ is a line bundle because

$$
\operatorname{dim} H^{1}\left(p^{-1}(x, y), \mathscr{O}_{M}\right)=\operatorname{dim} H^{1}\left(\boldsymbol{C}^{*} /\langle\alpha\rangle, \mathscr{O}\right)=1
$$

for any $(x, y) \in S[1, \mathrm{p} .151$, Theoreme 4.12. (ii)]. From the cohomology exact sequence

$$
0=H^{1}\left(S, \mathscr{O}_{S}\right) \rightarrow H^{1}\left(S, \mathscr{O}_{S}^{*}\right) \rightarrow H^{2}(S, \boldsymbol{Z})
$$

it is sufficient to prove that the restriction of $R^{1} p_{*} \mathcal{O}_{M}$ to $\{0\} \times \boldsymbol{P}^{1}$ and $\boldsymbol{P}^{1} \times\{0\}$ are trivial because $R^{1} p_{*} \mathcal{O}_{M}$ is a line bundle and because $\{0\} \times \boldsymbol{P}^{1}$ and $\boldsymbol{P}^{1} \times\{0\}$ generate $H^{2}(S, \boldsymbol{Z})$. This follows from the fact that $p^{-1}\left(\{0\} \times \boldsymbol{P}^{1}\right)$ and $p^{-1}\left(\boldsymbol{P}^{1} \times\{0\}\right)$ are elliptic bundles with vanishing Chern numbers, by Kodaira [9, p. 772, Theorem 12].
(iii) $\quad i \geqq 2$. It is clear because the fibre is 1 -dimensional.

Lemma 2.7.

$$
R^{i} p_{*}\left(p_{*} \Omega_{S}^{1}\right)=\left\{\begin{array}{l}
\Omega_{S}^{1}, i=0,1 \\
0, \quad i \geqq 2
\end{array}\right.
$$

Proof. Since \mathcal{O}_{M} satisfies the condition (b) of [1, p. 149, Theoreme 4.10], we get

$$
R^{i} p_{*}\left(p^{*} \Omega_{S}^{1}\right)=R^{i} p_{*}\left(p^{*} \Omega_{S}^{1} \otimes \mathscr{O}_{M}\right)=\Omega_{S}^{1} \otimes R^{i} p_{*} \mathscr{O}_{M}
$$

The lemma follows from Lemma 2.6.
Lemma 2.8. We have an exact sequence

$$
0 \rightarrow p^{*} \Omega_{S}^{1} \rightarrow \Omega_{M}^{1} \rightarrow \mathcal{O}_{M} \rightarrow 0
$$

Proof. In the following, we denote by ξ the fibre coordinate, induced by the coordinate of C^{*}. An element on the stalk of $P^{*} \Omega^{1}$ at (x, y, ξ) has the form

$$
\sum_{\lambda=1}^{m}\left(f_{\lambda} d x+g_{\lambda} d y\right) \otimes h_{\lambda} \quad \text { for } \quad f_{\lambda}, g_{\lambda} \in \mathcal{O}_{S,(x, y)}, h_{\lambda} \in \mathcal{O}_{\boldsymbol{M},(x, y, \xi)}
$$

Let $\alpha_{(x, y, \xi)}: p^{*} \Omega_{S,(x, y, \xi)}^{1} \rightarrow \Omega_{M,(x, y, \xi)}^{1}$ be the module homomorphism sending $\sum_{\lambda=1}^{m}\left(f_{\lambda} d x+g_{\lambda} d y\right) \otimes h_{\lambda} \quad$ to $\sum_{\lambda=1}^{m}\left(f_{\lambda} h_{\lambda} d x+g_{\lambda} h_{\lambda} d y\right) \quad$ and $\quad \beta_{(x, y, \xi)}: \Omega_{S,(x, y, \xi)}^{1} \rightarrow$ $\mathcal{O}_{\mu,(x, y, \xi)}$ be the module homomorphism sending $f d x+g d y+h d \xi / \xi$ to h, where f, g and h are elements of $\mathcal{O}_{M,(x, y, \xi)}$. It is easy to see that $\alpha_{(x, y, \xi)}$ and $\beta_{(x, y, \xi)}$ are defined independently of the choice of the local coordinates. It is obvious that there exist sheaf homomorphisms $\alpha: p^{*} \Omega_{M}^{1} \rightarrow \Omega_{M}^{1}$ (resp. $\beta: \Omega_{M}^{1} \rightarrow \mathcal{O}_{M}$) whose restrictions to the stalk on (x, y, ξ) are $\alpha_{(x, y, \xi)}$ (resp. $\left.\beta_{(x, y, \xi)}\right)$. Thus we have the exact sequence

$$
0 \rightarrow p^{*} \Omega_{M}^{1} \xrightarrow{\alpha} \Omega_{M}^{1} \xrightarrow{\beta} \mathcal{O}_{M} \rightarrow 0 .
$$

Lemma 2.9. We have an exact sequence

$$
0 \rightarrow \Omega_{S}^{1} \rightarrow R^{0} p_{*} \Omega_{M}^{1} \rightarrow \bigodot_{S} \rightarrow 0
$$

Proof. Since $\left(R^{0} p_{*} \Omega_{M}^{1}\right)_{(x, y)}$, the stalk of $R^{0} p_{*} \Omega_{k}^{1}$ at (x, y), is isomorphic to $H^{0}\left(p^{-1}(x, y), \Omega_{M}^{1}\right)$,

$$
\left(R^{0} p_{*} \Omega_{z k}^{1}\right)_{(x, y)}=\left\{\begin{array}{lr}
\phi_{1}(x, y) d x+\phi_{2}(x, y) d y+\phi_{s}(x, y) d \xi / \xi ; \\
\phi_{i}(x, y) \in \mathcal{O}_{s,(x, y)} & (i=1,2,3)
\end{array}\right\} .
$$

Let $\alpha_{(x, y)}^{\prime}: \Omega_{s(x, y)}^{1} \rightarrow\left(R^{0} p_{*} \Omega_{M)_{(x, y)}^{u}}\right)_{\text {be }}$ be the map sending $\phi_{1}(x, y) d x+\phi_{2}(x, y) d y$ to $\phi_{1}(x, y) d x+\phi_{2}(x, y) d y$ and $\beta_{(z, y)}^{\prime}:\left(R^{0} p_{*} \Omega_{\mu y}^{1}\right)_{(z, y)} \rightarrow \mathcal{O}_{s,(z, y)}$ be the map sending $\phi_{1}(x, y) d x+\phi_{2}(x, y) d y+\phi_{3}(x, y) d \xi / \xi$ to $\phi_{3}(x, y)$. It is easily checked that $\alpha_{(x, y)}^{\prime}$ and $\beta_{(x, y)}^{\prime}$ are well-defined. It is clear that there exist sheaf homomomorphisms $\alpha^{\prime}: \Omega_{s}^{1} \rightarrow R^{\rho} p_{*} \Omega_{M}^{1}$ and $\beta^{\prime}: R^{\rho} p_{*} \Omega_{M}^{1} \rightarrow \mathcal{O}_{s}$ such that the restriction to the stalk at (x, y) of each homomorphism coincides with $\alpha_{(x, y)}^{\prime}$, $\beta_{(x, y)}^{\prime}$, respectively. Thus we have the exact sequence

$$
0 \rightarrow \Omega_{k}^{1} \xrightarrow{\alpha^{\prime}} R^{0} p_{*} \Omega_{\Delta M}^{1} \xrightarrow{\beta^{\prime}} \mathcal{O}_{s} \rightarrow 0 .
$$

Lemma 2.10. We have an exact sequence

$$
0 \rightarrow \Omega_{s}^{1} \rightarrow R^{1} p_{*} \Omega_{\mu}^{1} \rightarrow \mathcal{O}_{s} \rightarrow 0 .
$$

Proof. By Lemma 2.6 and Lemma 2.7, the long exact sequence arising from the short exact sequence in Lemma 2.8 reduces to

$$
\begin{aligned}
0 & \rightarrow \Omega_{s}^{1} \rightarrow R^{0} p_{*} \Omega_{\mu}^{1} \rightarrow \mathcal{O}_{s} \\
& \rightarrow \Omega_{s}^{1} \rightarrow R^{1} p_{*} \Omega_{\mu}^{1} \rightarrow \mathcal{O}_{s} \rightarrow 0 .
\end{aligned}
$$

By Lemma 2.9, the lemma follows.
Lemma 2.11. $p^{*} \Omega_{S}^{2} \cong \Omega_{\mu}^{3}$.
Proof. $\Omega_{\mu,(x, y, \xi)}^{3}$, the stalk of $\Omega_{\mu k}^{3}$ at (x, y, ξ), consists of elements

$$
\phi(x, y, \xi) d x \wedge d y \wedge d \xi / \xi \quad \text { for } \quad \phi(x, y, \xi) \in \mathcal{O}_{\mu,(x, y, \xi)} .
$$

On the other hand,

$$
p^{*} \Omega_{S}^{2}=p^{-1} \Omega_{S_{p}-1}^{2} \otimes_{\mathcal{O}_{S}} \mathcal{O}_{M}
$$

by definition, so $p^{*} \Omega_{S,(x, y, \xi)}^{2}$ consists of the elements

$$
\sum_{\lambda=1}^{m} \psi_{\lambda}(x, y) d x \wedge d y \otimes f_{k}(x, y, \xi)
$$

with $\psi_{\lambda}(x, y) \in \mathcal{O}_{s,(x, y)}, f_{\lambda}(x, y, \xi) \in \mathcal{O}_{\mu,(x, y, \xi)}$. There exists a sheaf homomorphism $\alpha^{\prime \prime}$ (resp. $\beta^{\prime \prime}$) of $\Omega_{\mu x}^{3}$ (resp. $p^{*} \Omega_{s}^{2}$) to $p^{*} \Omega_{S}^{2}$ (resp. Ω_{μ}^{3}) which sends $\phi(x, y, \xi) d x \wedge d y \wedge d \xi / \xi \quad\left(r e s p . \quad \sum_{\lambda=1}^{m} \psi_{\lambda}(x, y) d x \wedge d y \otimes f_{\lambda}(x, y, \xi)\right) \quad$ to $d x \wedge$ $d y \otimes \phi(x, y, \xi)\left(\right.$ resp. $\left.\sum_{k=1}^{m} \psi_{2}(x, y) f_{2}(x, y, \xi) d x \wedge d y \wedge d \xi / \xi\right)$ on the stalk at (x, y, ξ). Then it is easy to see $\alpha^{\prime \prime} \circ \beta^{\prime \prime}=\operatorname{id}_{p^{*} \Omega^{2}}, \beta^{\prime \prime} \circ \alpha^{\prime \prime}=\mathrm{id}_{\Omega^{3}}$.

