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The notion of a manifold of Class L was introduced by Kato [6]. A
manifold of Class L is a complex 3-fold into which there exists an open
embedding of a certain domain of P 3 . The most significant property of
Class L is that we can connect any two Class L manifolds complex analy-
tically to obtain another Class L manifold.

We define a complex 3-fold M = Λf(l) as follows. Let [ζ0: d: C2: ζ3] be
the system of homogeneous coordinates of P 3 . Put

l0 = {ζ0 = ζ, = 0}, L = {ζ2 = ζ3 - 0} .

We denote P 3 — l0 — L by W. Let g be a holomorphic automorphism of
W sending [ζ0: ζx: ζ2: ζ3] to [ζ0: d: aζ2. αζ3], where a is a complex number
with 0 < | α | < 1. We define M to be the quotient space of W by <#>,
where (g) indicates the infinite cyclic group generated by g. Then M is
shown to be a compact manifold of Class L. So we can construct Af(2),
a new compact manifold of Class L by connecting two copies of M. We
construct M(n), neN, inductively with n copies of M.

The main purpose of this paper is to determine all the small defor-
mations of M(n) for all neN. The result for M is that any small defor-
mation of M is biholomorphic to W/(gt) where gt is a holomorphic
automorphism of W defined by ^([ζo*. d: ζ2: ζ8]) = [ζ0 + tiCr. t2ζ0 + (1 + t8)d:
(α + U)ζ2 + ίδCs ίβC2 + (α + i7)C8]f where ίt (i = 1, , 7) are complex num-
bers with \tt\ small enough (Theorem 1). The result for M(ri), n^2, is
more complicated than that for M. The complete and effectively parame-
trized complex analytic family of the small deformations of M(n) has
15n — 12 parameters. The details are stated in Theorems 2 and 3.

This paper consists of three sections.
In § 1, we give some definitions, for instance, the definitions of Class

L, that of M{n).
In §2, we investigate small deformations of M.
In §3, we study small deformations of M(n), n ^ 2.
We have the following conjecture;
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CONJECTURE. Let Xx and X2 be compact manifolds of Class L. Let
Xx # X2 denote any manifold we obtain by connecting Xx and X2 complex
analytically. Then we have

dim H\X, # Xt, Θ) = dim H\Xlt Θ) + dim H2(X2, Θ) .

The author wrote this statement as Proposition in [10] but the proof
contained a gap. The conjecture is ture if Xx is M(n), X2 is M, and
Xx # X2 is M(n + 1) for any n ^ 1.

The author wishes to express his gratitude to Professor Masahide
Kato for his competent aid.

§ 1. Definitions.

1. The definition of Class L. For any positive real number r, we
define a domain Ur in P 3 as

Ur = {[ζ0: Ci: C2: CJ e P 3 ; |C0|
2 + ICJ2 < r( |ζ 2 | 2 + |ζ3|

2)} .

DEFINITION 1.1 ([6, p.l, Definition 1.1]). Let Xbe a complex manifold
of dimension 3. X is said to be of Class L if X contains a domain biholo-
morphic to U19 in other words, if there exists a holomorphic open embedding
of Uγ into X.

To define the connecting operation of two Class L manifolds, we need
a holomorphic automorphism σ of Pz defined by

<τ([ζ0: Ci: C2: CJ) = [C2: ζ3: ζ0: CJ .

For any real number ε greater than 1, we define a domain N(e) in P 3 by

where indicates the closure. Then the following is clear.

LEMMA 1.2. (i) For any positive real number r, Ur is biholomorphic
to Ux.

(ii) σ(N(e)) = N(ε).

Let X be a manifold of Class L. Then from Definition 1.1 and Lemma
1.2 there exists a holomorphic open embedding of Ue into X.

DEFINITION 1.3 ([6, p. 3]). Let Xλ and X2 be manifolds of Class L and

be holomorphic open embeddings. Writing Xu — iv(U1/ε) as X*(v = 1, 2),
we define a complex manifold Z(Xlf X2, ilf i2) = X} U X* by identifying a
point x1eiί(N(ε))czX} with the point i2oσ°iϊ\xd e X2*.
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REMARK 1. The complex structure of Z(Xlf X2, ilf i2) depends on the
open embeddings i± and i2. We shall see this fact later in §3.2.

REMARK 2. If X1 and X2 are compact, then Xx # X2 is also compact.

LEMMA 1.4. N(ε) is of Class L.

PROOF. For a real number λ, we define a holomorphic open embedding
τ of Uε into P 3 by

τ([ζ0: &: ζ2: CJ) = [Co + λζ2: ζ, + λζ3: λζ2 - ζ0: λζ3 - ζ j .

Since ζ0 =£ 0 or ζ1 Φ 0 in Ut9 we have

Taking a system of local coordinates

GCo, »o,«o) = (Ci/Co, C2/ζo, Ca/Co) in ^eΓl{ζo^O}

and

(*» Ui, »i) = (Co/Ci, C«/Ci, C/O in C/e Π {d ^ 0} ,

we let

Vt = {(xif yif z<) e [7εn{ζ£ Φ 0}; b J < 2} for i = 0, 1 .

Then it is clear that {Fo, VJ is also an open covering of Ue. Since \xt\ <
2 (i = 0, 1), we have

«i - Vλ|2)/ε < |a?Λ + VA2

< εQy, - xjx\2 + \zλ -

when we take λ large enough. Thus we get τ(Uε)c:N(e). •

LEMMA 1.5. XΛX2 is of Class L.

PROOF. XX%X2 contains a domain biholomorphic to N(ε) which is
of Class L. Hence Xx # X2 is of Class L. Π

2. Definition of the manifolds M(n). Here we are going to define
compact complex manifolds M(n) of which we shall study the small defor-
mations later. We have already defined l0, £<*>, W and g in Introduction.
Then we have:

PROPOSITION 1.6. (g) acts on W properly discontinuously without
fixed points.
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PROOF. It is easy to see that (g) acts on W without fixed points. We
show that (g) acts properly discontinuouly on W. Let μ be a real number
larger than 1 and v a natural number such that \a\y < 1/μ. Then for
any integer n with n ^ v, we have

gn(N(μ))ΠN(μ) = 0 .

Since any compact subsets Kx and K2 of W are contained in N(μ) for a
suitable real number μ and since we can take a natural number v for μ
so that the above equality holds, we have

%{nsZ\g\Kύ[\KιΦ 0} <2v . •

DEFINITION 1.7. Let W and (g) be as above. We define a complex
manifold Λf = M(l) as the quotient space of W by <#>, i.e.

M= W/(g) .

REMARK 1. M is compact because M is the image of compact N(μ)

for μ sufficiently large.