Lemma 2.12. $R^{i} p_{*} \Omega_{\mu}^{1} \otimes \Omega_{S}^{2} \cong R^{i} p_{*}\left(\Omega_{\mu}^{1} \otimes \Omega_{\mu}^{3}\right), i=0,1$.
Proof. By Lemma 2.11,

$$
R^{i} p_{*}\left(\Omega_{M}^{1} \otimes \Omega_{M}^{3}\right) \cong R^{i} p_{*}\left(\Omega_{M}^{1} \otimes p^{*} \Omega_{S}^{2}\right)
$$

Since Ω_{M}^{1} has the property (b) of [1, p. 149, Theoreme 4.10],

$$
R^{i} p_{*}\left(\Omega_{M}^{1} \otimes p^{*} \Omega_{S}^{2}\right) \cong R^{i} p_{*} \Omega_{M}^{1} \otimes \Omega_{S}^{2}
$$

Lemma 2.13. $\quad H^{1}\left(S, R^{0} p_{*}\left(\Omega_{M}^{1} \otimes \Omega_{M}^{3}\right)\right)=0$.
Proof. Tensoring Ω_{S}^{2} with the exact sequence of Lemma 2.9, we have an exact sequence

$$
0 \rightarrow \Omega_{S}^{1} \otimes \Omega_{S}^{2} \rightarrow R^{0} p_{*} \Omega_{M}^{1} \otimes \Omega_{S}^{2} \rightarrow \mathcal{O}_{S} \otimes \Omega_{S}^{2} \rightarrow 0
$$

because Ω_{S}^{2} is locally free. By Lemma 2.12, the above sequence changes into an exact sequence

$$
0 \rightarrow \Omega_{S}^{1} \otimes \Omega_{S}^{2} \rightarrow R^{0} p_{*}\left(\Omega_{M}^{1} \otimes \Omega_{M}^{3}\right) \rightarrow \Omega_{S}^{2} \rightarrow 0
$$

From this exact sequence, we get a cohomology exact sequence

$$
\begin{aligned}
\cdots & \rightarrow H^{1}\left(S, \Omega_{S}^{1} \otimes \Omega_{S}^{2}\right) \rightarrow H^{1}\left(S, R^{0} p_{*}\left(\Omega_{M}^{1} \otimes \Omega_{M}^{3}\right)\right) \\
& \rightarrow H^{1}\left(S, \Omega_{S}^{2}\right) \rightarrow \cdots
\end{aligned}
$$

The lemma follows since $H^{1}\left(S, \Omega_{S}^{1} \otimes \Omega_{S}^{2}\right)=H^{1}\left(S, \Omega_{S}^{2}\right)=0$.
Lemma 2.14. $\quad H^{0}\left(S, R^{1} p_{*}\left(\Omega_{M}^{1} \otimes \Omega_{M}^{3}\right)\right)=0$.
Proof. Tensoring Ω_{S}^{2}, which is locally free, with the exact sequence of Lemma 2.10 and applying Lemma 2.12, we get an exact sequence

$$
0 \rightarrow \Omega_{S}^{1} \otimes \Omega_{S}^{2} \rightarrow R^{1} p_{*}\left(\Omega_{M}^{1} \otimes \Omega_{M}^{3}\right) \rightarrow \Omega_{S}^{2} \rightarrow 0
$$

This gives a cohomology exact sequence

$$
\begin{aligned}
0 & \rightarrow H^{0}\left(S, \Omega_{S}^{1} \otimes \Omega_{S}^{2}\right) \rightarrow H^{0}\left(S, R^{1} p_{*}\left(\Omega_{M}^{1} \otimes \Omega_{M}^{3}\right)\right) \\
& \rightarrow H^{0}\left(S, \Omega_{S}^{2}\right) \rightarrow \cdots
\end{aligned}
$$

Since $H^{0}\left(S, \Omega_{S}^{1} \otimes \Omega_{S}^{2}\right)=H^{0}\left(S, \Omega_{S}^{2}\right)=0$, we have $H^{0}\left(S, R^{1} p_{*}\left(\Omega_{M}^{1} \otimes \Omega_{M}^{3}\right)\right)=0$.

By Lemma 2.13 and Lemma 2.14, Proposition 2.4 is clear.
Proposition 2.15. $\operatorname{dim} H^{1}(M, \Theta)=7$.
By the Riemann-Roch theorem, we have

$$
\sum_{1=0}^{3}(-1)^{i} \operatorname{dim} H^{i}(M, \Theta)=\frac{1}{2} c_{3}-\frac{19}{24} c_{1} c_{2}+\frac{1}{2} c_{1}^{3}
$$

From the results we have already got, we get

$$
\operatorname{dim} H^{1}(M, \Theta)=7-\frac{1}{2} c_{3}+\frac{19}{24} c_{1} c_{2}-\frac{1}{2} c_{1}^{3} .
$$

Now we shall calculate the relevant Chern numbers of M.
Lemma 2.16. $c_{3}=0$.
Proof. Since M is diffeomorphic to $S^{1} \times S^{2} \times S^{3}$, this is clear.
Lemma 2.17. $c_{1} c_{2}=0$.
Proof. By the Riemann-Roch theorem,

$$
c_{1} c_{2}=24 \sum_{i=0}^{3}(-1)^{i} \operatorname{dim} H^{i}(M, \mathcal{O})
$$

Since M is compact, $\operatorname{dim} H^{0}(M, \mathcal{O})=1$. To calculate $\operatorname{dim} H^{1}(M, \mathcal{O})$, we use the Leray spectral sequence and get

$$
0 \rightarrow E_{2}^{1,0} \rightarrow H^{1}(M, \mathcal{O}) \rightarrow E_{3}^{0,1} \rightarrow 0
$$

where

$$
E_{2}^{i, j}=H^{i}\left(S, R^{j} p_{*} \mathcal{O}\right), E_{3}^{0,1}=\operatorname{Ker}\left(E_{2}^{0,1} \rightarrow E_{2}^{1,0}\right)
$$

By Lemma 2.6,

$$
E_{2}^{1,0}=H^{1}\left(S, R^{0} p_{*} \mathcal{O}\right)=H^{1}\left(S, \mathcal{O}_{S}\right)=0
$$

Hence

$$
E_{3}^{0,1}=E_{2}^{0,1}=H^{0}\left(S, \mathscr{O}_{S}\right)
$$

On the other hand,

$$
E_{2}^{1,0}=H^{1}\left(S, R^{0} p_{*} \mathcal{O}_{\mu}\right)=H^{1}\left(S, \mathcal{O}_{S}\right)=0
$$

Therefore

$$
\operatorname{dim} H^{1}(M, \mathscr{O})=\operatorname{dim} H^{\circ}\left(S, \mathscr{O}_{S}\right)=1
$$

As for $H^{2}(M, \mathcal{O})$, again by the Leray spectral sequence, $H^{2}(M, \mathcal{O})$ has a filtration with succesive quotients $E_{3}^{2,0}, E_{3}^{1,1}$ and $E_{4}^{0,2}$. We have $E_{4}^{0,2}=0$ because the fibres of p are of dimension 1 . Next we have $E_{3}^{1,1}=0$ because

$$
E_{3}^{1,1}=\operatorname{Ker}\left(E_{2}^{1,1} \rightarrow E_{2}^{3,0}\right) \subset E_{2}^{1,1}=H^{1}\left(S, R^{1} p_{*} \mathcal{O}\right)=H^{1}\left(S, \mathcal{O}_{S}\right)=0
$$

We also have $E_{3}^{2,0}=0$ since

$$
E_{2}^{2,0}=H^{2}\left(S, R^{0} p_{*} \mathscr{O}\right) \cong H^{2}\left(S, \mathscr{O}_{S}\right)=0
$$

Therefore $H^{2}(M, \mathcal{O})=0$. Furthermore $H^{3}(M, \mathcal{O}) \cong H^{0}\left(M, \Omega^{3}\right)=0$.
Lemma 2.18. $c_{1}^{3}=0$.
Proof. It is clear because M is diffeomorphic to $S^{1} \times S^{2} \times S^{3}$.
By the above three lemmas, we have Proposition 2.15.
2. Small deformations of M. Put

$$
\begin{aligned}
W & =\boldsymbol{P}^{3}-l_{0}-l_{\infty} \\
B & =\left\{t=\left(t_{1}, t_{2}, \cdots, t_{7}\right) \in \boldsymbol{C}^{7} ;\left|t_{i}\right|<\delta, i=1,2, \cdots, 7\right\}
\end{aligned}
$$

where δ is a sufficiently small positive real number. For $t \in B$, we define a holomorphic automorphism g_{t} of W by

$$
\begin{aligned}
& g_{t}\left(\left[\zeta_{0}: \zeta_{1}: \zeta_{2}: \zeta_{3}\right]\right) \\
&=\left[\zeta_{0}+t_{1} \zeta_{1}: t_{2} \zeta_{0}+\left(1+t_{3}\right) \zeta_{1}:\left(\alpha+t_{4}\right) \zeta_{2}+t_{5} \zeta_{3}: t_{8} \zeta_{2}+\left(\alpha+t_{7}\right) \zeta_{3}\right]
\end{aligned}
$$

In particular, $g_{0}=g$.
Let \widetilde{g} be a holomorphic automorphism of $W \times B$ defined by

$$
\tilde{\boldsymbol{g}}(\zeta, t)=\left(g_{t}(\zeta), t\right)
$$

and \approx the projection of $W \times B$ to the second factor. Obviously we have $\widetilde{\sigma} \widetilde{g}=\widetilde{\sigma}$, hence we have the induced map $\mathscr{M}=(W \times B) /\langle\widetilde{g}\rangle \rightarrow B$ which we also denote by τ.

Theorem 1. ($\mathscr{M}, B, \widetilde{*}$) is the complex analytic family which is complete and effectively parametrized at the origin. A complex manifold N is a small deformation of M if and only if N is biholomorphic to $W /\left\langle g_{t}\right\rangle$ for some $t \in B$.

Proof. ($\mathscr{M}, B, \widetilde{\sigma}$) is easily seen to be a complex analytic family. Let $\mathfrak{u}=\left\{U_{0}, U_{W}, U_{\infty}\right\}$ be the open covering of M defined in $\S 1.2$. We define $\theta\left(\partial / \partial t_{i}\right) \in Z^{1}(\mathfrak{U}, \Theta)$ for $i=1,2, \cdots, 7$ as follows:

$$
\begin{aligned}
& \theta\left(\frac{\partial}{\partial t_{i}}\right)\left(U_{0} \cap U_{W}\right)=\theta\left(\frac{\partial}{\partial t_{i}}\right)\left(U_{W} \cap U_{\infty}\right)=0, \\
& \theta\left(\frac{\partial}{\partial t_{1}}\right)\left(U_{0} \cap U_{\infty}\right)=-x_{0}\left(x_{0} \frac{\partial}{\partial x_{0}}+y_{0} \frac{\partial}{\partial y_{0}}+z_{0} \frac{\partial}{\partial z_{0}}\right), \\
& \theta\left(\frac{\partial}{\partial t_{2}}\right)\left(U_{0} \cap U_{\infty}\right)=\frac{\partial}{\partial x_{0}}, \quad \theta\left(\frac{\partial}{\partial t_{3}}\right)\left(U_{0} \cap U_{\infty}\right)=x_{0} \frac{\partial}{\partial x_{0}}, \\
& \theta\left(\frac{\partial}{\partial t_{4}}\right)\left(U_{0} \cap U_{\infty}\right)=\frac{y_{0}}{\alpha} \frac{\partial}{\partial y_{0}}, \quad \theta\left(\frac{\partial}{\partial t_{5}}\right)\left(U_{0} \cap U_{\infty}\right)=\frac{z_{0}}{\alpha} \frac{\partial}{\partial y_{0}}, \\
& \theta\left(\frac{\partial}{\partial t_{6}}\right)\left(U_{0} \cap U_{\infty}\right)=\frac{y_{0}}{\alpha} \frac{\partial}{\partial z_{0}}, \quad \theta\left(\frac{\partial}{a t_{7}}\right)\left(U_{0} \cap U_{\infty}\right)=\frac{z_{0}}{\alpha} \frac{\partial}{\partial z_{0}},
\end{aligned}
$$

with respect to the system of local coordinates $\left(x_{0}, y_{0}, z_{0}\right)=\left(\zeta_{1} / \zeta_{0}, \zeta_{2} / \zeta_{0}, \zeta_{3} / \zeta_{0}\right)$. Here $\theta\left(\partial / \partial t_{i}\right)\left(U_{0} \cap U_{W}\right)$ means the value of $\theta\left(\partial / \partial t_{i}\right)$ on $U_{0} \cap U_{W}$. Then it is easy to see that $\left[\theta\left(\partial / \partial t_{i}\right)\right](i=1,2, \cdots, 7)$ are linearly independent in $H^{1}(\mathfrak{U}, \Theta)$, where $\left[\theta\left(\partial / \partial t_{i}\right)\right]$ denotes the cohomology class represented by $\theta\left(\partial / \partial t_{i}\right)$. Indeed, suppose $\sum_{i=1}^{7} \alpha_{i}\left[\theta\left(\partial / \partial t_{i}\right)\right]=0$ for complex numbers α_{i}.

This is equivalent to the existence of an element $v \in H^{0}\left(U_{0} \cup U_{W} \cup U_{\infty}, \Theta\right)$ such that

$$
\sum_{i=1}^{7} \alpha_{1} \theta\left(\frac{\partial}{\partial t_{i}}\right)\left(U_{0} \cap U_{\infty}\right)=\left.v\right|_{U_{0} \cap U_{\infty}}-\left.g_{*} v\right|_{U_{0} \cap U_{\infty}}
$$

Writing this equation explicitly, we have

$$
\begin{aligned}
-\alpha_{1} x_{0} & \left(x_{0} \frac{\partial}{\partial x_{0}}+y_{0} \frac{\partial}{\partial y_{0}}+z_{0} \frac{\partial}{\partial z_{0}}\right)+\alpha_{2} \frac{\partial}{\partial x_{0}}+\alpha_{3} x_{0} \frac{\partial}{\partial x_{0}} \\
& +\frac{1}{\alpha}\left\{\alpha_{4} y_{0} \frac{\partial}{\partial y_{0}}+\alpha_{5} z_{0} \frac{\partial}{\partial y_{0}}+\alpha_{6} y_{0} \frac{\partial}{\partial z_{0}}+\alpha_{7} z_{0} \frac{\partial}{\partial z_{0}}\right\} \\
= & (1-1 / \alpha)\left(c_{1} y_{0}+d_{1} z_{0}+f x_{0} y_{0}+g x_{0} z_{0}\right) \frac{\partial}{\partial x_{0}} \\
& +\left\{(1-\alpha)\left(a_{2}+b_{2} x_{0}\right)+(1-1 / \alpha)\left(f y_{0}+g y_{0} z_{0}\right)\right\} \frac{\partial}{\partial y_{0}} \\
& +\left\{(1-\alpha)\left(a_{3}+b_{3} x_{0}\right)+(1-1 / \alpha)\left(f y_{0} z_{0}+g z_{0}\right)\right\} \frac{\partial}{\partial z_{0}} .
\end{aligned}
$$

Then we have $\alpha_{i}=0$ for $i=1,2, \cdots, 7$. This shows the linear independence of $\left[\theta\left(\partial / \partial t_{i}\right)\right](i=1,2, \cdots, 7)$. Lastly it is easy to see that $\rho_{0}(\cdot)=$ $i([\theta(\cdot)])$, where i is the inclusion map of $H^{1}(\mathfrak{l}, \Theta)$ to $H^{1}(M, \Theta)$ and ρ_{0} is the Kodaira-Spencer map. The above result shows that ρ_{0} is bijective because $H^{1}(M, \Theta)$ is 7-dimensional.

\S 3. Small deformations of $M(n)(n \geqq 2)$.

1. Cohomology groups of $M(n)$.

Proposition 3.1. $H^{3}(M, \Theta)=0$.
Proof. By the Kodaira-Serre duality,

$$
H^{3}(M(n), \Theta) \cong H^{0}\left(M(n), \Omega^{1} \otimes \Omega^{3}\right)
$$

But by [7, p. 7, Proposition 2.3]

$$
H^{0}\left(X,\left(\Omega^{1}\right)^{\otimes m_{1}} \otimes\left(\Omega^{2}\right)^{\otimes m_{2}} \otimes\left(\Omega^{3}\right)^{\otimes m_{3}}\right)=0
$$

for any Class L manifold X and for non-negative integers m_{1}, m_{2}, m_{3} such that $m_{1}+m_{2}+m_{3}>0$.

PROPOSITION 3.2. $\operatorname{dim} H^{0}(M(n), \Theta)=3(n \geqq 2)$.
Proof. We first prove the assertion for $n=2$. We have defined $M(2)$ by $Z\left(M^{1}, M^{2}, \iota^{1}, \iota^{2}\right)$. We denote by c^{-1} the inverse mapping of ι considered as a mapping of $N(\varepsilon)$ to $\ell(N(\varepsilon)) \subset \pi\left(U_{W}\right) \subset M$. Then $s=\iota^{2} \circ \sigma \circ\left(\iota^{1}\right)^{-1}$
of $\iota^{1}(N(\varepsilon)) \subset M^{1}$ to $\iota^{2}(N(\varepsilon)) \subset M^{2}$ is expressed in terms of the local coordinates induced by the homogeneous coordinates in P^{3} as

$$
s\left(\left[\zeta_{0}: \zeta_{1}: \zeta_{2}: \zeta_{3}\right]\right)=\left[\mu \zeta_{0}+\nu \zeta_{2}: \mu \zeta_{1}+\nu \zeta_{3}:-\left(\nu \zeta_{0}+\mu \zeta_{2}\right):-\left(\nu \zeta_{1}+\mu \zeta_{3}\right)\right],
$$

where $\mu=1+\lambda^{2}, \nu=1-\lambda^{2}$. In the above, π and σ are mappings defined at the end of $\S 1$. By the Mayer-Vietoris exact sequence of cohomology groups with coefficient in Θ, we see that an element of $H^{0}(M(2), \Theta)$ is identified with an element $v \in H^{0}\left(\left(M^{1}\right)^{\ddagger}, \Theta\right)$ such that $s_{*}\left(\left.v\right|_{c^{1}(N(\varepsilon))}\right)$ is the restriction of an element v^{\prime} of $H^{0}\left(\left(M^{2}\right)^{*}, \Theta\right)$ to $\iota^{2}(N(\varepsilon))$, i.e., $\left.v^{\prime}\right|_{c^{2}(N(\varepsilon))}=$ $s_{*}\left(\left.v\right|_{\iota^{1}(N(\varepsilon))}\right)$. On $\iota^{1}(N(\varepsilon)) \cap \pi\left(\left\{\zeta_{0} \neq 0\right\}\right), v$ has the form

$$
\left(a_{1}+a_{2} x_{0}+d x_{0}\right) \frac{\partial}{\partial x_{0}}+\left(b_{1} y_{0}+b_{2} z_{0}+d x_{0} y_{0}\right) \frac{\partial}{\partial y_{0}}+\left(c_{1} y_{0}+c_{2} z_{0}+d x_{0} z_{0}\right) \frac{\partial}{\partial z_{0}}
$$

because $H^{0}\left(\left(\boldsymbol{M}^{1}\right)^{\sharp}, \Theta\right)=H^{0}\left(M^{1}, \Theta\right)$. So does v^{\prime} on the similar domain. In the following, we denote the coordinates and coefficients concerned with M^{2} by letters with primes, for instance, $\zeta^{\prime}, a^{\prime}$. Calculating $4 \lambda^{2}\left\{s_{*}\left(\left.v\right|_{c_{1(N(\varepsilon))}}\right)\right.$ $\left.\left.v^{\prime}\right|_{c^{2(N(s))}}\right\}$ in terms of the local coordinates x_{0}, y_{0}, z_{0} and $x_{0}^{\prime}, y_{0}^{\prime}, z_{0}^{\prime}$, we have

$$
\begin{aligned}
& \left\{\left(\mu^{2} a_{1}-\nu^{2} c_{1}-4 \lambda^{2} a_{1}^{\prime}\right)+\left(\mu^{2} a_{2}-\nu^{2} c_{2}+\nu^{2} b_{1}-4 \lambda^{2} a_{2}^{\prime}\right) x_{0}^{\prime}+\mu \nu\left(a_{1}-c_{1}\right) y_{0}^{\prime}\right. \\
& \quad+\mu \nu\left(a_{2}-c_{2}\right) z_{0}^{\prime}+\left(\nu^{2} b_{2}+\mu^{2} d-4 \lambda^{2} d^{\prime}\right) x_{0}^{\prime 2}+\mu \nu b_{1} x_{0}^{\prime} y_{0}^{\prime}+\mu \nu\left(b_{2}\right. \\
& \left.\quad+d) x_{0}^{\prime} z_{0}^{\prime}\right\} / \partial x_{0}^{\prime}+\left\{\mu \nu b_{1}+\mu \nu\left(b_{2}+d\right) x_{0}^{\prime}+\left(\left(\mu^{2}+\nu^{2}\right) b_{1}-4 \lambda^{2} b_{1}^{\prime}\right) y_{0}^{\prime}\right. \\
& \quad+\left(\mu^{2} b_{2}+\nu^{2} d-4 \lambda^{2} b_{2}^{\prime}\right) z_{0}^{\prime}+\left(\nu^{2} b_{2}+\mu^{2} d-4 \lambda^{2} d^{\prime}\right) x_{0}^{\prime} y_{0}^{\prime}+\mu \nu b_{1} y_{0}^{\prime 2} \\
& \left.\quad+\mu \nu\left(b_{2}+d\right) y_{0}^{\prime} z_{0}^{\prime}\right\} \partial / \partial y_{0}^{\prime}+\left\{\mu \nu\left(c_{1}-a_{1}\right)+\mu \nu\left(c_{2}-a_{2}\right) x_{0}^{\prime}+\left(\mu^{2} c_{1}\right.\right. \\
& \left.\quad-\nu^{2} a_{1}-4 \lambda^{2}\right) y_{0}^{\prime}+\left(\mu^{2} c_{2}-\nu^{2} a_{2}+\nu^{2} b_{1}-4 \lambda^{2} c_{2}^{\prime}\right) z_{0}^{\prime}+\left(\nu^{2} b_{2}+\mu^{2} d\right. \\
& \left.\left.\quad-4 \lambda^{2} d^{\prime}\right) x_{0}^{\prime} z_{0}^{\prime}+\mu \nu b_{1} y_{0}^{\prime} z_{0}^{\prime}+\mu \nu\left(b_{2}+d\right) z_{0}^{\prime 2}\right\} \partial / \partial z_{0}^{\prime} .
\end{aligned}
$$