REMARK 2. M is diffeomorphic to S ' x S ^ x S 3 where S n is the standard

w-sphere.

Taking real numbers β, 7, d such t h a t | α | < / 3 < 7 < < 5 < l , we define

domains Uo, Uw, U^ in W as follows:

Uo - {ζe TF; | α | ( | ζ 2 | 2 + |ζ 3 | 2 ) < | ζ o | 2 + K J 2 < δ( |ζ 2 | 2 + |ζ3 |
2)} ,

Uw = {ζeW; 7 ( | ζ 2 | 2 + |ζ 3 | 2 ) < | ζ o | 2 + Idl 1 < (IC2|
2 + |ζ3 |2)/τ} ,

U«, = {ζeW; ( |ζ 2 | 2 + |ζ 3 | 2)/δ < | ζ o | 2 + | ζ j 2 < /5(|ζ2 |
2 + |ζ 3 | 2 )/ |α | 2 } .

By the definition of Uo, Uw, and U^, we have

gUof] U^ Φ 0 , gUwf] C/oo = 0 .

This shows that ikf is a manifold we obtain by identifying ζegϋΌπUoo
with flΓ^Qe EΓoΓlflΓ'ETΌo in ?70U C^U EL.

PROPOSITION 1.8. M is of Class L.

PROOF. Let π be the natural projection of W to M. Since M con-
tains a domain π(Uw) which is biholomorphic to Uw = NQ./Ύ), the proposi-
tion is clear. D

We construct M(w) with w copies of M. We denote by Mj the i-th
copy of M. By Lemma 1.4 and Proposition 1.8, we have a holomorphic
open embedding c — πoτoί Ue into M, where τ is a map defined in the proof
of Lemma 1.4. We denote by c* the holomorphic open embedding c of Ue

into M>. We define M(2) by Z(ΛP, M\ c\ c2). We define Class L manifolds
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M(ri) for n ^ 3 inductively. Suppose that M(n) is defined to be Z(M(n — 1),
Mn, cn_19 c

n) with a holomorphic open embedding tn_x of Uε into M(n — 1),
then we define

M(n + 1) = Z(M(n\ Mn+\ cn\N{ε)oτ, cn+ί) = Z(M(n\ Mn+\ C^INVWT, cn+ι)

where cn\N(ε) (resp. £n_iU(ε)) is the restriction of cn (resp. cn_t) to N(ε).

§ 2. Small deformations of M.

1. Cohomology groups of M. Let TΓW/ be a domain in T7 defined

by

Ww = W K 2 | 2 + ICsl2) < ICol2 + I d l 2 < ?'(K2|2 + K s l 2 ) } ,
where η and )y' are real number such that rf > η > 0. Since the line
ϊ0 = {ζ0 = ζχ = 0} does not intersect TΓ, we can cover Ww by the two
domains Ww Π {ζ0 ^ 0} and Ww Π {d Φ 0} whose system of local coordinates
are

%o = Ci/Co, 2/o = C2/ζ0, ̂ o = Cs/Co in Ww/ ΓΊ {ζ0 Φ 0}

and

»i = Cβ/Ci, Vi = CJCi, «o = Ĉ Ci in W^n&ΦQ)

We remark that these two domains are Reinhardt domains on which
every holomorphic function can be expanded as a unique Laurent series
with respect to the system of local coordinates (χif yίf zt), i = 0,1. More-
over the two domains intersect hyperplanes {xQ = 0}, {y0 = 0}, {z0 = 0} and
{#1 = 0}, {yx = 0}, {«! = 0} respectively, so every holomorphic function on
each of the two domains admits a unique Taylor series expansion.

LEMMA 2.1. Let Θ be the tangent sheaf. An element of HQ(Wηη>, Θ)
(resp. H°(W, θ), resp. H\P\ θ)) is expressed on WηrΠ{ζ0 Φθ} (resp. WΓ\
{Co Φ 0}, resp. P 3 Π {ζ0 Φ 0}) as follows:

(a1 + 6^0 + Wo + dfo + ex\ + fxoyo + gXoZo)d/dxo

+ (a2 + b2x0 + c2y0 + d2z0 + exoyo + fy\ + gyQz0)d/dy0

+ (a3 + 63^0 + c3i/o + dzZ0 + ê o2;o + fyozo + gzl)d/dzQ ,

where aif bίy cif dif e, f g are complex numbers for i = 1, 2, 3. Conversely,
a vector field on WηrΠ{ζoΦθ} (resp. Wf){ζoΦθ}> resp. P 3 Π{ζ 0 ^0}) of
the above type is extended to an element of H°(Wηη>, θ) (resp. H°(W, β),
resp. H\P\ θ))

PROOF. From the above remark, an element θ of H°(Wηη>9 θ) is ex-
pressed in Wm, Π {ζi Φ 0} as
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θ = Σ aίnnx
ι

tyTz?d/dxt + Σ h\mnx\y^id\dyι + Σ cίmnx
ι

tyTz7d/dz{
l ^ 0 l ^ 0 l ^ 0

where a\mn, b\mnf c\mn are complex numbers for i = 0, 1. Since the two
expressions above must coincide in W^ΠlCo^O, Ci^O}, we have the
lemma for Wηη> by the uniqueness of the Laurent expansion. The calcula-
tions for W and P 3 are completely the same as those for Wm*. The
converse is clear. •

PROPOSITION 2.2. An element of H\M, Θ) is identified with an ele-
ment of H\Wf] {ζ0 Φ 0}, Θ) of the form

(αi + Mo + cxl)d/dx0 + (a2y0 + b2z0 + cxoyo)d/dyo

+ (CLBVO + &3Zo + cxozo)d/dzo, aif bif ceC (i = 1, 2, 3) .

In particular, dim H°(M, Θ) = 7.

PROOF. It is easy to see that an element of H°(M, Θ) is identified
with an element of H°(W, Θ) which is invariant under the action of (g),
i.e., with θeH°(W, θ) such that

(9n)*pθp = θgn{p) for any neZ and any pe W .

Assume that θ is the one mentioned in Lemma 2.1. Then

9*v ITFTHCO^O}

— in 4 - λ / y 4- * r <ιi 4- ^ r\ 9 4- ^ τ 2 4- fτoj 4- nr 7 I

\ α α α α ' σx0

, / , r , 1 , 1 ^ , , 1 Λ 2 , 1 \ d
+ ( a2 + o2ίc0 + —c22/o H 2̂̂ 0 + 0#o2/o + — /2/o H -SJVfa )oι——

\ a a a a ' dyQ

+ (α3 + 63#o + — czy0 + —dsz0 + exozo + —fyozo + —gzl )a—- .
\ a a a2 a2 I dz0

From the above equation it is obvious that the condition {gn)*pθp = θgn{p)

is equivalent to

Ci = ώi = a2 = b2 = α3 = 63 = / = g = 0 . Π

PROPOSITION 2.3. ίF(M, Θ) = 0.

PROOF. By the Kodaira-Serre duality, we have

H\M, Θ) = H°(M, Ω1 <g) β3)

where β p is the sheaf of germs of holomorphic p-forms. By [6, p. 7,
Proposition 2.3]: we have

H°(X, (Ω1)®™1 ® (Ω2)®™2 ® (β3)®^) = 0

for a Class L manifold X if m19 m2, m3 are non-negative integers such that
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mx + m2 + m8 > 0. We conclude that H\M, Θ) = 0. •

PROPOSITION 2.4. H\M, Θ) = 0.

Again by the Kodaira-Serre duality,

H\M, Θ) = H\M, Ω1 (g) ώ3) .

We shall show here that H\M, Ω1 (x) i23) = 0. For that purpose, we first
have:

PROPOSITION 2.5. M is a holomorphic fibre bundle over P^P1 with
elliptic curves as fibres.

PROOF. Let p: W-+P1 x P1 be the holomorphic map sending [ζ0: Cr. ζ2: ζ3]
to ([ζ0: ζj, [ζ2: ζ3]). Then it is easy to see that (W, P1xP\ p) becomes a
holomorphic fibre bundle with C* = C — {0} as the fibres. Since p(g(Q) =
p(ζ) for any ζeW,p induces a map p: M-^P^P1. The action of (g)
on W induces the action of <α> on C*, the fibre of (W, PλxP\ p). This
means that the fibre of (Λf, P^ xP1, p) is C*/(a), which is an elliptic
curve. •

From now on, we write S instead of P 1 x P 1 for simplicity and some-
times write Ωι

M, Ω\ and so on to avoid confusion. Now we begin to
calculate H\M, ΩM (X) Ω\). By the Leray spectral sequence, we have

0 _> El>° -> H\M, Ωι

M ® Ω\) -> EV1 -> 0

where E\>r = Hq(S, Rrp^M <g) Ω\)) and E\>1 = K e r C ^ ' 1 ->El^czE 0 * 1 . Hence

we have an exact sequence

0 -* ^'° -> H\M, Ωι

M (g) ΛW ->

We need now to calculate El'° and ίJg'1.

LEMMA 2.6.

?, i = 0, 1 ,

PROOF, (i) i = 0.

(i2°2>* )̂<*,,) = ^(p^a?, 2/), ̂ ) for any (x, y)eS.
Since p~\x, y) is an elliptic curve, which is compact, we see {B^p^M)k9ty) =
έ?s,(χ,v)- From this we get Έt?p*έ?M = έ?s.

(ii) i = 1. K-q*έ?M is a line bundle because

dim fPfo-1^, »), ^ ) = dim fΓ(C*/<α>, ̂ ) = 1

for any (x,y)eS [1, p. 151, Theoreme 4.12. (ii)]. From the cohomology
exact sequence
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0 = H\S, 0a) -> H\S, &S) - H\S, Z) ,

it is sufficient to prove that the restriction of Rιp*έ?M to (O)xP1 and
P^fO} are trivial because Rιp*έ?M is a line bundle and because {OJxP1

and P1 x {0} generate H\S, Z). This follows from the fact that p'\{0} x P1)
and p'^P^fO}) are elliptic bundles with vanishing Chern numbers, by
Kodaira [9, p. 772, Theorem 12].

(iii) i ^ 2. It is clear because the fibre is 1-dimensional. •

LEMMA 2.7.

k i 2s 2 .
PROOF. Since #M satisfies the condition (b) of [1, p. 149, Theoreme

4.10], we get

The lemma follows from Lemma 2.6. •

LEMMA 2.8. We have an exact sequence

0 —> p*Ωι

s —> ΩM —> £?u -> 0 .

PROOF. In the following, we denote by ζ the fibre coordinate, induced
by the coordinate of C*. An element on the stalk of P*Ω* at (x, y, ξ) has
the form

m

Σ (Λdx + gχdy) ® hx for / ;, gλ e έ?SΛXiy), hλ e έ?MΛ*,v>t)

L e t a(Xίy}ζ): p*Ω1

SΛXiy>ξ)-+Ω1

MΛXty>ξ) b e t h e m o d u l e h o m o m o r p h i s m s e n d i n g

ΣΓ=i (fxdx + ^dt/) (g) hλ to ΣΓ=i (fλhλdx + gλhλdy) and β{x,y,ξ): Ω^,^^^ —>
ĵr,(»,*,*) be the module homomorphism sending /da; + d̂̂ / + Λd£/£ to Λ,

where /, ί/ and fe are elements of £?*,<.,,,,$>. It is easy to see that α(a.,y>0

and β{x>y,ξ) are defined independently of the choice of the local coordinates.
It is obvious that there exist sheaf homomorphisms a: P*ΩM —> ΩM (resp.
β: ΩM —> ^jf) whose restrictions to the stalk on (x, y, ξ) are a{Xty>$) (resp.
β{χ,y.ξ)) Thus we have the exact sequence

0 -> p * ^ ^> Λi, Λ <?M -> 0 .

LEMMA 2.9. T7e Λα'ye an exact sequence

PROOF. Since (IFpxΩ)*)^^, the stalk of i2°p#fljf at (OJ, y), is isomorphic
to H\p-\xf y), X?i),
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(a, y)dx + φ2(x, y)dy + φz(x, y)dζ/ζ;

{x, y)eέ?SΛx>y) (i = 1, 2, 3)

Let a\x>y): Ωι

S{Xyy) ->(R>p*Ωh

M){X)y) be the map sending φfa, y)dx + φ2(x, y)dy
to φ^x, y)dx + φ2(x, y)dy and β\x>y): (R^P^ΩM)^^ —> ^ , ( X , y ) be the map sending
Φi(x, y)dx + φ2(xf y)dy + φz(x, y)dζ/ξ to φd(x, y). It is easily checked that
a\Xiy) and ^S^^, are well-defined. It is clear that there exist sheaf homo-
momorphisms α': Ωι

s —• R?P*ΩM and β': R°P*ΩM -> ^ s such that the restric-
tion to the stalk at (x, y) of each homomorphism coincides with a\X}V)J

β[X)1/)f respectively. Thus we have the exact sequence

M ^ &s -> 0 . •
LEMMA 2.10. We have an exact sequence

0-*Ω1

s-+ Rιv*Ωι

M -» έ?8 -> 0 .

PROOF. By Lemma 2.6 and Lemma 2.7, the long exact sequence
arising from the short exact sequence in Lemma 2.8 reduces to

0 -> Ω\ -> i^p^βi, -> ^ 5

-* fli -> IPp^flir -* ^ θ -+ 0 .