Thus the equation $s_{*}\left(\left.v\right|_{\iota^{1}(N(\varepsilon))}\right)=\left.v^{\prime}\right|_{\iota^{2}(N(\varepsilon))}$ is equivalent to the relations among coefficients

$$
\begin{aligned}
& a_{1}=a_{1}^{\prime}=c_{1}=c_{1}^{\prime}, \quad a_{2}=a_{2}^{\prime}=c_{2}=c_{2}^{\prime} \\
& b_{1}=b_{1}^{\prime}=0, \quad b_{2}=b_{2}^{\prime}=-d=-d^{\prime}
\end{aligned}
$$

This concludes $\operatorname{dim} H^{0}(M(2), \Theta)=3$.
We now prove the assertion for $n \geqq 3$. It is easy to check that an element, $\quad v=\left(a+b x_{0}+c x_{0}^{2}\right) \partial / \partial x_{0}+\left(-c z_{0}+c x_{0} y_{0}\right) \partial / \partial y_{0}+\left(a y_{0}+b z_{0}+\right.$ $\left.c x_{0} z_{0}\right) \partial / \partial z_{0}$, of $H^{0}(N(\varepsilon), \Theta)$ is σ_{*}-invariant and τ_{*}-invariant, i.e., $\sigma_{*} v=v$ and $\tau_{*} v=v$. Since $M(3)=Z\left(M(2), M^{3},\left.\iota^{2}\right|_{N(\varepsilon)} \circ \tau, \iota^{3}\right)$ and $\iota=\pi \circ \tau$, the above facts imply that every element of $H^{\circ}\left(M(2)^{\ddagger}, \Theta\right)$ has the extension to $M(3)$ and to $M(n)$ for any $n \geqq 4$.

Proposition 3.3. $\operatorname{dim} H^{1}(M(n), \Theta)=15 n-12$.

We first note that the embedding \subset of $U_{\varepsilon} \subset \boldsymbol{P}^{3}$ into M is naturally extended to an automorphism τ of \boldsymbol{P}^{3} when we consider M as a manifold obtained by identification of $\zeta \in U_{0} \cap g^{-1}\left(U_{\infty}\right)$ with $g(\zeta) \in g\left(U_{0}\right) \cap U_{\infty}$ in $U_{0} \cup$ $U_{W} \cup U_{\infty} \subset \boldsymbol{P}^{3}$. Here U_{0}, U_{w}, U_{∞} have already been defined in §1. 2. We denote $U_{0} \cup U_{W} \cup U_{\infty}$ by $\widetilde{M(1)}, U_{0} \cap g^{-1}\left(U_{\infty}\right)$ by $N(1)_{1}$, and $g\left(U_{0}\right) \cap U_{\infty}$ by $N(1)_{2}$. $P^{3}-\widetilde{M(1)}$ has two connected components: $K(1)_{1}$ containing l_{0} and $K(1)_{2}$ containing l_{∞}. From now on, we denote g by $g_{(1) 1}$.

Assume that $M(n), N(n)_{i}, K(n)_{i}(1 \leqq i \leqq 2 n)$, and $g_{(n) j}(1 \leqq j \leqq n)$ are defined for n so that $\widetilde{M(n)}, N(n)_{i}, K(n)_{i}$ are subsets in P^{3} and that each $\boldsymbol{g}_{(n) j}$ is a holomorphic automorphism of \boldsymbol{P}^{3}, which induces an isomorphism of $N(n)_{2 j-1}$ to $N(n)_{2 j}$ for any $1 \leqq j \leqq n$. Assume also that $M(n)$ is constructed by identification of $\zeta^{j} \in N(n)_{2 j-1}$ with $g_{(n) j}\left(\zeta^{j}\right) \in N(n)_{2 j}(1 \leqq j \leqq n)$ in $\widetilde{M(n)}$ and that the embedding $c_{n}: U_{\varepsilon} \rightarrow M(n)$ lifts to an open embedding into $\widetilde{M(n)}$ and extends to an automorphism $\tilde{\iota}_{n}$ of \boldsymbol{P}^{3}. We define $\widetilde{M(n+1)}$ by $\tilde{\iota}_{n}^{-1}(\widetilde{M(n)})-\cup_{i=1}^{2} \sigma \circ \tau^{-1}\left(\left(K(1)_{i}\right)\right.$, and $N(n+1)_{i} \quad\left(\right.$ resp. $\left.K(n+1)_{i}\right)$ by $\tilde{\iota}_{n}^{-1}\left(N(n)_{i}\right) \quad$ (resp. $\tilde{\iota}_{n}^{-1}\left(K(n)_{i}\right)$ for $1 \leqq i \leqq 2 n$ and by $\sigma \circ \tau^{-1}\left(N(1)_{i-2 n}\right)$ (resp. $\sigma \circ \tau^{-1}\left(K(1)_{i-2 n}\right)$ for $i=2 n+1,2 n+2$. We also define $g_{(n+1) j}$ by $\iota_{n}^{-1} \circ g_{(n) j} \circ \iota_{n}$ for $1 \leqq j \leqq n$ and by $\sigma \circ \tau^{-1} \circ g_{(1) 1} \circ \tau \circ \sigma$ for $j=n+1$. Then we can easily see that every $g_{(n+1) j}$ is an automorphism of \boldsymbol{P}^{3}, which induces an isomorphism of $N(n+1)_{2 j-1}$ to $N(n+1)_{2 j}$ and that we obtain $M(n+1)$ by identifying $\zeta^{j} \in N(n+1)_{2 j-1}$ with $g_{(n+1) j}\left(\zeta^{j}\right) \in N(n+1)_{2 j}$ in $\widetilde{M(n+1)}$ for $1 \leqq j \leqq n+1$.

Lemma 3.4. If $\widetilde{v} \in H^{1}(\widetilde{M(n)}, \Theta)$ is the lifting of $v \in H^{1}(M(n), \Theta)$, then $\tilde{v}=0$.

Proof. Since \tilde{v} is the lifting, it satisfies the conditions

$$
\left.\widetilde{v}\right|_{N(n)_{2 j}}=\left.\left(g_{(n) j}\right)_{*} \tilde{v}\right|_{N(n)_{2 j-1}}, \quad 1 \leqq j \leqq n
$$

Let $\left.v\right|_{N(n)_{i}}$ decompose into $a_{(n) i}+b_{(n) i}(1 \leqq i \leqq n)$ where $a_{(n) i}$ is the restriction of an element $\tilde{a}_{(n) i}$ of $H^{1}\left(K(n)_{i} \cup N(n)_{i}, \Theta\right)$ and $b_{(n) i}$ is the restriction of $\widetilde{b}_{(n) i} \in H^{1}\left(\boldsymbol{P}^{3}-K(n)_{i}, \Theta\right)$. This decomposition is possible and unique by the Mayer-Vietoris exact sequence for the pair $\left(\boldsymbol{P}^{3}-K(n)_{i}\right.$, $\left.K(n)_{i} \cup N(n)_{i}\right)$. Then the relations among $a_{(n) i}$ and $b_{(n) i}$ are as follows:

$$
a_{(n) 2 j}=\left(g_{(n) j}\right)_{*} b_{(n) 2 j-1}, \quad b_{(n) 2 j}=\left(g_{(n) j}\right)_{*} a_{(n) 2 j-1},
$$

for $1 \leqq j \leqq n$.
Let $L(n):=M(n)-\cup_{i=1}^{2 n} N(n)_{i}$. Consider the commutative diagram of cohomology groups with coefficients in Θ :

The first row is the local cohomology exact sequence for the pair $(\widetilde{M(n)}$, $L(n))$ and the second is that for the pair ($\left.\boldsymbol{P}^{3}, L(n)\right)$.

By the relations among $a_{(n) i}$ and $b_{(n) i}$,

$$
\begin{aligned}
0 & \left.=\delta_{L}(\alpha(\theta))=\delta_{L}\left(\bigoplus_{i=1}^{2 n}\left(a_{(n) i}+b_{(n) i}\right)\right)=\delta_{L}\left(\bigoplus_{j=1}^{n} a_{(n) 2 j-1}+\bigoplus_{j=1}^{n}\left(g_{(n) j}\right)_{*} b_{(n) 2 j-1}\right)\right) \\
& =\bigoplus_{j=1}^{n} \delta_{L}\left(a_{(n) 2 j-1}\right)+\bigoplus_{j=1}^{n} \delta_{L}\left(\left(g_{(n) j}\right)_{*} b_{(n) 2 j-1}\right) .
\end{aligned}
$$

By the commutativity of the diagram above, the last line of the above equation is equal to

$$
\begin{aligned}
& \rho\left(\widetilde{\delta}_{L}\left(\bigoplus_{j=1}^{n} \widetilde{a}_{(n) 2 j-1}\right)+\widetilde{\delta_{L}}\left(\bigoplus_{j=1}^{n}\left(\left(g_{(n) j}\right)_{*} \widetilde{b}_{(n) 2 j-1}\right)\right)\right. \\
& \quad=\rho \circ \widetilde{\delta}_{L}\left(\left(\bigoplus_{j=1}^{n} a_{(n) 2 j-1}+\bigoplus_{j=1}^{n}\left(g_{(n) j}\right)_{*} b_{(n) 2 j-1}\right)\right) .
\end{aligned}
$$