By Lemma 2.9, the lemma follows. •

LEMMA 2.11. <p*Ω\ = Ω\.

PROOF. ΩMAx>y>ξ), the stalk of Ω\ at (x, y, ς), consists of elements

Φ(x, y, ξ)dx Λ dy A dξ/ξ for φ(x, y, ξ) e ^MΛXtVΛ) .

On the other hand,

V*Ω\ = p-Ήl (g) έ?M

by definition, so v*Ω\ΛXiy,ξ) consists of the elements

Σ ψifa y)dx A dy®fλ(x, y, ξ)

with ψχ(x, y) e ^ , { β f f ) , fχ(x, y, ξ) 6 έ?M,&,*,&• There exists a sheaf homo-
morphism α" (resp. ^S") of Ω\ (resp. p*β |) to p*i2| (resp. Ω\) which sends
^(», Vf ξ)dx A dy A dξ/ξ (resp. Σ?=i ^(» , y)dxAdy ®fλ(x, y, ξ)) to dx Λ
dy (g) ̂ (», 2/, ξ) (resp. Σr=i ^(» , J/)Λ(«, y, ξ)dx A dy A dξ/ξ) on the stalk at
(x, y, ξ). Then it is easy to see a"°β" — idp.fl2, β"°a" = idΛ3. Π

LEMMA 2.12. R'P^Ω'M (X) fl| = R'PΛΆ (8) flir), i = 0,1.

PROOF. By Lemma 2.11,



108 A. YAMADA

Ά ® Ά) = Rιp*{Ωι

M ® p*Ω%) .

Since ΩX

M has the property (b) of [1, p. 149, Theoreme 4.10],

R'VΛΩ'M ® P*Ω%) = Rιp*Ω\ ®Ω\. Π

LEMMA 2.13. H\S, R°p*{Ωι

M ® Ω\)) = 0.

PROOF. Tensoring Ω% with the exact sequence of Lemma 2.9, we
have an exact sequence

0 -> Ω\ (x) Ω\ -> R'P^M ® Ω\ -> ^ ® Ω\ -> 0

because i2| is locally free. By Lemma 2.12, the above sequence changes
into an exact sequence

0 -> Ω\ ® Ω\ -> R°pM ® ώSf) -> i% -+ 0 .

From this exact sequence, we get a cohomology exact sequence

> H\S, Ω\ <g) /%) -> H\S,

The lemma follows since H\S, Ω\ (g) Ω%) = ίP(S, ώ|) = 0. Π

LEMMA 2.14. H°(S, R'PM ® ώϊr)) = 0.

PROOF. Tensoring i2|, which is locally free, with the exact sequence
of Lemma 2.10 and applying Lemma 2.12, we get an exact sequence

0 -> Q\ ® Ω% -> R'P^Ω'M ® ί?Sf) -> Λ | -> 0 .

This gives a cohomology exact sequence

o -> #°(s, i% ® Ω\) -> fΓ(s, i e 1 ^ * ^ ® x«f))

Since H\S, Ω\ ® i%) = ίP(S, i%) = 0, we have H°(S, R'pM ® i2Sr)) = 0.

D
By Lemma 2.13 and Lemma 2.14, Proposition 2.4 is clear.

PROPOSITION 2.15. dim H\M, Θ) = 7.

By the Riemann-Roch theorem, we have

i=o 2 24 2

From the results we have already got, we get

dim H\My Θ) - 7 - i-c3 + ^ c 2 - i
2 24 2
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Now we shall calculate the relevant Chern numbers of M.

LEMMA 2.16. c3 = 0.

PROOF. Since M is diffeomorphic to S1 x S2 x S3, this is clear. •

LEMMA 2.17. C& = 0.

PROOF. By the Riemann-Roch theorem,

c,c2 = 24 Σ (-1)* dim H\M, (?) .

Since M is compact, dim iϊo(M, (?) = 1. To calculate dim H\M, (?), we
use the Leray spectral sequence and get

0 -> El-° -> H\M, (?) - * E\>1 -> 0 ,

where

By Lemma 2.6,

tfϊ 0 = H\S, K>p*&) = H\S, <?8) = 0.

Hence

El'1 = J^ 1 = ίP(S, ^ 5 ) .

On the other hand,

El>° = ffίS, IPp^jr) = fΓ(S, ^ ) = 0 .

Therefore

dim H\M, (?) = dim H%S, (?8) = 1.

As for H\M, (?), again by the Leray spectral sequence, H2(M, (?) has
a filtration with succesive quotients E\\ E\Λ and El>\ We have E'J 2 = 0
because the fibres of p are of dimension 1. Next we have E\Λ = 0
because

El'1 = KerCEfr1 -> El^cE? = H\S, Rιv*(?) = H\S, <?s) = 0 .

We also have El*° — 0 since

^'° = H\S, E>v*(?) = iϊ2(S, <^) = 0 .

Therefore ίί2(Λf, ^ ) = 0. Furthermore H\M, (?) = H°(M, Ωz) = 0. Π

LEMMA 2.18. c\ = 0.

PROOF. It is clear because M is diff eomorphic to SιxS*xS?. •

By the above three lemmas, we have Proposition 2.15.



110 A. YAMADA

2. Small deformations of M. Put

W=P*-lo-L,

B = {ί = (ίi, t., , tΊ)eC7; \tt\< δ, i = 1, 2, , 7}

where δ is a sufficiently small positive real number. For t e B, we define
a holomorphic automorphism # t of W by

fc(Ko: Ci: C2: CJ)

= [Co + ίiCi: t2ζ0 + (1 + «,)£: (α + Qζ2 + tU tβζ2 + (a + ίτ)ζ8] .

In particular, 0O = 9-
Let ^ be a holomorphic automorphism of WxB defined by

ζ, ί) - (gt(Q, t)

and τf the projection of WxB to the second factor. Obviously we have
<&og = tεr, hence we have the induced map ^f = (WxB)/(g) —> B which
we also denote by vf.

THEOREM 1. ( ^ C B, τf) is the complex analytic family which is
complete and effectively parametrized at the origin. A complex manifold
N is a small deformation of M if and only if N is biholomorphic to
W/(gt) for some t e B.

PROOF, (^f, B, XDT) is easily seen to be a complex analytic family.
Let U = {Uo, Uw, Uoo) be the open covering of M defined in §1.2. We
define 00/Sί,) 6 Z\U, Θ) for i = 1, 2, , 7 as follows:

J + yJ + zj
dx0 dy0 dz

dx0

, θ\u.nuj) = ±
a dy0 \3ίB/ α

a dz0 \at7' a dz0

with respect to the system of local coordinates (xQ, y0, z0) = (d/C0> ζ2/ζ0, C3/C0)
Here e(d/dtt)(Uon Uw) means the value of 0(3/3ί«) on I70Π 17^. Then it is
easy to see that [0(3/3^)] (i = 1, 2, , 7) are linearly independent in
H\Uf θ), where [θ(d/dtt)] denotes the cohomology class represented by
θ(d/dtt). Indeed, suppose ΣI=i ott[e(d/dti)] = 0 for complex numbers at.



SMALL DEFORMATIONS OF CERTAIN COMPACT MANIFOLDS 111

This is equivalent to the existence of an element veH°(UO\JUW{J [/«,, Θ)
such that

Writing this equation explicitly, we have

\ dxQ dy0 dzj dx0

^ + ΪΛΠΓ
 + Z<>ΊΓ) + a ^ + a&*4dxQ dy0 dzj dx0 dxQ

—\a*yJ- + aδzQ^- + aQy0^- + aΊzΛ-
a I dy0 dy0 dz0 dz0

dx0

{(1 - α)(α2 + 6 Λ ) + (1 /

{(1 - a)(aB + b,x0) + (1 - l/a)(fyQz0 + flf^o)}^-

Then we have at = 0 for i = 1, 2, , 7. This shows the linear indepen-
dence of [0(3/3ί<)] (i = 1, 2, , 7). Lastly it is easy to see that po( ) =
i([0( )])> where i is the inclusion map of fΓ(U, Θ) to JT^Af, Θ) and ^0 is
the Kodaira-Spencer map. The above result shows that p0 is bijective
because H\M, Θ) is 7-dimensional. •

§ 3. Small deformations of M(n)(n ^ 2).

1. Cohomology groups of M(ri).

PROPOSITION 3.1. H\M, Θ) = 0.

PROOF. By the Kodaira-Serre duality,

H\M(n), Θ) = H\M(ri), Ω1 (g) Ωz) .

But by [7, p. 7, Proposition 2.3]

H\X, (Ωψmi (g) (i22)Θm2 (x) (Ωψmή = 0

for any Class L manifold X and for non-negative integers mlf m2, m3 such

that m! + m2 + m3 > 0. •

PROPOSITION 3.2. dim H°(M(n), Θ) = 3(n ^ 2).

PROOF. We first prove the assertion for n — 2. We have defined
Jlf(2) by Z(M\ M\ c\ c2). We denote by Γ 1 the inverse mapping of c con-
sidered as a mapping of N(e) to c(N(ε))c:π(Uw)ciM. Then s = rWo^1)"1



112 A. YAMADA

of ^1(ΛΓ(ε))cM1 to c2(N(e))c:M2 is expressed in terms of the local coordinates

induced by the homogeneous coordinates in P 3 as

s([ζ0: £ : ζ2: CJ) = I/C + »ζ2: μζ* + vζ3: - (vζ0 + μζ2): - (»Ci + μζ3)] ,

where μ = 1 + λ2, v — 1 — λ2. In the above, π and <7 are mappings defined
at the end of §1. By the Mayer-Vietoris exact sequence of cohomology
groups with coefficient in Θ, we see that an element of H%M(2), Θ) is
identified with an element v eH\(M*)*, Θ) such that 8*(v\tiiNW)) is the
restriction of an element v' of H\{M2)\ Θ) to c2(N(ε)), i.e., v'\t2(NW) =
s*(v\eiιN[ε))). On c\N(e))Ππ({ζ0 Φ 0}), v has the form

( α x + α2α?0 + d a s 0 ) - h ( 6 ^ 0 + b2z<> + d x Q y 0 ) - h ( c ^ + 2̂̂ 0 + d^o^o)-τ—
δίCo 32/o 3^o

because i?°((Λf1)*, Θ) = ίί^Λί1, ©). So does v' on the similar domain. In
the following, we denote the coordinates and coefficients concerned with
M2 by letters with primes, for instance, ζ', o!. Calculating 4x2{s*(v \ti{NW)) —
vf\e2{NW)} in terms of the local coordinates x0, y0, z0 and x'O9 y[> z[, we have

aλ - v% - 4λ2αί) + (μ2a2 - v% + v% - 4x2a2)x'o
μv(a2 - c2)zΌ + (v2b2 + μ2d - 4x2d')x'o

2

+ {μvb, + μv{b2 + d)x'o + ((μ2

- 4λ26D^ό + (v% + μ2d - 4λ2

+ μv(b2 + d)y'ozΌ}d/dyΌ + {μvic, - αx) + /ιv(c2- - a2)xf

0

- v2ax - 4x2)y'o + (i«2c2 - i/α2 + v% - 4x2c'2)zΌ + (v

Thus the equation 8*(v\ti{NW)) = v'\^NW) is equivalent to the relations
among coefficients

fli = aΊ — Ci — c[ y a>2 = o!2 — c2 = c 2 ,

&! = 6ί = 0 , 62 = δ2 = —d = —df .

This concludes dim H\M(2), Θ) = 3.
We now prove the assertion for n ^ 3. It is easy to check that an

element, v = (a + bx0 + cxl)d/dx0 + ( —cz0 + cxoyo)d/dyo + (αy0 + δz0 +
cxozQ)d/dzo, of H°(N(ε), Θ) is σ*-invariant and τ*-invariant, i.e., σ*^ = v
and r^v = v. Since M(β) = Z(M(2), Mz, c2\N(ε)oτ, ?) and r = π°τ, the above
facts imply that every element of H\M(2)*, Θ) has the extension to AΓ(3)
and to ikf(τi) for any n ^ 4. CH

PROPOSITION 3.3. dim H\M(n), θ) = 15w - 12.
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We first note that the embedding c of ί 7 e c P 3 into M is naturally
extended to an automorphism τ of P 3 when we consider M as a manifold
obtained by identification of ζ e Uo Π g~\ £/«,) with g(Q e g{ Uo) Π £/«> in ί70 U
E7*rU ϊ/ooCP3. Here E70, Ϊ7W, £/«, have already been defined in §1. 2. We

d e n o t e ^ U £7*11 £7« by M(l), Uong-\UJ) by JV(l)lf and g(UQ)(\U« by ΛΓ(1)2.

P 3 — Λf(l) has two connected components: 2£(1X containing ϊ0 and ίΓ(l)2

containing L. From now on, we denote g by # (1)1.