Since $\tilde{\delta}_{L}$ and ρ are isomorphisms, we have

$$
\bigoplus_{j=1}^{n} \tilde{a}_{(n) 2 j-1}+\bigoplus_{j=1}^{n}\left(g_{(n) j}\right)_{*} \tilde{b}_{(n) 2 j-1}=0
$$

Since all the terms on the left are from the distinct components of $\bigoplus_{i=1}^{n} H^{1}\left(N(n)_{i} \cup K(n)_{i}\right)$, we have

$$
\widetilde{a}_{(n) 2 j-1}=\left(g_{(n) j}\right)_{*} \widetilde{b}_{\langle n| 2 j-1}=0
$$

for $j=1, \cdots, n$. This is equivalent to

$$
\tilde{a}_{(n) i}=\tilde{b}_{(n) i}=0, i=1, \cdots, 2 n
$$

Hence we have $\alpha(v)=0$. The proof of the lemma is complete once we show that α is injective, i.e., the following sequence is exact:

$$
0 \rightarrow H^{0}(\widetilde{M(n)}) \rightarrow \bigoplus_{i=1}^{2 n} H^{0}\left(N(n)_{i}\right) \rightarrow H_{L(n)}^{1}(\widetilde{M(n)}) \rightarrow 0
$$

First consider the commutative diagram

Both rows are the local cohomology exact sequences in view of facts $H_{L(n)}^{0}\left(\widetilde{M(n))}=H_{L(n)}^{0}\left(\boldsymbol{P}^{3}\right)=0\right.$ and $H^{1}\left(\boldsymbol{P}^{3}\right)=0$. We are done since any holomorphic vector field on $\overparen{M(n)}$ (resp. $\left.N(n)_{i}\right)$ can be extended uniquely to one on $\boldsymbol{P}^{3}\left(\operatorname{resp} . N(n)_{i} \cup K(n)_{i}\right)$.

Lemma 3.5. The restrictions of any element of $H^{1}(M(n), \Theta)$ to $\iota_{n-1}(N(\varepsilon)), \iota_{n}\left(U_{\epsilon}\right)$, and $\iota_{n}(N(\varepsilon))$ are zero.

Proof. Consider the following commutative diagram

Since β is the zero map, we have the conclusion for $\iota_{n-1}(N(\varepsilon))$. The other two are obvious because $\iota_{n}(N(\varepsilon)) \subset \iota_{n}\left(U_{\varepsilon}\right) \subset \iota_{n-1}(N(\varepsilon))$.

Lemma 3.6. The following sequence is exact:

$$
\begin{aligned}
0 & \rightarrow H^{0}(M(n), \Theta) \rightarrow H^{0}\left(M(n)^{\sharp}, \Theta\right) \oplus H^{0}\left(e_{n}\left(U_{\varepsilon}\right), \Theta\right) \\
& \rightarrow H^{0}(N(\varepsilon), \Theta) \rightarrow 0
\end{aligned}
$$

Proof. As is already proved, $H^{0}(M(n), \Theta)$ is isomorphic to $H^{0}\left(M(n)^{\sharp}, \Theta\right)$ by the restriction map, and so is $H^{0}\left(e_{n}\left(U_{\epsilon}\right), \Theta\right)$ to $H^{0}(N(\varepsilon), \Theta)$.

Lemma 3.7. $H^{1}(M(n), \Theta)$ is isomorphic to the subgroup $H^{1}(M(n), \Theta)^{\#}$ in $H^{1}\left(M(n)^{\ddagger}, \Theta\right)$ consisting of elements whose restrictions to $\iota_{n}(N(\varepsilon))$ are zero.

Proof. By the above lemma, we have an exact sequence:

$$
\begin{aligned}
0 & \rightarrow H^{1}(M(n), \Theta) \rightarrow H^{1}\left(M(n)^{\ddagger}, \Theta\right) \oplus H^{1}\left(e_{n}\left(U_{\varepsilon}\right), \Theta\right) \\
& \rightarrow H^{1}(N(\varepsilon), \Theta)
\end{aligned}
$$

By Lemma 3.5, the first factor of the image of an element of $H^{1}(M(n), \Theta)$ is contained in $H^{1}(M(n), \Theta)^{\ddagger}$ and the second component of the image is zero. So the restriction map of $H^{1}(M(n), \Theta)$ to $H^{1}\left(M(n)^{\ddagger}, \Theta\right)$ induces a map of $H^{1}(M(n), \Theta)$ to $H^{1}(M(n), \Theta)^{\sharp}$. The above exact sequence proves the injectivity of the map.

The surjectivity is proved by chasing the sequence. A pair of an element of $H^{1}(M(n), \Theta)^{\#}$ and zero of $H^{1}\left(\epsilon_{n}\left(U_{\varepsilon}\right)\right)$ is mapped to zero in $H^{1}(N(\varepsilon)$, $\Theta)$. By the exactness of the sequence, there exists an element of $H^{1}(M(n)$, $\Theta)$ mapped to the pair.

Proof of Proposition 3.3. We first claim that $\operatorname{Im}\left(H^{1}(M(n), \Theta) \rightarrow\right.$ $\left.H^{1}\left(M(n-1)^{\sharp}, \Theta\right) \oplus H^{1}\left(M^{n \sharp}, \Theta\right)\right)$ is isomorphic to $H^{1}(M(n-1), \Theta) \oplus H^{1}\left(M^{n}, \Theta\right)$. The image is contained in $H^{1}(M(n-1), \Theta)^{\sharp} \Theta H^{1}\left(M^{n}, \Theta\right)^{\sharp}$ by Lemma 3.5.

Conversely any pair in $H^{1}(M(n-1), \Theta)^{\sharp} \oplus H^{1}\left(M^{n}, \Theta\right)^{\#}$ is the image of an element of $H^{1}(M(n), \Theta)$ because the image of the pair in $H^{1}(N(\varepsilon), \Theta)$ is zero. Hence the image of $H^{1}(M(n), \Theta)$ is equal to $H^{1}(M(n-1), \Theta)^{\ddagger} \oplus H^{1}\left(M^{n}, \Theta\right)^{\sharp}$ and isomorphic to $H^{1}(M(n-1), \Theta) \oplus H^{1}\left(M^{n}, \Theta\right)$ by Lemma 3.7.

By the above claim, we have an exact sequence

$$
\begin{aligned}
0 & \rightarrow \operatorname{Coker}\left(H^{0}\left(M(n-1)^{\ddagger}, \Theta\right) \oplus H^{0}\left(M^{n \sharp}, \Theta\right) \rightarrow H^{0}(N(\varepsilon), \Theta)\right. \\
& \rightarrow H^{1}(M(n), \Theta) \rightarrow H^{1}(M(n-1), \Theta) \oplus H^{1}\left(M^{n}, \Theta\right) \rightarrow 0
\end{aligned}
$$

If $n=2$, the dimension of the cokernel is 4 because $\operatorname{dim} H^{\circ}(M(2), \Theta)=3$, $\operatorname{dim} H^{0}\left(M(1)^{*}, \Theta\right)=7, \operatorname{dim} H^{0}(N(\varepsilon), \Theta)=15$. Therefore

$$
\operatorname{dim} H^{1}(M(2))=\operatorname{dim}\left(H^{1}\left(M^{1}\right) \oplus H^{1}\left(M^{2}\right)\right)+4=14+4=18,
$$

which proves the assertion for $n=2$. If $n \geqq 3$, we see that the cokernel is 8 dimensional, because $\operatorname{dim} H^{0}(M(n), \Theta)=\operatorname{dim} H^{0}\left(M(n-1)^{\sharp}, \Theta\right)=3$, $\operatorname{dim} H^{0}\left(M^{n \sharp}, \Theta\right)=7$, and $\operatorname{dim} H^{0}(N(\varepsilon))=15$. Then by induction on n, we have

$$
\begin{aligned}
\operatorname{dim} H^{1}(M(n), \Theta) & =\operatorname{dim}\left(H^{1}(M(n-1), \Theta) \oplus H^{1}(M, \Theta)\right)+8 \\
& =15(n-1)-12+7+8=15 n-12
\end{aligned}
$$

Proposition $3.8 \quad H^{2}(M(n), \Theta)=0(n \geqq 2)$
Proof. By the Riemann-Roch theorem, we have

$$
\begin{aligned}
3- & 15 n+12+\operatorname{dim} H^{2}(M(n), \Theta) \\
\quad= & \frac{1}{2} c_{1}^{3}[M(n)]-\frac{19}{24} c_{1} c_{2}[M(n)]+\frac{1}{2} c_{3}[M(n)] .
\end{aligned}
$$

Due to [6, p. 6, Proposition 2.2], we have

$$
c_{\mathrm{I}}\left[X_{1} \# X_{2}\right]=c_{\mathrm{I}}\left[X_{1}\right]+c_{\mathrm{I}}\left[X_{2}\right]-c_{\mathrm{I}}\left[\boldsymbol{P}^{3}\right]
$$

for any Class L manifolds X_{1} and X_{2}, where c_{I} is the Chern number. Hence

$$
c_{\mathrm{I}}[M(n)]=n c_{\mathrm{I}}[M]-(n-1) c_{\mathrm{I}}\left[\boldsymbol{P}^{3}\right]=-(n-1) c_{\mathrm{I}}\left[\boldsymbol{P}^{3}\right]
$$

because $c_{\mathrm{I}}[M]=0$. Therefore, with the well-known fact on the cohomology groups of P^{3} with coefficients in θ, we have

$$
\begin{aligned}
\operatorname{dim} H^{2}(M(n), \Theta) & =15 n-15-(n-1) \sum(-1)^{i} \operatorname{dim} H^{i}\left(\boldsymbol{P}^{3}, \Theta\right) \\
& =15 n-15-(n-1)(15-0+0-0)=0
\end{aligned}
$$

2. Small deformations of $M(2)$. Let δ be a sufficiently small positive real number and $B\left(t^{\prime}\right)$ a domain in C^{4} defined by

$$
B\left(t^{\prime}\right)=\left\{t^{\prime}=\left(t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime}, t_{4}^{\prime}\right) \in C^{4} ;\left|t_{i}^{\prime}\right|<\delta \quad(i=1,2,3,4)\right\},
$$