Assume that M(ri), N(n)i9 K(n)t (1 ^ i ^ 2w), and flf(n,y(l ^ i ^ n) are

defined for w so that M(n), N(n)if K(n)t are subsets in P 3 and that each

gMj is a holomorphic automorphism of P 3 , which induces an isomorphism

of -Nίw)2i-i to N(n)2j for any 1 ^ i ^ ^ . Assume also that M(n) is con-

structed by identification of ζj e N{n)2ά_γ with g{n)j(ζj) e iSΓ(w)2i (1 ^ i ^ w)

in M(w) and that the embedding cn:Uε^> M(n) lifts to an open embedding

into M(ri) and extends to an automorphism ίn of P 3 . We define M(n + 1)

by cΛMin))- \JUσoτ-ι{{K{l\)y and N(n + ΐ)t (resp. ίΓ(n + 1)J by
ίήι(N{n)t) (resp. ^(UXrc)*) for 1 ^ ί ^ 2w and by σoτ-'iNil)^) (resp.

σoτ~1(if(l)i_2n) for i = 2n + 1, 2?ι + 2. We also define g{n+1)j by ίnlogMόo^n

for 1 ^ i ^ n and by σov^og^^zoσ for j = n + 1. Then we can easily

see that every g{n+1)j is an automorphism of P 3 , which induces an iso-

morphism of N(n + l) 2 i_! to N(n + 1)2J and that we obtain M(n + 1) by

identifying ζj e N(n + 1 ) ^ with g{n+1)j(ζj) e N(n + l)2j in M(n + 1) for

l ^ j ^ n + 1.

LEMMA 3.4. If v e H\M(n), Θ) is the lifting of ve H\M(n), θ), then
v = 0.

PROOF. Since v is the lifting, it satisfies the conditions

v\N(n)2j = ( g ( n ) j ) * v \ N { n ) 2 . ^ , l ^ j ^ n .

Let v\N{n). decompose into α(n)< + 6(n)< 0-^i^n) where α ( n ) i is the re-
striction of an element α(n)< of Hι(K(ri)i U N(n)t, Θ) and 6(n)i is the
restriction of b{n)ieH\P* — K(n)t9 Θ). This decomposition is possible and
unique by the Mayer-Vietoris exact sequence for the pair (P 3 — K(n)it

K(n)t\JN(ri)t). Then the relations among α(n)< and b{n)i are as follows:

a{n)2j — (flr(n)i)*&(n)2i-l > V{n)2j = W(n)j)*(L(n)2j-l >

for 1 ^ j ^ w.
Let L(n): = M(ri) — U ?=i W(w)i. Consider the commutative diagram of

cohomology groups with coefficients in Θ:
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H\M{n)) * φ H^Nin),) — ^ Hl(n)(M(n)) •

I " I Ί -
1 2n ' ^ r '

0 > ffil

The first row is the local cohomology exact sequence for the pair (M(ri)f

L{n)) and the second is that for the pair (P3, L(ri)).
By the relations among α(n)< and 6(n)i,

0 - δL(a(θ)) = δL((B (<*<»>, + &<«»)) = «*(© α W 2 H + φ (<7<̂  )Λ»)2;-i))
\ΐ=i / \i=i i=i /

n n

= Φ ^(α (n,2i-l) + θ δL((flr(n,i)*&(»,2/-l) *
i=l j=l

By the commutativity of the diagram above, the last line of the above
equation is equal to

( ) 2 i 1 φ
Since δL and p are isomorphisms, we have

^ W;-! + Φ (<7(»);)Λ»)2;-i = 0 .

Since all the terms on the left are from the distinct components of
φi=1 H\N(n)i\JK(ri)i), we have

for j = 1, , n. This is equivalent to

α~ — h — Π i" — 1 • • • 9 - M(n)i — u(n)i — \J9 It — J-, , uίV .

Hence we have a(v) = 0. The proof of the lemma is complete once we
show that a is injective, i.e., the following sequence is exact:

0 -> H\M(n)) -> φ H\N{n\) -> mUMW) -> 0 .
ί=l

First consider the commutative diagram

0 > H\M(n)) > φ H\N(n\) > HlUMin)) >

ί ,;• i i
0 • H\P3) * φ H°(N(n)t U K(n)t) > fli,n,(P8) * 0 .

i=l
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Both rows are the local cohomology exact sequences in view of facts
H°L{n)(M(n)) = H°L{n){Pz) = 0 and H\PS) = 0. We are done since any holo-

morphic vector field on M(n) (resp. N(n)t) can be extended uniquely to
one on P 3 (resp. N(n)t\jK{n)t). •

LEMMA 3.5. The restrictions of any element of Hι(M(ri), Θ) to
ίn-i(N(ε)), cn(Ut), and cn(N(ε)) are zero.

PROOF. Consider the following commutative diagram

H\M(n), θ) -£-* H\wί,), Θ)

H\euΛN(e)), Θ) - ^ HKc^We)), θ) .

Since β is the zero map, we have the conclusion for cn-i(N(ε)). The other
two are obvious because ^(ΛΓ(ε))c^n(ί7e)Cίn_1(iV(ε)). •

LEMMA 3.6. The following sequence is exact:

0 -> H\M{n\ θ) -+ H\M{n)\ θ) 0 H\cn(Uε), θ)

-> H°(N(ε), θ) -* 0.

PROOF. AS is already proved, H°(M(n), θ) is isomorphic to H\M{nf, θ)
by the restriction map, and so is H\cn(U€), θ) to H\N(ε), Θ). •

LEMMA 3.7. H\M(ri), Θ) is isomorphic to the subgroup H\M{ri)> θ)% in
H\M(rif, θ) consisting of elements whose restrictions to cn{N{ε)) are zero.

PROOF. By the above lemma, we have an exact sequence:

0 -* H\M{n), θ) - H\M(n)\ θ) 0 H\tn{Uε), θ)

- H\N{ε\ θ) .

By Lemma 3.5, the first factor of the image of an element of H\M(n)f θ)
is contained in H\M(ri),Θ)* and the second component of the image is
zero. So the restriction map of Hι(M{ri), Θ) to H\M(n)%

9 Θ) induces a map
of H\M{n), Θ) to H\M(n\ Θ)\ The above exact sequence proves the
injectivity of the map.

The surjectivity is proved by chasing the sequence. A pair of an
element of H\M(ri),B)% and zero of H\cn(Uε)) is mapped to zero in H\N(ε),
Θ). By the exactness of the sequence, there exists an element of ^(Miri),
Θ) mapped to the pair. •

PROOF OF PROPOSITION 3.3. We first claim that Im (H\M(n), Θ) ->
H\M{n -1)*, θ) 0 H\Mn\ θ)) is isomorphic to H\M(n - 1), θ) 0 H\Mn, θ).
The image is contained in H\M{n - 1), Θ)* © H\Mn, θ)% by Lemma 3.5.
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Conversely any pair in H\M(n - 1), θ)% © H\Mn, θ)% is the image of an
element of H\M{n), θ) because the image of the pair in H1(N(ε)f θ) is zero.
Hence the image of H\M(n), θ) is equal to H\M(n - 1), β J ' P W θ)1

and isomorphic to H\M{n - 1), θ) 0 H\Mn, θ) by Lemma 3.7.
By the above claim, we have an exact sequence

0 — Coker (H°(M(n - 1)*, Θ) φ H\Mn\ θ) -> ff°( #(e), θ)

-> H\M(n\ θ) — fP(M(rc - 1), Θ) φ iϊW*, Θ) -+ 0 .

If n = 2, the dimension of the cokernel is 4 because dim H°(M(2), θ) = 3,
dim #°(M(1)*, Θ) = 7, dim H%N(ε), Θ) = 15. Therefore

dim H\M{2)) = dim (iϊW x) φ ffCM2)) + 4 = 14 + 4 = 18 ,

which proves the assertion for n — 2. If n ^ 3, we see that the cokernel
is 8 dimensional, because dim H°(M(n), Θ) = dim H°(M(n - 1)*, Θ) = 3,
dim H\Mn*, Θ) = 7, and dim H\N(ε)) = 15. Then by induction on n, we
have

dim H\M(n), Θ) = dim (H\M(n - 1), Θ) φ H\M, Θ)) + 8

= 15(n - 1) - 12 + 7 + 8 = 15ra - 12 . •

PROPOSITION 3.8 H\M(ri), Θ) = 0 (n ^ 2)

PROOF. By the Riemann-Roch theorem, we have

3 - 15n + 12 + dim H\M(n), Θ)

Due to [6, p. 6, Proposition 2.2], we have

for any Class L manifolds Xλ and X2, where Ci is the Chern number. Hence

d[M(n)] = nCi[M] - (w - l)cχ[P3] = - ( n - l)d[P3]

because Ci[lί] = 0. Therefore, with the well-known fact on the cohomology
groups of P 3 with coefficients in β, we have

dim H2(M(n), Θ) = 15n - 15 - (n - l ) Σ ( - l ) i dim #*(/*>, θ)

=s 15n - 15 - (n - 1)(15 - 0 + 0 - 0 ) = 0 . Q

2. Small deformations of Λf(2). Let δ be a sufficiently small positive
real number and B(f') a domain in C4 defined by

B{t') = {f = (tl, ίί, ti, ίj) e C*; I « | < δ (i = 1, 2, 3, 4)} ,

Let ttJ" - {C/S, ί7^, J7ί}, the j-the copy of U, be the open covering of
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Mj for jeN. We define a holomorphic open embedding st, of c(N(ε))c
1 into 7r(£/^)cAPcikP by

d: C2: ζ,])

+ PίίCa". J"ίίCo + ( K - v)Ci + Λ + « - /ι)ζ8]

where μ = 1 + λ2 and v = 1 — λ2. In the above, the local coordinates on
π{U*w) are taken as those of Pz since π{Uj

w) is isomorphic to U3

W. We
restrict s't to c\N(ε)) Π sΐf\c2{N(ε))) which we shall simply denote by s't.
Then st> becomes a holomorphic open embedding of c\N(ε)) Π s^ifiNie)))
into ί7^. Note that s0 = s = foooffy1.

Now we construct a complex manifold ^^(2) as follows. First take
two copies of (^C £, tar), (^T^, B3, vf>') for j = 1, 2. We write (a*, ί̂  ) a
point of ^ ^ J ' . Let πj be the natural projection of WxBj to ^ ^ y and
πίi be the restriction of πj to ΐΓxί^}. From Theorem 1, Af/ϊ = (tarO"1^5')
contains a domain πJ

tj(Ul) biholomorphic to U&9 which contains π3

tjτ(U1/ε).

Put ^ i % = ^?> - πj(τ(U1/e)xB>'). We define
.^T2* x J51 x B(t') by identifying

((x1, ί1), t2, t') e π\τ(N(ε)) x B1) xB2x B(t') c ^ ^ 1 # xB2x B(t')

with

((a?, t2), t\ V) 6 τr2(τ(iV(ε)) x B2) xBιx B(t') c .^T2* x f f x β(f)

if and only if

x2 = sΛx1), t1 = t\ t2 - t2, t'=t'.

We define the projection π of ^T(2) to B1xB2xB(t') by

-or: ((a?1, ί1), *2, ίf) ^ (ί1, ί2, t')

and

tar: ((x2, ί2), t1, tθ H> (t1, tS tθ

Then it is clear that ( ^ ( 2 ) , B1xB2x B(t')9 vf) becomes a complex analytic
family.

THEOREM 2. UT(2), BιxB2xB(t')y τf) is the complete, effectively
parametrized complex analytic family of small deformations of M(2).

PROOF. (W)*: = {Ui, U5

W - F(U^), UQ is a covering of (M*)*. We

denote U'w - F(ΪQ by <JJ'W)* for simplicity. We take U(2) =
as a covering of M(2). We define a linear map θ: T^B1 x B1 x B(t')) ̂ >

), Θ) as follows: 0(3/3ίί) is equal to the vector field listed in the
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proof of Theorem 1 on U{ Π UL and takes the value zero on other inter-
sections of any distinct two members of 11(2) for i = 1, •••, 7 and j =
1, 2. As for θ(d/dt'), we define

θ(dldt[)((Uir)*n(Ulr)*) =

θ(d/dt:)((Uhr)*Γί(Ulr)*) = US/da ,

and 0(3/3ί£) takes the value zero on other intersections for k = 1, 2, 3, 4.
Then it is easy to see that i([0( )]) = pQ(-) where i is the inclusion of
H\U(2), θ) to H\M(2), θ) and p0 is the Kodaira-Spencer map. [0(3/3*0]
and [θ(d/dt'k)] are linearly independent. Indeed, suppose that we have an
equation

Σ αJ0(3/3ίJ) + Σ α!0(3/3ίϊ) + Σ βkθ(d/dtk) = δv
1 = 1 ϊ = l Jfc=l

where v is an element of C°(ΐt(2), Θ) and aί, βk are complex numbers.
By Theorem 1, we have a{ — 0 for all i, j . So the above equation reduces
to the equation

4

Σ βkθ(dldt'k) = s^v1 — v2 ,

where vj belongs to H\(Mjf, θ) for j = 1,2. Using the calculation in
the proof of Proposition 3.2, the above equation becomes

βid/dyΌ + β2x'Qd/dyΌ + βsd/dzΌ + βXd/dzΌ

— {(μ2ai — v2Ci — 4λ2αJ) + (μ2a2 — v2c2 + v2b1 — 4x2a'2)x'o
ι)yΌ + μv(a2 — c2)zΌ + (v% + μ2d — 4x2d')x'o

2

- μv(b2 + d)Xoz'o}d/dxΌ + {μvbι + μv{b2

&i — 4x2b[)yΌ + (μ\ + v2d — 4λ2δ2)^ό

— 4x2d')x'0yΌ + μvbλy[2 + μv(b2 + d)y[z[}dldy[ + {/>
W ' _i_ /̂#2/» u2/» JΛ 2 /»'W

- ^v(62 + d)tf}d/dύ

where aif bif ci9 d, α , b'if c[, and d' are complex numbers. This shows us
that all βt vanish and the image of [#(•)] spans an 18-dimensional vector
subspace in ίP(ΐt(2), θ), which in turn is a subspace of 18-dimentional
H\M{2), θ). Hence ρ,(-) = i([0( )]) is bijective. Π

3. Small deformations of M(n)(n ^ 3). We construct the complete,
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effectivzly parametrized complex analytic family ^?(ri) of small deforma-
tions of M(n) inductively. Let

B{t") = {«" = ( C , ίίO eC 8; \tϊ\ < δ (i = 1, • , 8)} .