Let $\mathfrak{l}{ }^{j}=\left\{U_{0}^{j}, U_{W}^{j}, U_{\infty}^{j}\right\}$, the j-the copy of \mathfrak{l}, be the open covering of
M^{j} for $j \in N$. We define a holomorphic open embedding $s_{t^{\prime}}$ of $\iota(N(\varepsilon)) \subset$ $\pi\left(U_{W}^{1}\right) \subset M^{1}$ into $\pi\left(U_{W}^{2}\right) \subset M^{2} \subset M^{2}$ by

$$
\begin{aligned}
& s_{t^{\prime}}\left(\left[\zeta_{0}: \zeta_{1}: \zeta_{2}: \zeta_{3}\right]\right) \\
& \quad=\left[\mu \mu \zeta_{0}+\nu \zeta_{2}: \mu \nu_{1}+\nu \zeta_{3}:\left(\mu t_{1}^{\prime}-\nu\right) \zeta_{0}+\mu t_{2}^{\prime} \zeta_{1}+\left(\nu t_{1}^{\prime}-\mu\right) \zeta_{2}\right. \\
& \left.\quad+\nu t_{2}^{\prime} \zeta_{3}: \mu t_{3}^{\prime} \zeta_{0}+\left(\mu t_{4}^{\prime}-\nu\right) \zeta_{1}+\nu t_{3}^{\prime} \zeta_{2}+\left(\nu t_{4}^{\prime}-\mu\right) \zeta_{3}\right]
\end{aligned}
$$

where $\mu=1+\lambda^{2}$ and $\nu=1-\lambda^{2}$. In the above, the local coordinates on $\pi\left(U_{W}^{j}\right)$ are taken as those of P^{3} since $\pi\left(U_{W}^{j}\right)$ is isomorphic to U_{W}^{j}. We restrict s_{t}^{\prime} to $\iota^{1}(N(\varepsilon)) \cap s_{t^{\prime}}^{-1}\left(\iota^{2}(N(\varepsilon))\right)$ which we shall simply denote by s_{t}^{\prime}. Then $s_{t^{\prime}}$ becomes a holomorphic open embedding of $\iota^{1}(N(\varepsilon)) \cap s_{t^{\prime}}^{-1}\left(c^{2}(N(\varepsilon))\right)$ into U_{W}^{2}. Note that $s_{0}=s=\iota^{2} \circ \sigma \circ\left(c^{1}\right)^{-1}$.

Now we construct a complex manifold $\mathscr{M}(2)$ as follows. First take two copies of ($\mathscr{M}, B, \widetilde{\sigma}),\left(\mathscr{M}^{j}, B^{j}, \widetilde{\sigma}^{j}\right)$ for $j=1,2$. We write $\left(x^{j}, t_{j}\right)$ a point of \mathscr{M}^{j}. Let π^{j} be the natural projection of $W \times B^{j}$ to \mathscr{M}^{j} and $\pi_{t j}^{j}$ be the restriction of π^{j} to $W \times\left\{t^{j}\right\}$. From Theorem $1, M_{t^{j}}^{j}=\left(\widetilde{\sigma}^{j}\right)^{-1}\left(t^{j}\right)$ contains a domain $\pi_{t j}^{j}\left(U_{W}^{j}\right)$ biholomorphic to U_{W}^{j}, which contains $\pi_{t i}^{j} \tau\left(U_{1 / \varepsilon}\right)$. Put $\left.\mathscr{M}^{i \#}=\mathscr{M}^{j}-\overline{\pi^{j}\left(\tau\left(U_{1 / \varepsilon}\right) \times B^{j}\right.}\right)$. We define $\mathscr{M}(2)=\mathscr{M}^{1 \#} \times B^{2} \times B\left(t^{\prime}\right) \cup$ $\mathscr{M}^{2 \ddagger} \times B^{1} \times B\left(t^{\prime}\right)$ by identifying

$$
\left(\left(x^{1}, t^{1}\right), t^{2}, t^{\prime}\right) \in \pi^{1}\left(\tau(N(\varepsilon)) \times B^{1}\right) \times B^{2} \times B\left(t^{\prime}\right) \subset \mathscr{M}^{1 \sharp} \times B^{2} \times B\left(t^{\prime}\right)
$$

with

$$
\left(\left(x^{2}, \tilde{t}^{2}\right), \tilde{t}^{1}, \tilde{t}^{\prime}\right) \in \pi^{2}\left(\tau(N(\varepsilon)) \times B^{2}\right) \times B^{1} \times B\left(t^{\prime}\right) \subset \mathscr{M}^{2 \xi} \times B^{1} \times B\left(t^{\prime}\right)
$$

if and only if

$$
x^{2}=s_{t^{\prime}}\left(x^{1}\right), t^{1}=\tilde{t}^{1}, t^{2}=\tilde{t}^{2}, t^{\prime}=\tilde{t}^{\prime} .
$$

We define the projection τ of $\mathscr{M}(2)$ to $B^{1} \times B^{2} \times B\left(t^{\prime}\right)$ by

$$
\widetilde{\sigma}:\left(\left(x^{1}, t^{1}\right), t^{2}, t^{\prime}\right) \mapsto\left(t^{1}, t^{2}, t^{\prime}\right)
$$

and

$$
\tau:\left(\left(x^{2}, t^{2}\right), t^{1}, t^{\prime}\right) \mapsto\left(t^{1}, t^{2}, t^{\prime}\right) .
$$

Then it is clear that $\left(\mathscr{M}(2), B^{1} \times B^{2} \times B\left(t^{\prime}\right), \widetilde{\sigma}\right)$ becomes a complex analytic family.

THEOREM 2. ($\mathscr{M}(2), B^{1} \times B^{2} \times B\left(t^{\prime}\right)$, $\left.\widetilde{\sigma}\right)$ is the complete, effectively parametrized complex analytic family of small deformations of $M(2)$.

Proof. $\left.\left(\mathfrak{U}^{j}\right)^{\sharp}:=\left\{U_{0}^{j}, U_{W}^{j}-\overline{\iota^{j}\left(U_{1 / \epsilon}\right.}\right), U_{\infty}^{j}\right\}$ is a covering of $\left(M^{j}\right)^{\ddagger}$. We denote $U_{W}^{j}-\overline{c^{j}\left(U_{1 / \varepsilon}\right)}$ by $\left(U_{W}^{j}\right)^{\ddagger}$ for simplicity. We take $\mathfrak{U}(2)=\left(\mathfrak{U}^{1}\right)^{\ddagger} \cup\left(\mathfrak{U}^{2}\right)^{\ddagger}$ as a covering of $M(2)$. We define a linear map $\theta: T_{0}\left(B^{1} \times B^{1} \times B\left(t^{\prime}\right)\right) \rightarrow$ $Z^{1}(\mathfrak{U}(2), \Theta)$ as follows: $\theta\left(\partial / \partial t_{i}^{j}\right)$ is equal to the vector field listed in the
proof of Theorem 1 on $U_{0}^{j} \cap U_{\infty}^{j}$ and takes the value zero on other intersections of any distinct two members of $\mathfrak{U}(2)$ for $i=1, \cdots, 7$ and $j=$ 1,2. As for $\theta\left(\partial / \partial t^{\prime}\right)$, we define

$$
\begin{aligned}
& \theta\left(\partial / \partial t_{1}^{\prime}\right)\left(\left(U_{W}^{1}\right)^{\sharp} \cap\left(U_{W}^{2}\right)^{\sharp}\right)=\partial / \partial y_{0}^{\prime}, \\
& \theta\left(\partial / \partial t_{2}^{\prime}\right)\left(\left(U_{W}^{1}\right)^{\sharp} \cap\left(U_{W}^{2}\right)^{\ddagger}\right)=x_{0}^{\prime} \partial / \partial y_{0}^{\prime}, \\
& \theta\left(\partial / \partial t_{3}^{\prime}\right)\left(\left(U_{W}^{1}\right)^{\sharp} \cap\left(U_{W}^{2}\right)^{\sharp}\right)=\partial / \partial z_{0}^{\prime}, \\
& \theta\left(\partial / \partial t_{4}^{\prime}\right)\left(\left(U_{W}^{1}\right)^{\sharp} \cap\left(U_{W}^{2}\right)^{\sharp}\right)=x_{0}^{\prime} \partial / \partial z_{0}^{\prime},
\end{aligned}
$$

and $\theta\left(\partial / \partial t_{k}^{\prime}\right)$ takes the value zero on other intersections for $k=1,2,3,4$. Then it is easy to see that $i([\theta(\cdot)])=\rho_{0}(\cdot)$ where i is the inclusion of $H^{1}(\mathfrak{U}(2), \Theta)$ to $H^{1}(M(2), \Theta)$ and ρ_{0} is the Kodaira-Spencer map. [$\left.\theta\left(\partial / \partial t_{1}^{j}\right)\right]$ and $\left[\theta\left(\partial / \partial t_{k}^{\prime}\right)\right]$ are linearly independent. Indeed, suppose that we have an equation

$$
\sum_{i=1}^{7} \alpha_{i}^{1} \theta\left(\partial / \partial t_{i}^{1}\right)+\sum_{i=1}^{7} \alpha_{i}^{2} \theta\left(\partial / \partial t_{i}^{2}\right)+\sum_{k=1}^{4} \beta_{k} \theta\left(\partial / \partial t_{k}^{\prime}\right)=\delta v
$$

where v is an element of $C^{0}(\mathfrak{U}(2), \Theta)$ and $\alpha_{i}^{j}, \beta_{k}$ are complex numbers. By Theorem 1, we have $\alpha_{i}^{j}=0$ for all i, j. So the above equation reduces to the equation

$$
\sum_{k=1}^{4} \beta_{k} \theta\left(\partial / \partial t_{k}^{\prime}\right)=s_{*} v^{1}-v^{2}
$$

where v^{j} belongs to $H^{0}\left(\left(M^{j}\right)^{\sharp}, \Theta\right)$ for $j=1,2$. Using the calculation in the proof of Proposition 3.2, the above equation becomes