We define a holomorphic open embedding rv> of rn"1|ΛΓ(e)or(iV(ε))cΛί(^ — 2)*Π
- 1) into cn(N(e))(zMn* by

*v([ζ0: Ci . ζ2: CJ)

= [λ(l - ίJOCo - λίi'd + (1 + t[%2 + ίj'&: λίί'Co + λ(l + OCi

- ίί'C. + (1 - C)ζ3: λ(l + OCo + λCCi + ( - 1 + ίί')C. + <;'C.:

λίί'ζo + λ(l + OCi + ίί'C, - (1 + OCJ

with respect to the system of local coordinates induced by the homo-
geneous coordinates of P 3 .

We have already constructed ^t(2) in §3. 2. ^t(2) contains
π(τ(N(e!))xB1)xB*xB(jb') such that

ττ(τoτ(Uε) x B1) x B2 x B(f) n M(2) = £2°τ( C/ £ )cl 1 } n Mn .

Here Λf(2) is identified with the fibre vr~\0). Assume that ^t(n) is
constructed with the parameter space B(n) and that ^t{n) contains
cn\N(ε)°τ(Uε)xB(n) with the property

We denote ^t(n) - (cn \N{ε) °τ( U1/ε) x B(n)) by ^?{ri)\ We construct ^?{n +1)
from ^f{n)t and ^ n + 1 * by identifying

((a?, ί), tn+\ t") e ^T(n) f x Bn+1 x B(t")

with

((a?n+1

f ?w+1), ?, Γ ' ) e ^ ^ n + 1 * x J 5 ( ^ ) x 5 ( O

if and only if

αj»+1 = r4,/(ίc), t = ΐ, tn+1 = tn+1, t" = t" .

It is clear that ^?{n + 1) contains cn+1\N{ε)oz(Uε)xB(n + 1) with the pro-
perty (*)n+1. Hence we get ^t{n) for any neN. We project ^t(n + 1)
onto B(n + 1) = B(n) x Bn+1 x B(t") by

v : (fe ί), tn+\ t") h- (ΐ, ί"+1, ί")

v : ((»"+1, tn + 1), ί, O ^> (ί, ίn+1, ί") .

Then (^f(n + 1), J?(w + 1), tar) is a complex analytic family with tar"1^) =

M(n + 1).

THEOREM 3. (^f(ri), ffx x ^ x B(t') x Jg(t/;) x - - x ^(^Q, tar) is ^ e
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complete, effectively parametrized complex analytic family of small de-
formations of M(ri).

PROOF. We define the covering U(n) of M(n) inductively. We have
already defined 11(1) = U and tt(2) in the proof of Theorem 2. Put

We define tt(3) to be

{uι, ui, uι,
The former set is for Λf(2)f and the latter is for Mz\ Then ?\NW°τ(Ut)c
M(2)*nikP* intersects only (£/$)* and U%.
so that

Assume that U(n) is defined

(any distinct three of U(n) do not intersect and tn\Nu)°τ(Ue)c.
\
[M(n - l)*nilίn* intersects only (t/<r1)#)* and U$ot U(n).

(**)

Put

We define U(nf to be

(It(n) -

and VL(n + 1) to be H(n)1 U (Uw+1)*. Then U(rt + 1) has the propety (**)w+1.
Therefore U(n) is defined for any neN with the property (**)n.

Now we proved that (^f(n), B{n\ τf) is the complete, effectively
parametrized family of small deformation of M(n) by induction. We have
already shown that

i?1(U(2), Θ) = H\M{2), Θ) ,

Γ0(B(2)) - ff(M(2), Θ)
(***)„

Assume (***)n and that ^ ( n ): T0(B(n)) -* ^ ( Π W , Θ) is defined so that
i([^^)(.)]) = |o0(.), where i is the inclusion map of H\U{n), Θ) in H\M(n), Θ).
We define 0(TO+1) of T0(B(n + l)) to W Λ + I ) , fl) as follows. Let θ{n+1)(dldtϊn))
take the same value as θ{n)(d/dtin)) on the intersections of any distinct two
members of tt(w)* and take zero on other intersections, where t\n) is the
parameter of B(n) for i = 1, , 15n - 12. Let θ{n+1) (d/dt?+1) take the
value θω(d/dti) on the intersection of any distinct two of (Un+1)* and take
zero on other intersections, for i = 1, •••, 7. As for 0(n+1)(d/3£ί')> let
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+ yj/dy, +

θίn+1\d/dtϊ)((U#yn up") = zod/dχo,

n up*) = d/dy0,

n U^) = a;03/3t/0,

and θίn+1)(d/dtϊ) take zero on other intersection of any distinct two of
U(n + 1). In the following, we write θ instead of 0(7l+1) for simplicity.
Suppose that we have v e C°Ql(n + 1), θ) such that

) Σ
ϊ=l

By induction hypothesis, the above equality reduces to

where v' 6 iίo(ikfn*, Θ), v" e H°(M(n)*, θ) and r = r0. Using the calculations
in the proof of Propositions 3.2, we have

Ύ2Z0)(x0dldxQ + yodjdyo

+ ΎQxod/dyo + 773/dz0

= {a — ax + (?) — α2)#0 + (c — d)x?}3/3ίc0 + {6^0 + (—c — 62)z0

+ (c — d)xoyo}d/dyo + {(α — ĉ ί/o + (6 — c2)^0 + (c — d)xozo)d/dzo .

This asserts that [θ(d/9tin))]9 , [^(3/3^_12)], [0(3/3tΓ+1)]f , [fl(3/3t?+1)],
[β(3/3ίί')]> •••»[^(3/3O] are linearly independent. It is easily seen that
that po( ) = i([0( )]) Since dim H\M(n + 1), Θ) = 15n + 3, ft is bijec-
tive. •
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