$$
\begin{aligned}
\beta_{1} \partial / \partial y_{0}^{\prime} & +\beta_{2} x_{0}^{\prime} \partial / \partial y_{0}^{\prime}+\beta_{3} \partial / \partial z_{0}^{\prime}+\beta_{4} x_{0}^{\prime} \partial / \partial z_{0}^{\prime} \\
= & \left\{\left(\mu^{2} a_{1}-\nu^{2} c_{1}-4 \lambda^{2} a_{1}^{\prime}\right)+\left(\mu^{2} a_{2}-\nu^{2} c_{2}+\nu^{2} b_{1}-4 \lambda^{2} a_{2}^{\prime}\right) x_{0}^{\prime}\right. \\
& +\mu \nu\left(a_{1}-c_{1}\right) y_{0}^{\prime}+\mu \nu\left(a_{2}-c_{2}\right) z_{0}^{\prime}+\left(\nu^{2} b_{2}+\mu^{2} d-4 \lambda^{2} d^{\prime}\right) x_{0}^{\prime 2} \\
& \left.+\mu \nu b_{1} x_{0}^{\prime} y_{0}^{\prime}+\mu \nu\left(b_{2}+d\right) x_{0}^{\prime} z_{0}^{\prime}\right\} \partial / \partial x_{0}^{\prime}+\left\{\mu \nu b_{1}+\mu \nu\left(b_{2}+d\right) x_{0}^{\prime}\right. \\
& +\left(\left(\mu^{2}+\nu^{2}\right) b_{1}-4 \lambda^{2} b_{1}^{\prime}\right) y_{0}^{\prime}+\left(\mu^{2} b_{2}+\nu^{2} d-4 \lambda^{2} b_{2}^{\prime}\right) z_{0}^{\prime}+\left(\nu^{2} b_{2}+\mu^{2} d\right. \\
& \left.\left.-4 \lambda^{2} d^{\prime}\right) x_{0}^{\prime} y_{0}^{\prime}+\mu \nu b_{1} y_{0}^{\prime 2}+\mu \nu\left(b_{2}+d\right) y_{0}^{\prime} z_{0}^{\prime}\right\} \partial / \partial y_{0}^{\prime}+\left\{\mu \nu\left(c_{1}-a_{1}\right)\right. \\
& +\mu \nu\left(c_{2}-a_{2}\right) x_{0}^{\prime}+\left(\mu^{2} c_{1}-\nu^{2} a_{1}-4 \lambda^{2} c_{1}^{\prime}\right) y_{0}^{\prime} \\
& +\left(\mu^{2} c_{2}-\nu^{2} a_{2}+\nu^{2} b_{1}-4 \lambda^{2} c_{2}^{\prime}\right) z_{0}^{\prime}+\left(\nu^{2} b_{2}+\mu^{2} d-4 \lambda^{2} d^{\prime}\right) x_{0}^{\prime} z_{0}^{\prime} \\
& \left.+\mu \nu b_{1} y_{0}^{\prime} z_{0}^{\prime}+\mu \nu\left(b_{2}+d\right) z_{0}^{\prime 2}\right\} \partial / \partial z_{0}^{\prime}
\end{aligned}
$$

where $a_{i}, b_{i}, c_{i}, d, a_{i}^{\prime}, b_{i}^{\prime}, c_{i}^{\prime}$, and d^{\prime} are complex numbers. This shows us that all β_{i} vanish and the image of $[\theta(\cdot)]$ spans an 18 -dimensional vector subspace in $H^{1}(\mathfrak{U}(2), \Theta)$, which in turn is a subspace of 18 -dimentional $H^{1}(M(2), \Theta)$. Hence $\rho_{0}(\cdot)=i([\theta(\cdot)])$ is bijective.
3. Small deformations of $M(n)(n \geqq 3)$. We construct the complete,
effectivzly parametrized complex analytic family $\mathscr{M}(n)$ of small deformations of $M(n)$ inductively. Let

$$
B\left(t^{\prime \prime}\right)=\left\{t^{\prime \prime}=\left(t_{1}^{\prime \prime}, \cdots, t_{8}^{\prime \prime}\right) \in C^{8} ;\left|t_{i}^{\prime \prime}\right|<\delta \quad(i=1, \cdots, 8)\right\} .
$$

We define a holomorphic open embedding $r_{t^{\prime \prime}}$ of ${\left.\iota^{n-1}\right|_{N(\varepsilon)}{ }^{\circ} \tau(N(\varepsilon)) \subset M(n-2)^{\ddagger} \cap}$ $M^{n-1 \ddagger} \subset M(n-1)$ into $\iota^{n}(N(\varepsilon)) \subset M^{n \ddagger}$ by

$$
\begin{aligned}
& r_{t^{\prime \prime}}\left(\left[\zeta_{0}: \zeta_{1}: \zeta_{2}: \zeta_{3}\right]\right) \\
& =\left[\lambda\left(1-t_{1}^{\prime \prime}\right) \zeta_{0}-\lambda t_{2}^{\prime \prime} \zeta_{1}+\left(1+t_{1}^{\prime \prime}\right) \zeta_{2}+t_{2}^{\prime \prime} \zeta_{3}: \lambda t_{3}^{\prime \prime} \zeta_{0}+\lambda\left(1+t_{4}^{\prime \prime}\right) \zeta_{1}\right. \\
& -t_{3}^{\prime \prime} \zeta_{2}+\left(1-t_{4}^{\prime \prime}\right) \zeta_{3}: \lambda\left(1+t_{5}^{\prime \prime}\right) \zeta_{0}+\lambda t_{6}^{\prime \prime} \zeta_{1}+\left(-1+t_{5}^{\prime \prime}\right) \zeta_{2}+t_{6}^{\prime \prime} \zeta_{3}: \\
& \left.\lambda t_{7}^{\prime \prime} \zeta_{0}+\lambda\left(1+t_{8}^{\prime \prime}\right) \zeta_{1}+t_{7}^{\prime \prime} \zeta_{2}-\left(1+t_{8}^{\prime \prime}\right) \zeta_{3}\right]
\end{aligned}
$$

with respect to the system of local coordinates induced by the homogeneous coordinates of \boldsymbol{P}^{3}.

We have already constructed $\mathscr{M}(2)$ in §3. 2. $\mathscr{M}(2)$ contains $\pi\left(\tau(N(\varepsilon)) \times B^{1}\right) \times B^{2} \times B\left(t^{\prime}\right)$ such that

$$
\pi\left(\tau \circ \tau\left(U_{\varepsilon}\right) \times B^{1}\right) \times B^{2} \times B\left(t^{\prime}\right) \cap M(2)=\iota^{2} \circ \tau\left(U_{\varepsilon}\right) \subset M^{1 \#} \cap M^{2 \#} .
$$

Here $M(2)$ is identified with the fibre $\widetilde{\sigma}^{-1}(0)$. Assume that $\mathscr{M}(n)$ is constructed with the parameter space $B(n)$ and that $\mathscr{M}(n)$ contains $\left.\iota^{n}\right|_{N(\varepsilon)} \circ \tau\left(U_{\varepsilon}\right) \times B(n)$ with the property
$(*)_{n} \quad\left(\left.\iota^{n}\right|_{N(\varepsilon)} \circ \tau\left(U_{\varepsilon}\right) \times B(n)\right) \cap M(n)=\left.\iota^{n}\right|_{N(\varepsilon)} \circ \tau\left(U_{\varepsilon}\right) \subset M(n-1)^{\sharp} \cap M^{\sharp}$.
We denote $\mathscr{M}(n)-\left(\left.\varepsilon^{n}\right|_{N(\varepsilon)} \circ \tau\left(U_{1 / \varepsilon}\right) \times B(n)\right)$ by $\mathscr{M}(n)^{\sharp}$. We construct $\mathscr{M}(n+1)$ from $\mathscr{M}(n)^{\#}$ and $\mathscr{M}^{n+1 \#}$ by identifying

$$
\left((x, t), t^{n+1}, t^{\prime \prime}\right) \in \mathscr{M}(n)^{\sharp} \times B^{n+1} \times B\left(t^{\prime \prime}\right)
$$

with

$$
\left(\left(x^{n+1}, \tilde{t}^{n+1}\right), \tilde{t}, \tilde{t}^{\prime \prime}\right) \in \mathscr{M}^{n+1 \sharp} \times B(n) \times B\left(t^{\prime \prime}\right)
$$

if and only if

$$
x^{n+1}=r_{t^{\prime}}(x), t=\tilde{t}, t^{n+1}=\widetilde{t}^{n+1}, t^{\prime \prime}=\tilde{t}^{\prime \prime} .
$$

It is clear that $\mathscr{M}(n+1)$ contains $\left.\iota^{n+1}\right|_{N(\varepsilon)} \circ \tau\left(U_{\varepsilon}\right) \times B(n+1)$ with the property $(*)_{n+1}$. Hence we get $\mathscr{M}(n)$ for any $n \in N$. We project $\mathscr{M}(n+1)$ onto $B(n+1)=B(n) \times B^{n+1} \times B\left(t^{\prime \prime}\right)$ by

$$
\begin{aligned}
& \tau:\left((x, t), t^{n+1}, t^{\prime \prime}\right) \mapsto\left(t, t^{n+1}, t^{\prime \prime}\right) \\
& \widetilde{\sigma}:\left(\left(x^{n+1}, t^{n+1}\right), t, t^{\prime \prime}\right) \mapsto\left(t, t^{n+1}, t^{\prime \prime}\right) .
\end{aligned}
$$

Then $(\mathscr{M}(n+1), B(n+1), \widetilde{\sigma})$ is a complex analytic family with $\widetilde{\sigma}^{-1}(0)=$ $M(n+1)$.

Theorem 3. ($\mathscr{M}(n), B^{1} \times \cdots \times B^{n} \times B\left(t^{\prime}\right) \times \underbrace{B\left(t^{\prime \prime}\right) \times \cdots \times B\left(t^{\prime \prime}\right)}_{n-2}$, $\widetilde{\sigma})$ is the
complete, effectively parametrized complex analytic family of small deformations of $M(n)$.

Proof. We define the covering $\mathfrak{l}(n)$ of $M(n)$ inductively. We have already defined $\mathfrak{u}(1)=\mathfrak{U}$ and $\mathfrak{U}(2)$ in the proof of Theorem 2. Put

$$
\begin{aligned}
& \left(U_{W}^{\# \#}\right)^{\ddagger}=U_{W}^{\# \#}-\overline{\left.\iota^{1}\right|_{N(\varepsilon)} \circ \tau\left(U_{\varepsilon}\right)}, \\
& \left(U_{W}^{2 *}\right)^{\ddagger}=U_{W}^{2 \#}-\overline{\left.\iota^{2}\right|_{N(\varepsilon)} \circ \tau\left(U_{1 / \varepsilon}\right)} .
\end{aligned}
$$

We define $\mathfrak{U}(3)$ to be

$$
\left\{U_{0}^{1},\left(U_{W}^{1 \sharp}\right)^{\sharp}, U_{\infty}^{1}, U_{0}^{2},\left(U_{W}^{2 \sharp}\right)^{\sharp}, U_{\infty}^{2}\right\} \cup \mathfrak{l}^{3 \sharp}
$$

The former set is for $M(2)^{\ddagger}$ and the latter is for $M^{3 \sharp}$. Then $\left.\iota^{3}\right|_{N(\varepsilon)}{ }^{\circ} \tau\left(U_{\epsilon}\right) \subset$ $M(2)^{*} \cap M^{3 *}$ intersects only $\left(U_{W}^{2 *}\right)^{\#}$ and $U_{W}^{3 \#}$. Assume that $\mathfrak{U}(n)$ is defined so that
$(* *)_{n}\left\{\begin{array}{l}\text { any distinct three of } \mathfrak{U}(n) \text { do not intersect and }\left.\iota^{n}\right|_{N(\varepsilon)} \circ \tau\left(U_{\varepsilon}\right) \subset \\ M(n-1)^{\sharp} \cap M^{n \sharp} \text { intersects only }\left(U_{W}^{(n-1) \star}\right)^{\#} \text { and } U_{W}^{n \#} \text { of } \mathfrak{U}(n) .\end{array}\right.$
Put

$$
\begin{aligned}
& \left(\left(U_{W}^{(n-1)}\right)^{\sharp}\right)^{\sharp}=\left(\left(U^{(n-1)}\right)^{\sharp}\right)^{\ddagger}-\overline{\left.\iota^{n-1}\right|_{N(\varepsilon)} \circ \tau \circ \sigma \circ \tau\left(U_{\varepsilon}\right)}, \\
& \left(U_{W}^{n}\right)^{\sharp}=U_{W}^{n}-\overline{\left.\iota^{n}\right|_{N(\varepsilon)} \circ \tau\left(U_{1 / \varepsilon}\right)} .
\end{aligned}
$$

We define $\mathfrak{U}(n)^{\sharp}$ to be

$$
\left(\mathfrak{U}(n)-\left\{\left(U_{W}^{(n-1)}\right)^{\sharp}, U_{W}^{n \sharp}\right\}\right) \cup\left\{\left(\left(U_{W}^{(n-1)}\right)^{\sharp}\right)^{\sharp},\left(U_{W}^{n \sharp}\right)^{\sharp}\right\},
$$

and $\mathfrak{M}(n+1)$ to be $\mathfrak{u}(n)^{*} \cup\left(\mathfrak{U}^{n+1}\right)^{\sharp}$. Then $\mathfrak{U}(n+1)$ has the propety $(* *)_{n+1}$. Therefore $\mathfrak{U}(n)$ is defined for any $n \in \boldsymbol{N}$ with the property $(* *)_{n}$.

Now we proved that ($\left.\mathscr{M}(n), B^{(n)}, \widetilde{\sigma}\right)$ is the complete, effectively parametrized family of small deformation of $M(n)$ by induction. We have already shown that
$(* * *)_{2}$

$$
\left\{\begin{aligned}
H^{1}(\mathfrak{U}(2), \Theta) & \cong H^{1}(M(2), \Theta), \\
\rho_{0}: T_{0}(B(2)) & \cong
\end{aligned} \stackrel{H^{1}(M(2), \Theta)}{ }\right.
$$

Assume $(* * *)_{n}$ and that $\theta^{(n)}: T_{0}(B(n)) \rightarrow Z^{1}(\mathfrak{U}(n), \Theta)$ is defined so that $i\left(\left[\theta^{(n)}(\cdot)\right]\right)=\rho_{0}(\cdot)$, where i is the inclusion map of $H^{1}(\mathfrak{U}(n), \Theta)$ in $H^{1}(M(n), \Theta)$. We define $\theta^{(n+1)}$ of $T_{0}(B(n+1))$ to $Z^{1}(\mathfrak{U}(n+1), \theta)$ as follows. Let $\theta^{(n+1)}\left(\partial / \partial t_{i}^{(n)}\right)$ take the same value as $\theta^{(n)}\left(\partial / \partial t_{i}^{(n)}\right)$ on the intersections of any distinct two members of $\mathfrak{U}(n)^{\ddagger}$ and take zero on other intersections, where $t_{i}^{(n)}$ is the parameter of $B(n)$ for $i=1, \cdots, 15 n-12$. Let $\theta^{(n+1)}\left(\partial / \partial t_{i}^{n+1}\right)$ take the value $\theta^{(1)}\left(\partial / \partial t_{i}\right)$ on the intersection of any distinct two of $\left(\mathfrak{U}^{n+1}\right)^{\ddagger}$ and take zero on other intersections, for $i=1, \cdots, 7$. As for $\theta^{(n+1)}\left(\partial / \partial t_{i}^{\prime \prime}\right)$, let

$$
\begin{aligned}
& \theta^{(n+1)}\left(\partial / \partial t_{1}^{\prime \prime}\right)\left(\left(U_{W}^{n \sharp}\right)^{\sharp} \cap U_{W}^{n+1 \sharp}\right)=y_{0}\left(x_{0} \partial / \partial x_{0}+y_{0} \partial / \partial y_{0}+z_{0} \partial / \partial z_{0}\right), \\
& \theta^{(n+1)}\left(\partial / \partial t_{2}^{\prime \prime}\right)\left(\left(U_{W}^{n \ddagger}\right)^{\ddagger} \cap U_{W}^{n+1 \sharp}\right)=z_{0}\left(x_{0} \partial / \partial x_{0}+y_{0} \partial / \partial y_{0}+z_{0} \partial / \partial z_{0}\right), \\
& \theta^{(n+1)}\left(\partial / \partial t_{3}^{\prime \prime}\right)\left(\left(U_{W}^{n \sharp}\right)^{\#} \cap U_{W}^{n+1 \ddagger}\right)=y_{0} \partial / \partial x_{0}, \\
& \theta^{(n+1)}\left(\partial / \partial t_{4}^{\prime \prime}\right)\left(\left(U_{W}^{n \ddagger}\right)^{\#} \cap U_{W}^{n+1 \#}\right)=z_{0} \partial / \partial x_{0}, \\
& \theta^{(n+1)}\left(\delta / \delta t_{5}^{\prime \prime}\left(\left(\left(U_{W}^{n}\right)^{*} \cap U_{W}^{n+1 *}\right)=\partial / \partial y_{0}\right. \text {, }\right. \\
& \theta^{(n+1)}\left(\partial / \partial t_{6}^{\prime \prime}\right)\left(\left(U_{W}^{n \ddagger}\right)^{\#} \cap U_{W}^{n+1 *}\right)=x_{0} \partial / \partial y_{0}, \\
& \theta^{(n+1)}\left(\partial / \partial t_{7}^{\prime \prime}\right)\left(\left(U_{W}^{n}\right)^{\ddagger} \cap U_{W}^{n+1 \ddagger}\right)=\partial / \partial z_{0}, \\
& \theta^{(n+1)}\left(\partial / \partial t_{8}^{\prime \prime}\right)\left(\left(U_{W}^{n \sharp}\right) \cap U_{W}^{n+1 \ddagger}\right)=x_{0} \partial / \partial z_{0},
\end{aligned}
$$

and $\theta^{(n+1)}\left(\partial / \partial t_{1}^{\prime \prime}\right)$ take zero on other intersection of any distinct two of $\mathfrak{U}(n+1)$. In the following, we write θ instead of $\theta^{(n+1)}$ for simplicity. Suppose that we have $v \in C^{0}(\mathfrak{U}(n+1), \Theta)$ such that

$$
\sum_{i=1}^{15 n-12} \alpha_{i} \theta\left(\partial / \partial t_{i}^{(n)}\right)+\sum_{i=1}^{7} \beta_{i} \theta\left(\partial / \partial t_{i}^{n+1}\right)+\sum_{i=1}^{8} \gamma_{i} \theta\left(\partial / \partial t_{i}^{\prime \prime}\right)=\delta v .
$$

By induction hypothesis, the above equality reduces to

$$
\sum_{i=1}^{8} \gamma_{i} \theta\left(\partial / \partial t_{i}^{\prime \prime}\right)=r_{*} v^{\prime \prime}-v^{\prime}
$$

where $v^{\prime} \in H^{0}\left(M^{n \#}, \Theta\right), v^{\prime \prime} \in H^{0}\left(M(n)^{\sharp}, \Theta\right)$ and $r=r_{0}$. Using the calculations in the proof of Propositions 3.2, we have

$$
\begin{aligned}
\left(\gamma_{1} y_{0}+\right. & \left.\gamma_{2} z_{0}\right)\left(x_{0} \partial / \partial x_{0}+y_{0} \partial / \partial y_{0}+z_{0} \partial / \partial z_{0}\right)+\gamma_{3} y_{0} y_{0} \partial / \partial x_{0}+\gamma_{4} z_{0} \partial / \partial x_{0}+\gamma_{5} \partial / \partial y_{0} \\
& +\gamma_{6} x_{0} \partial / \partial y_{0}+\gamma_{7} \partial / \partial z_{0}+\gamma_{6} x_{0} \partial / \partial z_{0} \\
= & \left\{a-a_{1}+\left(b-a_{2}\right) x_{0}+(c-d) x_{0}^{2}\right\} \partial / \partial x_{0}+\left\{b_{1} y_{0}+\left(-c-b_{2}\right) z_{0}\right. \\
& \left.+(c-d) x_{0} y_{0}\right\} \partial / \partial y_{0}+\left\{\left(a-c_{1}\right) y_{0}+\left(b-c_{2}\right) z_{0}+(c-d) x_{0} z_{0}\right) \partial / \partial z_{0} .
\end{aligned}
$$

This asserts that $\left[\theta\left(\partial / \partial t_{1}^{(n)}\right)\right], \cdots,\left[\theta\left(\partial / \partial t_{15 n-12}^{(n)}\right)\right],\left[\theta\left(\partial / \partial t_{1}^{n+1}\right)\right], \cdots,\left[\theta\left(\partial / \partial t_{7}^{n+1}\right)\right]$, $\left[\theta\left(\partial / \partial t_{1}^{\prime \prime}\right)\right], \cdots,\left[\theta\left(\partial / \partial t_{8}^{\prime \prime}\right)\right]$ are linearly independent. It is easily seen that that $\rho_{0}(\cdot)=i([\theta(\cdot)])$. Since $\operatorname{dim} H^{1}(M(n+1), \Theta)=15 n+3, \rho_{0}$ is bijective.

References

[1] C. BǍnicǎ and 0 . StǎNǎșiliǎ, Méthodes algébriques dans la théorie globale des espaces complexes, Gauthier-Villars editeur, 1977.
[2] R. Вотт, Homogeneous vector bundles, Ann. of Math. 66 (1957), 203-248.
[3] F. Hirzebruch, Topological Methods in Algebraic Geometry, 3rd ed. Springer, 1966.
[4] Ma. Kato, Examples of simply connected compact 3 -folds, Tokyo J. Math. 5 (1982), 341-364.
[5] Ma. Kato and a. Yamada, Examples of simply connected complex 3 -folds II, to appear in Tokyo J. Math.
[6] Ma. Kato, On compact complex 3-folds with lines, Japan J. Math. 11 (1985), 1-58.
[7] K. Kodatra and D. C. Spencer, On deformations of complex analytic structures, I-II,, Ann. of Math. 67 (1958), 328-466.
[8] K. Kodaira and D. C. Spencer, A theorem of completeness for complex analytic fibre spaces, Acta Math. 100 (1958), 281-294.
[9] K. Kodaira, On the structure of compact analytic surfaces, I, Amer. J. Math. 86 (1964), 751-798.
[10] A. Yamada, Small deformations of certain compact Class L manifolds, Proc. of Japan Acad. Ser. A Math. Sci 60 (1984), 39-42.
Department of Mathematics
Sophia University
Tokyo, 102
Japan

